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I. IMPLEMENTATION OF GF2

The GF2 algorithm is defined by the following three self-consistent equations:

G(ω) =
[
(µ+ ω)S− F−Σ(ω)

]−1
(1)

Fij = hij +
∑
kl

Pkl(vijlk −
1

2
viklj) (2)

Σij(τ) = −
∑

klmnpq

Gkl(τ)Gmn(τ)Gpq(−τ)vimqk
(
2vlpnj − vnplj

)
, (3)

The iterative solution of the Dyson equation according to Equations 1, 2, and 3 proceeds as

follows:

1. Perform a restricted Hartree-Fock calculation, obtaining the HF Fock matrix FHF, density

matrix PHF, and overlap matrix S.

2. Build G(ω) according to Eq. 1. Assuming a Hartree-Fock reference, at first iteration F =

FHF, and Σ(ω) = 0.

2.a Find µ such that P(G) has correct electron number.

2.b Rebuild F(P) according to Eq. 2, and update G(ω). Repeat 2.a-2.b until G(ω), F,

and µ are self-consistent. FFT G(ω)→ G(τ).

3. Build Σ(τ) according to Eq. 3. FFT Σ(τ) → Σ(ω). Go to step 2 and repeat until conver-

gence.

A cartoon showing a bird’s-eye view of our implementation of the GF2 algorithm is presented

in Figure 1. To begin the calculation we set the chemical potential µ in the middle of the HF

HOMO-LUMO gap. In subsequent iterations µ will need to be adjusted in step 2.a, and we find

that a simple bisection routine works fine for this.

Now we comment on the convergence properties of the GF2 algorithm. In cases where the

system is essentially single-reference iterating to convergence is straightforward and one may allow
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FIG. 1. A bird’s-eye view of the GF2 algorithm.

loose self-consistency requirements on G(ω), F, and µ during the inner-loop in order to accelerate

the calculation. In multi-reference cases however we find that applying tighter convergence criteria

on G(ω), F, and µ while damping P can stabilize convergence of the entire GF2 calculation. For

the outer loop we find it useful to apply damping to Σ(τ), with the amount of damping depending

on how multireference the system is.

II. ENERGY AND DENSITY MATRIX EVALUATION

Given a Green’s function G(ω) built from Eq. 1, we evaluate the single-particle density matrix

P by performing a Fourier transform of the Green’s function on the imaginary frequency axis

Gkl(τ) =
1

β

∞∑
n=−∞

Gkl(ωn)e−ωnτ , (4)

yielding the Green’s function of imaginary time τ . This transform only needs to be performed for

a single point τ = β since

G(τ = β) = −1

2
P, (5)

where P is the density matrix. It’s important to note that the chemical potential µ in Eq. 1 will

need to be adjusted iteration to iteration, to ensure that Tr[PS] = Ne, where Ne is the electron

number.

There are several approaches such as the Luttinger–Ward and Klein functional or the Galitskii–
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Migdal formula that can be used for evaluating the electronic energy. At self-consistency the energy

obtained from all these approaches should be equal. We evaluate the electronic energy according

to the Galitskii–Migdal (GM) formula that can be explicitly written as

EGM = −
∑
ij

Gij(τ = β)(2hij+Σ∞ ij)+
2

β

∞∑
n=−∞

∑
kl

[Re(Gkl(ωn))Re(Σkl(ωn))−Im(Gkl(ωn))Im(Σkl(ωn))] .

(6)

III. PLOTS OF NATURAL OCCUPATION NUMBERS
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FIG. 2. Natural occupation numbers of Li2 as calculated by GF2 with respect to Li-Li bond distance.
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FIG. 3. Natural occupation numbers of the H6 ring as calculated by GF2 with respect to H-H distance.
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FIG. 4. Natural occupation numbers of the 4×3 H12 lattice as calculated by GF2 with respect to lattice
parameter.


