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We investigate the accuracy of a number of wave function based methods at the heart of quantum

chemistry for metallic systems. Using the Hartree-Fock wave function as a reference, perturbative

(Møller-Plesset) and coupled cluster theories are used to study the uniform electron gas model. Our

findings suggest that nonperturbative coupled cluster theories are acceptable for modeling electronic

interactions in metals while perturbative coupled cluster theories are not. Using screened interactions, we

propose a simple modification to the widely used coupled cluster singles and doubles plus perturbative

triples method that lifts the divergent behavior and is shown to give very accurate correlation energies for

the homogeneous electron gas.
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Introduction.—The accurate solution of the many-
electron Schrödinger equation for real solid-state systems
is a major challenge for the field of theoretical condensed
matter physics and holds the key to understanding materi-
als with some of the most intriguing and commercially
valuable properties, such as high Tc cuprates and transition
metal oxides. Moreover, it provides access to properties
of materials under conditions that are not accessible by
experiment. In recent years, a number of authors using
quantum chemical methods such as second-order Møller-
Plesset (MP2) and coupled cluster singles and doubles
(CCSD) theory have made significant progress towards
finding accurate solutions for real materials [1–12].
Thanks to recent methodological advances and the increase
in available computer power, these methods have become
tractable for simple materials despite their computational
cost. It has been shown that coupled cluster theory, one of
the most accurate and widely used quantum chemical
methods, translates its high accuracy and systematic
improvability seamlessly from molecular systems to semi-
conductors and insulators, including even more strongly
correlated systems such as NiO [1].

The development of these and other highly accurate as
well as predictive ab initiomethods is also partly motivated
by their potential use for studying metal-insulator transi-
tions in transition metals oxides, where currently available
density functionals fail [13]. However, so far very little is
known about the accuracy of quantum chemical wave
function based methods for metallic systems. An open
question of growing importance surrounding this field
is to directly address which methods are appropriate and
which are not for the study of metallic systems.
Approximations and divergences need to be understood
so that needless effort is not expended investigating
methods which will ultimately fail. Although it would in

principle be possible to pursue this question with analytical
theory, the plurality of diagrams and the lack of closed
solutions makes this attempt intractable. To this end, we
aim to provide here a simple, novel, and robust methodol-
ogy to test for the numerical convergence of approximate
methods in metals using the finite basis set simulation-cell
electron gas [14–16]. Furthermore, we propose modifica-
tions to the employed quantum chemical methods that
account for screening effects and correct deficiencies of
perturbative Møller-Plesset and coupled cluster theories
in metals.
Theory.—In this work we will employ various quantum

chemical methods that use Hartree-Fock (HF) theory as a
reference and treat electronic correlation by expanding the
many-electron wave function in a multideterminantal
basis. The electronic correlation energy in MP2 and
CCSD theory is nonvariational and for the systems studied
in this work can be calculated by

Ec ¼ 1

4

X

i;j

X

a;b

tabij h�HFjHj�ab
ij i: (1)

The indices i, j, k, l and a, b, c, d will be used throughout
this work to refer to occupied and unoccupied HF spin
orbitals, respectively. In the above expression, �ab

ij are HF

Slater determinants where the occupied orbitals i and j
have been replaced with virtual orbitals a and b. The tabij ’s

refer to the coefficients of the doubly excited Slater deter-
minants and their definition for the various wave function
based methods will be given later. We note that the singly
excited Slater determinants make no contribution to the
wave functions and correlation energies of the systems
studied in the present Letter.
In this work, we seek to investigate the accuracy of

various wave function based methods for an archetypal
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fully three-dimensional metallic system. The homogene-
ous electron gas [(HEG), uniform electron gas, or jellium
model] is well regarded to be the simplest model for a
metallic system consisting ofN electrons in a box of length
L with a two-electron Ewald interaction v̂�� [17,18],

Ĥ ¼ X

�

� 1

2
r2

� þ X

���

1

2
v̂�� þ const: (2)

In the thermodynamic limit (TDL), found as the particle
number tends to infinity (N ! 1) with the density held
constant, it is possible to solve the above Hamiltonian in
the Hartree-Fock approximation using single plane-wave
spin orbitals. This yields an analytic expression for the
dispersion relation, producing a band structure with a
zero in the density of states at the Fermi energy [19]; this
complicates analytical derivations.

In setting out to find the behavior of approximate theo-
ries to obtain the correlation energy (i.e., the total energy
with Hartree-Fock energy as a starting point), it is typical
to begin with a finite simulation-cell model of N electrons,
and carefully approach the thermodynamic limit by ex-
trapolation [18,20]. However, in quantum chemical tech-
niques, we must also make do with a finite one-particle
basis set. The difficulty of investigating the properties of
these approximate theories in the thermodynamic limit is
hampered by this requirement of a finite basis set, in this
case M plane-wave spin orbitals defined by a kinetic
energy cutoff 1=2k2c. In principle, the complete basis set
limit kc ! 1 and thermodynamic limit N ! 1 must be
found, which is prohibitively costly given the scaling of
even approximate quantum chemical theories.

The most obvious way to make progress towards these
limits is to take the kc ! 1 limit, to solve the N-electron
Hamiltonian at the complete basis set limit, and then the
N ! 1 limit can be found latterly. However, in this Letter
we propose to take the N ! 1 limit first for a finite kc ¼
�kF [21]. Figure 1 illustrates this approach schematically
for a two-dimensional reciprocal lattice. As the N ! 1
limit is taken, the band gap closes because the grid spacing
in the region around the Fermi surface becomes smaller,
and the zero-momentum excitations that cause the

divergences in, for example, MP2 theory are increasingly
well represented in a size-extensive fashion.
Results.—We first outline how to show the well-known

divergence in the MP2 energy (e.g. Ref. [22]) using
finite-M, finite-N calculations and then generalize this
approach to demonstrate limiting behaviors in other theo-
ries. The amplitudes in MP2 theory are given by

tabij ¼ h�ab
ij jv̂j�HFi

�i þ �j � �a � �b
; (3)

where � are the Hartree-Fock eigenvalues of the spin
orbitals and they are employed for the evaluation of the
MP2 correlation energy according to Eq. (1).
MP2 correlation energies per electron are presented in

Fig. 2 for sets of finite-N electron gases. As the electron
number increases, the HF gap becomes smaller.
Concomitantly, the MP2 correlation energy per electron
increases linearly with the decreasing HF gap. This con-
clusively demonstrates that our approach recovers the
expected divergence and physical behavior from this
method. We stress that any approximate method suitable
for metals and solids in general is required to yield corre-
lation energies per electron that converge to a constant in
the N ! 1 limit. To further validate this as an approach
accurately capturing the TDL, we compare this with the
finite-basis electron gas energies from identically con-
structed random-phase approximation (RPA) calculations,
which show a convergent behavior (with a finite-size error
as �N�1 [20]) as anticipated. All RPA results in this work
are calculated using a HF reference. We note that the RPA
referred to in this work corresponds to the so-called direct
RPA in which the employed two-electron integrals are not
antisymmetrized.
We now return to the divergence of the MP2 correlation

energy and show that it can be lifted by replacing the bare
Ewald interaction with a screened interaction in Eq. (3).
In this approach, the ‘‘screened MP2’’ amplitudes are
given by

tabij ¼ h�ab
ij jv̂TFj�HFi

�i þ �j � �a � �b
; (4)

where v̂TF refers to the Thomas-Fermi screened Coulomb
interaction. These amplitudes yield correlation energies
per electron that converge for metallic systems with a
rate similar to RPA, as shown in Fig. 2. However, the
screened MP2 energies strongly underestimate the true
correlation energy.
We note that the introduction of the Thomas-Fermi

screening is difficult to motivate in Møller-Plesset
perturbation theory. In Hedin’s GW theory, however, this
corresponds to a static approximation of the frequency-
dependent screened electron interaction W calculated in
the RPA [23]. As such, our choice of screening has two
advantages: (i) for homogeneous systems, the screening
length depends on the electronic density only and the

k

k

c

F

N=74N=18N=2

FIG. 1 (color online). Schematic illustration of two-
dimensional reciprocal lattice for different electron numbers N
(N ¼ 2, 18, and 74) and a fixed density. kF and kc denote the
length of the Fermi and basis set cutoff wave vector, respectively.
The length of these wave vectors is constant for a fixed density.
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screened interaction is readily given by vTFðrÞ ¼ e�k0r=r,
where k0 is the Thomas-Fermi wave vector, and (ii) in
the case of inhomogeneous systems, one can employ
the W calculated in the RPA of already existing GW
implementations.

Having now numerically demonstrated the well-
accepted behavior for the MP2 energy, we turn our atten-
tion towards another approximate and widely used
quantum chemical method for which the behavior on
approach to the TDL is unverified—CCSD. The CCSD
doubles amplitudes are obtained by solving the so-called
amplitude equations given by h�ab

ij je�THeTj�HFi ¼ 0,

where T ¼ T2 ¼ ð2!Þ�2
P

ij

P
ab t

ab
ij ĉ

y
a ĉ

y
b ĉjĉi for the HEG

[24,25]. We note in passing that CCSD and coupled cluster
doubles theory (CCD) are equivalent for the homogeneous
electron gas due to the complete absence of symmetry-

allowed single excitations in its many-body expansion. ĉyn
(ĉn) are electron creation (annihilation) operators.

There has been surprisingly little literature concerning
coupled cluster theory for solids, in spite of the wealth of
applications they have received in the molecular quantum
chemistry community. This is also true for the homoge-
neous electron gas, and although there has been some
discussion of CCSD with approximate amplitude equa-
tions, these more closely resemble the RPA equations
[26–29]. As such, to the best of our knowledge, the ques-
tion of whether CCSD diverges in the TDL for metallic
systems has not yet been conclusively addressed.

Because of the relatively expensive scaling of such
methods, simulations of an N ¼ 730 electron gas with
current fully periodic codes [30] are prohibitively expen-
sive. However, we have found that further reduction in
finite-size effects can be achieved by taking the difference
between the CCSD energy with the RPA energy, and in this

difference the limiting behavior is more clear due to can-
cellations in the N�1 term. We have also taken advantage
of other simulation-cell lattices (face-centered cubic and
body-centered cubic) to provide more closed-shell configu-
rations. Taking energy differences in this way allows us to
clearly demonstrate in Fig. 2 that the CCSD energy con-
verges at the same rate as RPA [31]. Even though CCSD is
exact through third-order perturbation theory, it performs a
resummation of infinitely many contributions to the corre-
lation energy (for instance all bubble diagrams as in RPA)
of higher-order terms that lift the divergence of order-by-
order perturbation theory for metals. Furthermore, CCSD
includes ladder diagrams that are understood to be impor-
tant in the description of correlation at low densities [32].
Having demonstrated the convergent behavior for the

CCSD energy, we now turn our attention to the perturbative
triples (T) correction to CCSD [25,33]. CCSD(T) theory
employs an exponential ansatz for the wave function

given by eT�HF, where T ¼ T1 þ T2 þ T3 and T3 ¼
ð3!Þ�2

P
ijk

P
abc t

abc
ijk ĉ

y
a ĉ

y
b ĉ

y
c ĉkĉjĉi. The corresponding tri-

ples amplitudes tabcijk are calculated in a perturbative way

reading

tabcijk ¼ h�abc
ijk j½v̂; T2�j�HFi

�i þ �j þ �k � �a � �b � �c
: (5)

Once obtained, the coupling of the triples with the doubles
amplitudes is considered only in an approximate fashion
and its contribution to the CCSD correlation energy is
calculated by

EðTÞ ¼ X

ij

X

ab

tabij h�ab
ij j½H;T3�j�HFi; (6)
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FIG. 2 (color online). (a) Screened MP2, unscreened MP2, and RPA energies for a variety of finite-basis simulation-cell electron
gases with electron numbers N ¼ 14–730 corresponding to closed-shell configurations of a simple cubic reciprocal-space lattice.
(b) Differences between the RPA and MP2/CCSD correlation energies (rs ¼ 1:0 a:u:, � ¼ ffiffiffi

2
p

) show that MP2 is divergent as the band
gap closes (on approach to the thermodynamic limit). CCSD is convergent to a constant energy offset with respect to RPA which is
only serendipitously close to zero for this rs and �. (This agreement is the crossover between CCSD and RPA due to overcorrelation on
approach to the complete basis set limit similar to that seen in Fig. 5(b) in Ref. [16].)
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where the tabij amplitudes are obtained from an underlying

CCSD calculation.
Exploring the behavior of Eq. (6) for large electron

numbers (N> 200) is hindered by the large computational

cost. As such, we seek to investigate the behavior of EðTÞ
for metals by approximating Eq. (6) in a manner that leaves
the qualitative behavior unchanged. We therefore approxi-
mate the CCSD amplitudes tabij in the above expression by

screened MP2 amplitudes from Eq. (4). We have shown
before that these amplitudes lead to a convergence of the
MP2 energy at the same rate as the CCSD and RPA energy.
Figure 3 shows that the approximate (T) energy expression
from Eq. (6), however, clearly diverges for metals at the
same rate as MP2. From this we conclude that the full (T)
contribution to the CCSD(T) correlation energy diverges as
well and that CCSD(T) is not a suitable method for metals.

We can now apply the same modification to the expres-
sion for the perturbative triples amplitudes in Eq. (5) as we
have done for the screened MP2 amplitudes. Replacing v̂
in Eq. (5) with v̂TF yields

tabcijk ¼ h�abc
ijk j½v̂TF; T2�j�HFi

�i þ �j þ �k � �a � �b � �c
: (7)

Figure 3 demonstrates that the energies per electron calcu-
lated in the manner described above converges forN ! 1.
From this we conclude that the divergence for metallic
systems of the full perturbative triples correction can be
lifted by using a screened interaction kernel for the evalu-
ation of triples amplitudes.

To test the accuracy of CCSD and CCSD(scT) (CCSD
and screened perturbative triples), we calculate the com-
plete basis set limit correlation energies for the 54 electron
system and compare to diffusion Monte Carlo (DMC) and
full configuration interaction quantum Monte Carlo
(FCIQMC) results for a range of realistic metallic den-
sities. The basis set extrapolations on the level of the wave
function based methods were carried out using M ¼
700–1600 plane waves and the procedures outlined in

Ref. [16]. Figure 4 shows the correlation energies of
the different methods. Our findings show that CCSD and
CCSD(scT) become more accurate as the electronic den-
sity increases. For very high densities (rs ¼ 0:5 a:u:) the
quantum chemical wave function based methods yield ener-
gies below those of DMC. Although coupled cluster meth-
ods are nonvariational, the comparison to exact FCIQMC
results shows that CCSD and CCSD(scT) are closer to the
exact energies in this density regime. As the electronic
density decreases, the coupled cluster methods capture less
correlation energy. We attribute this tendency to the increas-
ing multireference character of the HEG wave function at
lower densities, which is difficult to treat with coupled
cluster methods. This is likely affected by the presence of
a phase transition to the Wigner crystal, which, however,
occurs at much lower densities than studied here [34].
Concluding remarks.—In summary, we have shown that

a judicious choice of finite-size and finite-electron number
homogeneous electron gas models can be used to demon-
strate the limiting behavior of the correlation energy in
approximate many-body theories for metallic systems with
modest computational cost. By comparing to RPA corre-
lation energies, we have controlled for basis set incom-
pleteness and finite-size errors. As a first application of the
outlined methodology, we have verified the divergence of
MP2 energies in metals. Furthermore, we have shown that
CCSD converges for metals at the same rate as RPA with
respect to the system size N. We have shown that the
divergence in MP2 can be lifted by using a Thomas-
Fermi screening in the calculation of MP2 amplitudes
and yields a rate of convergence that is similar to the
RPA and CCSD theory. The screened MP2 approximation
captured, however, only about half of the CCSD correla-
tion energy in the same basis set.
The divergence of CCSD(T) for metals has been

investigated by approximating the CCSD amplitudes
with screened MP2 amplitudes. We have found that
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FIG. 3 (color online). Approximate screened and unscreened
perturbative triples correlation energies per electron for a range
of finite-electron number calculations using rs ¼ 1:0 a:u: and
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FIG. 4 (color online). Complete basis set limit correlation
energies per electron of DMC, CCSD, CCSD(scT), and
FCIQMC for a range of densities. The exact FCIQMC
and DMC SJ3 backflow results are taken from Ref. [14] and
Ref. [38], respectively.
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approximate (T) correlation energies per electron diverge
as N ! 1 and concluded from this observation that the
CCSD(T) method is not suitable for treating electron cor-
relations in metals. However, by the introduction of the
Thomas-Fermi screening in the calculation of the triples
amplitudes, this divergence can be lifted. We demonstrated
that the electronic correlation energies for the 54-electron
system obtained using CCSD(scT) were in good agreement
with DMC results despite showing a tendency to capture
less correlation for lower densities. Going beyond the
electron gas, it should be possible to model the screening
with preexisting ab initio GW codes (e.g., Ref. [30]).

In the high-density regime (rs � 1:5 a:u:) of the electron
gas, CCSD(scT) recovered the correlation energy to high
accuracy. Even though it is well understood that in the
high-density limit the RPA plus a correction from second-
order exchange yields highly accurate results for the elec-
tron gas [26,35], the accuracy of these methods is not
transferable to real systems [36,37]. This is in contrast to
CCmethods that are amongst the only wave function based
methods that routinely achieve chemical accuracy with
polynomially scaling computational cost [25]. It is hoped
that the developments presented here will be of interest to
the growing field aiming to study condensed matter sys-
tems with these techniques.
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