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We present an explicitly correlated formalism for the second-order single-particle Green’s function
method (GF2-F12) that does not assume the popular diagonal approximation and describes the energy
dependence of the explicitly correlated terms. For small and medium organic molecules, the basis
set errors of ionization potentials of GF2-F12 are radically improved relative to GF2: the perfor-
mance of GF2-F12/aug-cc-pVDZ is better than that of GF2/aug-cc-pVQZ, at a significantly lower
cost. Published by AIP Publishing. https://doi.org/10.1063/1.5000916

The Green’s function (GF), or a propagator,1 formal-
ism of many-body quantum mechanics is a complementary
approach to traditional wave function methods for computa-
tion and interpretation of an electronic structure. Whereas the
GF formalism is dominant in condensed phase physics as a
step beyond the mean-field description, it has also enjoyed a
sustained, albeit a less prominent, presence in the molecular
electronic structure.2,3 The single-particle GF, or an electron
propagator, has primarily been employed as a computation-
ally efficient route to post-mean-field ionization potentials
(IPs) and electron affinities (EAs) and, more generally, spectral
functions necessary to interpret various photoelectron spectro-
scopies; recently self-consistent GF theory has been revisited
as a route to quantum embedding and to finite-temperature
electronic structure.4,5

Here we present a general, explicitly correlated formalism
for computing single-particle Green’s functions. By employ-
ing many-body basis sets with explicit dependence on the inter-
electronic distances, it is possible to formulate wave function
methods with radically improved convergence to the analytic
(complete basis set) limit.6–8 In this work, we demonstrate
how to achieve the same goal for the electron propagator.
The initial validation of our approach focuses on the computa-
tion of molecular ionization potentials with the second-order
approximation to the self-energy (GF2). The performance of
the method is tested for ionization potentials (IPs) on two sets
of small to medium-sized molecules.9–11 Our approach goes
beyond the recent explicitly correlated correction to the GF2
ionization potentials of Ohnishi and Ten-no12 by incorporating
the energy dependence as well as extending beyond the diago-
nal approximation. Although the accuracy of the GF2 approx-
imation is limited, it should be sufficient to gauge the effects of
the energy dependence on the explicitly correlated contribu-
tions. Combination of our approach with higher-order nondi-
agonal Green’s function approaches, such as the 2ph-TDA,
ADC(3), and NR2 methods,13,14 which are typically more
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robust than the second-order counterpart, is straightforward
and will be reported elsewhere.

Ionization potentials (IPs) and electron affinities (EAs) are
obtained from the poles of the electron propagator. With the
zeroth-order defined as usual in ab initio molecular electronic
structure by the Hartree-Fock state, the poles are obtained from
the Dyson equation

[F + Σ(E)]c = Ec, (1)

where F is the Fock operator and c provides the Dyson orbitals.
The energy-dependent self-energy operator Σ(E) incorporates
the post-HF correlation and orbital relaxation effects. Within
the superoperator formalism,15,16 the self-energy operator is
expressed as

Σ(E) = (a|Ĥt)(t |(E − Ĥ)t)−1(t |Ĥa), (2)

where a ≡ {ap} is a row vector of annihilation operators and
t ≡ {ap3

p1p2
, ap4p5

p1p2p3
, . . . } contains the complementary two-,

three-, and higher-body counterparts of a. The orbitals occu-
pied in the Hartree-Fock reference state are denoted by i, j, . . . .
The corresponding unoccupied orbitals expressed in the orbital
basis set (OBS) used to solve the Hartree-Fock equations are
denoted by a, b, . . . . General OBS orbitals will be denoted by
p, q, . . . , whereas their complement in the complete basis set
(CBS) will be labeled by α, β, . . . ; the full set of CBS orbitals
is denoted by κ, λ, . . . . Throughout this paper, we are using
the standard tensor notation for products of annihilation (ap)
and creation (ap ≡ a†p) operators normal ordered with respect

to the physical vacuum,17 i.e., a†p1
a†p2

. . . a†pn
aqm . . . aq2 aq1

= ap1p2 ...pn
q1q2 ...qm

. In Eq. (2), the bracket is defined as

(X |Y ) ≡ 〈0|[X†, Y ]+ |0〉, (3)

with |ĤX) ≡ [X, Ĥ]− |0〉, where |0〉 is the Hartree-Fock ref-
erence wave function. The leading order correction to the
self-energy occurs at the second-order perturbation theory
obtained with the usual Møller-Plesset partitioning of the
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Hamiltonian

Σpq(E) = (ap |Ĥ
(1)ab

kl)(a
a
ij |(E − Ĥ (0))ab

kl)
−1(aa

ij |Ĥ
(1)aq)

+ (ap |Ĥ
(1)a j

cd)(ai
ab |(E − Ĥ (0))a j

cd)−1(ai
ab |Ĥ

(1)aq),

(4)

where the zeroth- and the first-order Hamiltonians are Ĥ (0)

≡ F̂ = Fµ
ν aνµ and Ĥ (1) ≡ Ĥ − Ĥ (0) ≡ Ŵ (F̂ and Ŵ are the

Fock and fluctuation operators, respectively). Throughout this
text, we are using the Einstein summation convention and real
orbitals are assumed.

Evaluation of Eq. (4) leads to

Σpq(E) =
1
2

∑
ija

ḡij
paḡqa

ij

E + εa − ε i − ε j
+

1
2

∑
iab

ḡab
pi ḡqi

ab

E + ε i − εa − εb
,

(5)

where ḡpq
rs ≡ gpq

rs − gpq
sr is the antisymmetrized Coulomb inte-

gral, where gpq
rs ≡ 〈rs|r−1

12 |pq〉. The first (2-hole-1-particle, or
2h1p) term in Eq. (5) describes the orbital relaxation effects
and the second (2p1h) accounts for the electron correlation
effects. As shown by Ten-no and Ohnishi,12 the sum over unoc-
cupied states in the second term is slowly convergent in an
atom. This can be seen immediately by recognizing that at kth
zeroth-order poles, the 2p1h contribution to the kth diagonal
element of self-energy is a sum of the corresponding MP2 pair
energies

Σ
2p1h
kk (εk) =

1
2

∑
iab

ḡab
ki ḡki

ab

εk + ε i − εa − εb
=
∑

i

εMP2
ki . (6)

The slow basis set convergence is thus in direct analogy with
the slowly convergent error O[(L + 1)−3] of a truncated partial
wave expansion of the atomic MP2 energy.18 Motivated by
the close connection of the diagonal elements of the second-
order self-energy at the corresponding Koopmans pole with the
MP2 energy contributions, Ten-no and Ohnishi suggested an
additive (energy-independent) explicitly correlated correction
for the second-order self-energy using the explicitly correlated
MP2-F12 pair energies.

Here we demonstrate how to go beyond a simple additive
correction by including proper energy dependence for the non-
diagonal second-order Green’s function method. The goal is
to provide a robust reference for more approximate schemes
such as that of Ten-no and Ohnishi, as well as to establish
an explicitly correlated approach for general GF methods. We
start by augmenting the slowly convergent t = {ai

ab} field oper-
ator with a geminal field operator. We postulate that the form of
the geminal field operator is tγ = { 1

4 R̃αβir ãi
αβ }. R̃αβir is obtained

from Rαβir , the antisymmetrized matrix element of the geminal
correlation factor f (r12),19

Rαβir ≡ 〈ir |Q̂f (r12)|αβ〉. (7)

The tensors with tildes include the pair-spin projection due to
(natural) singlet and triplet cusp conditions20,21

Õαβ
ij ≡

1
2

(C0 + C1)Oαβ
ij +

1
2

(C0 − C1)Oαβ
ji

=
3
8

Oαβ
ij +

1
8

Oαβ
ji , (8)

where C0,1 = 1/2,1/4 are the cusp coefficients for singlet and
triplet pairs, respectively.22,23 Projector Q̂ in Eq. (7) ensures
that the geminal functions are orthogonal to Hartree-Fock as
well as to the standard double excitations.

The explicitly correlated part of the self-energy is
expressed as

Σ(E)← (a|Ĥ (1)tγ)(tγ |(E − Ĥ (0))tγ)−1(tγ |Ĥ (1)a). (9)

Resolution of the matrix elements will give

(ap |Ŵ tγ) =
1
4

ḡγδkp R̃kr
γδ =

1
4

V kr
kp , (10)

while

(tγ |Ŵaq) =
1
4

R̃αβis ḡiq
αβ =

1
4

V iq
is . (11)

The matrix elements of the resolvent are

(tγ |F̂N tγ) =
1
4
δi

kR̃αβis FγαR̃kr
γβ −

1
8

F i
kR̃αβis R̃kr

αβ (12)

=
1
4
δi

kBkr
is −

1
8

F i
kXkr

is (13)

and

E(tγ |tγ) =
1
8

Eδi
kR̃αβis R̃kr

αβ =
1
8

Eδi
kXkr

is , (14)

where F̂N ≡ F̂ − E(0) is the normal-ordered Fock operator.
V, X, and B are the standard F12 intermediates and their pro-
grammable expressions can be found elsewhere.24–27 Interme-
diates V and X were evaluated in the CABS approximation,28

while for intermediate B, we utilized approximation D.25

This formalism has been implemented in a developmen-
tal version of Massively Parallel Quantum Chemistry pack-
age (MPQC) version 4.26 The implementation utilizes the
TiledArray tensor library, which provides distributed paral-
lel tensor routines, and hence the implementation is mas-
sively parallel.29 Its performance is discussed in the next
paragraph.

We have assessed the performance of the new approach
by computing the IPs of a set of 21 small molecules9

and 24 medium sized organic electron accepting molecules
(OAM24).10 The basis set for the OBS that we used is aug-
cc-pVXZ with the corresponding density-fitting basis set,
aug-cc-pVXZ-RI, where X = D, T, Q, 5 (X represents the
basis set cardinal number) and aug-cc-pVXZ-CABS basis
set for the calculations with explicit correlations.30–34

All computations were performed with the frozen-core
approximation. The Slater-type correlation factor, f (r12)
= (1 − exp(−γr12)/γ), with γ = 1.3,1.9, and 2.1 Bohr−1 for
the basis sets aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ
has been used.

In the following text, we denote the nondiagonal second-
order Green’s function method by GF2, whereas the GF2
method with fully energy-dependent explicitly correlated cor-
rection by GF2-F12. GF2(F12) denotes a hybrid approach in
which the explicitly correlated correction is computed a pos-
teriori, by solving the Dyson equation for the pole and Dyson
orbitals at the GF2 level, followed by a single-shot evalua-
tion of the explicitly correlated contribution to the self-energy
with fixed energy and orbitals. Thus the difference between the
GF2(F12) and GF2-F12 results will indicate the importance of
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the full energy dependence of the explicitly correlated terms
in the second-order self-energy.

Table I presents the statistical averages of the basis set
errors of IPs for 21 small molecular systems obtained with the
GF2, GF2(F12), and GF2-F12 methods. The complete basis
set (CBS) limit of GF2 has been estimated using the two-point
(aug-cc-pVQZ to aug-cc-pV5Z) X�3 extrapolation scheme.35

Statistical analysis shows that the mean absolute errors in eV
(MAE/eV) for GF2 are 0.402, 0.169, 0.078, and 0.040 with the
basis sets aug-cc-pVXZ (X = D, T, Q, and 5); GF2(F12) gives
MAEs of 0.066, 0.013, and 0.009, while GF2-F12 produced
MAEs of 0.030, 0.012, and 0.009 for the X = D, T, and Q.
The maximum absolute error (MaxAE/eV) in the case of the
GF2 method is 0.479 (CH3 CH2 CH3), 0.209 (HF), 0.100 (HF
and HCl), and 0.051 (HF and HCl) with respect to X = D, T,
Q, and 5; MaxAE with the GF2(F12) method is 0.194 (HF),
0.044 (HF), and 0.020 (HF), while in the case of GF2-F12,
MaxAE is 0.059 (CH3OH), 0.032 (CH3F), and 0.023 (HF and
CH3F) for X = D, T, and Q, respectively. These statistical
parameters are shown graphically in Fig. 1 where the x-axis is
basis set cardinal number X and the y-axis represents the mean
absolute error in eV (MAE). The values next to the points show
MaxAE in eV. The IPs evaluated with the GF2(F12) and GF2-
F12 approaches have dramatically smaller basis set errors than
their GF2 counterparts. Furthermore, the rigorous GF2-F12
approach is preferred to the simpler GF2(F12) approach with
the double-zeta basis.

Note that the use of approximation D for the B interme-
diate introduces negligible errors.25 The maximum absolute
error between D and the more rigorous approximation C36

does not exceed 0.010 eV in the case of the aug-cc-pVDZ
basis set, while for the larger basis sets, the error vanishes
completely.

We also tested the explicitly correlated GF2 approaches
by computing IPs of medium sized molecules in the OAM24
data set. The IP basis set error statistics are given in Table II.
The CBS limit has been calculated with the GF2 method using
the two-point extrapolation scheme (aug-cc-pVTZ to aug-cc-
pVQZ).35

The results from Table II are in agreement with those
presented for the small molecules and support the same con-
clusion. GF2-F12 shows very small errors, giving a MaxAE of
only 0.039 eV in the case of the aug-cc-pVDZ and making this

FIG. 1. Mean absolute error (MAE) in eV for GF2 (blue), GF2(F12) (green),
and GF2-F12 (red) methods with several basis sets. Values next to the points
represent maximum absolute errors (MaxAEs) in eV.

method much more accurate than the more costly alternative
provided by GF2 with the aug-cc-pVQZ basis. GF2-F12 is also
preferred to the more approximate GF2(F12) approach, which
suggests that the explicitly correlated correction to self-energy
should indeed include the energy dependence properly.

We have presented an efficient, massively parallel imple-
mentation of the explicitly correlated nondiagonal energy
dependent GF2-F12 method. By including geminal field oper-
ators, we account for the missing electron correlation effects
due to the incompleteness of the basis set. Numerical tests
on small and medium molecules suggested that the ionization
potentials computed with the new explicitly correlated GF2-
F12 method in conjunction with the modest aug-cc-pVDZ
basis set had smaller basis set errors than their non-explicitly-
correlated GF2 counterparts with a much larger aug-cc-pVQZ
basis set. The computation time of the first ionization poten-
tial of pyridine with the GF2/aug-cc-pVQZ method takes 404,
while GF2-F12/aug-cc-pVDZ method takes only 91 seconds
(using four computing nodes with 24 Intel Xeon E5-2680
v3 2.50 GHz CPU cores). The corresponding absolute basis
set errors are 0.061 and 0.018 eV, respectively. The proposed
GF2-F12 method is easily extensible to higher-order Green’s
function approaches; such efforts will be reported elsewhere.
Generalizations to finite temperature formalisms should be
also straightforward.

TABLE I. Mean absolute error (MAE) in eV and maximum absolute error (MaxAE) in eV for the IPs of the data
set of small 21 molecules with respect to the CBS limit for several basis sets.

MAE MaxAE

Basis set GF2 GF2(F12) GF2-F12 GF2 GF2(F12) GF2-F12

aug-cc-pVDZ 0.402 0.066 0.030 0.479a 0.194b 0.059c

aug-cc-pVTZ 0.169 0.013 0.012 0.209b 0.044b 0.032d

aug-cc-pVQZ 0.078 0.009 0.009 0.100e 0.020b 0.023f

aug-cc-pV5Z 0.040 . . . . . . 0.051e . . . . . .

aCH3CH2CH3.
bHF.
cCH3OH.
dCH3F.
eHF and HCl.
fHF and CH3F.
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TABLE II. Mean absolute error (MAE) in eV and maximum absolute error (MaxAE) in eV for the IPs of the
OAM24 data set with respect to the CBS limit for several basis sets.

MAE MaxAE

Basis set GF2 GF2(F12) GF2-F12 GF2 GF2(F12) GF2-F12

aug-cc-pVDZ 0.372 0.081 0.013 0.459a 0.145b 0.039c

aug-cc-pVTZ 0.151 0.021 0.007 0.183a 0.054d 0.016e

aug-cc-pVQZ 0.064 . . . . . . 0.077a . . . . . .

aMaleic anhydride.
bNaphthalenedione and nitrobenzene.
cCl4-benzoquinone.
dBenzoquinone.
ePhenazine.

All calculated ionization potentials for GF2, GF2(F12)
and GF2-F12 methods can be found in the supplementary
material.
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