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In the thirty-two years since the birth of the foundational theorems, time-dependent density func-
tional theory has had a tremendous impact on calculations of electronic spectra and dynamics in
chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging appli-
cations, there has been much progress in understanding fundamental aspects of the functionals
and the theory itself. This Perspective looks back to some of these developments, reports on
some recent progress and current challenges for functionals, and speculates on future directions to
improve the accuracy of approximations used in this relatively young theory. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4953039]

I. INTRODUCTION

The wavefunction rose from the early days of quantum
mechanics as the central player, the provider of all observable
properties of atoms, molecules, and solids. Within a few years
it was however recognized that finding this complex-valued
high-dimensional function was impossible for all but very
few problems, even if we just focus on electrons alone.
Almost 40 years later, the Hohenberg-Kohn theorem1 proved
that the ground-state density alone provides all observable
properties of any static system. This is an astonishing result
given the simplicity of the density, the probability of finding
any one electron at a given point in space, compared with
the wavefunction, a function of all electronic coordinates.
Even more astounding, in 1984 Erich Runge and Hardy
Gross proved that for time-dependent (TD) systems evolving
from a given initial wavefunction, all TD properties can
be extracted from the time-evolving density.2 Their theory,
Time-Dependent Density Functional Theory (TDDFT) has
become one of the most popular and successful methods for
computing electronic excitation spectra today, with increasing
applications for non-perturbative electron dynamics, and is
the subject of this Perspective. I focus here mostly on
fundamental aspects underlying the theory and its functionals,
while applications enter throughout as a guide and inspiration.

The very first TD density functional calculation, to my
knowledge, in fact predates not only the Runge-Gross theorem,
but also the Hohenberg-Kohn theorem: Felix Bloch developed
a time-dependent extension of Thomas-Fermi theory3,4 to
theoretically model the stopping power of a fast charged
particle in matter. In the 1970s, the first time-dependent
Kohn-Sham (KS) calculations were run,5–7 and in the early
1980s proofs of one-to-one density-potential mappings for
certain cases began to appear, for time-periodic potentials8

and adiabatic processes.9,10 The growing interest in running
time-dependent Kohn-Sham calculations did not have to wait
much longer before they could stand on a formal, and general,
foundation. The Institute for Theoretical Physics at the Goethe
University Frankfurt in the 1980s was especially known for

nuclear physics and atomic scattering. Hardy Gross, a postdoc
at the time, and student Erich Runge were particularly
motivated by the question of what is the time-dependent
potential acting on an electron when it scatters from ions
whose nuclei are treated classically. Given that Hohenberg,
Kohn, and Sham had derived such a potential for an electron
in a ground-state twenty years earlier, it was natural to wonder
whether such a formulation could be extended to the time-
dependent case, yielding the exact time-dependent potential
acting on an electron. This led to the birth of the foundational
theorem of TDDFT, the Runge-Gross theorem.2

What Runge and Gross considered were non-equilibrium
systems of electrons treated non-relativistically, described by
the following universal Hamiltonian:

Ĥ(t) =
N
i

(
−1

2
∇2
i + vext(ri, t)

)
+

N
i> j

N
j

1
|ri − r j | . (1)

We use atomic units (e2 = ~ = me = 1) throughout. What
distinguishes different N-electron systems is the “external”
potential, vext(r, t), that represents the potential the electrons
experience due to the nuclear attraction and due to any
field applied to the system. The time-dependence in this
term can arise through nuclear motion (with nuclei treated
as classical, but possibly dynamic, point particles) and/or
through externally applied (scalar) fields. Of course, solving
the TD Schrödinger equation (TDSE), Ĥ(t)Ψ(t) = i∂tΨ(t) for
the many-electron wavefunction Ψ(t) is not computationally
feasible for more than a few electrons, as it runs into an
exponential wall very quickly for non-perturbative fields.
Moreover Ψ(t) provides usually far more information than
we would be interested in. Typically, observables of interest
involve integrated quantities, in particular, one- and two-body
probability densities. The idea of density-functional theories,
broadly speaking, is to obtain such quantities directly without
calculating Ψ(t).

Time-dependence opens up an ever-increasing wealth of
interesting physical and chemical phenomena that tend to be
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classified into two groups: spectroscopy, which gives an elec-
tronic “fingerprint” of the atom, molecule, or solid (Sec. IV),
and real-time non-perturbative dynamics where the electronic
system roams far from any ground-state (Secs. III and V).
In this Perspective, I cover only in passing a third group of
phenomena arising from relaxation and dissipation in very
large or extended systems, as induced by electron-electron
viscosity. A fourth group of applications relevant to the
ground-state correlation energy, which exploit the fluctuation-
dissipation theorem to fold in long-range effects in a natural
way,11 is not discussed. Further, I have brazenly ignored all-
important computational concerns, numerical aspects, details,
and algorithms.

II. DENSITY-POTENTIAL MAPPING

The Runge-Gross theorem proves the one-to-one mapping

Ψ(0) : n
1−1←→ vext, (2)

where Ψ(0) is the initial wavefunction and the density n(r, t)
is the probability of finding any one electron of any spin σ at
point r in space at time t,

n(r, t) = N


σ,σ2...σN


d3r2 . . . d3rN

× |Ψ(rσ,r2σ2 . . . rNσN , t)|2. (3)

As in the ground-state case, an elegant aspect of the original
proof of this density-potential mapping is that it can be
completely followed from basic principles learned in the
first year of a quantum mechanics course. Instead of the
variational principle for energy minimization that leads to
the Hohenberg-Kohn theorem, the TD case follows from
Heisenberg equations of motion for the current-density and
the continuity equation. The basic idea of the proof is outlined
here, and readers are referred to Refs. 2, 12, and 13 for the
details.

Consider two systems of N electrons, both initially
in the same many-body state Ψ(0). Can two physically
distinct potentials vext(r, t) and v ′ext(r, t) be found such that
the two systems evolve in a Hamiltonian of the form Eq. (1)
with exactly identical densities n(r, t) = n′(r, t) at all times?
Physically distinct potentials are those that differ by more than
just a purely TD function, i.e., vext(r, t) and vext(r, t) + α(t) are
not physically distinct, because they lead to wavefunctions
that differ only by a purely TD phase factor, which cancels
out when expectation values of Hermitian operators are taken
in calculating observables. Now, if the answer to the above
question can be shown to be “no,” then it implies that the
density n(r, t) can only be produced by one external potential,
i.e., it proves the arrow pointing to the right in Eq. (2). (The
arrow pointing to the left that the potential points to a unique
density follows from the usual assumption that the TDSE
yields a unique Ψ(t), and hence via Eq. (3) a unique density.)
To prove that the answer is in fact “no,” Runge and Gross
required that the considered potentials be time-analytic around
the initial time and used their Taylor expansion expressions
in the equation of motion for time-derivatives of the
current-density, evaluated about the initial time: Essentially,

FIG. 1. Illustration of the one-to-one density-potential map in TDDFT.
The upper (lower) ellipses contain density evolutions of interacting (non-
interacting) systems arising from the initial state labelling the ellipse. The
four initial states shown all have the same density as each other, and first
time-derivative of the density as each other. The potentials in the central
ellipse are one-body potentials, representing vext (vS) when pointed to from
the upper (lower) ellipses.

the difference ∂l
t j(r, t)|t=0 − ∂l

t j′(r, t)|t=0 depends on the
difference between the k < lth Taylor coefficients of the two
potentials. If the two potentials are physically distinct, then
there must exist a k for which their spatial-dependences differ
from which the equation shows that the resulting currents
will differ. In a second step, the equation of continuity,
∂tn(r, t) = −∇ · j(r, t), is used to transform the one-to-one
current-potential mapping to a one-to-one density-potential
mapping.

The top part of Figure 1 illustrates this map. The initial
states labelling the upper ellipses have the property that they
have the same n(r,0) and ∂tn(r,0) as each other, and the
symbols inside the ellipses are examples of possible density-
evolutions n(r, t) stemming from them. (The phase of the
initial wavefunction determines ∂tn(r,0), via the equation
of continuity.) Different initial states can lead to the same
density evolution in different potentials, so some density
symbols appear in both. The Runge-Gross theorem states
that no two lines from the same ellipse may lead to the
same vext in the central ellipse, which is the space of all
one-body potentials, but lines from different densities in two
different ellipses may point to either the same or different
points in the central ellipse. The open symbols correspond to
“non-v-representable” densities, meaning that these densities
cannot be generated from evolving under any Hamiltonian of
the form Eq. (1). We come back to the lower part of the figure
shortly.

A. The TD Kohn-Sham system

The statement in Eq. (2) implies that all observables
are functionals of the initial state Ψ(0) and the TD density
n(r, t): O[n;Ψ(0)]. This is because it states that, for a given
initial state, knowledge of the density identifies the external
potential, and therefore the entire Hamiltonian Eq. (1), and
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hence the wavefunction Ψ(t) (up to a physically irrelevant
purely TD phase). But, as in the ground-state case, it is
difficult to find these functionals, and so one resorts to
mapping the system to a non-interacting system of orbitals,
the TD Kohn-Sham (KS) system, which reproduces the exact
density. Having orbitals eases the job of the functionals in
many cases, in particular, the kinetic energy approximated
as the orbital functional


i⟨φi | − ∇2

2 |φi⟩ does a far better job
than available explicit kinetic-energy density-functionals. The
Runge-Gross argument holds for non-interacting electrons (in
fact, for any particle-particle interaction), as illustrated in the
lower part of Figure 1. Again, no two lines from the same
lower ellipse can lead to the same one-body potential in the
central ellipse, representing now vS(r, t), and again, lines from
the same symbol appearing in both lower ellipses leading
to two different potentials reflect the fact that two different
initial states can yield the same density evolution in different
potentials. A density evolution in both an upper ellipse and
a lower ellipse means that the density is “non-interacting
v-representable” (more in Sec. II B).

To run a TDDFT calculation for a given problem then, one
first picks an initial state to be used for the non-interacting KS
propagation, Φ(0), that is compatible with the true initial state
of the physical problem Ψ(0) in that it has the same density
and first time-derivative of the density. Typically a Slater
determinant of single-particle orbitals φi(r,0) is chosen. Even
when the initial density is stationary, there are infinitely many
Slater determinants to choose from that reproduce a given
density.14,15 The KS orbitals evolve via a single-particle TDSE
whose potential vS[n;Φ(0)] is defined such that it guarantees
that the KS one-body density reproduces the exact density:N

i=1 |φi(r, t)|2 = n(r, t), where(
−∇

2

2
+ vS(r, t)

)
φi(r, t) = i∂tφi(r, t). (4)

The KS potential vS(r, t) = vS[n;Φ(0)](r, t) is usually written
as

vS(r, t) = vext(r, t) + vH[n](r, t) + vXC[n;Ψ0,Φ0](r, t), (5)

where vH[n](r, t) =


d3r′ n(r
′, t)

|r−r′| is the Hartree potential, and
vXC[n;Ψ0,Φ0](r, t) is the exchange-correlation (xc) potential.
In practical calculations, approximations enter first when
selecting an initial KS state (the exact initial density is
generally only known approximately, e.g., via a ground-state
DFT calculation, or a correlated many-body calculation), and
second in approximating the xc functional.

The initial-state dependence of the 1-1 mapping for
the interacting and non-interacting systems endows the xc
potential with a functional-dependence on the initial states
Ψ(0) and Φ(0), as manifest in Eq. (5), a feature that has no
precedent in ground-state DFT. In a large class of applications
(e.g., calculations of response and spectra), the initial true and
KS states are ground states, which, by virtue of the Hohenberg-
Kohn theorem, are themselves functionals of their density;
initial-state dependence is then redundant. But it is generally
unknown what the functional dependence of the xc potential is
on the initial states. The exact xc potential is known to depend
on the past also through the history of the density, n(t ′ < t),
and this dependence together with the dependence onΨ(0) and

Φ(0) is called memory-dependence.16,17 In the vast majority of
applications today, an adiabatic approximation is used, where
the TD density is inserted into a ground-state approximation,
audaciously neglecting all memory-dependences.

Note that the TD KS equations do not arise from a
variational principle: what was needed above was just the
reassurance that a given density evolution beginning from a
given initial state can be produced by at most one potential,
and the assumption of non-interacting v-representability
(see more shortly). Still, thinking of the ground-state case,
where many approximations are derived directly for the xc
energy, whose functional derivative then gives the ground-
state potential, it might be similarly useful if there is
an analog for the TD case. TD variational principles
are based on the action, but, if one attempted to write
vXC[n,Ψ(0),Φ(0)](r, t) as δAXC[n,Ψ(0),Φ(0)]/δn(r, t) one
encounters a predicament: δvXC[n,Ψ(0),Φ(0)](r, t)/δn(r′, t ′)
would equal δ2AXC[n,Ψ(0),Φ(0)]/δn(r, t)δn(r′, t ′) which is
symmetric in t and t ′, while in reality density-changes at
times t ′ > t cannot affect the xc potential at earlier times.
This causality violation was first pointed out in Ref. 18
and several different possible solutions have been proposed:
defining the action on the Keldysh contour,19 using Liouville
space pathways,20 or including boundary terms with the usual
real-time contour.21

B. Solving an existential crisis leads to alternative
mapping proofs

How do we even know that the time-evolving density
of an interacting electronic system can be reproduced by
a non-interacting system? The Runge-Gross proof ensures
the uniqueness of the potential that yields a given density
evolution from a given initial state but it does not prove its
existence. The question of existence of a KS system for a
given density is called “non-interacting v-representability.”

In Ref. 22, van Leeuwen showed that a unique TD KS
potential exists for a prescribed TD density generated in
an interacting system, under some conditions, and provided
a method for its construction. His method also provides
an alternate proof of the density-potential mapping theorem
of the statement (2). Like the Runge-Gross theorem, the
van Leeuwen proof requires that the potential be time-
analytic, but additionally the latter assumes the density
is time-analytic. Now the time-analyticity of the potential
covers most physical cases of interest (especially with the
piece-wise analytic extension16), but time-analyticity of the
density is a more restrictive condition. The coupling of
space and time-derivatives in the TDSE means that spatial
singularities in the potential can lead to non-analyticities
in time in the wavefunction and density, even when the
potential is time-analytic. Technically the proof in Ref. 22
unfortunately does not apply to Coulomb potentials. Limiting
consideration to the linear response regime, alternate proofs
of the density-potential mapping however have no time-
analyticity requirements.23,24

The search for a general proof free of the time-
analyticity requirements has seen a resurgence of interest
in recent years. Ref. 25 reformulated the question of the
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density-potential mapping and v-representability in terms of
uniqueness and existence, respectively, of a particular TD
nonlinear Schrödinger equation (NLSE). However the nature
of the particular NLSE involves fourth-order derivatives of
the wavefunction and because of this together with the
singularity in the Coulomb potential, existence and uniqueness
results are not known. Refs. 26–28 proposed a proof based
on global fixed-point iteration, which further yields an
algorithm to numerically construct the exact KS potential for
a prescribed density-evolution from a given initial state. The
convergence is technically not assured for Coulombic systems,
but demonstrations on systems with smooth potentials have
already led to interesting insights into features that exact xc
potentials have.29–31 Reference 32 provides a detailed review
of the mathematical aspects of the density-potential mapping,
delving also into uniqueness and existence of solutions of the
TDSE when Coulomb interactions are present.

Discretizing space, conditions for existence and unique-
ness of the density-potential mapping and KS system in
“lattice-TDDFT” have been proven in Refs. 33 and 34. For
practical computations on a real-space grid, one might be
tempted to argue that the lattice-TDDFT is what is relevant,
however without well-posedness of the continuum limit, there
is no guaranteed convergence with respect to grid size.

C. TD current density functional theory (TDCDFT)

The first part of the RG theorem actually proves that no
two scalar potentials yield the same one-body current, for a
fixed initial state, implying a one-to-one mapping between
the external potential and the current. However, currents
of interacting systems are generally not non-interacting
v-representable, as shown in Ref. 35: even if no external
magnetic field is applied to the true system, one needs a
magnetic field in a non-interacting system for it to reproduce
the current. That is, the KS current in TDDFT is, generally, not
equal to the true physical current. The longitudinal component
of the TDDFT KS current is equal to that of the physical
current, thanks to the continuity equation, but they may differ
in their transverse component.

But even stepping back to the very first stage, the question
of whether one can find an initial Slater determinant that
reproduces a given initial density and current-density of an
interacting system is highly non-trivial, unless the velocity
j(r,0)/n(r,0) is curl-free; recent results can be found in
Ref. 36.

A more useful one-to-one map exists between current-
densities and vector potentials,18,37–40 yielding what is known
today by TD current-density functional theory (TDCDFT).
Here non-interacting A-representability was proven under
conditions of time-analyticity,41 similar to the van Leeuwen
proof of v-representability in the TDDFT case. Closely related
is TD deformation functional theory,42 which can be viewed as
a Lagrangian version of TDCDFT, with the deformation metric
tensor as basic variable. In fact, Ilya Tokatly has illuminated
the relationships between the NLSEs of TDDFT, TDCDFT,
and that underlying TD deformation functional theory.43

Even when the external potential is purely scalar, there
can be advantages to use TDCDFT instead of TDDFT when

approximations are involved. Going beyond the adiabatic
approximation was a motivating factor for Giovanni Vignale
and Walter Kohn, in deriving the “Vignale-Kohn” (VK)
approximation in TDCDFT. Consider trying to incorporate
memory-dependence in TDDFT. The xc potential at time
t depends on the density at earlier times t ′ < t, when a
small volume element which is now at r was, at that earlier
time, at r′,44 suggesting that memory resides with the fluid
element rather than with the local density. This entanglement
of spatial- and time-nonlocality was first brought to light by
Dobson in Ref. 45, where he showed that simply modifying
ALDA by using the finite-frequency response of the uniform
gas while retaining only local density-dependence as in
the Gross-Kohn approximation46 violated exact conditions,
such as the harmonic potential theorem. Vignale showed
that this approximation also violates the zero-force theorem
(Sec. III).47 Any nonadiabatic xc functional must depend
in a strongly spatially non-local way on the density, even
when in the limit of spatially, slowly varying densities.
A theory local in space and non-local in time is instead
possible in terms of the current-density,40,48–50 and TDCDFT
with the VK approximation has proven successful for a
number of applications where the standard approximations
in TDDFT perform poorly. Due to its inclusion of retardation
effects, it has had some success in capturing relaxation
due to electron-electron interaction in large or periodic
systems,51,52 viscous forces responsible for the stopping power
in electron liquids,53 spin-Coulomb drag,54 the frequency and
linewidth of intersubband transitions in quantum wells,55

and many-body dynamical corrections to conductance in
molecular junctions.56 Spatially local functionals of the current
incorporate non-local density-dependence, which allows VK
to correct the overestimation in ALDA/GGA of polarizabilities
for many polymer chains57 and to improve the dielectric
function in semiconductors to some extent.58 However its
general application has been limited, partly because it
spuriously damps finite systems,52 and, even if only applied
to extended systems, the electron gas response functions that
enter the VK functional are not known with certainty at
general frequencies and wavevectors.

III. EXCHANGE-CORRELATION POTENTIALS:
WHAT DO WE KNOW EXACTLY?

The TDDFT theorems say that the dynamics of the
electrons in any atom, molecule, or solid can be exactly
extracted from completely removing the electron repulsion
while distorting the attractive potential of the nuclei. What
kind of crazy distortion is required for this to happen? Here,
we discuss some general aspects about what is known about
the exact potential.

A. The exact TD KS potential

By inverting the TD KS equation, we find an expression
for the exact KS potential in terms of the density ni(r, t)
and phase αi(r, t) of any one of the occupied KS orbitals
φi(r, t) =


ni(r, t)eiαi(r, t),
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vS(r, t) = ∇
2


ni(r, t)
2


ni(r, t)
− (∇αi(r, t))2

2
− ∂tαi(r, t),

where ∇ · (ni∇αi(r, t)) = −∂t(ni(r, t)) (6)

expresses the continuity equation for orbital φi. In one-
dimension (1D), this simplifies in terms of ni, the orbital-
velocity ui = ji/ni and the orbital-acceleration ∂tui, of any
one of the occupied orbitals,

vS(x, t) = ∇
2


ni(x, t)
2


ni(x, t)
− 1

2
ui(x, t)2 −

 x

∂tui(x ′, t)dx ′. (7)

As an illustration, in Fig. 2, we plot the exact KS potential
for a model problem: field-free evolution of the initial state
Ψ(0) = (Ψ0 + Ψ1)/

√
2, where Ψ0,1 are the ground and first

excited singlet states in a 1D He atom. The initial KS state
Φ(0) has the same configuration but in terms of non-interacting
Slater determinants,31 with the KS orbitals φ0 and φ1 that form
these determinants being eigenstates of some non-interacting
Hamiltonian. The top panels show the KS potential and its
decomposition into the three terms on the right-hand-side of
Eq. (7), labelled as adia, veloc, and acc, respectively, evaluated
using φ0(φ1) in the upper (lower) panels, at the initial time,
and about half a period later. We notice that the components
from each orbital can individually be very different, but they
sum to the same vS. It is clear that the KS potential has a
complicated structure coming from all contributions, going
beyond just a static screening of the “nuclear charge” in vext.

Although Eqs. (6) and (7) give an explicit orbital-
functional for the KS potential, the functional itself is
utterly useless! Without input (knowledge) of the externally
applied potential, it clearly cannot be used to propagate the
orbital. (Nevertheless Eqs. (6) and (7) can be instructive in
analysing/understanding features of the exact xc potential,
e.g., step features arising from the integral of the local
acceleration,59,60 see Sec. V.)

In fact, if one did try to propagate using Eq. (6) or (7),
one immediately runs into a problem: At the initial time,

FIG. 2. Exact KS potential for field-free evolution of the 50:50 superposition
state example (see text). The upper plots show the three contributions to
Eq. (7) from one orbital at two different times, while the lower plots show
those of the other orbital.

the choice of the initial KS state specifies the orbitals, so
that, on the right-hand-side of Eq. (7), for example, ni and
ui are known, however the orbital-acceleration ∂tui is not
determined by the initial state. In fact, the external potential
determines the acceleration and is hiding in the functional-
dependence in this term. It is essential to realize that the
external potential is given by the problem at hand and is
not to be treated as a density-functional;61 otherwise one
runs into misunderstandings concerning the predictivity of the
TD KS evolution. With the external potential vext(r, t), initial
many-body state Ψ(0), and initial choice of KS state Φ(0), as
inputs, the exact TD KS propagation is predictive: extracting
an exact expression for the xc potential alone shows that it
depends only on times past12,61 as we show next.

B. The exact xc potential

If we differentiate the continuity equation with respect
to time for each of the interacting systems and KS systems,
requiring the density to be identical, we obtain22,62–64

∇ · (n(r, t)∇vXC(r, t))
= ∇ · (aS(r, t) − a(r, t) − n(r, t)∇vH(r, t)) , (8)

where a(r, t) = −i⟨Ψ(t)|[ĵ(r),T̂ + Ŵ |Ψ(t)⟩ and aS(r, t)
= −i⟨Φ(t)|[ĵ(r),T̂ |Φ(t)⟩. Here T̂ is the kinetic energy operator
(first term on the right in Eq. (1)), and Ŵ is the electron-
electron interaction (third term in Eq. (1)). At the initial time,
the right-hand-side involves expectation values in the given
initial states, showing that vXC(r, t = 0) can be constructed as
a functional of the initial states alone (unlike vS and vext), and
therefore together with the vext prescribed by the problem at
hand, and vH computed from the density, vS can be constructed
and the propagation can proceed.

Now, Eq. (8) is an exact expression for the xc potential,
which is instructive to rewrite as

∇ · (n∇vXC) = ∇ ·
1
4
(∇′ − ∇) �∇2 − ∇′2

�
ρ1c(r′,r, t)|r′=r

+ n(r, t)


nXC(r′,r, t)∇w(|r′ − r|)d3r ′

, (9)

where ρ1c = ρ1 − ρ1,S with ρ1(r′,r, t) = N


σ1...σN


d3r2 . . .

d3rNΨ∗(r′σ1 . . . rNσN ; t)Ψ(rσ1 . . . rNσN ; t) is the spin-
summed one-body density-matrix of the true system of
electrons with two-body interaction potential w(|r − r′|),
ρ1,S(r′,r, t) is the one-body density-matrix for the KS system,
and nXC(r′,r, t) is the xc hole, defined via the pair den-
sity, P(r′,r, t) = N(N − 1)σ1...σN

 |Ψ(r′σ1,rσ2,r3σ3 . . .
rNσN ; t)|2d3r3 . . . d3rN = n(r, t) (n(r′, t) + nXC(r′,r, t)). Equa-
tion (9) is a Sturm-Liouville equation for vXC that has a
unique solution for a given boundary condition.22 The first
term represents a kinetic contribution to the potential, and
the second term is an interaction component. The problem
of approximating the xc potential as a functional of the
density and initial-states is therefore here re-cast as a problem
of modeling the interacting density-matrix and xc hole as
functionals of the density and initial-states.
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C. The adiabatically exact approximation

In most practical applications, an adiabatic approxi-
mation is used for the xc potential, which inserts the
instantaneous density into a ground-state approximation,
v AXC[n;Ψ(0),Φ(0)](r, t) = v

g.s.
XC [n(t)](r). Even if the instanta-

neous density happens to be a density of some ground-state,
the underlying interacting and KS states typically are not
ground states, and so the use of v AXC can lead to significant
error. There are two sources of error in v AXC; one is in neglecting
all memory-dependences, and the other is in the choice of the
ground-state functional approximation. To disentangle the
two sources, the “adiabatically exact” (AE) approximation is
a useful analytic tool, defined by using the exact ground-state
xc potential,65,66

vAE
XC[n;Ψ(0),Φ(0)](r, t) = v

exactg.s.
XC [n(t)](r). (10)

Obtaining such an approximation is clearly only possible
for simple model systems where the exact ground-state xc
potential corresponding to the instantaneous density may be
found. In this way, the AE isolates errors due to the adiabatic
approximation alone and is the “best” that an adiabatic
approximation could do.

If a ground-state orbital functional, such as exact-
exchange, or self-interaction corrected local-density approx-
imation (SIC-LDA), is used as v

g.s.
XC then it contains some

memory: a functional that depends on instantaneous orbitals
depends on the history of the density and the initial KS
state since the orbitals are themselves implicit functionals
of these. The xc potential is technically given by the time-
dependent optimized effective potential (OEP) equations.19,67

Although not always,68,69 these are most often solved within
the KLI approximation, at the sacrifice of the zero-force
theorem.70

D. Known exact conditions

The satisfaction of exact conditions has played, and
continues to play, an important role in the development of
ground-state functionals (see Ref. 71 for a recent advance).
When such functionals are adopted in an adiabatic functional
for TDDFT, these exact conditions can endow v AXC with
desirable properties also for dynamics and excitations. An
important example of this is the asymptotic behavior of the
potential far from an atom or molecule: vXC(r) → −1/r .72

This is perhaps more important in the TD case than the
ground-state case, because the density is more likely to
“sample” regions far from the nuclei over time, and certainly
the accuracy of energies of higher-lying excitations depends
on this decay behavior (see also Sec. IV). Relatedly, via
Koopman’s theorem, ϵH = −I, the highest occupied molecular
orbital (HOMO) energy determines the onset of continuous
absorption in the spectrum.

Several exact conditions that are specific to the TD
case are known, and some have shaped the development of
non-adiabatic functional approximations. For example, the
harmonic potential theorem45 and the zero-force theorem47

were instrumental in the discovery that a spatially local but
time-non-local approximation is not possible in terms of

the density, but is possible in terms of the current-density
(Sec. II C). The harmonic potential theorem, or generalized
Kohn’s theorem, states that the electron density in a harmonic
potential subject to a uniform TD electric field rigidly follows
the classical oscillation of the center of mass. The zero-force
theorem is an expression of Newton’s third law, requiring
the total force exerted on the system by the xc and Hartree
potentials to vanish. For TDCDFT, the analogous theorem for
the xc torque is also satisfied.49 Imposing these conditions
was a key in leading to the non-adiabatic VK approximation
of TDCDFT (Sec. II C).40,48

Exact conditions unique to the TD problem, such as
the zero-force and harmonic potential theorems, naturally
involve the memory-dependence (time-non-locality) of the xc
functional. Another such condition is the “memory-condition”
which entangles the initial-state dependence and history-
dependence of the xc potential.16 Essentially it states that
one can consider any fixed time t ′ along an evolution as the
initial time, and so vXC[nt′;Ψ(t ′),Φ(t ′)](r, t > t ′), where nt′ is
the density function from time t ′ onwards, must be the same
for all choices of such t ′. This is a very hard condition to satisfy
for any memory-dependent functional and is actually violated
by VK.

Due to its complete lack of memory, the adiabatic
approximation satisfies the memory-condition, the zero-
force, and harmonic potential theorems. But it violates
the “resonance condition,”73 with severe consequences for
resonantly driven processes, and possibly for general non-
equilibrium dynamics. This is a condition on the density-
response function of a system in a general non-stationary state
and expresses the fact that the excitation frequency of a given
transition is independent of the state. This involves a delicate
cancellation of time-dependences between the KS response
function around the KS non-stationary state and shifts induced
by the generalized xc kernel such that the poles of the true
density-response function remain at the same frequency and
is generally hard to satisfy.

IV. EXCITATION SPECTRA: LINEAR RESPONSE

The vast majority of applications of TDDFT today lie in
spectroscopy, to compute the linear response and excitation
energies of atoms, molecules, and solids. TDDFT’s rise to
fame is largely due to its unprecedented balance between
accuracy and efficiency for these applications. Figure 3 gives
a pictorial representation of a few of the most recent successes;
these are chosen to illustrate the wide range of applications in
which TDDFT today is giving useful results. I refer the reader
to Refs. 74–80 for recent reviews that give more detail on
the state-of-the-art performance for energies and excited state
properties and instead here I highlight challenges for the field
after first giving a brief outline of the linear response TDDFT
formalism.

Consider perturbing a system initially in its ground-
state Ψ0 with density n0, with a weak field: vext(r, t)
= v

(0)
ext(r) + δvext(r, t), where v

(0)
ext represents the field-free

unperturbed external potential, and δvext(r, t) the perturbation,
turned on at t = 0. The Fourier transform of the first-
order response n(1)(r, t) to the δvext(r, t) yields excitation
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FIG. 3. “Splash”-plot illustrating the range of TDDFT applications today for
excitations and response: (a) in Ref. 81, the rate of yellowing of Leonardo da
Vinci’s self-portrait began to be ascertained by comparing non-destructive op-
tical reflectance measurements with TDDFT calculations of the relevant chro-
mophoric spectra (reprinted from Wikimedia Commons page for Leonardo da
Vinci). (b) The absorption spectrum of the complete chlorophyll network of
the light-harvesting complex from green plants was computed using TDDFT,
yielding implications for intrinsic energy transfer pathways within the LHC-II
complex. Reproduced with permission from J. Jornet-Somoza et al., Phys.
Chem. Chem. Phys. 17, 26599 (2015). Copyright 2015 Author(s), licensed
under a Creative Commons Attribution 3.0 Unported Licence. (c) The bound
exciton in the absorption spectrum of LiF was successfully captured by
several approximate functionals developed from quite different approaches
(see also text). Here the experiment is from Ref. 83, while the TDDFT results
are from the nanoquanta kernel,84 the dynamical long-range corrected kernel
(dynLRC),85 the bootstrap kernel on top of an exact-exchange OEP ground-
state (BO_oep),86 the jellium-with-gap kernel on top of the scissors-corrected
LDA ground-state (JGM_lda_sx),87 the guided iteration bootstrap kernel on
top of scissors-corrected LDA (GIBO_lda_sx),88 screened exchange on top
of scissors-corrected LDA (SXX_lda_sx),89 and the optimally tuned range-
separated hybrid (OTSRSH).90 (d) Table of errors from different functionals
for 103 vertical excitation energies of singlet valence excitations in 28 small
and medium-size organic molecules from the data of Refs. 75 and 91, as
compiled in Ref. 92.

energies and oscillator strengths of the unperturbed system.
Polarizabilities can be obtained from the linear response of
the dipole to electric fields while higher-order response yields
hyperpolarizabilities. The density-density response function
is defined as χ[n0](r,r′, t − t ′) = δn(r, t)/δvext(r′, t ′), and, for
finite systems, has the Lehmann (or spectral) representation
in frequency-space,

χ(r,r′,ω) =

I

⟨Ψ0|n̂(r)|ΨI⟩⟨ΨI |n̂(r′)|Ψ0⟩
ω −ΩI + i0+

+ c.c.(−ω), (11)

where n̂(r) = 
i δ(r − r̂i) is the density operator, ΩI

= EI − E0 is the excitation frequency of the Ith excited
state, and the sum goes over all interacting states ΨI . The
notation c.c.(−ω) means the complex conjugate of the first
term evaluated at −ω.

Now, because the TD KS system gives the same TD
density when perturbed via the corresponding KS perturbation
δvS(r, t), all response quantities can be directly obtained
from the KS system. The KS density-density response
function χS[n0](r,r′, t − t ′) = δn(r, t)/δvS(r′, t ′) naturally has a
Lehmann representation in frequency-space for finite systems,
but the poles lie at KS single-excitations, i.e., orbital-energy
differences between orbitals that are occupied and unoccupied
in the ground-state. Further, the residue of the pole ωia = ϵa
− ϵ i reduces to simple orbital product: φi(r)φa(r)φi(r′)φa(r′).
A Dyson-like equation relates χS to the interacting χ:93,94

using ⋆ to denote spatial convolution integrals such as
χS(ω)⋆ fHXC(ω) =


d3r1χS(r,r1,ω) fHXC(r1,r′,ω), we have

χ(ω) = χS(ω) + χS(ω)⋆ fHXC(ω)⋆ χ(ω). (12)

This equation features the indispensable Hartree-xc kernel,
fHXC(ω) = fH + fXC(ω) where fH(r,r′) = 1/|r − r′| and

fXC[n0](r,r′, t − t ′) = δvXC[n](r, t)/δn(r′, t ′)|n=n0. (13)

The kernel plays a crucial role in dressing the KS response
function, shifting the KS poles to the true excitation
energies and mixing the KS oscillator strengths to form
the true oscillator strengths. Within the ubiquitous adiabatic
approximation, since v AXC[n](r, t) depends only on n(t) at
the present time, the right-hand-side of Eq. (13) becomes
proportional to δ(t − t ′) and the Fourier transform becomes
frequency-independent, f A

XC(r,r′,ω) = fXC(r,r′).
Equation (12) is the basis of TDDFT linear response.

There are evidently two ingredients: first, the elements of
the KS density-response function, involving all occupied and
unoccupied KS orbitals living in the ground-state KS potential
v
(0)
S . Second, the xc kernel, which introduces the so-called

dynamical effects. Technically, the approximation used for
the ground-state xc potential should be linked to that used for
the xc kernel since they are generated from one and the same
TD xc potential, vXC[n](r, t) = v

(0)
XC(r) + δvXC. But in practice,

the two approximations are often treated independently.
Typically in quantum chemistry codes, the equation is re-

cast in the form of matrix equations derived by Mark Casida,
based on considering poles and residues of the frequency-
dependent polarizability.95,96 The eigenvalues of the matrix

Rqq′(ω) = ω2
qδqq′ + 4

√
ωqωq′ f

qq′

HXC(ω), (14)

where f qq
′

HXC(ω)=


d3rd3r ′φi(r)φa(r) fHXC(r,r′,ω)φi(r′)φa(r′),
lie at the squares of the excitation energies, and oscillator
strengths can be obtained from the eigenvectors. Here
q = (i,a) represents a double-index, with i labelling an
occupied orbital and a an unoccupied one. Other equivalent
derivations and formulations appear in Refs. 97 and 98; note
that the derivation in Ref. 97 is valid only when an adiabatic
approximation is assumed from the outset.

The matrix formulation is only valid for discrete spectra,
so used mostly for atoms and molecules, while Eq. (12) is
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usually solved when dealing with continuous spectra as in
solids.

To obtain the continuous part of spectra of atoms and
molecules, in particular resonance widths and positions, the
Sternheimer approach is often used.99–101 But even for bound
excitations, the Sternheimer approach, also known as density
functional perturbation theory, or coupled perturbed KS, can
be more efficient, if just a few low-lying excitations are
of interest; it avoids solving for many unoccupied states
by considering instead perturbations of the occupied KS
orbitals in frequency-space. Response can also be obtained
from real-time propagation of occupied orbitals102 under a
weak perturbation; often a δ-kick is applied so to uniformly
stimulate all excitations, and the system is then evolved freely
for a time long enough such that Fourier transform of the dipole
yields well-enough resolved peaks at the resonant frequencies.
This is, for example, how the absorption spectrum of such a
large system as that in Fig. 3(b) could be computed.82

A. Challenging excitations

The successes of linear response TDDFT have been
celebrated in a number of reviews cited earlier. Its efficiency
and overall reasonable reliability have led to it becoming
an easy-to-use “go to” method for simulating spectra that,
for other methods of comparable accuracy, are not easily
computationally accessible. However, one must be cautious in
treating it completely as a black-box: there are some notorious
problems where either a careful choice of functional is
needed or where the results with currently available functional
approximations are simply unacceptable. We discuss some of
these here.

1. Rydberg excitations

Here the problem lies primarily with the ground-
state approximation, rather than the kernel: Because LDA
and GGA ground-state KS potentials depend locally or
semilocally on the density, they asymptotically approach
zero exponentially with r , much faster than the −1/r
fall-off of the exact KS potential. Without the −1/r tail,
they cannot generate a Rydberg series. The frequencies of
the highest-lying excitations that are bound within these
approximations tend to be underestimated, while even higher
excitations are absent, with their oscillator strengths being
squeezed into the continuum albeit with accurate optical
intensity.103–107 Different solutions include asymptotically
corrected functionals,104,106,108 exact-exchange methods,109,110

and hybrids,111–113 including range-separated hybrids.114–116

Conventional hybrid functionals, formally justified by
generalized KS theory,117–119 mix in a fraction CX of Hartree-
Fock exchange into otherwise semi-local functionals, which
means their potentials decay asymptotically as −CX/r . On
the other hand, range-separated hybrids produce the requisite
−1/r: the essential idea is to separate the Coulomb repulsion
using a parameter γ as, e.g.,

1
r
=

1 − er f (γr)
r

+
er f (γr)

r
, (15)

where the first term dominates at short-range and is treated
via a semi-local functional, and the second term dominates
at longer ranges and is treated via exact (Hartree-Fock)
exchange. The result yields a self-interaction-free description
at large electron-electron separations, while retaining the
balanced description of exchange and correlation at short
range.

2. Double excitations

It was recognized soon after the derivation of the linear
response equations that states of double-excitation character
were missing from the approximate TDDFT spectra; this time
the fault lies in the adiabatic approximation to the kernel.105,120

It is clear that they are absent in the non-interacting response
function χS: considering Slater determinants in the numerator
of Eq. (11), doubly excited KS states give a zero contribution
to χS because the matrix elements of the density-operator
vanish between Slater determinants that differ by more
than one orbital due to its one-body property. This is just
the mathematical statement of the fact that exciting two
electrons in a non-interacting system require two photons,
so is beyond linear response. Excited states, as well as the
ground-state, of the interacting system, on the other hand, are
superpositions of single, double, and higher-electron-number
excitations, and so the numerator ⟨Ψ0|n̂(r)|ΨI⟩ remains finite
from contributions between components of the two many-
body wavefunctions that differ by one orbital. A simple
number-counting argument121,122 shows that no adiabatic
kernel can introduce doubly excited configurations. The
strong frequency-dependence of the exact kernel near a
state of double-excitation character was deduced121,123 by
in effect inverting the Dyson equation Eq. (12) for a model
where one KS single and one double excitation interact,
from which a practical approximation was proposed. More
rigorous derivations using many-body theory subsequently
essentially verified this form124–127 (see Ref. 78 for a recent
review), and the approximate kernel, dubbed “dressed LR-
TDDFT,” has been implemented in some codes (Niedoida and
deMon2k), enabling extensive tests.125,128,129 In particular,
Ref. 125 found that the non-adiabatic dressing has best
performance when used in conjunction with a global hybrid
functional.

3. Long-range charge-transfer excitations

As illustrated in Eqs. (12)–(14), TDDFT excitations are
obtained from shifting and mixing single-excitations of the
KS system via matrix elements of fXC, often referred to as
dynamical corrections. When there is little spatial overlap
between the occupied and unoccupied orbitals relevant in
the transition, the dynamical corrections from conventional
xc-kernels vanish, and the TDDFT excitation energy reduces
to KS orbital energy difference. Excitations of charge-transfer
character over long range are a notorious example of this and
were first brought to light in Ref. 112. In the large separation
limit, the exact lowest charge-transfer excitation energy tends
to ωexact

CT
→ ID − AA − 1/R, where ID is the ionization energy

of the donor, AA is the electron affinity of the acceptor,



220901-9 Neepa T. Maitra J. Chem. Phys. 144, 220901 (2016)

and −1/R is the first electrostatic correction between the
species after the charge-transfer. As analyzed in Refs. 130–133
however, TDDFT with LDA or GGA yields the orbital energy
difference between the LUMO of the acceptor and the HOMO
of the donor, ϵ L(A) − ϵH(D). With approximate ground-state
functionals, ϵH underestimates the true ionization energy, but
even with the exact ground-state functional ϵ L lacks relaxation
contributions to the electron affinity, and further the −1/R tail
is missing. A useful diagnostic of the performance of a given
functional based on considering the overlaps was given in
Ref. 115. Significant effort has been devoted to solving this
problem, e.g., Refs. 113, 116, 130, and 134–139, especially
because charge-transfer excitations play an important role
in many topical applications today that involve systems
large enough that few practical alternatives to TDDFT exist,
e.g., biomolecules, photovoltaics, conductance. Most modify
the ground-state functional to correct the underestimation of
the ionization potential, and mix in some degree of Hartree-
Fock exchange, especially via range-separated hybrids,117–119

since they display the −1/R asymptotic behavior. The amount
of long-range exchange needed to give reasonable answers
varies widely depending on the system, which motivated
the development of the non-empirical “optimally tuned”
range-separated hybrids of Refs. 137 and 138. The range-
separation parameter is tuned so that ϵH is as close as possible
to the negative ionization potential computed by the same
functional from total energy differences, typically for both
the neutral and anionic systems. Size-consistency violation
and other problems140 arising from system-dependence of
these functionals means caution must be applied for general
usage; the range-separation parameter can have very different
values for the individual subsystems and the combined system
and varies along the internuclear separation, leading to poor
binding energies and sometimes erratic potential energy
surfaces.140

The xc-kernel in pure (i.e., not generalized) KS DFT must
diverge exponentially with internuclear separation,133 and it
has been argued that discontinuities of the xc-kernel with
respect to particle number play a crucial role141 whenever
the KS orbital overlap is too small. The exact-exchange
approximation (within OEP) captures these features when the
charge-transfer occurs between closed-shell fragments, when
used in its fully non-adiabatic form.139,141 The self-interaction-
corrected LDA, applied within a generalized OEP scheme, has
also been shown to work.69

However, one case where none of the above suggestions
works is that of charge-transfer between open-shell frag-
ments.142,143 At the root of the difficulty in this case is the KS
ground-state description: the HOMO (and LUMO) straddle
both fragments, delocalized over the whole molecule, quite
distinct from the Heitler-London-like nature of the physical
wavefunction. Although in this case the HOMO and LUMO
have finite overlap, their orbital energy difference tends to be
zero as the molecule stretches (for either the exact functional
or approximations), a sign of static correlation in the KS
system, and fHXC must be responsible for the entire charge-
transfer energy. It can be shown that the exact kernel not
only diverges with interatomic separation but also is strongly
frequency-dependent.

4. Conical intersections

Photoinduced dynamics is heavily influenced by conical
intersections, seams of exact degeneracy between electronic
potential energy surfaces that are ubiquitous in the landscape
of nuclear configurations. They funnel nuclear wavepackets
between surfaces, providing a rapid pathway for non-radiative
decay, and even affect nuclear trajectories that encircle the
intersection at large distances, by generating a geometric
phase. Unfortunately, current approximations in TDDFT
typically provide a poor description of the surfaces near
conical intersections with the ground-state. In some cases the
shape is dramatically exaggerated (e.g., H3), while in other
cases, the dimensionality of the seam is wrong (e.g., H2O).144

There is trouble here for both the ground-state approximation
and the xc kernel approximation, and, conceptually, the issues
are not unlike the case of charge-transfer excitations between
open-shell fragments. Static correlation resulting from nearly
degenerate determinants near the conical intersection creates
unusual features in the exact ground-state xc functional
in order to compensate for the KS Slater determinant
description being so far from the true correlated ground-state.
The xc kernel then must be strongly frequency-dependent
because of the double-excitation to the near-lying determinant.
In practice, the very small HOMO-LUMO orbital energy
difference leads to an instability in the solution of the LR
equations that can be tamed by making the Tamm-Dancoff
approximation.145 In fact, in Ref. 145, where ring-opening in
oxirane was studied, it was argued that although TDDFT gets
the dimension of seam wrong, giving slightly interpenetrating
cones rather than touching ones, that the resulting dynamics
(using surface-hopping) still yielded useful results regarding
reaction pathways, although rate constants were likely not
accurate. Also, spin-flip TDDFT gets around the problem
of the ground-state degeneracy by “viewing” the conical
intersection from a high-spin reference state.266

5. Optical response of solids

Simple ALDA accurately captures plasmon dispersion
curves in simple metals, with the xc kernel providing an
improved description of the plasmon dispersion and linewidth
compared to the random phase approximation that uses the
Hartree kernel only.146 For non-metallic systems, ALDA
provides a good description of electron energy loss spectra
(EELS),80,147 and for the optical response at finite photon
wavevector q,148 but does a poor job for the spectrum at
vanishing q. There are two main problems: one is that the
optical gap, defined by the onset of continuous absorption,
can be underestimated by as much as 30%-50%, and the
second is that the excitonic structure is missing from the
spectrum. For both of these problems, a long-ranged xc
kernel is necessary:50,80,149–151 the xc kernel must have a long-
wavelength behavior of 1/q2 as q → 0. In fact, this behavior
can be deduced from exact conditions satisfied by the xc
kernel, such as the zero-force theorem, that inextricably links
nonlocality in time and space.50,152 ALDA, on the other hand,
being local in space, is constant in q. Further, to open the gap,
the xc kernel must have a non-vanishing imaginary part12,50

which, due to Kramers-Kronig relations, implies that it must
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have a frequency-dependence, i.e., be non-adiabatic. Instead,
today a common workaround is to use LDA bandstructure
with a scissors operator.153,154

A non-adiabatic kernel is not necessary to capture the
excitonic peak, but the 1/q2 behavior is essential.149 (The
excitonic Rydberg series however does appear to require a
frequency-dependent kernel.155) Interestingly, although 1/q2 is
the Fourier-transform of −1/r , this required 1/q2-dependence
of the kernel is not a consequence of the long-rangedness
of the Coulomb interaction, and it has been dubbed an
“ultranonlocal” effect since it is even present in systems
arbitrarily close to the homogeneous liquid.50,152

Much progress has been made to correct this deficiency
of ALDA, along several different avenues, as evidenced
by the success in Fig. 3(c) of capturing the strongly
bound exciton in LiF from a variety of different modern
functional approximations. Exact exchange initially seemed
to give promising results156 until it was realized that the
calculations only worked because of an artificial screening
induced by a long-wavelength cutoff in the numerics.157

Kernels derived from the Bethe-Salpeter equation, such as
the nanoquanta kernel, have seen much success.84,149,158 The
long-range corrected (LRC) kernel,85,149,159 α/q2, with α
determined empirically from the static dielectric constant
of the crystal, can be viewed as a simple scalar approximation
to the nanoquanta kernel; a dynamical version uses also the
plasma frequency. The “bootstrap” kernel proposed in Ref. 86
uses instead self-consistent iterations of Eq. (12) with an
approximate expression for the (static) xc kernel in terms of
the dielectric function; going beyond the scalar approximation,
it includes local-field-effects. A guided-iteration version has
been presented in Ref. 88 where the sensitivity of the bootstrap
approach to details such as choice of ground-state orbitals and
energies from which to build χS (usually scissors-shifted LDA,
sometimes instead with GW-corrected energies, sometimes
OEP), and treatment of the local field effects has been
stressed. The VK approximation has recently been shown
to provide a parameter-free broadening of the spectra.160

In yet another direction, a kernel built on a jellium-with-
gap system87 has been developed. Meta-GGA functionals
also display the requisite α/q2 behavior,161 as do hybrid
functionals,162 and optimally tuned screened range-separated
hybrids have recently been applied.90 Relatedly, screened
exact-exchange,89 which formally falls into generalized KS
theory, has been proposed as a bridge between TDDFT and
BSE; it is computationally much cheaper than BSE yet of
comparable accuracy. Finally, Refs. 163 and 164 showed how
to directly obtain the excitonic binding energies instead of the
full spectra by adapting the Casida-equation formalism.

6. Molecular conductance

An area of great interest is in simulating charge transport
at the nanoscale. Most ab initio descriptions are in the
steady-state using DFT within a Landauer formalism, but
give poor agreement with experiment due to problems with
both the ground-state xc potential and the dynamical fXC
corrections. Regarding the former, the lack of derivative
discontinuity165 in LDA and GGA leads to a large overestimate

of conductance166,167 and artificial level broadening and is
intimately related to Coulomb blockade, a fully dynamical
picture of which was provided in Ref. 168. The discontinuity
also needs to be accounted for in the xc kernel, where, in
addition, viscous effects can be important.56,169 An exactly
solvable impurity model has demonstrated the importance
of long-range non-adiabatic terms in the xc potential.170

The exact theoretical framework for transport in TDDFT for
strong and weak bias, requiring a real-time description beyond
Landauer, was formulated in Refs. 171 and 172. To include
dissipation and decoherence induced by the environment,
several approaches to extend TDDFT to open quantum-
systems were developed,173–177 relevant both in and out of
the transport context.

The lack of derivative discontinuity in (semi-)local
functionals is sometimes called the “gap problem;” however,
it is worth realizing that several distinct gaps can be defined,
and functionals have no problem with some of these. The KS
HOMO-LUMO energy difference approximates neutral exci-
tations such that, once the TDDFT fXC corrections are applied,
one obtains the lowest optical excitation, or optical gap;
(semi-)local functionals give pretty accurate results for mole-
cules. The fundamental gap, on the other hand, I − A, involves
electron addition and removal, and in particular ϵ L should not
be interpreted as an affinity level. When a fraction of electron is
added to a neutral system, the exact KS potential jumps up by
a positive constant equal to the derivative discontinuity, which
then shifts the orbital energy up to the affinity level;165 such a
shift is not captured by semi-local functional approximations
that are smooth functions of particle number.178,179 (That it is
in fact possible to extract derivative discontinuities from LDA
and GGA has been pointed out in Refs. 180 and 181, but
this is not how these functionals are usually used.) Because
Hartree-Fock virtual orbitals represent addition-energy levels
rather than neutral excitations, hybrid functionals evaluated
within the generalized Kohn-Sham scheme effectively open
the gap, especially the range-separated ones.182 Lack of the
discontinuity is partly responsible for the so-called level
alignment problems of standard functionals at molecule-metal,
molecule-semiconductor, and molecule-molecule interfaces in
applications relevant to transport as well as to photovoltaic
modeling and to photocatalysis.183–186 For metal-molecule
interfaces, non-local polarization effects also contribute
significantly to the renormalization of the frontier energy
levels for which “image-charge” models have been helpful to
capture.183,184

V. FULLY NON-LINEAR DYNAMICS

Notwithstanding the successes of TDDFT for linear
response, TDDFT has particular relevance in the regime
of non-perturbative time-resolved dynamics. There is really
no alternative practical method for accurately describing
correlated electron dynamics when more than a few electrons
are involved, yet many phenomena which are fascinating in
themselves and also have technological applications lie in
this regime. Although no strong fields are present during
simulations of photoinduced coupled electron-ion dynamics
(e.g., in light-harvesting and artificial photosynthesis) and
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other photo-chemical or -physical processes, the electrons do
not remain close to any ground state, so also lie beyond the
perturbative regime.

TDDFT has provided useful predictions for a variety
of strong-field processes and below I select some to briefly
describe. The examples are chosen to illustrate the wide
range of applications of TDDFT in this regime and emphasise
recent achievements over older ones; inevitably such a short
description is a little random.

In solids, coherent phonon generation produced by intense
laser pulses has been simulated,187 capturing the transition
from the impulsively stimulated Raman scattering mechanism
to the displacive excitation mechanism and the associated
phase change of the generated phonon. Dielectric breakdown
in crystalline silicon has been studied, where the importance
of including both electric and magnetic fields self-consistently
has been stressed; the authors developed a multiscale model
solving Maxwell’s equations alongside TDKS.188 The same
method showed that TDDFT calculations of laser-induced
ablation by very short, intense laser pulses in α-quartz
give reasonable agreement with experiment.189 TDDFT has
elucidated the possible mechanisms of the experimentally
observed laser-induced ultrafast demagnetization and details
of spin-dynamics in bulk ferromagnets in Ref. 190.

Multiphoton processes have been studied in atoms
and molecules, with the first calculations of high-harmonic
generation spectra and ionization rates in atoms emerging in
the mid-1990s191 capturing correlation effects missed in the
single-active-electron approximation. Because the electrons
make large excursions away from the nuclei, exact-exchange
or self-interaction-corrected-LDA is often used, implemented
within a KLI approximation to the OEP.192 TDDFT revealed
interesting interference effects between contributions from
different molecular orbitals in high-harmonic generation and
multiphoton ionization in molecules, e.g., Refs. 193–196,
where, additionally, orientation effects have been studied.
Time-resolved Coulomb explosion imaging of molecular
torsion dynamics in complex molecules has been shown
to give results consistent with experiment.197 TDDFT has
begun to elucidate the mechanism of charge-resonance
enhanced-ionization in triatomic molecules,198 identifying
which molecular orbitals are responsible; together with
Ehrenfest dynamics for the nuclei, enhanced ionization and
orientation dependence has been analyzed in acetylene and
ethylene.199 The time-dependent electron localization function
introduced in Ref. 200 has been used to understand time-
resolved dynamics of chemical bonds in scattering and
excitation processes. Recently attosecond “self-streaking” has
been proposed and demonstrated on the endohedral fullerene
Ne@C60, from which one can directly observe electronic
density oscillations in real-time.201 TDDFT has facilitated the
analysis of photoelectron spectra and angular distributions in
molecules and clusters after irradiation by strong pulses; a
review can be found in Ref. 202.

Optimal control theory has been formulated with
TDDFT,203 and used already to obtain desired targets in
an array of different scenarios, from selectively cleaving a
molecular bond204 to enhancing a particular harmonic in
high-harmonic generation.205 Very recently, the possibility for

control of spin-orbit mediated ultrafast demagnetization via
lasers in solids has been demonstrated.206

Alongside this rosy picture, however, studies on small
molecules where numerically exact or high-level wavefunction
methods can be applied have shown that approximate TDDFT
functionals can yield significant errors in their predictions of
the dynamics, sometimes even failing qualitatively. We next
discuss these problems.

A. Challenges

The problems fall into two main categories: the inaccuracy
of the approximate xc potential functional, and the need for
additional functionals to extract observables of interest from
the KS system. For the first, we focus here mostly on problems
associated with making the adiabatic approximation, rather
than the specific choice of ground-state functional that goes
into such an approximation. Exactly solvable model systems
are useful to explore the impact of these problems, and to
compare approximate functionals, especially the AE, with the
exact one.

Memory appears to generally play a more important role
in non-perturbative time-resolved dynamics compared to the
linear response regime.52,59,63,65,68,73,207–210,267 The problems
appear to require a memory-dependence beyond what
is contained in the presently-available orbital-functionals.
To investigate the effects of the adiabatic approximation,
comparison of exact xc functionals with the AE of Eq. (10)
has proven quite instructive.59,64–66,210–216 It was shown that
for strong field ionization, the xc potential appears not to have
significant non-adiabatic dependence in some cases, but this
depends on the details of the field. Sometimes the observables
of interest are not so much affected by non-adiabatic features
present in the xc potential, e.g., integrating over regions of
space to find total ionization probabilities can wash over
differences in the density variations. In fact, the famous
knee in the double-ionization curve that signals a switch
from a correlated to sequential ionization mechanism can be
captured by a non-adiabatic approximation217 provided it has
a derivative discontinuity.

But in the general case, it appears that neglect of memory-
dependence in the xc-potential can lead to large errors, and part
of the problem appears to come from the lack of dynamical
step features that the exact xc functional possesses, which have
a non-adiabatic dependence on the density.59,60,64,210,218 In the
dynamics of charge-transfer beginning in the ground-state, the
lack of these features have a drastic effect;210,215,219–221 even the
AE fails to transfer charge even though its predictions for the
charge-transfer excitations themselves can be accurate.211,212

The non-adiabatic step structures have been shown to appear
quite generically in all sorts of dynamics and are not associated
to ionization or fractional charge as other observed time-
dependent steps are.141,168,217 They appear in the presence or
absence of a field, for few electrons59 or many electrons,60

whether one uses a Slater determinant or not31 for the KS
system (see also Fig. 2). Unlike step features that appear
in ground-state potentials, they are not a signature of static
correlation, and their relationship with time-dependent natural
orbital occupation numbers is non-trivial.64 The AE potential
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FIG. 4. The xc potential (black), plotted at a quarter of a Rabi period, in a
model He atom driven by a weak resonant field that causes Rabi oscillations
between the ground and first-excited state.59 The two soft-Coulomb inter-
acting electrons live in the potential vext(x, t)=−2/

√
x2+1+ Axsin(ωt),

where A= 0.0067 a.u., and ω = 0.533 a.u., resonant with the lowest singlet
excitation. The density is shown in red, while the AE potential is in blue.
Linked here is a movie, directed by Peter Elliott, showing the xc potential
evolve in time, over the duration of about one Rabi period, TR = 854.86 a.u.
(Multimedia view) [URL: http://dx.doi.org/10.1063/1.4953039.1]

completely lacks these steps, as illustrated in Figure 4
(Multimedia view) which, together with a movie, plots the
xc potential in a model He atom driven by a weak resonant
field that causes Rabi oscillations between the ground and
first-excited states.

Violation of the resonance condition mentioned at the
end of Sec. III can wreak havoc and confusion in analysing
time-resolved spectra as is now experimentally accessible via
ultrafast pump-probe spectroscopy.222,223 Several researchers
had noted that the peaks in their spectra would unphysically
shift when evolving far from the ground-state;219–221,224–226

having peak positions that are somewhat off are one thing, but
having them continuously drift in time is more serious.

Turning now to the second category of problem: the need
for “observable-functionals” when the observable of interest
is not directly related to the density. Although in principle all
properties of interest can be extracted from the KS system,
it is not generally known how to extract them. Only in some
cases can one use the usual quantum mechanical operators
acting directly on the KS wavefunction, e.g., high-harmonic
generation spectra are measured from the dipole moment of
the system. But for general observables, e.g., cross sections
in atomic collisions,227 ionization probabilities,228–231 or
momentum-distributions,229 substituting the KS wavefunction
into the usual quantum mechanical operator typically gives
poor results. For example, in ion-recoil upon ionization of
a model He atom, the KS momentum distributions were
found to be drastically wrong, displaying a single maximum
instead of the characteristic two-hump structure, and with a
significantly overestimated magnitude.229 More sophisticated
functionals have been developed for a few particular cases;
momentum-densities for the above problem in Ref. 229,
and double-ionization probabilities that “lower” the knee, in
Ref. 232.

The one-body nature of the KS Hamiltonian is somewhat
of a double-edged sword in the non-perturbative regime.

On the one hand, it makes impressive calculations on
large systems doable, but on the other hand, an initial
Slater determinant remains a Slater determinant throughout
the evolution, even when the interacting wavefunction
significantly changes its degree of correlation.233 Even if
initially the physical system is weakly correlated, and adiabatic
approximations with the usual ground-state approximations
initially work well, over time excited states get populated
with the degree of correlation possibly significantly changing,
as reflected in the natural orbital occupation numbers.
If one perfects a time-dependent non-adiabatic functional
approximation (for either the xc functional or an observable)
to work in the weakly correlated regime, it will not work well
for general dynamics.

B. Coupled electron-ion dynamics

Dynamics of electrons in molecules usually cannot be
considered in isolation from the dynamics of the ions to
which they are coupled and the phenomena arising from
the correlated dynamics of electrons and ions even without
worrying about electron-electron interaction themselves form
a very rich field. In simulating photo-induced processes, it is
often the case that the nuclear motion drives the electronic
dynamics after the initial excitation.

Typically, although not always, a classical treatment of
nuclear motion is coupled to the electronic dynamics. The
most common methods are Ehrenfest dynamics and trajectory
surface-hopping, and here we restrict our discussion to an
analysis of their use specifically in conjunction with TDDFT,
rather than giving a more extensive discussion of their relative
merits and pitfalls.

It is well known that the mean-field nature of Ehrenfest
dynamics is inadequate when branching of nuclear trajectories
occurs, e.g., in electron-transfer reactions, reactions near metal
surfaces, and photochemistry generally speaking. However, as
a formalism, Ehrenfest is well-suited to be used in conjunction
with TDDFT: the classical force on the Ith nucleus is obtained
via

MR̈I(t) = −⟨Ψ(t)|∇IHel |Ψ(t)⟩ − ∇RVnn, (16)

where Vnn is the classical nuclear-nuclear potential, and Hel

is the Hamiltonian from Eq. (1) with R appearing in vext
evaluated at the instantaneous nuclear positions. The only term
that the gradient in Eq. (16) acts on is the electron-nuclear
attraction Ven = −

Nn
I=1

N
i=1 ZI/|ri − RI | (where Nn is the

number of nuclei and ZI their charge), and so the first term, the
quantum “backreaction” on the nuclear trajectories, becomes
−⟨Ψ(t)|∇IHel |Ψ(t)⟩ =


d3rn(r, t)∇IVen({ri},{RI}). Ehren-

fest therefore needs nothing but the electronic density, which
can be directly obtained from the TD KS evolution. Notably,
Ehrenfest was recently used to demonstrate the relevance of
coherent coupled electronic and vibronic motion in driving the
charge-transfer in a prototypical light-harvesting system.234,235

Surface-hopping, on the other hand, is able to capture
wavepacket branching but its marriage with TDDFT is a little
more stormy due to its need for non-adiabatic couplings.
Trajectories evolve on Born-Oppenheimer surfaces obtained
from TDDFT linear response236–240 (although approximate
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methods that use the bare KS surfaces have also been
used,241 with notable applications in photovoltaics242) and
make jumps between them based on Tully’s fewest-switches
surface-hopping algorithm.243 Such calculations have shed
light into the photochemical reactions going on in vitamin
D synthesis,244 for example, and combined with local
control theory to design pulses to enhance proton transfer
reaction in 4-hydroxyacridine.245 The algorithm requires
non-adiabatic couplings (NACs) between surfaces, and it
has been shown that these are rigorously available from
linear response TDDFT for NACs involving the ground-
state.246–250 But NACs between excited states, which are
clearly most relevant for photo-induced dynamics, where
typically the simulation starts in an electronic excited state,
are strictly not available from linear response. They can be
obtained instead from quadratic response theory; however, it
was recently shown that the adiabatic approximation yields
unphysical divergences in the couplings whenever the energy-
difference between two excited states equals another excitation
energy.251–254

Besides this, the accuracy of these methods is clearly
limited by the accuracy of the forces obtained from the
TDDFT surfaces, so the problems of Sec. IV enter. In
particular, the dynamics probes nuclear configurations away
from equilibrium, so even in situations where these problems
are not so important at equilibrium configurations, they can
plague the dynamics, e.g., the case has been made that without
adequate treatment of doubly excited states, global potential
energy surfaces are unlikely to be accurate.144

VI. OUTLOOK

From some of the discussions above, the features of the
exact xc functional and the subtleties of extracting observables,
one might be tempted to conclude that some magic is required
to make the ingredients and goals of TDDFT get along,
and that TDDFT actually stands for Thaumaturge-Dependent
DysFunctional Theory. But one should bear in mind that
TDDFT is a relatively young field; indeed the success it
has had already is remarkable. The variety and size of
the systems studied these days in TDDFT is impressive,
as both Fig. 3 and the non-linear calculations described at the
beginning of Sec. V suggest. Its impact in materials science
and quantum chemistry is incontrovertible, and evidenced by
its increasing use in an ever-widening range of applications,
in both the response regime and the fully non-perturbative
regime.

Nevertheless, the results on the model systems where
exact potentials are available more often than not suggest
that, in the non-perturbative regime, the currently used
functional approximations may have significant errors. The
model systems do probe perhaps the worst-case scenarios
for approximate TDDFT, and the system-size scaling of the
xc features missing in approximations should be explored.
Characterizing when and why the current approximations,
particularly the adiabatic ones, work in a given situation
remains an open problem today, but an important one in
establishing the reliability of the results in different situations.
In the linear response regime, such characterization has

greatly improved the predictability of TDDFT for excitation
spectra, and our understanding of when the results can be
trusted. The adiabatic approximation trivially satisfies many
of the exact conditions, some of which were mentioned in
Section III, which might be behind the unexpected fact that an
approximation based on ground-states can give useful results
for problems far beyond the ground-state, as the applications
particularly in Sec. V have shown.

New developments for functionals might take advantage
of the initial-state dependence of the Runge-Gross theorem.
For a given initial state of the physical interacting system,
there is an infinite choice of allowed KS initial state, and
whether one can make a judicious choice for the best one
to use when stuck with an adiabatic xc functional has only
begun to be explored.29,31,213 Even in the linear response
regime, using excited states as alternative references around
which perturbations yield excitation frequencies could be very
useful; for example, a double-excitation is a single-excitation
of a singly excited state, so the need for non-adiabaticity could
be avoided. Conical intersections involving the ground-state
would appear simply as a degenerate de-excitation from an
excited state. Already, calculations of excited state absorption
in molecules have appeared by kicking excited-state densities
obtained from linear response.255

It may be time to consider cutting the apron strings
from ground-state DFT and try starting points other than
the adiabatic approximation for building approximations. The
expression for the exact xc potential in Eq. (8), approximated
to yield an orbital-dependent functional, may be a useful
starting point.

Alongside new functional approaches, I have no doubt
that the applications of TDDFT will continue to grow, taking
on ever-larger systems possibly with the help of embedding-
and fragment-based methods,256–260 and adventuring into
new regimes such as the recently introduced quantum
electrodynamical density functional theory that includes
coupling to quantized radiation fields,261–264 and to quantum
ions in a multicomponent formalism.265 It will be exciting to
see where TDDFT will be in another thirty years.
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