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Abstract

Quasiparticle energies and fundamental band gaps in particular are critical prop-

erties of molecules and materials. It was rigorously established that the generalized

Kohn-Sham HOMO and LUMO orbital energies are the chemical potentials of electron

removal and addition and thus good approximations to band edges and fundamental

gaps from a density functional approximation (DFA) with minimal delocalization er-

ror. For other quasiparticle energies, their connection to the generalized Kohn-Sham

orbital energies has not been established but remains highly interesting. We provide the

comparison of experimental quasiparticle energies for many finite systems with calcula-

tions from the GW Green’s function and localized orbitals scaling correction (LOSC),

a recently developed correction to semilocal DFAs, which has minimal delocalization

error. Extensive results with over forty systems clearly show that LOSC orbital ener-

gies achieve slightly better accuracy than the GW calculations with little dependence

on the semilocal DFA, supporting the use of LOSC DFA orbital energies to predict

quasiparticle energies. This also leads to the calculations of excitation energies of the

N -electron systems from the ground state DFA calculations of the (N − 1)-electron

systems. Results show good performance with accuracy similar to TDDFT and the

delta SCF approach for valence excitations with commonly used DFAs with or without

LOSC. For Rydberg states, good accuracy was obtained only with the use of LOSC

DFA. This work highlights the pathway to quasiparticle and excitation energies from

ground density functional calculations.

Introduction

Quasiparticles are a powerful concept in electronic structure theory of many-electron sys-

tems. In particular, accurate prediction of quasiparticle energies is essential for interpreting

the electronic excitation spectra of molecules and materials, such as photoemission and op-

tical experiments. Formally, quasiparticle energies can be exactly formulated in many-body
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perturbation theory.1–3 In practice, the GW approximation4–7 is most widely used for bulk

simulations. Unfortunately, GW calculations are still expensive computationally. Therefore,

a low-cost alternative to GW approximation that offers good accuracy for the prediction of

quasiparticle energies is critical to the calculations of large-scale systems, and for efficient

high throughput study of materials.

Kohn-Sham (KS) density functional theory (DFT),8–10 due to its good balance between

accuracy and computational tractability, is among the most popular and versatile methods

available for many-electron problems. In addition to the total electron energy, the physical

interpretation of the KS eigenvalues has also attracted great interest. It has been known

for decades that among the KS eigenvalues obtained from the exact functional, the highest

occupied molecular orbital (HOMO) energy, εHOMO, is negative vertical ionization poten-

tial (VIP), −I.10–17 In 2008, it was rigorously proven18,19 that within the generalized KS

(GKS) theory, which includes KS theory as a special case, the HOMO/LUMO energy is the

chemical potential,
(
∂E
∂N

)
v
, for electron removal/addition from the DFAs for any DFA that

is a differentiable functional of the non-interacting one-electron density matrix in case of

GKS or the density in case of KS, and consequently approximation to −I/ − A following

the Perdew-Parr-Levy-Balduz (PPLB) condition.11,20–22 Accurate approximation of −I/−A

can thus be expected from the HOMO/LUMO energy of DFAs with minimum delocalization

error.23 Therefore, the fundamental gap defined as I − A can be exactly obtained from the

chemical potential difference, that is, the GKS HOMO-LUMO gap.

In addition to HOMO and LUMO, the physical meaning of other GKS eigenvalues also

has great theoretical significance and application value. Of particular interest is the con-

nection between the GKS spectrum and the quasiparticle spectrum. Unfortunately, no clear

connection has been established, although there have been many attempts to approximately

attach some meanings to the occupied orbital energies within the KS theory. It has been

argued that the orbital energies below εHOMO can be interpreted as other approximate prin-

ciple (sometimes called relaxed) VIPs, i.e., the ionized system being in an excited state.24,25

3
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Recently, it has been argued that the correct occupied KS orbital energies should correspond

to the exact principle VIPs using the linear response time-dependent density functional the-

ory (LR-TDDFT) under the adiabatic approximation.26–28 However, it has been shown that

the adiabatic approximation within TDDFT is not generally valid.29

Even though no theorem has been rigorously established to link the remaining GKS

orbital energies to quasiparticle energies, it is still beneficial for practical applications to

construct a good density functional approximation (DFA) that can accurately predict quasi-

particle energies from orbital energies. For commonly used DFAs, such as local density

approximations (LDAs), generalized gradient approximations (GGAs) and hybrid GGAs,

their HOMO and LUMO energies are the corresponding chemical potentials but have large

systematic error in predicting −I/−A.18,23 In particular, the HOMO energy is significantly

overestimated, which leads to underestimation of I; while the LUMO energy is severely

underestimated, so that A is overestimated. Hence, the fundamental gap is significantly

underestimated by HOMO-LUMO gap of common DFAs. From the fractional charge per-

spective, this failure has been attributed18,23 to the violation of the PPLB condition11,20–22

which requires the total energy, as a function of electron number, to be piecewise straight

lines interpolating between adjacent integer points. And the convex deviation suffered by

commonly used DFAs was identified as the delocalization error inherent in approximate

functionals.23,30,31 Other occupied and unoccupied orbitals follow the same trend as HOMO

and LUMO, respectively. Typically, energies of occupied orbitals (including HOMO) have

been seriously overestimated when serving as approximations to electron removal energies,

so that they cannot qualitatively reproduce experimental photoemission spectrum. It is thus

reasonable to believe that other orbitals should suffer similarly from the delocalization error

of approximate functionals.

Following the perspective of fractional charges, there have been many attempts focusing

on removing delocalization error in approximate functionals. MCY332 was the first DFA

constructed to restore the PPLB condition; long-range corrected (LC) functionals33–36 and
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doubly hybrid functionals37–39 show some promise on reproducing linear fractional charge

behavior; tuned range-separated hybrid functionals40–42 impose extra constraints on orbital

energies from total energy difference by optimizing the range-separation parameter for each

system. All these functionals show significantly improvement on the calculations of HOMO

and LUMO energies for small molecules. Extension to large and bulk systems lead to various

issues. To achieve systematic elimination of the delocalization error associated with com-

monly used DFAs, recently developed localized orbital scaling correction (LOSC) functional43

introduces a set of auxiliary localized orbitals (LOs), or orbitalets, and imposes PPLB con-

dition on each of the LOs. As a result, LOSC can achieve size-consistent corrections to both

the total energy and orbital energies.

Methods

To demonstrate that orbital energies ε (N) of LOSC can give accurate approximation to

quasiparticle/quasihole energies ω+/− (N) for an N -electron system, for the description of

electron addition/removal, i.e.

εm(N) ≈ ω+
m(N) = Em(N + 1)− E0(N),

εn(N) ≈ ω−
n (N) = E0(N)− En(N − 1), (1)

we have already applied LOSC to generate accurate LUMO and HOMO energies for a broad

range of atoms and molecules.43 In Eq. 1, εm(N)/εn(N) is a virtual/occupied GKS orbital

energy for the N -electron system. The performance of LOSC for HOMO/LUMO and other

GKS orbital energies will be examined extensively in present work.

Furthermore, Eq. 1 allows the calculation of excitation energies ∆Em(N) at the cost of

a ground-state DFT calculation via the particle part, relating to electron affinities (EAs), of
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the quasiparticle spectrum of the (N − 1) system, i.e.

∆Em(N) = Em(N)− E0(N)

= [Em(N)− E0(N − 1)]− [E0(N)− E0(N − 1)]

= ω+
m(N − 1)− ω+

min(N − 1)

≈ εm(N − 1)− εLUMO(N − 1), (2)

where Em(N) corresponds to the mth excitation of the N -electron system, and E0(N − 1)

is the ground-state energy of (N − 1)-electron system. E0(N) − E0(N − 1) is -A of the

(N − 1) system and can be obtained from ω+
min(N − 1), the minimum of particle part of the

quasiparticle spectrum, and approximated as εLUMO(N − 1), the LUMO energy of the DFA

calculation for the (N − 1) system. The excitation energy ∆Em(N) can thus be obtained

as the virtual orbital energy difference εm(N − 1)− εLUMO(N − 1) from a ground-state self-

consistent field (SCF) calculation on (N − 1)-electron system. In addition, Eq. 2 describes

the excitations from HOMO to unoccupied orbitals (LUMO and above LUMO), due to the

fact that N -electron system is retrieved by adding one electron to the virtual orbitals of a

ground state (N − 1)-electron system. Besides calculation from (N − 1)-electron system,

excitation energies can also be calculated similarly via the hole part, relating to ionization

potentials (IPs), of the quasiparticle spectrum of the (N + 1) system, i.e.

∆En(N) = En(N)− E0(N)

= [E0(N + 1)− E0(N)]− [E0(N + 1)− En(N)]

= ω−
max(N + 1)− ω−

n (N + 1)

≈ εHOMO(N + 1)− εn(N + 1), (3)

where E0(N + 1)−E0(N) is −I of the (N + 1) system and can be obtained from ω−
max(N +

1), the maximum of the hole part in the quasiparticle spectrum, and approximated as

6
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εHOMO(N + 1), the HOMO energy of the DFA calculation for the (N + 1) system. The

excitation energies can thus be obtained as occupied orbital energy differences εHOMO(N +

1) − εn(N + 1) from a ground-state SCF calculation on (N + 1)-electron system. Being

different from the approach of (N − 1)-electron calculation, Eq. 3 describes the excita-

tions from occupied orbitals (HOMO and HOMO below) to LUMO, since the N -electron

system is retrieved by removing one electron from the occupied orbitals of a ground state

(N + 1)-electron system.

Many theoretical approaches have been developed to calculate excitation energies. High-

level methods, including equation-of-motion coupled cluster (EOM-CC),44–46 linear-response

coupled cluster (LR-CC),47–50 multireference configuration interaction (MRCI),51,52 complete

active space configuration interaction (CASCI),53–55 CASPT256,57 and others, can produce

accurate results, but significantly limited in system size and complexity. Other computation-

ally efficient methods, such as configuration interaction singles (CIS),58,59 time dependent

DFT (TDDFT)60 and ∆SCF61 have been well-known to describe excitation energies with

success, meanwhile they have important weakness. Particularly, CIS can overestimate ex-

citation energy by 2 eV.59 TDDFT59,62 and ∆SCF method63–70 typically yield results with

good accuracy, but TDDFT faces challenges to describe double,63,71,72 Rydberg73–76 and

charge transfer excitations77–79 with conventional DFAs. In contrast, Eqs. 2 and 3 provide

the simplest way to calculate excitation energies, with which various excitation energies can

be obtained after the corresponding ground-state SCF calculation. Obviously, the accuracy

of excitation energies from Eqs. 2 and 3 depends on the quality of DFA orbital energies, as

approximation to the quasiparticle energies.

Next, we will show the test results of approximating quasiparticle energies (Eq. 1) and

excitation energies (Eqs. 2/3) by different DFAs and LOSC-DFAs. For the test of quasi-

particle energies, we compare IPs (the hole part of the quasiparticle spectrum) with occupied

orbital energies, as well as EA with LUMO energy. Other EAs from the particle part of the

quasiparticle spectrum are not tested in present work, as experimental data or accurate
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computational data is not available for comparison, and the calculation of these EAs is very

demanding on the basic functions (much harder to calculate than the EA from LUMO en-

ergy). For the test of quasiparticle energies, 40 molecules with conjugated system (up to

large system like C60) were selected from Blase’s80 and Marom’s81 test set to calculate pho-

toemission spectrum, HOMO and LUMO energies. Polyacenes (n=1-6), water, ethylene and

thiophene are used to study the valence orbital energies as approximation to the correspond-

ing quasiparticle energies. For the test of excitation energies, 16 molecules are obtained from

Ref 82 as a molecular set to test the low-lying excitation energies. Four atoms (Li, Be, Mg,

and Na) are selected as an atomic set to test their excitation energies up to Rydberg states.

The QM4D package83 was used to perform the DFT calculations. Several conventional func-

tionals, such as local density approximation (LDA),84,85 PBE,86 BLYP87,88 and B3LYP,87–89

and LOSC-DFAs were tested. For LOSC calculations, the post-SCF procedure was applied.

More details of computations and test results can be found in SI.

Results & Discussion

First, HOMO and LUMO energies of different DFAs and LOSC-DFAs are compared. Table 1

summarizes mean absolute errors (MAEs) of orbital energies in comparison with experimen-

tal quasiparticle energies, where self-consistent GW (scGW)5,7 and G0W04,5 results are also

included for comparison. Previousely, it has been shown that LOSC can size-consistently

improve HOMO and LUMO energies on systems range from small sized molecules to poly-

mers.43 Here, we further calculated a set of 40 organic molecules, where the molecular size

is much larger than that of the G2-97 set tested before. Due to the serious delocalization

error,18,23 LDA and PBE show systematic underestimation of VIPs and overestimation of

VEAs, with MAEs larger than 2.0 eV; hybrid functional B3LYP performs slightly better

with a 20% reduction in error, but the results still qualitatively deviate from the exper-

iment. LOSC-DFAs significantly improve both HOMO and LUMO energies, with MAEs

8
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Table 1: Mean absolute errors (MAEs, in eV) of orbital energies compared with
experimental quasi-particle energies. Experimental reference were obtained from
Ref. 80,81.

HOMO a LUMO a Valence b

scGW c 0.47 0.34 -
G0W0@PBE c 0.51 0.37 -
LOSC-LDA 0.34 0.48 0.69 (0.53)
LOSC-PBE 0.37 0.33 0.60 (0.35)
LOSC-B3LYP 0.26 0.29 0.43 (0.36)
LDA 2.58 2.43 3.06 (2.33)
PBE 2.81 2.16 3.23 (2.55)
B3LYP 2.00 1.57 2.24 (1.79)
∆-DFA d 0.43 0.26 0.70 (0.73)
∆-LOSC-DFA d 0.34 0.38 0.41 (0.26)

a 40 molecules are chosen from Refs. 80 and 81 for the calculation of HOMO and LUMO
energies. The size of these molecules ranges from small aromatic ring, like thiophene, to
large conjugated system, like C60. These molecules are thiophene, benzothiadiazole,
benzothiazole, fluorene, H2P, H2PC, H2TPP, PTCDA, thiadiazole, benzoquinone,
Cl4-isobenzofuranedione, dichlone, F4-benzoquinone, maleicanhydride, nitrobenzene,
phenazine, phthalimide, TCNE, benzonitrile, Cl4-benzoquinone, dinitrobenzonitrile,
F4-benzenedicarbonitrile, fumaronitrile, mDCNB, NDCA,nitrobenzonitrile, phthalic
anhydride, TCNQ, acridine, azulene, bodipy, naphthalenedione, C60, C70, and polyacenes
(n = 1 - 6).
b Overall, 51 valence orbital energies, from HOMO to orbitals below HOMO in order, are
calculated for polyacenes (n = 1 - 6), water, ethylene and thiophene, and compared with
the available experimental IPs. Numbers shown in the parenthesis are the MAE of
polyacenes, which is listed as well to verify the size-consistency.
c GW results were taken from Ref 81.
d PBE functional was used in HOMO and LUMO calculation. BLYP functional was used
in valence orbital results.

much smaller than their parent DFAs. In particular, MAEs of LOSC-B3LYP are smaller

than 0.3 eV. It is also interesting to compare LOSC with the well-recognized scGW and

G0W0 methods. We find that LOSC can achieve better accuracy than scGW and G0W0

methods for HOMO and LUMO energy calculations. Our results also show that starting from

the same reference DFA (PBE), LOSC (MAE of HOMO 0.37 eV and of LUMO 0.33 eV) out-

performs the G0W0 (MAE of HOMO 0.51 eV and of LUMO 0.37 eV). It is well-known that

the G0W0 calculation is significantly influenced by the reference DFAs. In contrast, LOSC
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can provide similar accuracy based on different parent DFAs, including hybrid functionals.

-20 -16 -12 -8
-20

-16

-12

-8

-20 -16 -12 -8

0

2

4

 B3LYP
 LOSC-B3LYP

ε j 
(e

V
)

-I jv (eV)

(a) (b)  B3LYP HOMO-n
 LOSC  HOMO-n

∆ε
j (

eV
)

-I jv (eV)

Figure 1: Calculated εj of B3LYP and LOSC-B3LYP in comparison with the experimental
−Ijv . (a) Orbital energies εj for 43 states below HOMO are included. The solid line indicates
εj = −Ijv . (b) The errors of calculated orbital energies with respect to the experimental
negative VIPs, ∆εj = εj + Ijv , are recorded.

Besides HOMO and LUMO, Table 1 also summarizes the valence orbital energies from

DFAs and LOSC-DFAs. Similarly, we notice that the orbital energies from commonly used

DFAs show serious deviation from the experimental reference (above 2 eV MAE), while

LOSC-DFAs can largely reduce the error (0.43 - 0.69 eV). Moreover, we also observe from

Table 1 that LOSC gives slightly larger absolute error when comparing valence orbital ener-

gies with HOMO/LUMO energies. Since valence orbitals are much larger (up to 20 eV) than

HOMO and LUMO (mostly below 10 eV) energies, making larger correction from LOSC

desired, it is more difficult to achieve the same level of accuracy for valence orbital energies.

This fact suggests that further development of LOSC is still needed for better valence orbital
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energies. Besides Table 1, the largely reduced error for valence orbital energies by LOSC

can be clearly seen from Figure 1(a) and Figure 1(b): valence orbital energies of B3LYP

significantly overestimate quasiparticle energies; with LOSC, the systematic error is elimi-

nated. By further observing Figure 1(b), we find that the overestimation of quasiparticle

energies by B3LYP becomes more serious for states with lower energies, which is corrected in

LOSC-B3LYP. In addition, the results of polyacenes (n=1-6), of which the chain length keeps

increasing, are shown in Table 1 to study the performance of size-consistency. It clear shows

that MAEs of valence orbital energies from LOSC-DFAs maintain at low level, meanwhile

the MAE of results from ∆-LOSC-BLYP (0.26 eV) is much better than ∆-BLYP (0.73 eV).

Therefore, it supports that LOSC can size-consistently correct the valence orbital energies,

as well as the total energy of high level states calculated in ∆SCF approach.

To further confirm that LOSC is a reliable method for the calculation of quasiparticle

energies, GKS spectra of forty systems were plotted and compared to the experimental

photoemission spectra, along with GW results when available. Figure 2 only show the results

of azulene and benzonitrile; tests on other molecules give similar results, which can be found

in SI. As can be seen, commonly used DFAs exemplified by PBE and B3LYP give too narrow

HOMO-LUMO gaps, with the occupied levels being significantly overestimated and LUMO

energy being underestimated. LOSC greatly corrects the results. Furthermore, spectra by

LOSC-DFAs are consistent with the experimental photoemission spectra, with the principle

peaks appearing at the same positions. Overall, LOSC shows little dependence on parent

DFAs, and can reach an accuracy that is comparable to that of GW methods in predicting

quasiparticle spectra. Note that, although there existed some approaches in GW methods

to reduce the computational scaling, such as stochastic GW,92,93 the GW calculation is still

computationally expensive in general. From LOSC-DFAs calculation, the computational

cost of LOSC only amounts to a small portion of the parent functional, thus maintaining it

at the DFT calculation level. Therefore, LOSC-DFAs are a promising low-cost alternative

to GW approximation for accurate prediction of quasiparticle energies.
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Figure 2: Photoemission spectrum of (a) azulene and (b) benzonitrile. Experimental results
are obtained from (a) Ref 90 and (b) Ref 91. The rightmost peak in the experimental spec-
trum corresponds to the electron affinity (EA), and it is broadened by a Gaussian function
with a width of 0.2 eV around experimental EA value. The calculated spectrum from DFT
are broadened from orbital energies (occupied orbitals and LUMO) by the same type of
Gaussian functions. scGW and G0W0 results are obtained from Ref 81.
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Accurate prediction of quasiparticle energies by LOSC-DFAs thus allows the calculation

of excitation energies from ground state DFT calculation through Eqs. 2 and 3. However,

calculation of anionic molecule (N + 1-electron system) normally requires good choice of

diffused basis set,94 making results from (N + 1)-electron system calculation dependent on

the quality of applied basis set. A reasonable basis set for (N−1)-electron system calculations

like cc-pVTZ can be too small for (N + 1)-electron system calculations, yielding an unbound

electron. Due to this effect, the orbital energies, especially HOMO, of (N+1)-electron system

are not reliable and lead to poor HOMO-LUMO excitation energies compared with (N − 1)-

electron system calculation. Although one can use a large basis set to perform reasonable

(N + 1)-electron system calculations, this is not computationally economical. Considering

these aspects, we mainly focus on discussing the excitation energies calculated from (N −1)-

electron systems in the main text; some results from (N+1)-electron systems can be found in

SI. For the excitations of HOMO to orbitals above HOMO, starting from the doublet ground

state of (N −1)-electron systems (assuming one more α-spin electron than β-spin electrons),

there are two orbital energies of different spins for each orbital above HOMO. Apparently,

α-spin orbital energies should be used for triplet excitations. For singlet excitations, a spin

purification process similar to Refs. 61 and 69 is used here, and the excitation energies are

calculated by

∆Esinglet
m (N) ≈ [2εβm (N − 1)− εαm (N − 1)]− εβHOMO (N − 1) . (4)

The results of 48 low-lying excitation energies obtained from different DFAs and LOSC-

DFAs are summarized in Table 2, where triplet and singlet excitations are categorized and

presented. The results from Hartree Fock (HF), TDDFT and ∆SCF-DFT with B3LYP

functional are also listed for comparison. As expected, LOSC-DFAs can provides good

prediction for excitation energies due to their excellent performance on quasiparticle energies.

Especially, the total MAE and MSE of LOSC-B3LYP are 0.49 eV and -0.19 eV, which are
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Table 2: Mean absolute errors (MAEs, in eV) and mean sign errors (MSEs, in
eV) of 48 low-lying excitation energies obtained from HF, DFT, TDDFT and
∆SCF-B3LYP calculation on 16 molecules. Notation T1 refers to triplet HOMO
to LUMO excitation, and T2 refers to triplet HOMO to LUMO+1 excitation.
The analogy notation for S1 and S2 which stand for singlet excitations. Reference
data were obtained from Ref 95.

Method T1 T2 S1 S2 Total
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

HF 1.08 -0.88 2.04 -1.23 1.12 -0.59 1.49 0.81 1.35 -0.83
BLYP 0.19 -0.14 0.63 -0.10 0.68 -0.65 0.65 -0.24 0.53 -0.22
B3LYP 0.17 -0.13 0.43 0.01 0.45 -0.33 0.67 -0.58 0.42 -0.01
LDA 0.24 -0.02 0.65 0.04 0.73 -0.68 0.70 -0.27 0.58 -0.16
LOSC-BLYP 0.49 -0.28 0.46 -0.37 0.84 -0.84 0.62 0.10 0.63 -0.44
LOSC-B3LYP 0.30 -0.23 0.28 -0.14 0.60 -0.51 0.69 -0.29 0.49 -0.19
LOSC-LDA 0.48 -0.18 0.52 -0.27 0.88 -0.88 0.71 0.11 0.67 -0.42
TD-B3LYP 0.45 -0.45 0.39 -0.39 0.38 -0.35 0.28 0.27 0.38 -0.37
∆-SCF 0.20 -0.16 0.33 -0.24 0.56 -0.56 0.18 0.04 0.35 -0.31

comparable to TDDFT (MAE of 0.38 eV and MSE of -0.37 eV) and ∆SCF-DFT (MAE of

0.35 eV and MSE of -0.31 eV, based on the same reference DFA (B3LYP). For conventional

DFAs, it is surprising to find that they have very good performance on predicting low-lying

excitation energies, even though they perform poorly in quasiparticle energy calculations.

These good results should be attributed to the fact that unoccupied (or occupied) orbitals

that are energetically close suffer from a similar amount of systematic delocalization error,

making the error cancellation when calculating excitation energies from the difference of

orbital energies. This can be seen clearly by comparing their performance on the T1 (HOMO-

LUMO excitation) and T2 (HOMO-(LUMO+1) excitation). Conventional DFAs tested here

perform very well on T1 excitation (MAEs are around 0.2 eV), but their performance on T2

excitation is much worse (MAEs can be larger than 0.6 eV). In contrast, LOSC-DFAs are

consistent in their performance for these two types of excitations. Thus, it can be inferred

that for a DFT method to achieve good accuracy for the prediction of excitation energies of

low- to high-lying states, it is necessary to provide consistently reliable quasiparticle energies

for all different states involved.
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Table 3: Mean absolute errors (MAEs, in eV) and mean sign errors (MSEs, in
eV) with respect to experimental reference of excitation energies of 4 atoms from
low-lying states to Rydberg states. 12 excitations were included for each atom.
Experimental values were obtained from Ref 96.

LDA BLYP B3LYP LOSC-LDA LOSC-BLYP LOSC-B3LYP

Be singleta MAE 2.37 1.15 1.85 0.24 0.54 0.35
MSE 2.37 -1.15 1.85 0.07 -0.29 -0.06

Be tripleta MAE 2.30 1.91 1.79 0.28 0.60 0.30
MSE 2.11 1.68 1.79 -0.04 -0.60 -0.29

Mg singletb MAE 2.37 2.07 1.69 0.55 0.26 0.21
MSE 2.37 2.07 1.69 0.55 0.16 0.21

Mg tripletb MAE 2.13 1.82 1.54 0.40 0.15 0.14
MSE 2.12 1.80 1.52 0.34 -0.11 0.06

Li doubleta MAE 0.97 1.77 1.40 0.91 0.17 0.16
MSE 0.97 1.77 1.40 -0.89 0.04 -0.03

Na doubletb MAE 1.52 2.16 1.69 0.25 0.57 0.42
MSE 1.52 2.16 1.69 -0.11 0.57 0.42

a The excitation states are calculated up to atomic orbital 6p.
b The excitation states are calculated up to atomic orbital 7p.

To further confirm the above inference, we chose four atoms (Li, Be, Mg, and Na) to

test their excitation energies up to Rydberg states. Such choice of atomic set is due to the

availablity of their experimental references and clear picture of Rydberg states from atoms,

in which one electron is excited to a high-level atomic orbital. Table 3 summarizes the

MAEs from different DFAs and LOSC-DFAs applied to this atomic test set, more detailed

results can be found in SI. As can be seen, conventional DFAs show large MAEs for all the

four atoms. By observing Tabs. S7 to S12 for these test atoms in SI, it is easy to find

that the higher the excited states, the greater the deviation between the results obtained by

DFAs and the experimental values. This is because conventional DFAs show larger errors

for quasiparticle energies at higher states, thus the difference of orbital energies cannot

completely offset the systematic delocalization errors of orbitals that are energetically far

apart. In contrast, LOSC-DFAs perform similarly for different excited states with very high

accuracy, which should be attributed to the good performance of LOSC on quasiparticle

energies of different states.
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Conclusions

In conclusion, we have carried out a comprehensive test on calculations of quasiparticle

energies and excitation energies with the LOSC functional and DFAs. Through a large

number of comparisons with experimental results and GW results, we demonstrated that

LOSC-DFAs shows little dependence on parent DFAs, and can reach an accuracy that is

better or comparable to that of GW methods in predicting quasiparticle spectra. This also

leads to the calculations of excitation energies of the N -electron systems from ground state

calculations of the (N − 1)-electron systems. Commonly used DFAs show good performance

for valence excitations, but not accurate for higher energy and Rydberg states; in contrast,

LOSC-DFAs can provide consistently accurate results for excitation energies from low-lying

to Rydberg states for the tested cases. This work highlights the pathway to quasiparticle

and excitation energies from ground density functional calculations.

Note. When preparing the manuscript for submission, we became aware of Ref. 97, which

also calculated excitation energies from orbital energy differences of the (N − 1)-electron

systems. Different functionals from our tests and only valence excitations were reported.

Supporting Information Available

• SI.pdf: More details of computations and test results.
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