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ABSTRACT: Quasiparticle (QP) excitations are extremely important for
understanding and predicting charge transfer and transport in molecules,
nanostructures, and extended systems. Since density functional theory
(DFT) within the Kohn−Sham (KS) formulation does not provide
reliable QP energies, many-body perturbation techniques such as the GW
approximation are essential. The main practical drawback of GW
implementations is the high computational scaling with system size,
prohibiting its use in extended, open boundary systems with many dozens
of electrons or more. Recently, a stochastic formulation of GW (sGW)
was presented (Phys. Rev. Lett. 2014, 113, 076402) with a near-linear-
scaling complexity, illustrated for a series of silicon nanocrystals reaching
systems of more than 3000 electrons. This advance provides a route for
many-body calculations on very large systems that were impossible with
previous approaches. While earlier we have shown the gentle scaling of
sGW, its accuracy was not extensively demonstrated. Therefore, we show that this new sGW approach is very accurate by
calculating the ionization energies of a group of sufficiently small molecules where a comparison to other GW codes is still
possible. Using a set of 10 such molecules, we demonstrate that sGW provides reliable vertical ionization energies in close
agreement with benchmark deterministic GW results (J. Chem. Theory Comput, 2015, 11, 5665), with mean (absolute) deviation
of 0.05 and 0.09 eV. For completeness, we also provide a detailed review of the sGW theory and numerical implementation.

1. INTRODUCTION

First-principles electronic structure calculations play a central
role in predicting and understanding the behavior of molecules,
nanostructures, and materials. For the ground state, the
methods of choice are density functional theory,1,2 Hartree−
Fock (HF), and to some extent post HF techniques such as the
Möller−Plesset perturbation theory. Ground state calculations
are routinely possible for extended, finite systems due to fast
numerical electronic structure solvers and the increases in
computational power (see ref 3 and refs therein).
For charge (quasiparticle) and neutral (optical) excitations,

the calculations are computationally significantly more
demanding.4−17 While DFT is a theory for the ground state,
recent developments using hybrid functionals18−20 extend the
use of DFT to describe QP excitations, even in system with
thousands of electrons.21 However, the description of the QP
excitations within DFT hybrids lacks dynamical effects, such as
screening and lifetime of the QPs. An alternative for describing
electronic excitations is the many-body perturbation theory
within the GW approximation for charged QPs4,22−26 and BSE
for QPs associated with neutral excitations.25,27−29 Both
approaches scale steeply with system size and therefore are
very expensive for large systems.

Recently, we developed a stochastic approach for both
flavors, stochastic GW (sGW)30 and the stochastic Bethe-
Salpeter equation (sBSE) approach.31 The former scales near-
linearly and the latter scales quadratically with system size. Both
stochastic methods extend significantly the size of systems that
can be studied within many-body perturbation techniques.
Furthermore, of the two, sGW is fully ab initio and can be
therefore compared to other GW formulations.
In this paper, we assess the accuracy and convergence of

sGW versus other well-established codes. This is important
since the GW literature contains widespread results for the
same systems.32 While the theoretical foundations of sGW are
solid,30 the approach has not been tested extensively for
systems that are small enough so they can be studied by
conventional deterministic programs. For this comparison, we
selected a group of 10 small molecules containing first row
atoms (for which experimental geometries and vertical
ionization potentials are available) and compared the sGW
results for vertical ionization energies to those of well-tested32
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state-of-the-art deterministic methods based on the GW
implementation within TURBOMOLE14,33 and FHI-aims.34,35

In section 2, we review the sGW formalism.30 In section 3,
we summarize the results for the subset of 10 molecules.
Summary and conclusions follow in section 4.

2. STOCHASTIC FORMULATION OF THE G0W0
APPROXIMATION
2.1. G0W0 in the Energy Domain. It is possible to write a

formal equation for the QP Dyson orbitals ψn
QP(r) and energies

εn
QP:

∫

ψ ψ ψ

ε ψ ε ψ
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(1)

which is similar to a Schrödinger equation, containing kinetic
energy and external potential energy [vext(r)] operators as well
as a mean electrostatic or Hartree potential

∫= ′ | − ′| ′r r r r rv n u( ) ( ) ( )dCH (2)

where n(r) is the ground-state density of the N-electron system

and =
πϵu r( )C
e

r4

2

0
is the bare Coulomb potential energy. This

equation also contains a nonlocal energy-dependent self-energy
term Σ̃(r, r′,ω) which incorporates the many-body exchange
and correlation effects into the system. Eq 1 is exact but
requires the knowledge of the self-energy which cannot be
obtained without imposing approximations. One commonly
used approach is based on the GW approximation.22 However,
even this theory is extremely expensive computationally and a
further simplification is required, leading to the so-called G0W0
approximation

∫ω ω ω ω ω
π
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G̃0(r,r′,ω) is a time-ordered Green’s function given by
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within a Kohn−Sham (KS) DFT starting point.1,2 ϕn
KS(r) and

εn
KS are the real KS eigenstates and eigenvalues, respectively, of
the KS Hamiltonian (henceforth, we use atomic units where ℏ
= me = e = 4πϵ0 = 1)

̂ = − ∇ + + +r r rh v v v
1
2

( ) ( ) ( )KS
2

ext H xc (5)

and vxc(r) is the exchange-correlation potential that depends on
the ground state density, n(r). In eq 4, f n is the occupation of
the KS level n. In eq 3, W̃0(r, r′,ω′) is the time-ordered
screened Coulomb potential defined as

∫ω ω̃ ′ = ϵ ″ | ″ − ′| ″−r r r r r r rW u( , , ) ( , , ) ( )dC0
1

(6)

where ϵ−1(r, r′,ω) = δ(r − r′) + ∫ uC(|r − r″|) χ ̃(r″, r′,ω) dr″ is
the frequency dependent inverse dielectric function and χ ̃(r,
r′,ω) is the reducible polarizability.

Once the self-energy is generated via eqs 3−6, the QP
energies of eq 1 can be estimated perturbatively, as a correction
to the KS orbital energies. To first order:4,23

ε ε ε= − + Σ̃V ( )n n xc n n n
QP KS

,
QP

(7)

where Vxc, n = ∫ vxc(r) |ϕn
KS(r) |2dr is the expectation value of the

exchange-correlation potential, and Σ̃n(ω) is the self-energy
expectation value at a frequency ω:

∬ω ϕ ω ϕΣ̃ = Σ̃ ′ ′ ′r r r r r r( ) ( ) ( , , ) ( )d dn n n
KS KS

(8)

2.2. G0W0 in the Time Domain. The computational
challenge of G0W0 is to estimate the frequency-dependent
function Σ̃n(ω) involving integration over 6-dimensional
quantities. A simplification is achieved when we Fourier
transform to the time-domain

∫ ω ω
π

Σ ≡ Σ̃ ω

−∞

∞
−t( ) ( )e

d
2n n

i t
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since the self-energy in the time domain is a simple product of
the time domain Green’s function and screened potential

Σ ′ = ′ ′ +r r r r r rt iG t W t( , , ) ( , , ) ( , , )0 0 (10)

instead of the convolution in eq 3. In eq 10, t+ is a time
infinitesimally later than t and G0(r, r′, t) is the Fourier
transform of G̃0(r, r′,ω), given by

∑ ϕ ϕ
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The time domain screened potential W0(r, r′, t) is the potential
at point r and time t due to a QP introduced at time t = 0 at
point r′. Hence it is composed of an instantaneous Coulomb
term and a time-dependent polarization contribution:

δ′ = | − ′| + ′r r r r r rW t u t W t( , , ) ( ) ( ) ( , , )C P0 (12)

WP(r, r′, t) is the polarization potential of the density
perturbation due to the QP:

∬ χ′ = | − ″| ″ ‴

× | ‴ − ′| ″ ‴

r r r r r r

r r r r

W t u t

u

( , , ) ( ) ( , , )

( )d d
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which is given in terms of the time-ordered reducible
polarization function χ(r, r′, t). Using these definitions, we
write the self-energy expectation value as a sum of
instantaneous and time-dependent contributions:

δΣ = Σ + Σt t t( ) ( ) ( )n n
X

n
P

(14)

Here, the instantaneous contribution is

∬ ϕ ρ ϕΣ = − | − ′| ′ ′ ′r r r r r r r ru( ) ( ) ( , ) ( )d dn
X

n C n
KS KS KS

(15)

(i.e., the expectation value of the exact exchange operator),
where

∑ρ ϕ ϕ′ = − ′ = ′−r r r r r riG f( , ) ( , , 0 ) ( ) ( )
n

n n n
KS

0
KS KS

(16)

is the KS density matrix. Finally, the polarization self-energy is
given by the integral
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∬ ϕ ϕΣ = ′ ′ ′ ′+r r r r r r r rt iG t W t( ) ( ) ( , , ) ( , , ) ( )d dn
P

n P n
KS

0
KS
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Despite the fact that the time-dependent formalism circum-
vents the convolution appearing in the frequency-dependent
domain, the numerical evaluation of Σn

P(t) is a significant
challenge with numerical effort typically scaling proportionally
to Ne

4 or Ne
5.11,15,36 This is due to the fact that G0(r, r′, t)

involves all (occupied and unoccupied) KS orbitals and WP(r,
r′, t) involves 6-dimensional integrals (eq 13) depending on the
reducible polarization function χ(r″, r‴, t).
2.3. Stochastic G0W0. We now explain how stochastic

orbitals enable an efficient near-linear-scaling calculation of
Σn(t).

30 The calculation uses a real space 3D Cartesian grid
with equally spaced points rijk = (ix ̂ + jy ̂ + kz)̂ h, where i, j, and
k are integers and h is the grid spacing, assumed for simplicity
to be equal in the x, y, and z directions. The application of the
Kohn−Sham Hamiltonian h ̂KS onto any function on the grid
can be performed using Fast Fourier Transforms in Ng log Ng
scaling, where Ng is the size of the grid.
We now introduce a real stochastic orbital ζ(r) on the grid

assigning randomly + h−3/2 or − h−3/2 with equal probability to
ζ(r) at each grid point r.37,38 The average of the expectation
value (expressed by ⟨···⟩ζ) of the projection ⟨|ζ⟩⟨ζ|⟩ζ is equal to
the unit matrix, ⟨|ζ⟩⟨ζ| ⟩ζ = I,̂ resulting in a “stochastic
resolution of identity”.39 In practical calculations the expect-
ation values (i.e., averages over ζ) are estimated using a finite
sample of Nζ random states. In accordance with the central
limit theorem, this average converges to the expectation value
as Nζ → ∞ (for a discussion of the convergence of the
stochastic estimates see section 3).
With the use of the stochastic resolution of the identity, any

operator can be represented as an average over a product of
stochastic orbitals. For example, for the KS Green’s function:

ζ ζ′ = ⟨ ′ ⟩ζr r r riG t t( , , ) ( ) ( , )0 (18)

where ζ(r) = ⟨r|ζ⟩ is the real random orbital and
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is the G-operated random orbital. Here, μ is the chemical
potent i a l , θ( t) i s the Heav i s ide funct ion , and

θ ε βε= +β( ) [1 erf( )]1
2

[in the limit β → ∞, θβ(ε) → θ(βε)].

The application of iĜ0(t) on ζ in eq 18 is performed using a
Chebyshev expansion [for applying θβ(μ − h ̂KS)] and a split
operator propagator for the time evolution, both taking
advantage of the sparsity of the KS Hamiltonian in the real-
space grid representation. The Chebyshev series includes a
finite number of terms NC ≈ 2βΔE where ΔE is the eigenvalue
range of the KS Hamiltonian ĥKS and where β is large enough
so that βEg ≫ 1 where Eg is the occupied−unoccupied
eigenvalue gap (see, e.g., refs 40 and 41).
The representation used in eq 18 decouples the position-

dependence on r and r′ and eliminates the need to represent
iG0(r, r′, t) by all occupied and unoccupied orbitals. The
polarization part of the self-energy is recast as

Σ = ⟨Σ ⟩ζ ζt t( ) ( )n
P

n
P

∬ ϕ ζ ϕ ζΣ = ′ ′ ′ ′ζ r r r r r r r rt t W t( ) ( ) ( , ) ( , , ) ( ) ( )d dn
P

n P n
KS KS

(20)

where ζ is the stochastic orbital used to characterize G0. Further
simplifications are obtained by inserting yet another,
independent, real stochastic orbital ξ(r) using the identity

∫
ϕ ζ

ϕ ζ ξ ξ

′

= ⟨ ″ ″ ″ ″ ′ ⟩ξ

r r r r

r r r r r r r
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n P

n P

KS

KS

decoupling the two t-dependent functions. Therefore, the
polarization part of the self-energy becomes an average over a
product of two time-dependent stochastic functions Anζξ(t) and
Bnζξ(t):

Σ = ⟨ ⟩ζ ζξ ζξ ξt A t B t( ) ( ) ( )n
P

n n (21)

where

∫ ϕ ζ ξ=ζξ r r r rA t t( ) ( ) ( , ) ( ) dn n
KS

(22)

and

∬ ξ ϕ ζ= ′ ′ ′ ′ζξ r r r r r r rB t W t( ) ( ) ( , , ) ( ) ( )d dn P n
KS

(23)

Calculating Bnζξ(t) is done efficiently using the time-
dependent Hartree (TDH) method equivalent to the popular
random phase approximation (RPA).42 There is an important
caveat, however. The real-time formulation based on TDH
provides a description of the retarded Wr(r, r′, t) rather than
the time-ordered WP(r, r′, t) needed in eq 23. Fortunately, in
linear-response, the two functions are simply related through
the corresponding Fourier transforms:43

ω ω ω ω̃ = ̃ + ̃ζξ ζξ ζξB B i B( ) Re ( ) sign( )Im ( )n n
r

n
r

(24)

where B̃nζξ
r is obtained with Wr(r, r′, t). Consequently, we first

provide a formulation for Bnζξ
r (t) and then, as mentioned, use

eq 24 to obtain the corresponding time-ordered function
Bnζξ(t).
Bnζξ
r (t) are obtained by combining the linear response

relation eq 13 (with χr replacing χ) with the definition eq 23,
yielding

∬ ξ= | − ′| Δ ′ ′ζξ ζr r r r r rB t u n t( ) ( ) ( ) ( , )d dn
r

C n
r

(25)

which is calculated in near linear-scaling (rather than quadratic-
scaling) using Fast Fourier Transforms for the convolutions.
Here, Δnnζr (r, t) is formally given by

∫ χΔ = ′ ′ ′ζ ζr r r r rn t t v( , ) ( , , ) ( )dn
r r

n (26)

with

∫ ϕ ζ′ = | ′ − ″| ″ ″ ″ζ r r r r r rv u( ) ( ) ( ) ( )dn C n
KS

(27)

In practice, we calculate the density perturbation by taking Nη

stochastic orbitals η ̅(r) which are projected on the occupied
space using the Chebyshev expansion of the operator θβ(μ −
h ̂KS),

η θ μ η= − ̂ ̅β h( )KS (28)

Each orbital is then perturbed at time zero:
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η η=τ
τ− ζr r( , 0) e ( )riv ( )n (29)

where τ is a small-time parameter. In the RPA, the orbital is
now propagated in time by a TDH equation similar to the
stochastic time-dependent DFT:44

∫η η η∂
∂

= ̂ +
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| − ′|
′τ τ

ζ
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⎛
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⎞
⎠⎟r r
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where

τ
η ηΔ = ⟨| | − | | ⟩ζ τ τ η=r r rn t t t( , )

1
( , ) ( , )n

r 2
0

2
(31)

From Δnnζr (r, t), we then evaluate Bnζξ
r (t) via eq 28, and then

Fourier transform the coefficients from time to frequency and
back via eq 24 to yield the required Bnζξ(t).
Finally, the exchange part of the self-energy is simplified, by

replacing the 6-dimensional integral in eq 15 by two 3-
dimensional integrals involving projected occupied orbitals

∫ ϕ ηΣ = −⟨ ⟩η ηr r r rv( ) ( ) ( )dn
X

n
KS aux

(32)

where the auxiliary potential is

∫ η ϕ= | − ′| ′ ′η r r r r r rv u( ) ( ) ( ) ( )dC
aux

(33)

Note that we are allowed to use the same projected states η
obtained from eq 28 also for calculating the exchange part,
which is therefore obtained automatically as a byproduct of the
polarization self-energy with essentially no extra cost.
2.4. Algorithm. We summarize the procedure above by the

following algorithm for computing the sGW QP energies:

(1) Generate a stochastic orbital ζ(r) and Nξ stochastic
orbitals ξ(r). Use eq 19 to generate the projected time-
dependent orbital ζ(r, t).

(2) Generate the set of Nξ time-dependent functions Anζξ(t)
from eq 22 using ξ(r) and ζ(r, t).

(3) Generate Nη independent stochastic orbitals, project each
of them to the occupied subspace according eq 28,
obtaining the projected Nη functions η(r) from which Σn

X

is computed using eqs 32 and 33.
(4) Then use the same Nη projected stochastic functions η(r)

together with ζ(r) and the set of ξ(r) to generate Bnζξ
r (t)

using eqs 23−31, where nnζr (r, t) is obtained as an average
over η.

(5) Fourier transform Bnζξ
r (t) → B̃nζξ

r (ω) and converts to the
time-ordered quantity B̃nζξ(ω) using eq 24. Fourier
transform back B̃nζξ

TO(ω) → Bnζξ
TO(t) and calculate, by

averaging on ξ, the polarization self-energy Σnζ
P (t) using

eq 23.
(6) R e p e a t s t e p s 1− 5 N ζ t i m e s , a v e r a g i n g

Σ = ∑ Σζ ζ
ζ

t t( ) [ ( )]n
P

N n
P1 and similarly averaging Σn

X.
(7) Fourier transform Σn

P(t)→ Σ̃n
P(ω) and using this function

estimate the QP energy εn
QP by solving eq 7 self-

consistently.

In practice, the stochastic error is then estimated by dividing
the set of Nζ calculations to e.g., 100 subsets (in each of which

we use ζN

100
stochastic orbitals) and then estimating the error

based on the values of εn
QP from each of the 100 subsets.

3. RESULTS
We now evaluate the performance of sGW by application to a
set of 10 small enough molecules for which reliable
deterministic calculations and experimental vertical ionization
energies are available. The sGW calculation is based on the
local density approximation, denoted henceforth as ε@LDA

sGW and
implemented on a Fourier real-space grid using Troullier-
Martins pseudopotentials45 and the technique for screening
periodic charge images of ref 46. For all molecules,
experimental geometries were used, taken from the NIST
database.47

The sGW estimate of ε@LDA
sGW is governed by convergence of

multiple parameters. The grid spacing was determined in the
preparatory DFT step by requiring convergence of the LDA
eigenvalues to better than 1 meV (our LDA eigenvalues deviate
by 0.03 eV or less from those obtained by the QuantumE-
spresso program using the same pseudopotentials). For all
molecules, we chose the inverse temperature parameter as β =
200Eh

−1 from which the Chebyshev expansion length NC was
derived to be between 18000 and 19000 (see discussion
appearing below eq 19). The time propagation is performed
using a discretized time-step of Δt = 0.05Eh

−1ℏ for both the
Green’s function calculation as well as the RPA screening; we
checked that this leads to QP energies converged to within less
than 0.02 eV.
Other parameters only negligibly influence the result.

Specifically, the strength of the perturbation was controlled
by the parameter τ (see eq 29); changing its value between 0.01

Figure 1. (Left) Convergence of the sGW estimate of the QP hole energy for a benzene molecule as a function of Nζ for different values of Nη.
(Right) A graphic representation of the self-consistent solution of eq 7 for −IP = εQP of benzene. The solid red line represents the right-hand side of
eq 7. The intersect with the solid gray line represents the self-consistent solution. For reference, we also depict εKS (solid black line).
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to 0.0001 Eh
−1ℏ influences the QP energy by less than 0.001 eV.

In practice, we employ τ = 0.001 Eh
−1ℏ. Furthermore, we used

Nξ = 100 and ascertained that increasing this value to 200
causes changes in the QP energies smaller than 0.01 eV.
The most influential parameters are Nη, the number of

stochastic states η used for the RPA screening calculation, and
Nζ used for representing the Green’s function. In the left panel
of Figure 1, the convergence of the QP energy for a benzene
molecule is illustrated as a function of Nζ for several values of
Nη. Evidently, for this molecule, Nζ = 6000 and Nη = 8 are
sufficient to converge the QP energy with a statistical error of
±0.03 eV. Note that as Nη increases, the convergence toward
the final QP value is reached after a smaller number of Nζ

stochastic orbitals.
When transforming from the time to the frequency domain,

we use a Gaussian damping factor, B̃nζξ
r (ω) = ∫ 0

T dt eiωtBnζξ
r (t) ×

e−(γ t)
2/2, where γ = 0.04Ehℏ

−1 and T ≈ 4/γ = 100ℏEh
−1 are

enough to yield QP energies converged to within 0.01 eV. Note
that a value of Nη = 8 is sufficient for a stable and accurate time
propagation up to T = 100ℏEh

−1 but when longer times T are
used, Nη must be increased accordingly due to an instability in
stochastic TDDFT time propagation.31

The right panel of Figure 1 provides a graphic representation
of the self-consistent solution of eq 7 as the intersect between
εQP and εKS + Σ(εQP) − VXC. Note that even though the
stochastic calculation has by its nature fluctuations, the energy
dependence of Σ(εQP) is smooth.
The sGW estimated vertical ionization energies ε@LDA

sGW were
converged with respect to all parameters described above and
especially, grid-size and number of stochastic orbitals Nζ.
Hence, they should be compared to deterministic GW results,
which are of a complete basis set quality at the GW@LDA
level, denoted ε@LDA

EXTRA, extrapolated to the complete basis set
limit. These results were based on the GW@PBE extrapolated
results ε@PBE

EXTRA calculated under the FHI-aims code34,35 as given
in ref 32, which were then augmented for LDA-based energies
using the relation:

ε ε ε ε≡ + −( )@LDA
EXTRA

@PBE
EXTRA

@LDA
RI

@PBE
RI

(34)

where ε@LDA
RI − ε@PBE

RI is an estimate of the difference between
PBE- and LDA-based GW results (typically a very small energy
in the range of 0.01−0.08 eV). ε@LDA

RI and ε@PBE
RI are the GW-

TURBOMOLE14 energies calculated using the def2-QZVP
basis-set and the resolution-of-identity (RI) approximation.
The switch between FHI-aims code and GW-TURBOMOLE
codes is not expected to pose a problem since both give almost
identical excitation energies.32 We have also ascertained, using
several tests on small molecules, that ε@LDA

RI − ε@PBE
RI is quite

independent of the RI approximation (even though RI does
affect the separate values of each energy).
In Table 1, we compare the GW and sGW LDA-based

vertical ionization energies, showing a high level of agreement,
with mean and absolute deviations of 0.05 and 0.09 eV,
respectively, typically on the order of the given uncertainties in
the deterministic and the stochastic calculations.
We also note that both these values are also in good overall

agreement with experimental values, as seen in Figure 2,
although both results (stochastic or deterministic) generally

Table 1. Vertical Ionization Energies (eV) for the Indicated Moleculesa

system exp. −ε@PBE
EXTRA −(ε@LDA

RI − ε@PBE
RI ) −ε@LDA

EXTRA −ε@LDA
sGW diff h/a0 Nζ

benzene 9.23 9.10(0.01) 0.03 9.13 9.17(0.03) 0.04 0.30 6000
cyclooctatetraene 8.43 8.18(0.02) 0.02 8.20 8.33(0.03) 0.13 0.35 6000
acetaldehyde 10.20 9.66(0.03) 0.08 9.74 9.90(0.06) 0.16 0.30 8000
water 12.60 12.05(0.03) 0.08 12.13 12.10(0.07) −0.04 0.25 14000
phenol 8.75 8.51(0.01) 0.05 8.56 8.61(0.03) 0.05 0.35 9000
urea 10.15 9.46(0.02) 0.12 9.58 9.65(0.05) 0.07 0.30 11000
methane 14.40 14.00(0.06) 0.03 14.03 14.09(0.01) 0.06 0.40 10000
nitrogen 15.60 15.05(0.04) 0.11 15.16 15.05(0.06) −0.11 0.35 7000
ethylene 10.70 10.40(0.03) 0.03 10.43 10.40(0.06) −0.03 0.35 12000
pyridine 9.50 9.17(0.01) 0.06 9.23 9.42(0.04 0.19 0.35 7000

mean: 0.05
mean Abs: 0.09

aThe complete-basis-set-limit-extrapolated GW@PBE result, ε@PBE
EXTRA (with extrapolation uncertainties in parentheses) is taken from ref 32. ε@LDA

RI −
ε@PBE
RI is the estimated GW@LDA to GW@PBE difference, calculated using GW-TURBOMOLE14 within the RI approximation and the def2-QZVP
basis-set. The extrapolated GW@LDA results ε@LDA

EXTRA represent our estimate of the fully converged GW@LDA energies (given in eq 34) which are
used to benchmark the sGW@LDA energies ε@LDA

sGW (with statistical uncertainties given in parentheses). For each molecule, the grid spacing h and the
number of stochastic orbitals Nζ required for producing converged sGW to the indicated accuracy are given in the table.

Figure 2. Ionization potentials as predicted by various calculations for
the set of molecules listed in Table 1 are plotted against experimental
values (note that the sGW statistical error bars are smaller than the
corresponding symbol sizes). Each molecule is depicted above the
graph and dotted red line points to its experimental ionization
potential on the horizontal axis. The sketches of the individual
molecules use black, white, blue, and red spheres to indicate positions
of C, H, N, and O atoms, respectively. LDA results that served as a
starting point for the calculations are shown by black circles. G0W0
results are given by filled red circles. The black line represents the one-
to-one correspondence to experimental values.
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underestimate the experiment by 0.1−0.5 eV. This is primarily
due to the known limitations of the G0W0 approach, which can
be improved using self-consistent-GW.6,13,17,48

4. CONCLUSIONS

In conclusion, we reviewed in detail the sGW method and its
algorithmic implementation. The sGW exhibits a near-linear
scaling with system size complexity30 and hence for large
systems, it is expected to be much faster relative to the
deterministic basis-set implementations having quartic or
quintic14 asymptotic scaling. Therefore, comparison of sGW
estimations with those of deterministic GW can only be made
on relatively small molecules, and here we selected a set of 10
such molecules having Ne = 10−50 electrons. For this set, sGW
and deterministic GW predicted vertical ionization energies
which were very close, with maximal deviation smaller than 0.2
eV and average and absolute deviations of 0.05 and 0.1 eV.
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