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The recent proposal to determine the (exact) correlation energy based on pairing matrix fluctuations
by van Aggelen et al. [“Exchange-correlation energy from pairing matrix fluctuation and the particle-
particle random phase approximation,” preprint arXiv:1306.4957 (2013)] revived the interest in the
simplest approximation along this path: the particle-particle random phase approximation (pp-RPA).
In this paper, we present an analytical connection and numerical demonstrations of the equivalence of
the correlation energy from pp-RPA and ladder-coupled-cluster doubles. These two theories reduce to
identical algebraic matrix equations and correlation energy expressions. The numerical examples il-
lustrate that the correlation energy missed by pp-RPA in comparison with coupled-cluster singles and
doubles is largely canceled out when considering reaction energies. This theoretical connection will
be beneficial to design density functionals with strong ties to coupled-cluster theories and to study
molecular properties at the pp-RPA level relying on well established coupled cluster techniques.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820556]

I. INTRODUCTION

The random phase approximation (RPA) was originally
proposed in the 1950s by Pines and Bohm1, 2 to treat the ho-
mogeneous electron gas. Since then, the idea of RPA has
spawned the studies of excitation energies, linear-response
functions, and correlation energies in solid state physics,3–6

nuclear physics,7–12 and quantum chemistry.13–16 In the recent
decade, there has been a renaissance of interest in the RPA
correlation energy in quantum chemistry because of its good
description of van der Waals interaction,16 the correct disso-
ciation limit of H2,17 and, through the adiabatic connection,
its link to density-functional theory (DFT).16 These features
have motivated the development of efficient implementations
leading to relatively low scaling algorithms (O(N4 log N) by
Eshuis and Furche18 and O(N4) by Ren et al.19 with N the
number of basis functions), and going beyond RPA is an ac-
tive field of research that achieves exciting results.20–26

Recently, van Aggelen et al.27 established an adiabatic
connection for the exchange-correlation energy in terms of
the dynamic paring matrix fluctuation, parallel to the adia-
batic connection fluctuation dissipation (ACFD) theorem in
terms of the density fluctuation.5, 28 Like the ACFD theo-
rem, this adiabatic connection is in principle exact, but re-
quires the particle-particle propagator as a function of the
interaction strength. The particle-particle channel of random
phase approximation (pp-RPA) is the first-order approxima-
tion to the paring matrix fluctuation. The preliminary applica-
tions of the pp-RPA correlation energies to molecular systems
provide promising results in describing systems with both
fractional charge and fractional spin.27 The RPA usually ap-
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plied in quantum chemistry describes exclusively the particle-
hole channel of correlations. To distinguish the two RPAs of
different channels, we will, hereafter, refer to the conven-
tional particle-hole RPA as ph-RPA. In nuclear physics, pp-
RPA,7, 8, 29–37 also known as Brueckner’s theory,38–41 is also
widely discussed. Except for computational studies of Auger
spectroscopy,42, 43, 82 pp-RPA has not been applied in chem-
istry before the development of van Aggelen et al.27

In the diagrammatic language extensively used in many-
body perturbation-theory (MBPT), the ph-RPA correlation
energy is the sum of all ring diagrams.7, 44 Čížek45 exploited
the same diagrammatic arguments in his seminal work and
identified ph-RPA as a subset of the coupled-cluster doubles
(CCD) equations, i.e., accounting only for the ring summa-
tion terms. The ph-RPA wavefunction being of an exponential
form is textbook knowledge.8 Despite the well-known equiv-
alence between the ph-RPA correlation energy and summa-
tion of all ring diagrams in direct ring-CCD, the mathemat-
ical connection between the linear ph-RPA equation and the
quadratic equation in direct ring-CCD has only recently been
presented by Scuseria et al.,46 while ideas can be traced back
to work done forty years before.47 On the other hand, the pp-
RPA correlation energy can be interpreted as the sum of all
ladder diagrams.7 As the sum of all ladder diagrams, meth-
ods like pp-RPA have also been closely related to the “lad-
der approximation” in the literature.48 Again, considering the
diagrams involved, Čížek identified the sum of all ladder di-
agrams as a subset of CCD, which might be called ladder-
CCD,45 and the exponential form of the pp-RPA wavefunc-
tion is also found in textbooks.8 However, the authors are
not aware of any explicit demonstration of the equivalence
of the linear form of the pp-RPA equation and the quadratic
ladder-CCD equation. The purpose of this paper is, following
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Ref. 46, to establish this connection between the two sets of
seemingly distinct equations. Since pp-RPA is a straightfor-
ward approximation in Green’s function theory,27 the estab-
lishment of this connection might shed light on the relation-
ship between Green’s function based methods and coupled-
cluster theory, a perspective from which both fields could
benefit. Furthermore, it is the authors’ hope that the insight
gained from linking Green’s functions, coupled-cluster the-
ory, and DFT provides new stimulus to develop novel den-
sity functional approximations. Moreover, the coupled-cluster
connection opens up a direct way to obtain molecular proper-
ties from a virtual orbital dependent density functional, and
the pp-RPA based excited states can straightforwardly be ob-
tained via equation-of-motion coupled-cluster49–52 or linear-
response coupled-cluster theory.53, 54

II. THE PP-RPA EQUATION AND ITS STABILITY

The pp-RPA equation can be derived from the two-
particle Green’s function, the equation-of-motion ansatz, or
the linear-response time-dependent Hartree-Fock-Bogoliubov
approximation (TDHFB).7, 8, 27, 33 The resulting generalized
eigenvalue equation is very similar to the ph-RPA equation
(see, for example, Refs. 7, 8, 16, and 46 for the ph-RPA
equation),[

A B

B† C

] [
xn

yn

]
= ωn

[
I 0

0 −I

] [
xn

yn

]
, (1)

where

Aab,cd = (εc + εd − 2ν)δacδbd + 〈ab||cd〉, (2)

Cij,kl = −(εk + εl − 2ν)δkiδjl + 〈ij ||kl〉, (3)

and

Bab,ij = 〈ab||ij 〉. (4)

We use indexes i, j, k, l. . . for occupied spin orbitals (holes),
a, b, c, d. . . for unoccupied spin orbitals (particles), and u, v,
s, t. . . for general spin orbitals. Furthermore, m, n are used to
denote eigenvector and eigenvalue indexes. Additionally, εu is
the molecular orbital eigenvalue, and 〈uv||st〉 is the antisym-
metrized two-electron integral

〈uv||st〉 = 〈uv|st〉 − 〈uv|ts〉, (5)

where

〈uv|st〉 =
∑
σ1σ2

∫
dr1dr2

φ∗
u(r1σ1)φ∗

v (r2σ2)φs(r1σ1)φt (r2σ2)

|r1 − r2| .

(6)

The chemical potential ν is not a necessity in the equation-of-
motion8, 33 or the two-particle Green’s function derivation;27

however, during the derivation from the TDHFB,7 ν is used
to ensure that the ground state has the desired number of
electrons N. In practice, it is usually approximated to be half
of HOMO (highest occupied molecular orbital) and LUMO
(lowest unoccupied molecular orbital) eigenvalues.27 We will
later show that the exact choice of the chemical potential is
unimportant within a certain range as long as the pp-RPA
equation is stable.

The indexes of the matrix are either hole pairs or particle
pairs. These indexes have only i > j for hole pairs and a > b
for particle pairs to eliminate the redundancy. The number of
particle (hole) pairs is

Npp(hh) = 1

2
Nvir(occ)(Nvir(occ) − 1), (7)

where Nvir(occ) is the number of virtual (occupied) orbitals. In
general, Npp is much larger than Nhh. The upper left (lower
right) identity matrix in Eq. (1) has the same dimension as A
(C). Throughout the paper, the dimensions of identity matri-
ces will be omitted, as they are clear from the context. The
difference of the dimensions of A and C makes the solution
of the pp-RPA equation quite different from that of the usual
ph-RPA equation or the linear-response time-dependent DFT
equation.55 Nevertheless, Eq. (1) and the ph-RPA equation
share conceptually similar properties as discussed in Ref. 10.

For simplicity, we use a compact matrix notation

Mzn = ωnWzn, (8)

to denote Eq. (1), where M is the Hermitian matrix on the
left-hand side

M =
[

A B

B† C

]
, (9)

W is the non-positive definite metric

W =
[

I 0

0 −I

]
, (10)

and zn is the full eigenvector

zn =
[

xn

yn

]
, (11)

with its eigenvalue ωn. Due to the non-positive definite metric
W, Eq. (1) is not guaranteed to have all real eigenvalues. We
call z†nWzn the signature of an eigenvector zn. The signature
can be positive, zero, or negative. The zero signature coin-
cides with an imaginary eigenvalue (see Subsection 1 in the
Appendix), while positive and negative signatures are asso-
ciated with real eigenvalues. We categorize the eigenvectors
according to their signatures, where eigenvectors with posi-
tive signatures are called N + 2 excitations and eigenvectors
with negative signatures are called N − 2 excitations. For a
diagonalizable pp-RPA equation with all real eigenvalues, ac-
cording to Subsection 2 in the Appendix, the orthonormaliza-
tion of the eigenvectors can be written as

Z†WZ = W, (12)

with all N + 2 eigenvectors to the left of all N − 2 eigenvectors
in Z. This special arrangement will be kept all through the
paper.

When all the eigenvalues of a diagonalizable pp-RPA
equation are real, the pp-RPA equation is defined to be sta-
ble if all the N + 2 excitation eigenvalues are positive and
N − 2 excitation eigenvalues are negative, i.e., minn ωN+2

n

> 0 > maxm ωN−2
m . With the eigenvector arrangement ac-

cording to signatures, the stability condition can be expressed
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in a concise equation,

sign(ω) = W, (13)

where sign(ω) is the sign function56 of the eigenvalue matrix
ω, which gives [sign(ω)]nm = δnmsign(ωn), since ω is diago-
nal. Note that Eq. (12) is a necessary but not sufficient condi-
tion for the stability of Eq. (13).

These eigenvalues are interpreted as the double ioniza-
tion and double electron attachment energies in a molecular
system, i.e.,

ωN+2
n = EN+2

n − EN
0 − 2ν (14)

are the N + 2 excitation energies, and

ωN−2
n = EN

0 − EN−2
n − 2ν (15)

are the N − 2 excitation energies. With the eigenvalue in-
terpretation of Eqs. (14) and (15), an unstable pp-RPA equa-
tion violates the energy convexity condition.57 It has not been
proved that such stability is intrinsic for a self-consistent so-
lution of a Hartree-Fock or Kohn-Sham/generalized Kohn-
Sham molecular system, but in practice unstable solutions
have never been encountered for molecular systems so far in
Ref. 27 and in present work, as compared to the notorious in-
stability issue of ph-RPA with exchange, namely, the Hartree-
Fock instability.10, 58, 59

The stability condition of the pp-RPA equation is equiva-
lent to the positive definiteness of the matrix M (see Subsec-
tion 3 in the Appendix and Ref. 7 for further details).

With the whole spectrum of a stable pp-RPA equation,
the pp-RPA correlation energy can be expressed in several
equivalent ways:27

Epp-RPA
c =

∑
m

ωN+2
m − TrA = −

∑
n

ωN−2
n − TrC

= 1

2

∑
n

|ωn| − 1

2
TrM. (16)

The precise value of ν is irrelevant for the correlation energy,
since it cancels out in the expression, Eq. (16), as long as

min
m

(
EN+2

m − EN
0

)
> 2ν > max

n

(
EN

0 − EN−2
n

)
,

such that the N + 2 eigenvalues are positive and the N − 2
eigenvalues are negative. A proper chemical potential also
categorizes M to be positive definite, equivalent to the stabil-
ity condition (see Subsection 3 in the Appendix for details).

III. PROOF OF THE EQUIVALENCE OF PP-RPA
AND LADDER-CCD

The CCD ansatz, the simplest method in the coupled
cluster family, expresses the wavefunction as

|CCD〉 = eT̂2 |�0〉, (17)

where |�0〉 is a single Slater determinant, and T̂2 is the two-
body cluster operator

T̂2 = 1

(2!)2

∑
ijab

tab
ij â† îb̂†ĵ =

i>j,a>b∑
ijab

tab
ij â† îb̂†ĵ , (18)

where â†, î are the creation and annihilation operators for spin
orbital a and i, respectively, and tab

ij is the double excitation
amplitude, having the symmetry

tab
ij = −tab

ji = −tba
ij = tba

ji . (19)

The correlation energy is expressed in terms of the am-
plitudes through the energy equation

ECCD
c =

i>j,a>b∑
ijab

〈ij ||ab〉tab
ij , (20)

while the amplitudes tab
ij are solved by the CCD amplitude

equation (see Ref. 52 for extensive discussions),

(εi + εj − εa − εb)tab
ij

= 〈ab||ij 〉+ 1

2

∑
cd

〈ab||cd〉t cdij + 1

2

∑
kl

〈ij ||kl〉tab
kl

−
∑
kc

(〈bk||cj 〉tac
ik −〈bk||ci〉tac

jk −〈ak||cj 〉tbc
ik +〈ak||ci〉tbc

jk

)

+
∑
klcd

〈kl||cd〉
[

1

4
t cdij tab

kl − 1

2

(
tac
ij tbd

kl + tbd
ij tac

kl

)

− 1

2

(
tab
ik t cdj l + t cdik tab

jl

)+ (
tac
ik tbd

jl + tbd
ik tac

j l

)]
. (21)

By allowing only particle-hole summations in Eq. (21),
Scuseria et al.46 have shown that the amplitude equation re-
duces to the ph-RPA equation with exchange, i.e., the time-
dependent Hartree-Fock (TDHF) equation. Further eliminat-
ing the exchange terms in the two-electron integrals yields the
conventional direct ph-RPA. Similarly, if we allow only sum-
mations of particle pairs and hole pairs, Eq. (21) becomes∑

kl

(εk + εl)t
ab
kl δkiδjl −

∑
cd

(εc + εd )t cdij δacδbd

= 〈ab||ij 〉 + 1

2

∑
cd

〈ab||cd〉t cdij + 1

2

∑
kl

〈ij ||kl〉tab
kl

+ 1

4

∑
kl,cd

tab
kl 〈kl||cd〉t cdij . (22)

We refer to this truncated CCD as ladder-CCD, due to its
restriction to ladder diagrams included in the correlation
energy.45 The exponential wavefunction of Eq. (17) with ex-
ponent of Eq. (27) has been proposed in Ref. 8, together
with a similar form for ph-RPA, however without explor-
ing their connection to the form of truncated CCD, a ques-
tion worthwhile investigating, considering that there are sev-
eral possibilities to evaluate the energy of an exponential
wavefunction.60 By utilizing the antisymmetry of the two-
electron integrals 〈uv||st〉 = −〈uv||ts〉, Eq. (22) can be re-
arranged as

c>d∑
cd

Aab,cd t
cd
ij +

k>l∑
kl

Cij,kl t
ab
kl +Bab,ij +

k>l,c>d∑
kl,cd

tab
kl B∗

cd,kl t
cd
ij = 0,

(23)
with A, B, and C defined in Eqs. (2)–(4). Denoting the ampli-
tude as a matrix Tab,ij = tab

ij , Eq. (23) results in an algebraic
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matrix equation

AT + TC + B + TB†T = 0. (24)

Now, we will show that the pp-RPA equation of Eq. (1) is
equivalent to the ladder-CCD amplitude equation under the
assumption that the pp-RPA equation is stable.

The pp-RPA equation for only the N + 2 excitations
reads,[

A B

B† C

] [
X

Y

]
=

[
I 0

0 −I

] [
X

Y

]
ωN+2, (25)

where dim X = Np × Np, dim Y = Nh × Np, and dimωN+2

= Np × Np. Multiplying X−1 from the right on Eq. (25) gives[
A B

B† C

] [
I

T̃†

]
=

[
I 0

0 −I

] [
I

T̃†

]
R, (26)

where

T̃ = (YX−1)†, (27)

and

R = XωN+2X−1. (28)

The invertibility of X is guaranteed by a stable pp-RPA equa-
tion (see Subsection 4 in the Appendix for the detailed proof).
Multiplying [T̃† 1] from the left, Eq. (26) becomes

T̃†A + T̃†BT̃† + B† + CT̃† = 0. (29)

Comparing Eqs. (24) and (29), we infer that T = T̃.
The particle-particle block of Eq. (26) gives

A + BT† = R. (30)

Then, the ladder-CCD correlation energy of Eq. (20) can be
expressed as

Eladder−CCD
c = Tr(B†T) = [Tr(R − A)]∗ =

∑
m

ωN+2
m − TrA,

(31)

which is identical to the pp-RPA correlation energy in
Eq. (16). From Eqs. (22)–(24), it is also clear that the chemical
potential has no contribution because they cancel each other
in the CCD equations through AT + TC.

Alternatively, one can also derive the equivalence using
the N − 2 excitation eigenvectors with similar techniques. The
resulting amplitude will be the same, while the correlation
energy expression will be the second equation in Eq. (16). An
alternative proof of equivalence can also be formulated using
a Schur decomposition in analogy to Appendix 5 in Ref. 46.

In conclusion, the correlation energy from pp-RPA is
equivalent to that of ladder-CCD, assuming that the pp-RPA
equation is stable. The equivalence raises the question if
the nonlinear ladder-CCD equations always converge to the
unique solution of the linear pp-RPA equation system.

IV. NUMERICAL DEMONSTRATIONS

All coupled cluster and second-order Møller–Plesset per-
turbation theory (MP2) computations reported herein are per-

formed in a locally modified version of CFOUR,61 while pp-
RPA is performed with QM4D.62

Concerning the algorithm, truncating the CCD equations
to include only the ladder diagrams (Eq. (22)) can be seen
as a small modification of the CCD equations or a small ex-
tension of the linearized CCD, also known as CEPA(0) (cou-
pled electron pair approximation) or D-MBPT(∞),52 ampli-
tude equations. Note that the computationally most expensive
term of coupled-cluster singles and doubles (CCSD), scaling
as N2

occN
4
vir, is the major part of the term quadratic in the am-

plitudes of Eq. (22). In terms of efficiency, the matrix multipli-
cations necessary for solving the non-linear system of equa-
tions in standard coupled cluster algorithms are traded against
the diagonalization in the pp-RPA algorithm, which, at the
non-optimized stage of the code,62 is significantly slower than
solving the non-linear equations. However, the diagonaliza-
tion has the indisputable advantage that the solution is unique,
whereas the non-linear coupled cluster equations have mul-
tiple minima (most of them lacking any physical meaning),
without a priori guarantee or check that the “correct” solu-
tion is found.52

All computations are carried out in the unrestricted
Hartree-Fock (UHF) framework, but without breaking spatial
symmetry. The correlation consistent basis sets of Dunning
and co-workers63, 64 have been applied with cartesian d- and
f- atomic-orbitals. The ladder-CCD amplitudes are found to
converge essentially as fast (or with a couple of iterations less)
than the corresponding CCSD equations.

All total energies of ladder-CCD and pp-RPA (see
Table I) agree exceedingly well, the largest difference being
10−5 hartree, which is on the same order of magnitude as
the difference in nuclear repulsion energy between the two
programs and can have its origin in, e.g., integral screening
(SCF and CC iteration convergence have been checked care-
fully). In terms of correlation energy, ladder-CCD captures
between 43% (Be) and 80% (Ne) of CCSD, while the full
CCD energy recovers about 99%. Note that MP2 has min-
imum and maximum values of 70% and 99% for the same
systems. Furthermore, changing to a DFT reference leads to
an increased (in absolute terms) correlation energy, with min-
imum/maximum values reaching 51 (54)% and 92 (95)% for
B3LYP65, 66 (PBE67) orbitals. It is important to point out that
the present pp-RPA@DFT is not equivalent to ladder-CCD
with a DFT reference when following the usual practice in
the coupled cluster community:68, 69 for pp-RPA@DFT, the
molecular orbital energies are the eigenvalues of the Kohn-
Sham Hamiltonian. However, the use of DFT orbitals in
coupled cluster computations is considered as a “non-HF”
reference wavefunction, for which the one-particle Hamilto-
nian is not diagonal and the corresponding terms can be ac-
counted for, yielding results that are much closer to HF based
computations.70, 71

As a graphical illustration, Figure 1(a) shows the case
of a dissociating cationic dimer (Ne+

2 ), a typical probe for
(de)localization error. We are using a spatial symmetry (D∞h)
preserving unrestricted HF reference wavefunction for Ne+

2 ,
which corresponds to the 2	g ground state, as compared
to F+

2 the ground state of which is 2
g.74 Again, the to-
tal energies of ladder-CCD and pp-RPA are identical to
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TABLE I. Total energies of various methods. Geometries are taken from the G3 set.72, 73 The basis set is cc-pVTZ. All energies are in Hartree.

HF pp-RPA@HF Ladder-CCD pp-RPA@PBE pp-RPA@B3LYP MP2 CCD CCSD

He − 2.861154 − 2.885608 − 2.885608 − 2.889343 − 2.888504 − 2.894441 − 2.900328 − 2.900351
Li − 7.432706 − 7.443903 − 7.443903 − 7.444664 − 7.444450 − 7.446781 − 7.449184 − 7.449243
Be − 14.572875 − 14.598923 − 14.598923 − 14.605231 − 14.603533 − 14.614751 − 14.632242 − 14.632817
B − 24.532104 − 24.566435 − 24.566436 − 24.575674 − 24.573063 − 24.584950 − 24.604746 − 24.605490
C − 37.691663 − 37.746778 − 37.746778 − 37.760145 − 37.756583 − 37.769564 − 37.789208 − 37.789809
N − 54.400883 − 54.482916 − 54.482916 − 54.500883 − 54.496235 − 54.509992 − 54.525553 − 54.525893
O − 74.811910 − 74.933839 − 74.933839 − 74.959853 − 74.953384 − 74.969918 − 74.985506 − 74.986128
F − 99.405657 − 99.576884 − 99.576884 − 99.611587 − 99.603292 − 99.622736 − 99.633484 − 99.634177
Ne − 128.532010 − 128.760771 − 128.760771 − 128.804849 − 128.794546 − 128.816523 − 128.817814 − 128.818536
CH4 − 40.213408 − 40.372051 − 40.372054 − 40.411910 − 40.402169 − 40.432266 − 40.452031 − 40.452991
H2O − 76.056687 − 76.266046 − 76.266049 − 76.318304 − 76.305731 − 76.336459 − 76.340863 − 76.342084
NH3 − 56.217964 − 56.404439 − 56.404440 − 56.452289 − 56.440556 − 56.471921 − 56.483441 − 56.484474
CH2O − 113.910280 − 114.227562 − 114.227552 − 114.313824 − 114.293495 − 114.341669 − 114.347547 − 114.351726

FIG. 1. The potential energy surface (a) and the binding curve (b) of Ne+
2 of various methods with the aug-cc-pVTZ basis set. The total energies of pp-RPA

are substantially in error (a), since the correlation energy of the ladder diagrams is not very well balanced (MP2 total energies are, on the scale of the figure,
indistinguishable from CCD, and pp-RPA is correct through second order27). However, the binding energy (b) reveals that the missing correlation energy cancels
almost perfectly out, yielding a pp-RPA binding energy curve very close to CCD, while MP2 deviates from CCSD in the other direction (overbinding).
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TABLE II. Atomization energies (in kcal mol−1) of various methods. Geometries are taken from the G3 set.72, 73 Experimental atomization energies are taken
from Refs. 76–79. The basis set is cc-pVTZ. The mean absolute deviation (MAD) is with respect to experimental data.

HF pp-RPA@HF Ladder-CCD pp-RPA@PBE pp-RPA@B3LYP MP2 CCD CCSD Expt.

CH4 327.9 392.8 392.8 410.7 406.4 416.3 416.4 416.6 419.2
H2O 153.8 208.7 208.7 225.8 221.7 230.3 223.2 223.6 232.2
NH3 199.3 264.9 264.9 284.5 279.8 290.2 287.7 288.1 297.5
CH2O 255.5 343.5 343.5 373.5 366.8 378.1 359.7 361.6 373.6
MAD 96.5 28.2 28.2 7.0 12.0 4.2 8.9 8.2 . . .

numerical precision (considering the two very different algo-
rithms and programs), but not in very good agreement with
CCSD. To further investigate the (de)localization error,75 Fig-
ure 1(b) shows the binding energy with respect to the sep-
arated fragments. The binding energy of ladder-CCD is in
fairly good agreement with CCSD and only a small “bump”
is observed somewhere between 3 and 4 Å, revealing that
the missing absolute correlation energies in ladder-CCD com-
pared to CCSD are almost irrelevant for the binding energy.
The localization error of HF is over-corrected by MP2, but in-
creasing the correlation treatment to the coupled cluster level
improves the dissociation limit further, leading to the previ-
ously reported27 negligible fractional charge error.

Similarly to the binding energy of Ne+
2 , the atomization

energies (Table II) illustrate that the correlation energy miss-
ing in ladder-CCD largely cancels out when computing reac-
tion energies. For the four molecules considered, ladder-CCD
provides 77% on of the correction between the HF and CCSD
atomization energies on average. This is to be compared with
MP2 which recovers on average 107%. However, the mean
absolute deviation for pp-RPA@PBE compared to the experi-
mental values is substantially better, having the same level of
accuracy as CCSD.

In summary, the numerical analysis shows that ladder-
CCD and pp-RPA are equivalent and that pp-RPA covers a
substantial amount of correlation energy that is relevant for
atomization energies of typical small molecules in Table II.
An efficient pp-RPA implementation has, therefore, the po-
tential to become a valuable electronic structure theory.

V. CONCLUSIONS

The connection between the linear pp-RPA equation and
the quadratic ladder-CCD equation has been established and
numerically verified. The numerical assessment suggests that
pp-RPA is fairly accurate for some reaction energies, despite
its incomplete diagram summation. This mathematical con-
nection is helpful in establishing the relationship between
Green’s function based and the coupled-cluster methods. The
ladder-CCD perspective of pp-RPA enables the straightfor-
ward study of its ground and excited state properties.

After finishing the development of Ref. 27 and this sub-
sequent work, we became aware of independent research by
Scuseria et al.80 that follows the similar line of thought.
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APPENDIX: MATHEMATICAL ANALYSIS OF THE
PP-RPA EQUATION

The Appendix discusses many mathematical properties
of the pp-RPA equation. These properties are conceptu-
ally very similar to those of ph-RPA equation as shown in
Ref. 10.

1. The zero signature of an eigenvector with
an imaginary eigenvalue

For an eigenvalue ωn and eigenvector zn, we have

Mzn = ωnWzn. (A1)

The Hermitian conjugate of Eq. (A1) becomes

z†nM = ω∗
nz†nW. (A2)

Multiplying z†n to the left of Eq. (A1) and zn to the right of
Eq. (A2), we have

z†nMzn = ωnz†nWzn = ω∗
nz†nWzn.

Therefore,

(ωn − ω∗
n)(z†nWzn) = 0. (A3)

For an imaginary eigenvalue ωn �= ω∗
n, the signature

z†nWzn = 0.

2. The orthonormalization of eigenvectors
with all real eigenvalues

Using the same approach in Subsection 1 in the Appendix
but with two different eigenvalues and eigenvectors, we have

z†nMzm = ωmz†nWzm = ω∗
nz†nWzm,

and

(ωm − ω∗
n)(z†nWzm) = 0. (A4)

Therefore, when two real eigenvalues are different
(ωm �= ω∗

n), the two eigenvectors are orthogonal under
the metric W (z†nWzm = 0). Since linear combination of
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eigenvectors of a degenerate eigenvalue stays in the same
eigenspace, we can choose the eigenvectors of a degenerate
eigenvalue to orthogonal to each other within the eigenspace.
When all eigenvalues are real, eigenvectors can, therefore,
be chosen to be orthogonalized under the metric W. For a
diagonalizable pp-RPA equation with all real eigenvalues,
z†nWzn should not be zero, otherwise we have z†nWZ = 0,
which indicates the eigenvector matrix is rank-deficit, which
contradicts with the diagonalizability assumption. Therefore,
the signatures of eigenvectors are all nonzero for a diago-
nalizable pp-RPA equation with all real eigenvalues. The
resulting orthonormalization can be written as

Z†WZ = �, (A5)

where � is a diagonal matrix with only ±1 diagonal elements.
According to Sylvester’s law of inertia,81 W and � share the
same number of +1’s and −1’s. In other words, there are Npp

N + 2 excitations and Nhh N − 2 excitations, according to
the definition of N ± 2 excitations in Sec. II. We can further
arrange the eigenvectors such that eigenvectors with positive
signatures stay in the left of Z, then finally we reach the nor-
malization condition

Z†WZ = W. (A6)

3. The equivalence between stability and positive
definiteness of M

First we show that the stability condition of Eq. (13) leads
to the positive definiteness of M.

From the stability of the pp-RPA equation (Eq. (13)) and
the normalization (Eq. (12)), we have

c†Mc =
∑
mn

(zmcm)†M(zncn)

=
∑
mn

c∗
mz†mωnWzncn

=
∑

n

c∗
mδmnWmnωncn

=
∑
mn

c∗
m|ωm|δmncn

=
∑
m

|cm|2|ωm| > 0,

with an arbitrary nonzero column vector c. Thus, M is positive
definite for a pp-RPA equation.

Next, we show that the reverse is also true.
Given that M is positive definite, the pp-RPA equation in

the compact form reads

Mzn = ωnWzn. (A7)

Since M is positive definite, Eq. (8) could be rewritten as

L†zn = ωnL−1W
(
L−1

)†
L†zn,

where M = LL† is the Cholesky decomposition. With
z̃n = L†zn and W̃ = L−1W(L−1)†, the eigenvalue problem

W̃z̃n = ω̃nz̃n (A8)

is diagonalizable with all real eigenvalues, since W̃† = W̃ by
definition. Additionally, all eigenvalues of W̃, ω̃n’s will be
nonzero, since zero eigenvalue indicates det(W̃) = 0 which
contradicts the definition of W̃. With orthonormalization of
the eigenvectors z̃†nz̃m = δnm|ω̃n|−1, Eq. (8) can be diagonal-
ized with real eigenvalues

ωn = ω̃−1
n , (A9)

and eigenvector orthonormalization with the eigenvalue sign
constraints (the eigenvectors are arranged in the same way as
in Subsection 2 in the Appendix),

z†nWzm = δmnsign(ωm) = Wnm. (A10)

Equation (A10) guarantees that the minn ωN+2
n > 0 >

maxm ωN−2
m . Therefore, by definition, this pp-RPA equation

is stable, since all the eigenvalues are real and the N + 2 and
N − 2 excitation spectra are nicely separated.

In summary, the stability condition of a pp-RPA equation
is equivalent to the positive definiteness of M.

4. The invertibility of X for a stable pp-RPA equation

We now prove the invertibility of X in Sec. III. According
to Subsection 2 in the Appendix, the eigenvalues of a stable
pp-RPA equation are orthonormalized according to

Z†WZ = W. (A11)

For only N + 2 excitation vectors,

Z†
N+2WZN+2 = I, (A12)

where

ZN+2 =
[

X

Y

]
,

with X and Y the particle-particle and hole-hole block of the
N + 2 excitation eigenvector matrices. Expanding Eq. (A12),
we have

X†X − Y†Y = I. (A13)

Therefore, X†X = I + Y†Y is positive definite, and X is in-
vertible, otherwise X†X will not be positive definite.
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45J. Čížek, J. Chem. Phys. 45, 4256 (1966).
46G. E. Scuseria, T. M. Henderson, and D. C. Sorensen, J. Chem. Phys. 129,

231101 (2008).
47E. Sanderson, Phys. Lett. 19, 141 (1965).
48R. F. Bishop, W. Piechocki, and G. A. Stevens, Few-Body Syst. 4, 161

(1988).
49M. Nooijen and R. J. Bartlett, J. Chem. Phys. 102, 3629 (1995).
50M. Nooijen and R. J. Bartlett, J. Chem. Phys. 106, 6441 (1997).
51S. R. Gwaltney, R. J. Bartlett, and M. Nooijen, J. Chem. Phys. 111, 58

(1999).
52I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and Physics:

MBPT and Coupled-Cluster Theory (Cambridge University Press, 2009).
53H. Sekino and R. J. Bartlett, Int. J. Quantum Chem. 26, 255 (1984).
54K. Kowalski, J. R. Hammond, and W. A. de Jong, J. Chem. Phys. 127,

164105 (2007).
55M. E. Casida, in Recent Advances in Computational Chemistry, edited by

D. P. Chong (World Scientific, Singapore, 1995), Vol. 1, p. 155.

56N. J. Higham, Functions of Matrices: Theory and Computation, SIAM
e-books (Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, 2008).

57R. G. Parr and W. Yang, Density-Functional Theory of Atoms and
Molecules (Oxford University Press, New York, 1989).

58W. H. Adams, Phys. Rev. 127, 1650 (1962).
59D. Dehareng and G. Dive, J. Comput. Chem. 21, 483 (2000).
60W. Kutzelnigg, Theor. Chim. Acta 80, 349 (1991).
61CFOUR, Coupled-Cluster techniques for Computational Chemistry, a

quantum-chemical program package by J. F. Stanton, J. Gauss, M. E.
Harding, P. G. Szalay with contributions from A. A. Auer, R. J. Bartlett,
U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O.
Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J.
Juselius, K. Klein, W. J. Lauderdale, D. A. Matthews, T. Metzroth, L. A.
Muck, D. P. O’Neill, D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F.
Schiffmann, W. Schwalbach, S. Stopkowicz, A. Tajti, J. Vazquez, F. Wang,
J. D. Watts and the integral packages MOLECULE (J. Almlof and P. R.
Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen,
P. Jorgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van
Wullen, see http://www.cfour.de for the current version.

62An in-house program for QM/MM simulations, see http://www.qm4d.info.
63T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
64D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993).
65A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
66C. T. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
67J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
68R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122,

34104 (2005).
69R. J. Bartlett, V. F. Lotrich, and I. V. Schweigert, J. Chem. Phys. 123, 62205

(2005).
70J. D. Watts, J. Gauss, and R. J. Bartlett, J. Chem. Phys. 98, 8718 (1993).
71G. J. O. Beran, S. R. Gwaltney, and M. Head-Gordon, Phys. Chem. Chem.

Phys. 5, 2488 (2003).
72L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem.

Phys. 112, 7374 (2000).
73L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 123,

124107 (2005).
74J. D. Watts and R. J. Bartlett, J. Chem. Phys. 95, 6652 (1991).
75P. Mori-Sánchez, A. Cohen, and W. Yang, Phys. Rev. Lett. 100, 146401

(2008).
76J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and L. A. Cur-

tiss, J. Chem. Phys. 90, 5622 (1989).
77L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari, and J. A. Pople, J.

Chem. Phys. 93, 2537 (1990).
78L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem.

Phys. 106, 1063 (1997).
79C. Adamo, M. Ernzerhof, and G. E. Scuseria, J. Chem. Phys. 112, 2643

(2000).
80G. E. Scuseria, T. M. Henderson, and I. W. Bulik, J. Chem. Phys. 139,

104113 (2013).
81R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University

Press, 1990).
82J. V. Ortiz, J. Chem. Phys. 81, 5873 (1984).

http://dx.doi.org/10.1063/1.1858371
http://dx.doi.org/10.1063/1.3687005
http://dx.doi.org/10.1007/s10853-012-6570-4
http://dx.doi.org/10.1063/1.1884112
http://dx.doi.org/10.1063/1.3431616
http://dx.doi.org/10.1103/PhysRevA.82.032502
http://dx.doi.org/10.1080/00268976.2011.614282
http://dx.doi.org/10.1063/1.3676174
http://dx.doi.org/10.1103/PhysRevA.85.042507
http://dx.doi.org/10.1063/1.4773066
http://arxiv.org/abs/1306.4957
http://dx.doi.org/10.1103/PhysRevB.13.4274
http://dx.doi.org/10.1103/PhysRev.135.A932
http://dx.doi.org/10.1103/PhysRevLett.75.410
http://dx.doi.org/10.1016/0375-9474(67)90270-9
http://dx.doi.org/10.1103/PhysRev.175.1283
http://dx.doi.org/10.1103/RevModPhys.40.153
http://dx.doi.org/10.1016/0375-9474(69)90714-3
http://dx.doi.org/10.1016/0375-9474(71)90902-X
http://dx.doi.org/10.1103/PhysRevC.82.034313
http://dx.doi.org/10.1103/PhysRevC.82.034313
http://dx.doi.org/10.1103/PhysRevC.65.044004
http://dx.doi.org/10.1103/PhysRev.97.1344
http://dx.doi.org/10.1098/rspa.1956.0093
http://dx.doi.org/10.1103/PhysRev.103.1353
http://dx.doi.org/10.1098/rspa.1957.0037
http://dx.doi.org/10.1063/1.471114
http://dx.doi.org/10.1016/0009-2614(82)80022-5
http://dx.doi.org/10.1103/PhysRev.106.364
http://dx.doi.org/10.1063/1.1727484
http://dx.doi.org/10.1063/1.3043729
http://dx.doi.org/10.1016/0031-9163(65)90751-1
http://dx.doi.org/10.1007/BF01075347
http://dx.doi.org/10.1063/1.468592
http://dx.doi.org/10.1063/1.474000
http://dx.doi.org/10.1063/1.479361
http://dx.doi.org/10.1002/qua.560260826
http://dx.doi.org/10.1063/1.2795708
http://dx.doi.org/10.1103/PhysRev.127.1650
http://dx.doi.org/10.1002/(SICI)1096-987X(20000430)21:6<483::AID-JCC7>3.0.CO;2-O
http://dx.doi.org/10.1007/BF01117418
http://www.cfour.de
http://www.qm4d.info
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1063/1.464303
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1103/PhysRevB.37.785
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1063/1.1809605
http://dx.doi.org/10.1063/1.1904585
http://dx.doi.org/10.1063/1.464480
http://dx.doi.org/10.1039/b304542k
http://dx.doi.org/10.1039/b304542k
http://dx.doi.org/10.1063/1.481336
http://dx.doi.org/10.1063/1.481336
http://dx.doi.org/10.1063/1.2039080
http://dx.doi.org/10.1063/1.461535
http://dx.doi.org/10.1103/PhysRevLett.100.146401
http://dx.doi.org/10.1063/1.456415
http://dx.doi.org/10.1063/1.458892
http://dx.doi.org/10.1063/1.458892
http://dx.doi.org/10.1063/1.473182
http://dx.doi.org/10.1063/1.473182
http://dx.doi.org/10.1063/1.480838
http://dx.doi.org/10.1063/1.4820557
http://dx.doi.org/10.1063/1.447588

