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ABSTRACT: We calculate the ionization potential and electron affinity of 1D
Hubbard chains with a variety of different site energies from two perspectives: (i) the
physics-based GW approximation and (ii) the chemistry-based configuration
interaction (CI) approach. Results obtained from all methods are compared against
the exact values for three classes of systems: metallic, impurity doped, and molecular
(semiconducting/insulating) systems. Although all methods are reasonably accurate for
weakly correlated systems, the GW method is significantly more reliable for strongly
correlated systems with little disorder unless explicit double excitations are included in
the CI. In principle, our results should offer some intuition about the choice of
methodologies as well as state references for different classes of physical systems.

I. INTRODUCTION

Calculations of the charged properties of materials have long
been one of the major challenging goals in molecular systems and
condensed matter physics. For a many-electron system, the
Hamiltonian is given by
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where V is a local external potential caused by nuclear-electronic
coupling. Because of the last term in eq 1, which describes the
Coulomb interaction between electrons, it is exponentially
difficult to diagonalize an N-body Hamiltonian exactly. Of
course, many approximate, mean-field theories have been
developed within the single-particle approximation for the
Coulomb term, which allow one to estimate the properties of
large systems analytically. (A good review can be found in ref 1.)
For instance, one can treat electrons as essentially noninteracting
particles in theories such as the Hartree approximation or the
Hartree−Fock (HF) approximation2 so that the Hamiltonian
becomes straightforward to solve.
When the Coulombic interactions are large and the picture of

independent electrons breaks down,3 electronic screening can no
longer be neglected. One the one hand, quantum chemistry has
traditionally sought either (i) improved exchange-correlation
kernels within density-functional theory (DFT) or (ii) optimal
wave function ansatzes.4−7 For example, for several recent
decades, quantum chemists were focused on local correlation
techniques to calculate ground state properties.8−13 On the other
hand, condensed matter theorists usually treat correlated
electrons (or holes) as approximately independent quasiparticles
and correlation effects are addressed through many-body
perturbation theory (MBPT) in terms of the self-energy of the

quasiparticles.14−16 In the framework of Green’s functions,17,18

the GW method is known to be the simplest working
approximation for calculations of the self-energy.19−25

We believe that not yet enough work has been done by
comparing the behavior of the GW method (which is popular in
the physics community) and wave-function-based approaches
(which are popular in the chemistry community) regarding the
calculation of the ionization potential and electron affinity. This
statement excludes recent works by (i) Bruneval et al., who
comparedGW againt DFT and HF for atoms and molecules;26,27

and (ii)McClain et al., who calculated the spectral function of the
uniform electron gas via ab initio coupled-cluster theory and
compared against GW results.28 Notwithstanding refs 26−28,
one difficulty in assessing different methodologies is the difficulty
calculating exact benchmarks for ionization potentials and
electron affinities.
With this background in mind, here we will calculate the

electron affinities and ionization potentials for a set of 1D
Hubbard chains29 with either eight or ten sites and different
possible site energies using exact diagonalization of the full
Hamiltonian. Thereafter, approximate results can be evaluated
for accuracy according to both theGWmethod and various wave-
function-based quantum chemistry approaches. We analyze
three different types of systems: metallic systems, doped systems,
and molecular (semiconducting/insulating) systems. Although
the original GW method is a computationally expensive self-
consistent method, we will follow the so-called G0W0 procedure
proposed by Hybertsen and Louie in 198630 and perform a first-
order perturbative calculation.
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An outline of this paper is as follows. In section II, we briefly
review our model system and the methodologies applied in the
calculation, both wave-function-based approaches and the GW
method. In section III, we compare results given by the
approximate methods versus the exact values for three different
types of systems. In section IV, we discuss our results. In section
V, we conclude.
Unless otherwise specified, we use lowercase latin letters to

denote spinmolecular orbitals (MO) (a, b, c, d for virtual orbitals,
i, j, k, l, m for occupied orbitals, p, q, r, s, w for arbitrary orbitals)
and Greek letters (α, β, γ, δ, λ, σ, μ, ν) to denote atomic orbitals
(AO). The electronic excited states obtained within the random-
phase approximation (RPA) are denoted by Ψ (with uppercase
indices I and J).

II. THEORY
II.A. Exact Diagonalization versus Orbital Energies. For

a system with N electrons, the exact ionization potential Eion and
affinity energy Eaff can be obtained from the total energy
difference

= −−E E EN N
ion 0

1
0 (2)

= − +E E EN N
aff 0 0

1
(3)

Alternatively, the easiest scheme to estimate ionization energies
(Eion) and electron affinities (Eaff) is to evaluate the highest
occupied molecular orbital (HOMO) energy and the lowest
unoccupied molecular orbital (LUMO) energy,31 i.e.,

ε≈ −Eion homo (4)

ε≈ −Eaff lumo (5)

Here, the orbital energies are taken from a HF calculation (or, of
course, a DFT calculation). For a Hartree calculation, the
ionization energies (electron affinities) are approximated by the
HOMO (LUMO) energy plus the orbital exchange potential.
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interaction.The zero of energy is a slow electron infinitely far
away. As defined in eq 2−6, for a system that does not want to
lose or accept another electron, the ionization potential is
positive and the electron affinity is negative.
II.B. IP/EA-CISD. Beyond the Hartree/HF orbital energies,

the simplest quantum chemistry approximation for Eion is
sometimes referred to as IP-CISD (Ionization Potential-
Configuration Interaction with Singles and Doubles).32 IP-
CISD describes ionized states as 1h and 2h1p excitations from a
closed-shell reference (usually HF) and the amplitudes of the
target states are found by diagonalizing the bare Hamiltonian H.
Here h denotes a hole and p denotes a particle. In some cases, IP-
CISD can provide an accurate ionization potential for closed-
shell systems.32 Mathematically for IP-CISD, one constructs a
variational wave function ansatz |Ψ⟩ = ∑iti|Φi⟩ + ∑ijatij

a|Φij
a⟩. By

including one set of orbital excitations on top of the hole, one
hopes to recover a reasonable amount of electronic correlation
following ionization. To solve for a stationary state with
coefficients ti and tij

a, one diagonalizes a four-by-four-block
Hamiltonian
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where Hi,k
SS = ⟨Φi|H|Φk⟩, Hi,klb

SD = ⟨Φi|H|Φkl
b ⟩, Haji,k

DS = ⟨Φij
a|H|Φk⟩,

and Haji,klb
DD = ⟨Φij

a|H|Φkl
b ⟩. The same logic above can be applied

when the electron affinity (Eaff) is computed, which is the amount
of energy released when an electron is added to an unoccupied
orbital. The simplest Hamiltonian for evalulating the electron
affinity (titled EA-CISD) contains the followingmatrix elements:
Ha,c

SS = ⟨Φa|H|Φc⟩, Ha,jdc
SD = ⟨Φa|H|Φj

cd⟩, Habi,c
DS = ⟨Φi

ab|H|Φc⟩, and
Habi,jdc

DD = ⟨Φi
ab|H|Φj

cd⟩.
It should be emphasized that neither IP-CISD nor EA-CISD is

very computationally cheap. These methods require the
diagonalization of a matrix of size Nocc

2(Nvirt + 1)2 or
Nvirt

2(Nocc + 1)2. Nevertheless, they are the most inexpensive,
straightforward wave function approaches.
Finally, we mention that, in principle, one can compute IP/

EA-CISD energies using either a Hartree or HF reference. Below
we will perform such calculations with both references for the
Hubbard model and, after extracting the electron affinities and
ionization potentials, we will compare results.

II.C. ΔSCF and ΔCISD. Another way to evaluate the
ionization potential and electron affinity is to compute E0

N−1,
E0
N, and E0

N+1 directly, and here we will calculate such quantities in
two ways: (i) a simple self-consistent field (SCF) calculation,
denoted ΔSCF; (ii) and a more sophisticated configuration
interaction singles and doubles (CISD) calculation, denoted
ΔCISD.
Mathematically for CISD, one constructs a wave function

according to the ansatz
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where |ΨHF⟩ is the HF ground state with the coefficient tHF, and
|Φi

a⟩ and |Φij
ab⟩ are single and double excitations with coefficients

ti
a and tij

ab, respectively. One diagonalizes a CISD Hamiltonian of
the form
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where EHF is the HF ground state energy, Hiajb
0D = ⟨ΨHF|H|Φij

ab⟩,
Hia j b

S S = ⟨Φ i
a |H |Φ j

b⟩ , Hia , j b k c
SD = ⟨Φ i

a |H |Φ k c
j b ⟩ , and

Hiajb,kcld
DD = ⟨Φij

ab|H|Φkl
cd⟩. Note that the manifold of single

excitations does not couple to the ground state according to
Brillouin’s theorem.

II.D.GWMethod. II.D.1. Green’s Function Review.The one-
body time-ordered Green’s function Gt can be written as

′ ′ ≡ ⟨Ψ | ̂ ̂ ̂ ′ ′ |Ψ ⟩†G t t T a t a tr r r r( , ; , ) [ ( ) ( )]t N N
0 0 (10)

where |Ψ0
N⟩ is the ground state for an interacting N-body system,

a ̂(rt) is the electron annihilation operator which annihilates an
electron at (r, t), and T̂ is the Fermionic time-ordering operator.
Equation 10 is the starting point for MBPT.
For our purposes (to get the ionization potentials and electron

affinities), GW calculations require only the noninteracting
Green’s function where |Ψ0

N⟩ is a Slater determinant. In the
frequency domain, one can then write down the expression for
the noninteracting time-ordered Green’s function as (in the MO
basis)
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Equation 11 defines the “G” in the GW method. In eq 12, we
have defined Gocc

R and Gvirt
A as per the usual convention that

electrons move forward in time and holes move backward in
time. Thus, it is straightforward to show that iℏGocc

R (r,r′,t−t′)
(iℏGvirt

A (r,r′,t−t′)) is the probability amplitude for the
propagation of an additional electron (hole) from (r′, t′) to
(r, t) for a noninteracting system.
II.D.2. Screened Coulomb Interaction. To express the “W” in

the GW approximation, we need a few definitions. Classically, if
an external potential u(r,t) is applied to a solid, the screening of
the solid is defined in terms of a dielectric constant. In many-
body theory, the inverse of the dielectric response is defined as

δ
δ

ϵ ′ ′ ≡
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=

t t
V t
u t

r r
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r
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( , )
( , )

u

1
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where V(r,t) is the combination of the external potential and the
Coulomb potential created by the induced charge (with density
ρ)

∫ ρ≡ + ′ ′ ′V t u t v tr r r r r r( , ) ( , ) d ( , ) ( , )
(14)

The inverse of the dielectric response can be rewritten as
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In linear response theory, the response function (or the so-called
RPA polarizability) χ is defined to describe the change of the
induced charge density if the external potential undergoes a small
change
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Using the chain rule for functional derivatives, we can express χ in
terms of the noninteracting response function as

∫
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where we define the noninteracting response function as

δρ
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In the GW approximation, P(r,r′,t−t′) can be expressed as the
multiplication of two Green’s functions (by neglecting the vertex
function)

′ ′ = − ℏ ′ ′ ′ ′P t t G t t G t tr r r r r r( , ; , ) i ( , ; , ) ( , ; , )t t (20)

If we apply the definition of the RPA polarizability (eq 16), the
inverse of the dielectric response (eq 15) becomes

∫δ δ χϵ ′ ′ = + ′ ′ ′ ′−
′ ′t t v t tr r r r r r r( , ; , ) d ( , ) ( , ; , )tt

1
rr (21)

In the frequency domain, the screened Coulomb interaction is
defined as

∫ω ω′ ≡ ″ ϵ ″ ″ ′−W vr r r r r r r( , ; ) d ( , ; ) ( , )1
(22)

Taking the Fourier transform of eq 21 and plugging the result
into eq 22, we find W(r,r′;ω) can be rewritten as

∫ω χ ω′ = ′ + ″ ‴ ″ ″ ‴ ‴ ′W v v vr r r r r r r r r r r r( , ; ) ( , ) d d ( , ) ( , , ) ( , )

(23)

The screened Coulomb interaction W(r,r′;ω) is the effective
potential at r′ induced by a quasiparticle at r; in general,
W(r,r′;ω) is anticipated to be weaker and better behaved than
the bare Coulomb interaction v(r,r′). The difference between
W(r,r′;ω) and v(r,r′) is the polarizable part of the screened
Coulomb interaction Wp

∫
ω ω

χ ω

′ ≡ ′ − ′

= ″ ‴ ″ ″ ‴ ‴ ′

W W v

v v

r r r r r r

r r r r r r r r
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d d ( , ) ( , , ) ( , ) (25)

p

Wp is the “W” in the GW approximation that must now be
evaluated.

II.D.3. RPA Polarizability. To calculate the RPA polarizability
χ, the usual prescription is to perform a RPA calculation on top of
a Hartree reference state, ignoring all exchange terms. The RPA
working equation is given by33

− −
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for excitation amplitudes XI and YI and excitation energy ΩI for
RPA excited state I. A and B contain matrix elements as follows

δ δ ε ε= − − |A ia jb( ) ( )iajb ij ab a i (27)

= − |B ia bj( )iajb (28)

By diagonalizing the RPA non-Hermitian Hamiltonian, one
obtains the excitation amplitudes XI and YI and the excitation
energy ΩI for each RPA excited state I. The RPA polarizability
can then be computed via the following sum-overstates
expression34
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In terms of MOs, if the perturbing potential is of the form
ujb(t)(ab

†aj + aj
†ab), one finds that the response function is

∑χ ω
ω ω

=
Ω +

+
Ω −
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where

= + + +M X X X Y Y X Y Yiajb ia jb ia jb ia jb ia jb
I I I I I I I I I

(31)

To express χ in a real space, one must sum over orbitals
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II.D.4. Self-Energy. In practice, theGW self-energy is obtained
from the frequency convolution of Green’s function Gt with the
screened Coulomb interaction W

∫ω
π

ω ω ω ωΣ ′ = ′ ′ + ′ ′ ′ηω′G Wr r r r r r( , , )
i

2
d e ( , , ) ( , , )ti

(33)

where η is an infinitesimal positive real number. IntroducingWp
(eq 25) can split the self-energy into two parts: the static
exchange part Σx and the dynamic correlation part Σc

∫π
ω ωΣ ′ = ′ ′ ′ ′ηω′v Gr r r r r r( , )

i
2

( , ) d e ( , , )tx i
(34)

∫ω
π

ω ω ω ωΣ ′ = ′ ′ + ′ ′ ′ηω′G Wr r r r r r( , , )
i

2
d e ( , , ) ( , , )i tc

p

(35)

Note that Σx corresponds to the usual nonlocal exchange
potential, which is introduced by the Fock exchange operator in
the HF approximation

∑ ∑ μν λσΣ = − |
μνλσ

μ ν λ σC C C C( )pq
i

p i i q
x

(36)

In eq 36 and everywhere below, we assume we are performing a
GW calculation on top of a Hartree calculation. All orbitals are
Hartree orbitals.
Σc gives rise to the correlation energy of the system, which is

not taken into consideration in a HF calculation. To evaluate the
Σc contribution to the self-energy from the GW method, one
simply plugs eqs 11 and 32 into eq 37 and obtains the final
expression for correlation part of the self-energy (in the MO
basis). Plugging eq 25 into eq 35, one can express Σc in terms of
Green’s function Gt, the RPA polarizability χ, and the bare
Coulomb potential v

∫
∫

ω
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ω ω ω

χ ω
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× ″ ‴ ′ ″ ″ ‴ ′ ‴

ηω′G
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(37)

The self-energy evaluated at the energy of Hartree orbital s can
finally be expressed as

∑ ∑ ∑
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For self-consistency, we must have

ε ε ε= + Σ ( )GW GW
s s

H
ss s (39)

If we want to avoid a self-consistent calculation, the standard
approach is to apply the linear expansion for the real part of the
Σc(ω)

ε ε
ε ε ε

ω
Σ ≈ Σ +

−
ℏ

∂ Σ
∂

Re ( ) Re ( )
Re ( )GW

GW c
c

s
c

s
H s s
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(40)

which leads to

ε ε ε≈ + Σ + ΣZ Re ( )GW x
s s

H
s

c
s
H

s (41)

The quasiparticle renormalization factor “Zs” is given by

ε
ω

≡ −
∂ Σ

∂

−⎛
⎝⎜

⎞
⎠⎟Z 1

Re ( )
s

c
s
H 1

(42)

According to eqs 4 and 5, the electron affinity/ionization
potential of a system can be obtained from the GW
approximation by taking the negative value of eq 41. At this
point, all of the formal theory has been presented and will be
applied to a 1D Hubbard model system.

II.E. Model System and Its Affinity/Ionization Potential.
TheHubbard model offers one of the simplest ways to get insight
into how the interactions between electrons can give rise to
insulating, doped, and conducting effects in a solid. In this work
we take 1D Hubbard model as our testing system, which is
described by the Hamiltonian

∑ ∑

∑

τ≡ + ̅ ̅ + + ̅ ̅

+ ̅ ̅

μν
μ ν μ ν μ

μ
μ μ μ μ

μ
μ μ μ μ μ

⟨ ⟩

† † † †

† †

a a a a V a a a a

U a a a a

( ) ( )

(43)

where μ denotes the site of the system, τ is the hopping integral
between neighboring sites, Vμ is the on-site energy (for site μ),
andUμ is the repulsion energy between two electrons of opposite
spin accommodated on each site μ. A bar indicates spin down.
In practice, we first perform a normal Hartree calculation for

the model system, obtaining the Hartree orbital energy εi
H and

the molecular orbital coefficientsC. The next step is to perform a
time-dependent Hartree calculation within RPA to get the matrix
elements for the RPA polarizability χ. Then eq 38 becomes (for
the HOMO and LUMO respectively)
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The exchange part of the self-energy Σx for the 1D Hubbard
model is given by

∑ ∑Σ =
μ

μ μ μ μU C C Cpq
i

p q i
x 2

(46)
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Note that for all calculations below, we calculate only HOMO
and LUMO energies and we set η = 0 in eqs 44 and 45.

III. RESULTS

We apply the theory above to 1D Hubbard models of two sizes:
8-Site and 10-Site. We assume half-filling with either 8 or 10
electrons, respectively. The hopping integral between neighbor-
ing sites τ is set to be 1.0 for all systems, while the electron
repulsion energy U is varied. All quantities will be calculated in
a.u. henceforward. Exact electron affinities and ionization
potentials are obtained by diagonalizing the Hamiltonian with
Davidson iterative diagonalization.35 To compare the behaviors
of different methods for different cases, we will plot the difference
between the computed value and the exact answer as follows: the
upper and middle panels show the results for 8-Site/8e− and 10-
Site/10e−, respectively; the left and right of the top two panels
show the electron affinity and ionization energy differences
respectively; the lower panel shows the Z factor for LUMO and
HOMO (eq 42).

III.A. Metallic System. We first study metallic systems. In
metallic systems, every site has the same on-site energy (Vμ = 0
for all sites μ).36 The electron repulsion energyU is varied from 0
to 0.7. Results are shown in Figure 1. Focusing on the electron
affinity (left panel), one can see that all approximate methods
give the exact answer whenU = 0 (of course). AsU increases, the
errors given by all the quantum chemistry methods (except
ΔCISD) increase dramatically, indicating the failure of these
methods for strongly correlated systems. By contrast, the GW
method, with a maximum error (∼0.01) when U = 0.7, performs
fairly well (though not as well as ΔCISD, which gives almost
exact results). The validation of the GW approximation for the
metallic system is also strengthened by the fact that the Z factor
for both 8-Site and 10-Site is very close to 1. Similar results are
found for the ionization potential.
Note that, if we want to plot the total HOMO/LUMO gap

(εlumo − εhomo or equivalently, Eion − Eaff) for such systems, the
quantum chemistry methods (except ΔCISD) would still
perform very poorly; the errors for Eion and Eaff have different
signs and subtracting these errors would yield even larger errors.

Figure 1. Errors for electron affinities and ionization potentials and the quasiparticle renormalization (Z) factor (eq 42) for the metallic system (Vμ = 0
for all sites μ, τ = 1.0). All errors are relative to the exact diagonalization. The upper and middle panels show the results for 8-Site/8e−and 10-Site/10e−,
respectively; the left and right of the top two panels show the electron affinity and ionization energy differences respectively; and the lower panel shows
the Z factor for LUMO and HOMO. Note that ΔCISD performs the best for metallic systems followed by the GW method.
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III.B. Doped Impurity Systems. By lowering the energy of a
single site in the metallic system, one can model an impurity,
which dopes an otherwise metallic system and can influence the
overall photoactivitiy or electrical properties of the total system.
In Figures 2 and 3, we calculate results for electron repulsion
energies U between 0 and 0.7. We consider two on-site energies:
Vimp = −0.5 (Figure 2) and Vimp = −1.0 (Figure 3).
For the case Vimp = −0.5 (where the impurity energy is half as

large as the hopping integral τ), it can be seen in Figure 2 that the
results are roughly identical to those for themetallic case:ΔCISD
gives the most accurate results and the GW method is better
compared with other quantum chemistry methods.
For the case Vimp = −1.0 (where the on-site energy is

comparable with the hopping integral), the same conclusion
holds only for the ionization energies. For the affinity energies
(left panel of Figure 3), the quantum chemistry approaches now
do much better than before (and ΔCISD is again the best). In
particular, the Hartree approximation with the exchange energy
competes withGW for the most accurate method exceptΔCISD.
The ionization energy results remain very similar to those of the

former cases; that is, ΔCISD gives almost exact results and GW
performs much better than other quantum chemistry methods.
In all doped systems, we note that the IP/EA-CISD methods

yield results that are even worse than direct Hartree/HF
approximations.

III.C. Molecular (Semiconducting/Insulating) Systems.
To simulate a “molecular” Hubbard model, we construct an
alternating Hamiltonian, whereby Veven is significantly lowered
relative toVodd = 0. In doing so, we expect that orbitals with lower
energies will be doubly occupied and well separated from virtual
orbitals. Thus, by creating an energy gap, we should be simulating
closed-shell insulators and/or semiconductors (depending on
the gap size).
For “molecular” systems with a small energy gap (Veven =

−0.5), the electron repulsion energy U is varied from 0 to 0.8. As
shown in Figure 4, the performances of the quantum chemistry
methods are now far improved compared with the metallic case.
Although ΔCISD remains the best, the Hartree and HF
approximations compete with the GW method for accuracy
and sometimes they prevail. As in Figures 2 and 3, the GW error

Figure 2. Errors for electron affinities and ionization potentials and the quasiparticle renormalization (Z) factor for the metallic system for the doped
system (with V5 = −0.5 for the 8-Site system and V6 = −0.5 for the 10-Site system; for all other sites, Vμ = 0). τ = 1.0. All errors are relative to the exact
diagonalization. ΔCISD is still the most accurate method and GW consistently outperforms other wave function methods.
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turns over as U gets larger; the GW error is maximized at some
intermediate value of U.
It should be pointed out that, so far, the IP/EA-CISDmethods

have not provided any results better than the direct HF or
Hartree approximation. In fact, wave function corrections to
Hartree/HF calculations only increased the error in Figure 4.
However, one must be careful not to quickly extrapolate from the
data above. For “molecular” systems with an energy gap equal to
the hopping integral (Veven = −1.0), Figure 5 demonstrates that
our results are completely different from the previous case (Veven

= −0.5). In particular, now, IP/EA-CISD methods are
consistently more accurate than the direct HF or Hartree
approximation. For the 8-Site system, IP/EA-CISD(HF) yields
the overall best results apart from ΔCISD. For the 10-Site
system, ΔCISD is followed by ΔSCF and GW, which are better
than the other approaches.
Lastly, unlike previous cases, according to Figure 5, the

Hartree approximation yields remarkably large errors. As one
would expect, the quality of the Hartree reference simply

degrades as the system becomes more molecular (and exact
exchange becomes critical).
Finally, we consider the final, extreme “molecular” case

whereby the on-site energy difference is now twice as large as the
hopping integral (Veven =−2.0). As Figure 6 shows, asU increases
from 0 to 1.2, GW and ΔSCF are quite accurate, though slightly
worse than ΔCISD. By contrast, the HF related methods
perform worse than GW, and the Hartree related methods are
even worse: the Hartree orbital energies are no longer any good.

IV. DISCUSSION

The results above (in section III) have compared the more
chemical (wave function) versus the more physical (GW)
methods for calculating electron affinities and ionization
energies. Of all the methods considered excluding ΔCISD,
GW is usually the most reliable approach when we consider a
broad range of systems. This preliminary conclusion might be a
bit surprising from the quantum chemistry point of view. After
all, on the one hand, with regards to scaling, GW is limited by

Figure 3. Errors for electron affinities and ionization potentials and the quasiparticle renormalization (Z) factor for the doped system (withV5 =−1.0 for
the 8-Site system and V6 = −1.0 for the 10-Site system; for all other sites, Vμ = 0). τ = 1.0. All errors are relative to the exact diagonalization. Clearly,
ΔCISD again gives the most accurate results. GW performs better for ionization potentials than other quantum chemistry approach, but the Hartree
approximation with exchange energy performs equally well for the electron affinity.
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diagonalizing a matrix of orderNoccNvirt ×NoccNvirt. On the other
hand, the IP/EA-CISD methods require the diagonalization of
comparatively larger matrices of order NoccNvirt

2 × NoccNvirt
2 (for

EA-CISD). Thus, GW is able to provide improved results with
less computational effort.
To understand this strong performance byGW, we investigate

a simplified version of IP/EA-CISD, that is, fixing a single MO
(HOMO for the ionization potential and LUMO for the electron
affinity) and making corrections on top of this single orbital.
Taking the 8-Site/8e− “molecular” system (Veven = −1.0) as an
example, we compare the result of this so-called IP-CISD(HF/
homo) or EA-CISD(HF/lumo) result against HF, IP/EA-
CISD(HF), and GW results in Figure 7. For the electron affinity,
EA-CISD(HF/lumo) provides a result very similar to that by
direct HF but with some small improvement. For the ionization
energy, IP-CISD(HF/homo) yields a noticeable correction and
the result is much closer to the full IP-CISD(HF) energy. In
other words, a single-orbital approximation for the hole does not
degrade the answers significantly. Thus, there are clearly
Hamiltonians for which quantum chemistry wave function

approaches can outperform GW with the same computational
cost. (IP-CISD(homo) and EA-CISD(lumo) require the same
computational cost as GW.)
That being said, in general, GW does outperform a more

expensive algorithm. Obviously, the strength of GW is that the
GW self-energy includes a summation of Coulomb interactions
by diagonalizing the RPA matrix and constructing the full
response matrix (which leads to the screening potential W). By
contrast, the IP/EA-CISD methods include only one bare
Coulomb interaction through variational calculations. Thus, the
results above reflect the relative value of these two approaches,
and the GW approach would appear to be more robust overall.
Given that theGW performs so well above for a range of model

Hubbard Hamiltonians, it is worthwhile to test its convergence
with respect to the number of RPA states included. Considering
eq 37, we see that the GW self-energy directly depends on the
RPA polarizability χ, the polarizability can be written as a sum
over states (eq 32), and all excited states contributions to the self-
energy will decay inversely proportional to the energy of that
excited state. It is well-known thatGW converges poorly with the

Figure 4. Errors for electron affinities and ionization potentials and the quasiparticle renormalization (Z) factor for “molecular”Hubbard models (Veven
= −0.5, Vodd = 0, τ = 1.0). All errors are relative to the exact diagonalization. Here, though ΔCISD is always the most accurate, the simple Hartree
approximation with the exchange energy performs better than other methods. TheGW approximation is still reasonable, which can also be shown from
the Z factor values.
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number of virtual orbitals,37,38 but we would like to test this
convergence for different Hamiltonians.
With this background in mind, in Figure 8 we plot the error

electron affinity given by GW as a function of the number of
singlet states included in the calculation for two different cases:
(i) 8-Site/8e− metallic system with U = 0.5 and (ii) 8-Site/8e−

molecular system with U = 0.5 and Veven = −2.0. On the one
hand, for the metallic system, a strong GW correction can be
obtained by including just one RPA excited state; for these
systems and this U value, we find one low lying state that is
reasonably separated energetically from higher excited states and
yields a strong correction. On the other hand, for the molecular
systems, the error decreased very slowly (almost linearly). In
other words, one must include all RPA states to maintain the
accuracy of the GW method for a molecular system.39,40 Given
the large cost of the full GW calculation, it will be interesting to
compare relative (as opposed to absolute) ionization potentials
and electron affinities for real molecules as a function of the
number of states included. This work is ongoing.

Finally, a few words are in order about self-consistency. To
avoid self-consistency, one can use eq 41. Alternatively, one can
iterate the GW equations to satisfy eq 39. We have performed a
simple eigenvalue self-consistent GW calculation (evGW)41 and
we find that results given by evGW are actually very close to our
perturbative GWmethod with the linear expansion (eq 41). This
success of the perturbative GW approximation is consistent with
the fact that the Z-factor is very close to 1 (larger than 0.9) and
validates the results presented in Figures 1−6.
We have found, however, that the Z-factor values for orbitals

other than HOMO and LUMOwere usually far away from 1with
correspondingly large errors compared to exact attachment−
detachment energies.

V. CONCLUSION

In this paper, we have systematically compared the performance
of GW against various wave-function-based methods for the
calculation of ionization potentials and electronic affinities for
several 1D Hubbard models. Three different types of systems

Figure 5. Errors for electron affinities and ionization potentials and the quasiparticle renormalization (Z) factor for “molecular”Hubbard models (Veven
=−1.0,Vodd = 0, τ = 1.0). All errors are relative to the exact diagonalization. AlthoughΔCISD remains themost accurate, theHartree approximation now
performs the worst. Excluding ΔCISD, IP/EA-CISD(HF) yields the overall best results for the 8-Site system whereas ΔSCF and GW become the best
for the 10-Site system,.
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have been studied: metallic, impurity, and molecular (semi-
conducting/insulating) systems.

Although ΔCISD gives almost exact results for all cases, the
most striking conclusion from the data above is that the GW

Figure 6. Errors for electron affinities and ionization potentials and the quasiparticle renormalization (Z) factor for “molecular”Hubbard models (Veven
=−2.0, Vodd = 0, τ = 1.0). All errors are relative to the exact diagonalization. Note that theGWmethod, though slightly worse thanΔCISD, outperforms
other methods even in this very insulating case.

Figure 7. Errors for electron affinities and ionization potentials for the 8-Site/8e−molecular system (Veven = −1.0). Results given by HF, IP/EA-
CISD(HF), and GW are taken from Figure 5. Here we compare against IP-CISD(HF/homo) and EA-CISD(HF/lumo). Note that by freezing one
orbital, the electron affinity changes significantly but the ionization potential does not.
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method surpasses other wave function methods in two extreme
limits. On the one hand, for the metallic case with reasonably
large U, GW performs significantly better than wave function
methods (except ΔCISD). On the other hand, for the molecular
system with the largest HOMO/LUMO gap, GW also gives a
very accurate result. For systems between these two extreme
cases, the advantages of GW becomes less obvious and the wave-
function-based methods behave better.
As DFT specialists may well appreciate, the Hartree

approximation yields a small improvement over HF for both
the impurity systems and molecular systems with small energy
gaps (Vμ ≪ τ). For the insulator case with a large HOMO/
LUMO gap, the Hartree approximation dramatically fails to
make accurate predictions but can be used as a reasonable
reference for GW. Altogether, these results emphasize the
comparative advantages of the GW method versus traditional
quantum chemistry approaches across a large range of
Hamiltonians (even if GW is not always the optimal method).
Looking forward, it is clear why GW is currently being applied to
a variety of molecular systems.40,42−44
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