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The recently proposed rigorous yet abstract theory of first order nonadiabatic coupling matrix
elements (fo-NACME) between electronically excited states [Z. Li and W. Liu, J. Chem. Phys.
141, 014110 (2014)] is specified in detail for two widely used models: The time-dependent density
functional theory and the particle-particle Tamm-Dancoff approximation. The actual implementation
employs a Lagrangian formalism with atomic-orbital based direct algorithms, which makes the
computation of fo-NACME very similar to that of excited-state gradients. Although the methods have
great potential in investigating internal conversions and nonadiabatic dynamics between excited states
of large molecules, only prototypical systems as a first pilot application are considered here to illus-
trate some conceptual aspects. C 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4903986]

I. INTRODUCTION

While first-principles descriptions of fluorescence of large
molecules have nowadays become more or less routine, largely
thanks to the advent of time-dependent density functional the-
ory (TD-DFT),1,2 accurate and reliable descriptions of phos-
phorescence, intersystem crossings, internal conversions, as
well as nonadiabatic dynamics of large molecules still remain
a challenge to quantum chemistry. Among others, the spin-
adapted open-shell TD-DFT,3–5 combined with an efficient
and accurate treatment of spin-orbit couplings,6 provides an
efficacious means for investigating phosphorescence and inter-
system crossings of large molecules. To describe internal
conversions and nonadiabatic dynamics, the so-called first
order nonadiabatic coupling matrix elements (fo-NACME)
between two adiabatic electronic states |ΨI(x)⟩ and |ΨJ(x)⟩
at a given nuclear configuration x , {R⃗A}NA

A=1,

g
ξ
IJ =



ΨI(x)�Dξ

�
ΨJ(x)�, Dξ = ∂ξ, ξ ∈ x, (1)

ought to be first calculated. The analytic formulation of fo-
NACME has long been a nontrivial issue, especially for theo-
retical models without an explicit wavefunction. The most
prominent example is the formulation of fo-NACME within
TD-DFT. Although many interesting developments7–21 have
been made for the TD-DFT formulation of the fo-NACME
g
ξ
0I between the ground and excited states, the correspond-

ing TD-DFT formulation of the fo-NACME g
ξ
IJ between two

excited states, which was once characterized as an open prob-
lem,22–25 has only been achieved rather recently.26 As a matter
of fact, the particular formulation26 is very general, in the sense
that it encompasses all theoretical models that can be derived
from either time-independent equation-of-motion (EOM)27 or
time-dependent response theory.28–31 Briefly, for excited states

a)Author to whom correspondence should be addressed. Electronic mail:
liuwjbdf@gmail.com

with energiesωI determined by a generalized eigenvalue equa-
tion,

EtI =ωIStI , (2)

the fo-NACME g
ξ
0I and gξIJ are given26 simply by

g
ξ
0I =


pq

dξ
pqγ

0I
pq , (3)

g
ξ
IJ = ω

−1
J It
†
IE

ξtJ+

pq

dξ
pqγ

IJ
pq,

ωJ I = EJ−EI =ωJ−ωI , (4)

where the transition density matrices γ0I
pq and γIJ

pq are to be
determined by a given theoretical model (e.g., TD-DFT), while
the matrix elements dξ

pq are defined as

dξ
pq= ⟨ψp |Dξ |ψq⟩= ⟨ψp |ψξ

q⟩ (5)

in terms orthonormal molecular orbitals (MO) {ψp}, whether
canonical or not. Note in passing that the matrix elements dξ

pq

are antisymmetric, viz., dξ
pq=−dξ

qp, for real-valued MO. The
generic expressions (3) and (4) cover, e.g., configuration inter-
action singles (CIS), particle-hole (ph) or particle-particle (pp)
random phase approximation (RPA), time-dependent Hartree-
Fock (TD-HF) and, in particular, adiabatic TD-DFT as spe-
cial cases. For instance, the matrix E in Eq. (2) can be the
Hamiltonian matrix ⟨m|H |n⟩ in the case of CIS, or the orbital
Hessian in the case of TD-HF or TD-DFT. Note that, in the
case of TD-HF or TD-DFT, Eq. (3) and the second term
of Eq. (4) resemble the counterparts of standard linear and
quadratic response theories28–31 for the transition matrix el-
ements (⟨0|V a|I⟩ and ⟨I |V a |J⟩) of an electronic operator V a,
respectively. By contrast, the first term of Eq. (4) originates26

exclusively from the action of Dξ on the amplitude tJ.
In sum, the fo-NACME g

ξ
0I and gξIJ can be specified once

the matrix E and the transition density matrices γ0I
pq and γIJ

pq

0021-9606/2014/141(24)/244105/16/$30.00 141, 244105-1 © 2014 AIP Publishing LLC
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are specified. To avoid the calculation of nuclear derivatives
over the MO coefficients, Cξ(x) inψξ

q (5), through the coupled-
perturbed HF (CPHF) or Kohn-Sham (CPKS) equation for
every nuclear coordinate ξ, the elegant Lagrangian formula-
tion32–36 can be employed. That is, by incorporating both the
Brillouin condition Faiσ(x) = 0 and the normalization condi-
tion Spq(x) = δpq, the Lagrangian for the fo-NACME can be
constructed as26

L[x,C(x),Z,W] = g[x,C(x)]+

ai

ZaiFai(x)

−

pq

Wpq(Spq(x)−δpq), (6)

where Zai and Wpq=Wqp are the Lagrangian multipliers, and
the generating functions g[x,C(x)] are defined as

g0I[x,C(x)] =

pq

dpq(x)γ0I
pq , (7)

gIJ[x,C(x)] = ω−1
J It
†
IE(x)tJ+


pq

dpq(x)γIJ
pq, (8)

dpq(x) = ⟨ψp |ψq(x)⟩=

ν

⟨ψp | χν(x)⟩Cνq(x). (9)

Once the multipliers Zai and Wpq are determined from the
stationary condition


∂L

∂C(x)


x=x0

= 0, (10)

the fo-NACME are simply the partial derivatives L(ξ) of L at
the reference point x = x0, viz.,

gξ = Lξ = L(ξ)= g(ξ)+

ai

ZaiF
(ξ)
ai −


pq

WpqS(ξ)
pq ,

g
(ξ)
0I =


pq

d(ξ)
pq γ

0I
pq ,

g
(ξ)
IJ = ω

−1
J It
†
IE

(ξ)tJ+

pq

d(ξ)
pq γ

IJ
pq,

d(ξ)
pq = ⟨ψp |ψ(ξ)

q ⟩=

ν

⟨ψp | χ(ξ)ν ⟩Cνq. (11)

Note in passing that the Lagrangian (6) applies also to the
gradients33,34 of excited states, where the generating function
is just

gI[x,C(x)]= t†IE(x)tI . (12)

The first model considered here is TD-DFT. The spin-
conserving TD-DFT variants of E, γ0I

pq and γIJ
pq required by

g
ξ
0I and g

ξ
IJ are first derived in Sec. II A. Two points can

already be made here. First, neither the use13–16,19,20 of auxil-
iary wavefunctions nor the ad hoc replacement21 of the CIS
Hamiltonian with the TDA (Tamm-Dancoff approximation)
matrix is necessary in the present formulation. Second, the
extension to spin-flip TD-DFT can readily be made. Another
model under concern here is the pp-TDA,37,38 see Sec. II B.
The Lagrangian technique can be used for both TD-DFT and
pp-TDA, so as to make the computations of the fo-NACME
and excited-state gradients rather similar. Some benchmark
calculations are presented in Sec. III, while the conclusions are
drawn in Sec. IV.

II. THEORY

Throughout the paper, the following convention for label-
ing the orbitals is to be used: {i, j, k, l, . . .} for occupied MO,
{a, b, c, d, . . .} for virtual MO, {p, q, r, s, . . .} for unspecified
MO, and {µ, ν, κ, λ, . . .} for atomic orbitals (AO). They are all
assumed to be real valued since only spin-free Hamiltonians,
nonrelativistic or scalar relativistic, are under concern here.

A. The fo-NACME at the TD-DFT level

1. Defining quantities for gξ
0I and gξ

IJ

The spin-conserving TD-DFT variant of the generalized
eigenvalue problem (2) reads



A B
B A





XI

YI


=ωI



I 0
0 −I





XI

YI


, (13)

where

Aaiσ,b jτ = ∆aiσ,b jτ+Kaiσ,b jτ, (14)
Baiσ,b jτ = Kaiσ, jbτ, (15)

Kaiσ,b jτ = gaiσ, jbτ+g
XC[2]
aiσ, jbτ

, (16)

∆aiσ,b jτ = δστ(δi jFabσ−δabFj iτ), (17)

Fpqσ = Hpqσ+

rsτ

gpqσ,rsτDrsτ+ v
XC
pqσ. (18)

Here, Hpqσ incorporates both the kinetic energy and the
electron-nuclei attraction, Dpqσ = ⟨0|Epqσ |0⟩ represents the
ground-state density matrix with Epqσ = a†pσaqσ being the
orbital replacement operator, and the two-electron integrals are
written in the Mulliken notation

gpqσ,rsτ = jpqσ,rsτ− kpqσ,rsτ = grsτ,pqσ, (19)

jpqσ,rsτ = (pσqσ |rτsτ), (20)

kpqσ,rsτ = δστ(pσsσ |rσqσ)X . (21)

The particular symbol (pσsσ |rσqσ)X represents a generalized
exchange integral, which can also include a long-range interac-
tion operator such as r−1

12 erf(r12). Assuming that the exchange
correlation (XC) functional EXC[ρ] is parameterized as

EXC =


d3r⃗ eXC[{ρσ,m}], (22)

with m denoting the variable components such as the electron
density ρσ,0= ρσ and gradients ρσ,m = ∂mρσ (m= 1,2,3), the
matrix elements of the XC potential can be written as

vXC
pqσ = g

XC[1]
pqσ ,


m


d3r⃗

(
∂eXC

∂ρσ,m

)
Ωpqσ,m,

Ωpqσ,m ,
∂ρσ,m

∂Dpqσ
. (23)

Accordingly, the matrix elements of the XC kernel in Eq. (16)
read

g
XC[2]
pqσ,rsτ =


mm′


d3r⃗

(
∂2eXC

∂ρσ,m∂ρτ,m′

)
Ωpqσ,mΩrsτ,m′.

(24)
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Note that both gpqσ,rsτ (19) and g
XC[2]
pqσ,rsτ (24) are invariant

under the particle interchange, viz., gpqσ,rsτ = grsτ,pqσ.
Formally, we can introduce the following excitation oper-

ators for the I-th excited state:

O†I = Λ†tI =−t†−IΛ, (25)

OI = t†IΛ=−Λ
†t−I , (26)

Λ† = (EVO,−EOV), tI = (XI ,YI)T , (27)

where VO represents the virtual-occupied block labeled by the
composite index aiσ. In terms of such excitation operators,
the transition density matrices γ0I

pq and γIJ
pq derived from the

standard linear and quadratic response theories28–31 can be
expressed compactly as26

γ0I
pqσ = ⟨0|[Epqσ,O

†
I]|0⟩=



0 XI,aiσ

YI,aiσ 0



, (28)

γIJ
pqσ = γ

IJ
pqσ(I)+γIJ

pqσ(II),

γIJ
pqσ(I) = ⟨0|[Epqσ,Λ

†]|0⟩tIJ =



0 t I J,aiσ
t I J, iaσ 0



,

γIJ
pqσ(II) = ⟨0|[OI ,[Epqσ,O

†
J]]|0⟩

=



−(XT
J XI +YT

I YJ)i jσ 0
0 (XIXT

J +YJYT
I )abσ



,

(29)

where the VO (virtual-occupied) and OV (occupied-virtual)
blocks of γIJ

pq(I) are determined by26

(E−ωJ IS)tIJ =VIJ, (30)

or more explicitly

*
,



A B
B A


−ωJ I



I 0
0 −I


+
-



(tIJ)VO

(tIJ)OV


=



(VIJ)VO

(VIJ)OV


, (31)

VIJ =

pqσ


rsτ

(gpqσ,rsτ+g
XC[2]
pqσ,rsτ)

×
(⟨0|[Λ,[OI ,Epqσ]]|0⟩⟨0|[O†J,Ersτ]|0⟩
+⟨0|[Λ,[O†J,Epqσ]]|0⟩⟨0|[OI ,Ersτ]|0⟩
+⟨0|[Λ,Epqσ]|0⟩⟨0|[OI ,[O†J,Ersτ]]|0⟩

)
+


pqσ


rsτ


r ′s′τ′

g
XC[3]
pqσ,rsτ,r ′s′τ′⟨0|[Λ,Epqσ]|0⟩

×⟨0|[OI ,Ersτ]|0⟩⟨0|[O†J,Er ′s′τ′]|0⟩, (32)

g
XC[3]
pqσ,rsτ,r ′s′τ′=


mm′m′′


d3r⃗

(
∂3eXC

∂ρσ,m∂ρτ,m′∂ρτ′,m′′

)
×Ωpqσ,mΩrsτ,m′Ωr ′s′τ′,m′′. (33)

Although seemingly complicated, the construction of VIJ (32)
is actually rather straightforward: the “density matrices”
⟨0|[O†J,Ersτ]|0⟩, ⟨0|[OI ,Ersτ]|0⟩, and ⟨0|[OI ,[O†J,Ersτ]]|0⟩ can
first be evaluated and then contracted with the corresponding
integrals gpqσ,rsτ, gXC[2]

pqσ,rsτ, and g
XC[3]
pqσ,rsτ,r ′s′τ′, so as to form

effective one-electron operators Ve f f =


pqσVpqσEpqσ. The
⟨0|[Λ,Ve f f ]|0⟩-like terms can finally be assembled to form VIJ.

2. Notations

To make the expressions as compact as possible and mean-
while suitable for AO-based direct algorithms, we introduce
the following notations:

(a) Full contractions of integrals of particle symmetry with
density matrices are represented by

⟨On;{D1,D2,. . .,Dn}⟩
,


P1P2· · ·Pn

OP1P2· · ·Pn(D1)P1(D2)P2· ··(Dn)Pn, (34)

where Pi represents the composite index pip′iσi. The advan-
tages of this notation are three folds: (1) a clear indication of the
operators and densities, (2) particle symmetry can extensively
be used within the bracket, e.g.,

⟨On;{D1,D2,. . .,Dn}⟩= ⟨On;{D2,D1,. . .,Dn}⟩= · ··, (35)

(3) multiple linearity in both operators and densities, viz.,

⟨On+O′n;{D1,D2,. . .,Dn}⟩ = ⟨On;{D1,D2,. . .,Dn}⟩
+⟨O′n;{D1,D2,. . .,Dn}⟩,

⟨On;{D1,D2+D′2,. . .,Dn}⟩ = ⟨On;{D1,D2,. . .,Dn}⟩
+⟨On;{D1,D′2,. . .,Dn}⟩. (36)

With this notation, the full contraction of two-electron integrals
(19) with two density matrices D1 and D2 can compactly be
written as

⟨g;{D1,D2}⟩ ,


pqσ,rsτ

[(pσqσ |rτsτ)−δστ(pσsσ |rσqσ)X]

×(D1)pqσ(D2)rsτ. (37)

(b) Partial contractions are presented by

On[{D1,D2,. . .,Dk}]
,


P1P2· · ·Pk

OP1P2· · ·Pn(D1)P1(D2)P2· ··(Dk)Pk
, k < n,

(38)

in terms of which the full contraction (37) can be reexpressed
as

⟨g;{D1,D2}⟩= ⟨g[D1];D2⟩= ⟨g[D2];D1⟩, (39)

where the curly bracket in, e.g., g[{D1}], has been omitted
since there is only one density in it.

(c) Quantities in the AO representation are denoted by
boldface italic letters (e.g., M), while those in the MO represen-
tation are denoted in plain italic letters (e.g., M). For instance,
the full contraction of ∆ (17) with XI,aiσ and XJ,b jτ can be
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written as

⟨∆;{XI ,XJ}⟩ =


aiσ,b jτ

∆aiσ,b jτXI,aiσXJ,b jτ

=

abσ

Fabσ


i

XI,aiσXJ,biσ

−

i jσ

Fj iσ


a

XI,aiσXJ,biσ

=

µνσ

Fµνσ
*.
,


abi

CµaσXI,aiσXJ,biσCνbσ

−

ai j

Cµ jσXJ,b jσXI,aiσCνiσ
+/
-

= ⟨F;CV(XIXT
J )CT

V−CO(XT
J XI)CT

O⟩
=

1
2
⟨F;CV(XIXT

J +XJXT
I )CT

V

−CO(XT
I XJ+XT

J XI)CT
O⟩, (40)

where the last equality is due to the symmetry of the AO Fock
matrix. Here, CV and CO are the respective virtual and occupied
MO coefficients such that density matrices like CV(XIXT

J )CT
V

are in the AO representation. In practice, each such full or
partial contraction in the AO space can be calculated by the
same subroutine.

(d) Total derivative with respect to ξ, partial derivative
with respect to ξ, and single replacement of orbital p with p′ in
a quantity such as the Lagrangian, are denoted, respectively, as

Lξ ,
dL
dξ
, L(ξ) ,

∂L
∂ξ

,

L(pp′σ) ,

µσ

∂L
∂Cµpσ(x)Cµp′σ(x). (41)

(e) The contractions with dpq(x) in Eqs. (7) and (8) can be
written as 

pqσ

γpqσdpqσ(x)= ⟨d(x);γ⟩= ⟨d;γ⟩,

[d]µν = ⟨χµ | χν(x)⟩, γ =Cγ[C(x)]T . (42)

Here, the underline of a quantity is to emphasize that the
dependence on x occurs only to the ket of the quantity in the
AO representation. An important relation at the reference point
x = x0 can be derived as

⟨d;γ(pp′σ)⟩x=x0
=


µν

[dµν(x)]x=x0

×

λ

(
∂[rsCµrσγrsσCνsσ(x)]

∂Cλpσ(x) Cλp′(x)
)
x=x0

=

µν

Sµν


r

Cµrσγr pσCνp′

=

r

[CTSC]r p′γr pσ

=

r

δr p′γr pσ = γp′pσ. (43)

Note that γ is not assumed to be symmetric here.

(f) To derive Eq. (10), we will make extensive use of the
following relation:

⟨M;N(pp′σ)⟩ = 2η(N M)pp′σ, N =CNCT,

M = CTMC, (44)

which can be obtained in the same way as Eq. (43). Here, the
M and N matrices in the AO representation are either both
symmetric (η = 1) or both antisymmetric (η = −1). It follows
that the AO-based quantity on the left hand side of Eq. (44)
can be obtained by first going to the MO representation (i.e., M
and N) and then picking up the corresponding elements of the
matrix product followed by multiplying the factor 2η.

It will be shown later on that the notations (a)-(f) can
simplify greatly the formulations of fo-NACME and excited-
state gradients on one hand, and lead automatically to expres-
sions suitable for AO-based direct algorithms on the other.

3. Derivatives of the Lagrangians

In terms of the notations introduced in Sec. II A 2, the
generating function gI[x,C(x)] (12) for excited-state gradients
can be reexpressed as

gI[x,C(x)] = ⟨F;TII⟩+ ⟨g;{RS
I ,R

S
I }+ {LA

I ,L
A
I }⟩

+⟨gXC[2];{RS
I ,R

S
I }⟩, (45)

where the intermediates are defined as

RS
I =

1
2
(RI +RT

I ), RI =CVRICT
O, RI = XI +YI , (46)

LA
I =

1
2
(LI −LT

I ), LI =CVL ICT
O, L I = XI −YI , (47)

TIJ =
1
2
(γIJ(II)+ [γIJ(II)]T), γIJ(II)=CγIJ(II)CT (48)

with γIJ(II) given in Eq. (29). Note that the symbol x has
been omitted on the right hand side of Eq. (45) for simplicity.
However, it should be kept in mind that the dependence of
gI[x,C(x)] on x arises from the integrals g and the MO coeffi-
cients C but not from the amplitudes XI and YI .

By further introducing the following intermediates

PI = TII+ZS, (49)

ZS =
1
2
(Z+ZT), Z=CVZCT

O, (50)

ΓIJ = {RS
I ,R

S
J}+ {LA

I ,L
A
J }, (51)

where TII (48) and PI (49) are usually referred to as the respec-
tive unrelaxed and relaxed difference density matrices33,34 for
the I-th excited state, the Lagrangian (6) with gI (45) can be
rewritten as

L I = gI + ⟨F;ZS⟩− ⟨S;W⟩+ tr(W )
= ⟨F;PI⟩+ ⟨g;ΓII⟩+ ⟨gXC[2];{RS

I ,R
S
I }⟩

−⟨S;W⟩+ tr(W )
= ⟨H;PI⟩+ ⟨g;{D,PI}+ΓII⟩
+⟨gXC[1];PI⟩+ ⟨gXC[2];{RS

I ,R
S
I }⟩− ⟨S;W⟩+ tr(W ). (52)

Use of the AO representation of F (18), viz., F =H+g[D]+
gXC[1], has been made here. The partial derivative of L I (52)
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at the reference point x = x0 can then be expressed as

g
ξ
I = L(ξ)

I = ⟨H(ξ);PI⟩+ ⟨g(ξ);{D,PI}+ΓII⟩
+⟨gXC[1](ξ);PI⟩+ ⟨gXC[2](ξ);{RS

I ,R
S
I }⟩

−⟨S(ξ);W⟩. (53)

Note that gXC[1](ξ) and gXC[2](ξ) contain nuclear derivatives
of both the basis functions and the XC functional, the latter
involving second and third order derivatives of the XC func-
tional, respectively, e.g.,

g
XC[1](ξ)
µνσ =


m


d3r⃗

(
∂eXC

∂ρσ,m

)
Ω

(ξ)
µνσ,m

+

mm′


d3r⃗

(
∂2eXC

∂ρσ,m∂ρτ,m′

)
Ωµνσ,mρ

(ξ)
τ,m′.

(54)

Note in passing that by direct differentiating Eq. (53) with
respect to another parameter ζ ∈ x, the second order derivatives
(Hessian) can be obtained as

g
ξζ
I = L(ξ)ζ

I = ⟨F(ξ)ζ;PI⟩+ ⟨F(ξ);P[ζ]
I ⟩+ ⟨F(ξ);T(ζ)

II ⟩
+⟨g(ξζ);ΓII⟩+ ⟨g(ξ);Γζ

II⟩
+⟨gXC[2](ξ)ζ;{RS

I ,R
S
I }⟩

+⟨gXC[2](ξ);{RS
I ,R

S
I }ζ⟩

−⟨S(ξζ);W⟩− ⟨S(ξ);W[ζ]⟩
+⟨F(ξ);ZS(ζ)⟩− ⟨S(ξ);W(ζ)⟩, (55)

where Mξ = M(ξ) + M[ξ] with M(ξ) = CMξCT and M[ξ]
= CξMCT + c.c. for M = TIJ,RI ,LI ,Z,W. Two points can be
made here. First, Eq. (55) can be transformed to an alternative
form39 that does not depend on Zζ and W ζ. Second, at variance
with the asymmetric form, a symmetric form of the Hessian is
also possible. Each of the three forms of gξζI has its own merits.

Following the same procedure, the Lagrangian (6) with
g0I[x,C(x)] (7) can be written as

g0I = ⟨d;γ0I⟩, (56)

L0I = g0I + ⟨F;ZS⟩− ⟨S;W⟩+ tr(W ), (57)

such that the fo-NACME gξ0I as the partial first order derivative
of L0I at x = x0 reads

g
ξ
0I = L(ξ)

0I = ⟨d(ξ);γ0I⟩x=x0
+ ⟨F(ξ);ZS⟩− ⟨S(ξ);W⟩

= ⟨H(ξ);P0I⟩+ ⟨g(ξ);{D,P0I}⟩
+⟨gXC[1](ξ);P0I⟩− ⟨S(ξ);W⟩+ ⟨d(ξ);γ0I⟩.

(58)

Use of the prescription T0I = 0 and hence, P0I = ZS has been
made here. Similarly, the Lagrangian (6) with gIJ[x,C(x)] (8)
can be written as

gIJ = ω
−1
J IQIJ+ ⟨d;γIJ⟩, (59)

QIJ = ⟨F;TIJ⟩+ ⟨g;ΓIJ⟩+ ⟨gXC[2];{RS
I ,R

S
J}⟩, (60)

LIJ = gIJ+ ⟨F;ZS⟩− ⟨S;W⟩+ tr(W ). (61)

By introducing the scaled quantities

M̃ =ωJ IM, M = Z,W,γIJ,LIJ, (62)

the fo-NACME g
ξ
IJ can conveniently be obtained as

g
ξ
IJ = L(ξ)

IJ =ω
−1
J I L̃

(ξ)
IJ , (63)

L̃(ξ)
IJ = Q(ξ)

IJ + ⟨d(ξ);γ̃IJ⟩+ ⟨F(ξ);Z̃S⟩− ⟨S(ξ);W̃⟩
= ⟨H(ξ);PIJ⟩+ ⟨g(ξ);{D,PIJ}+ΓIJ⟩
+⟨gXC[1](ξ);PIJ⟩+ ⟨gXC[2](ξ);{RS

I ,R
S
J}⟩

−⟨S(ξ);W̃⟩+ ⟨d(ξ);γ̃IJ⟩, (64)

PIJ = TIJ+ Z̃S
. (65)

It is clear that gξIJ Eq. (63) shares a similar mathematical form
as the excited-state gradient gξI Eq. (53), with only one extra
term ⟨d(ξ);γ̃IJ⟩ arising from the second term of Eq. (4).

It is evident that the derivatives of the Lagrangians can be
evaluated efficiently with AO-based direct algorithms by using
the back-transformed “density matrices.” The remaining task
is to determine the multipliers Z and W .

4. Equations for the multipliers Z and W

Before deriving the equations for the multipliers Z and
W , we first present a theorem that is vital for the subsequent
manipulations.

Theorem 1. For a given set of MO coefficients C(x)
(either canonical or noncanonical), if the generating function
is invariant under unitary transformation U of an orbital mani-
fold, viz.,

g[x,C(x)]= g[x,C′(x)], C′(x)=C(x)U, (66)

the following result then holds:

g(r s)−g(sr )= 0, r > s. (67)

Proof. The orbital rotation matrix U can generally be
parameterized as

U= exp(κ), κ =−κT . (68)

Eq. (66) then implies that

0 =
∂g[x,C′(x)]

∂κrs
=


µp

∂g[x,C′(x)]
∂C ′µp(x)

∂C ′µp(x)
∂κrs

=

µp

∂g[x,C′(x)]
∂C ′µp(x)


q

Cµq(x)∂Uqp(κ)
∂κrs

. (69)

Since at the current point C′(x) =C(x), viz., κ = 0, Eq. (69)
becomes

0 =

µp

(
∂g[x,C′(x)]
∂C ′µp(x)

)
κ=0


q

Cµq(x)
(
∂Uqp(κ)
∂κrs

)
κ=0

=

µp

∂g[x,C(x)]
∂Cµp(x)


q

Cµq(x)
(
∂Uqp(κ)
∂κrs

)
κ=0

=

pq

g(pq)[x,C(x)](δqrδps−δqsδpr)= g(r s)−g(sr ). (70)

�
It follows that the matrix elements g(pq) are not all inde-

pendent if the generating function g is invariant under certain
type of orbital rotations. It can readily be verified that the
generating functions of TD-DFT (13) are invariant under rota-
tions among the occupied or virtual MO, viz., U=UOO⊕UVV.
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Therefore, Eq. (67) implies in this case that

g(i j)−g(ji)= g(ab)−g(ba)= 0. (71)

Now the equations for the multipliers can be derived from the
stationarity condition Eq. (10), which is equivalent to

0 = L(pp′σ)

= g(pp′σ)+ ⟨F(pp′σ);ZS⟩+ ⟨F;ZS(pp′σ)⟩− ⟨S;W(pp′σ)⟩
= g(pp′σ)+ ⟨g[D(pp′σ)]+gXC[2][D(pp′σ)];ZS⟩
+ ⟨F;ZS(pp′σ)⟩− ⟨S;W(pp′σ)⟩
= g(pp′σ)+ ⟨g[ZS]+gXC[2][ZS];D(pp′σ)⟩
+ ⟨F;ZS(pp′σ)⟩− ⟨S;W(pp′σ)⟩
= g(pp′σ)+2


iσ

δpiσGi p′σ[ZS]+

aiσ

δpaσZaiσFi p′σ

+

ibσ

δpiσFp′bσZbiσ−2Wpp′σ, (72)

where the last equality follows from Eq. (44) and the (symmet-
ric) intermediate G[ZS] is defined as

G[ZS]=CTG[ZS]C, G[ZS]= g[ZS]+gXC[2][ZS]. (73)

Eq. (72) shows that the multiplier W can be expressed as

Wpp′σ =
1
2
g(pp′σ)+


iσ

δpiσGi p′σ[ZS]

+
1
2
(

aiσ

δpaσZaiσFi p′σ+

ibσ

δpiσFp′bσZbiσ), (74)

or more explicitly,

Wi jσ =
1
2
g(i jσ)+Gi jσ[ZS], (75)

Wabσ =
1
2
g(abσ), (76)

Wiaσ =
1
2
g(iaσ)+Giaσ[ZS]+ 1

2


bσ

FabσZbiσ, (77)

Waiσ =
1
2
g(aiσ)+

1
2


jσ

Za jσFj iσ. (78)

The requirement of Wi jσ =W j iσ and Wabσ =Wbaσ is fulfilled
automatically due to the property (71) and the fact that G[ZS]
is symmetric. In contrast, the requirement of Wiaσ =Waiσ

dictates that the multipliers Zaiσ for the virtual-occupied block
should satisfy the following condition:

bσ

FabσZbiσ−

jσ

Za jσFj iσ+Giaσ[2ZS]

= g(aiσ)−g(iaσ), (79)

which is just the so-called Z-vector equation33,34,40 and can be
recast into a more compact form

(A+B)Z= g(VO)−g(OV) (80)

in terms of the A (14) and B (15) matrices defined before.
The equations for W (74) and Z (80) can be applied to

both the fo-NACME and excited-state gradients. The only
difference lies in the generating function and hence g(pp′σ). For
excited-state gradients gI Eq. (45), g(pp′σ)

I reads

g
(pp′σ)
I = ⟨F;TII⟩(pp′σ)+ ⟨g;ΓII⟩(pp′σ)

+⟨gXC[2];{RS
I ,R

S
I }⟩(pp′σ)

= ⟨F(pp′σ);TII⟩+ ⟨F;T(pp′σ)
II ⟩+ ⟨g;Γ(pp′σ)

II ⟩
+⟨gXC[3];{D(pp′σ),RS

I ,R
S
I }⟩

+⟨gXC[2];{RS
I ,R

S
I }(pp′σ)⟩

= ⟨g[TII]+gXC[2][TII]+gXC[3][{RS
I ,R

S
I }];D(pp′σ)⟩

+⟨F;T(pp′σ)
II ⟩

+2⟨g[RS
I ]+gXC[2][RS

I ];RS(pp′σ)
I ⟩

+2⟨g[LA
I ];LA(pp′σ)

I ⟩
= 2[D (

G[TII]+gXC[3][{RS
I ,R

S
I }]

)]pp′σ

+2[TIIF]pp′σ

+4[RS
I G[RS

I ]]pp′σ−4[LA
I g[LA

I ]]pp′σ, (81)

where the last equality follows from Eq. (44) and the fact
that LA

I and g[LA
I ] are antisymmetric (η =−1) while the other

matrices are all symmetric. To evaluate g(pp′σ)
I (81), the matrices

g[TII], g[RS
I ], g[LA

I ], gXC[2][TII], gXC[2][RS
I ], and gXC[3][{RS

I ,
RS

I }]) can first be constructed using AO-based direct algo-
rithms and then transformed to the MO space, followed by
contracting with the corresponding density matrices

D =


I 0
0 0


,

TII =



− 1
2 (RT

I RI +LT
I L I) 0

0 1
2 (RIRT

I +L ILT
I )

,

RS
I =



0 1
2 RT

I
1
2 RI 0


, LA

I =



0 − 1
2 LT

I
1
2 L I 0


. (82)

It is hence clear that compact and programable expressions for
g(pp′σ) are obtained automatically in the present formulation.

In view of Eq. (43), the g(pp′σ) for g0I (56) is just γ0I
p′pσ

(28), such that the Z-vector equation (80) reads simply

(A+B)Z= γ0I
OV−γ

0I
VO=XI −YI =LI . (83)

By comparing with the sum of the two equations in Eq. (13),
viz.,

(A+B)RI =ωILI , (84)

we obtain immediately

Z=ω−1
I RI . (85)

This accomplishes the derivation of gξ0I for TD-DFT using the
Lagrangian technique. The result agrees with that17 obtained
in a different way though.

Since the gIJ (59) has a similar structure as the excited-
state gradient gI (45), the expression for g(pp′σ)

IJ can be obtained
in the same way as done for g(pp′σ)

I (81), viz.,

g
(pp′σ)
IJ = ω−1

J IQ
(pp′σ)
IJ +γIJ

p′pσ, (86)

Q(pp′σ)
IJ = 2[D (

G[TIJ]+gXC[3][{RS
I ,R

S
J}]

)]pp′σ

+2[TIJF]pp′σ

+2[RS
I G[RS

J]]pp′σ−2[LA
I g[LA

J ]]pp′σ

+2[RS
JG[RS

I ]]pp′σ−2[LA
J g[LA

I ]]pp′σ, (87)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.129.120.3 On: Thu, 28 May 2015 13:34:55



244105-7 Li, Suo, and Liu J. Chem. Phys. 141, 244105 (2014)

such that the corresponding Z-vector equation reads

(A+B)Z=ω−1
J I(QVO

IJ −QOV
IJ )+ (γIJ

OV−γ
IJ
VO). (88)

By further noting that the sum of the two equations in Eq. (31)
can be written as

(A+B)ω−1
J I[(tIJ)VO+ (tIJ)OV] = ω−1

J I[(VIJ)VO+ (VIJ)OV]
+[(tIJ)VO− (tIJ)OV], (89)

and that γIJ
OV−γ

IJ
VO= (tIJ)VO− (tIJ)OV [cf. Eq. (29)] and QVO

IJ −
QOV

IJ = (VIJ)VO+ (VIJ)OV [by comparing Q(pp′σ)
IJ (87) with VIJ

Eq. (32)], Eq. (88) can be solved immediately

Z=ω−1
J I[(tIJ)VO+ (tIJ)OV]. (90)

As shown before,26 Eq. (90) is essential for ensuring that, in
the complete basis set limit, the gξIJ Eq. (63) coincides with
the exact expression for the fo-NACME, gξIJ = ω

−1
J I


d3r⃗ ρIJ

(r⃗)V ξ
en(r⃗), provided that the transition energyωJ I and transition

density ρIJ(r⃗) are both exact.

5. Discussion

Having derived the TD-DFT expressions for the excited-
state gradients and the fo-NACME with a unified Lagrangian
framework, it is of first interest to compare them from a compu-
tational aspect. It is easily figured out that the computation of
g
ξ
0I (58) is cheaper than that of gξI (53), since the latter involves

an additional XC term ⟨gXC[2](ξ);{RS
I ,R

S
I }⟩ and meanwhile

requires the solution of the Z-vector equation (80), while the
additional one-electron term dξ in the former is computation-
ally very cheap. On the other hand, the computation of gξIJ (63)
should be somewhat more expensive than that of gξI (53) for an
obvious reason: given the same number of iterations, both sides
of (30) for tIJ [which leads directly to Z (90)] are operationally
more expensive than those of the Z-vector equation (80) with
g
(pp′σ)
I (81) as input.

If the γIJ(I) term of γIJ (29) is neglected, Eq. (90) will no
longer hold. The Z-vector equation

(A+B)Z=ω−1
J I(QVO

IJ −QOV
IJ ), (91)

obtained by setting tIJ = 0 in Eq. (88), should then be solved
explicitly, in a similar effort as Eq. (30). To indicate such an
approximation, TD-HF and TD-DFT will be denoted by TD-
HF(n) and TD-DFT(n), respectively. The former is actually
nothing but the RPA derived from the EOM.26 Both TD-HF(n)
and TD-DFT(n) are in line with those obtained by means of
pseudowavefunctions along with intuitive approximations.19,20

Consider now the TDA for the fo-NACME, which amounts
to setting B= 0 in Eq. (13), leading to

AXI =ωIXI , YI = 0. (92)

Unlike TD-DFT, where the multiplier Z for gξ0I is given simply
by Eq. (85), the Z-vector equation

(A+B)Z=XI (93)

must now be solved explicitly. Therefore, the computation of
g
ξ
0I by TDA is actually more expensive than by TD-DFT. If the

B term here is also neglected, we would obtain immediately

Z=ω−1
I XI . Since the TDA is not really defined for properties

of excited states (due to the lack of wavefunction), there is no
a priori reason to say whether this approximation is accept-
able or not. However, there exists an indirect reason: the CIS
shares formally the same defining equations, Eqs. (92) and
(93), where the B term in the latter should not be neglected
to make an already crude model even cruder. Therefore, the
neglect of B in Eq. (93) is not to be considered. As for gξIJ,
there are more possibilities for approximations. For instance,
Eq. (30) for tIJ can be solved with VIJ yet constructed with the
TDA/CIS Ref. 41 eigenvectors (92) Eq. (90) still holds in this
case. Alternatively, if Eq. (30) is ignored completely, amount-
ing to setting tIJ = 0, the Z-vector equation (91) reduced from
Eq. (88) can be solved with the Q(pp′σ)

IJ constructed with the
TDA eigenvectors (92). To indicate this approximation, TDA
and CIS41 will be denoted by TDA(n) and CIS(n), respectively.
The computational cost of both TDA and TDA(n) for gξIJ is
rather similar to that of TD-DFT, since the cost for solving
Eq. (91) in the former is similar to that for solving Eq. (30)
in the latter.

As a final point, at variance with the above analytic formu-
lation, a finite-difference formulation of the fo-NACME is also
possible. Once the transition density matrices γ0I

pq and γIJ
pq at

the reference point x = x0 are constructed analytically, a finite-
difference scheme amounts simply to calculating the dξ

pq term
with, e.g., a central difference form

dξ
pq = ⟨ψp(x0)|ψξ

q(x0)⟩= 1
2h

[⟨ψp(x0)|ψq(x0+h)⟩
−⟨ψp(x0)|ψq(x0−h)⟩]+O(h2), (94)

and the first term of Eq. (4) as

ω−1
J It
†
IE

ξtJ = ω−1
J It
†
I(E−ωJS)ξtJ =−ω−1

J It
†
I(E−ωJS)tξJ

= t†I(x0)StξJ(x0)
=

1
2h

[t†I(x0)StJ(x0+h)− t†I(x0)StJ(x0−h)]
+O(h2). (95)

However, such a finite-difference scheme should be used with
great care, particularly, when there exist degenerate occupied
or virtual orbitals (for which the Cξ required by Eq. (94) cannot
readily be determined by finite difference), needless to say that
the TD-DFT/TDA eigenvalue problem has to be solved for
each displaced nuclear configuration, the number of which is
proportional to the number of atoms in the molecule.

B. The fo-NACME at the pp-TDA level

1. Defining quantities for gξ
IJ

The pp-RPA (Refs. 37 and 38) takes a state of N ±2 elec-
trons as the reference to target a number of N-electron states
by adding or removing two electrons. The two processes get
decoupled under the TDA. Specifically, the target N-electron
state |I⟩ is obtained in pp-TDA from the (N − 2)-electron
reference |0̃⟩ via
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|I⟩=O†I |0̃⟩, O†I =

ab

XI,aba†aa†
b
, (96)

which is effectively a two-electron-in-(NV +m)-active-orbital
model, with NV being the number of virtual orbitals and m =

1 (closed shell) or 2 (open-shell). For comparison, the spin-
flip TD-DFT is basically a two-electron-in-two-active-orbital
model. For a closed-shell system, the spin-adapted pp-TDA
equation reads37

AXI = ωIXI ,

Aab,cd = ∆ab,cd+Kab,cd,

∆ab,cd = δacδbd(ϵa+ ϵb), (97)

Kab,cd =




1(1+δab)(1+δcd)
[(ac|bd)+ (ad |bc)], (s = 0, a ≥ b, c ≥ d)

[(ac|bd)− (ad |bc)], (s = 1, a > b, c > d)
.

Here, s = 0 and s = 1 refer to singlet and triplet states,
respectively, and the orbitals are canonical MO (CMO) of an
(N−2)-electron Hartree-Fock reference |0̃⟩. Loosely speaking,
Kohn-Sham orbitals and eigenvalues can also be used here,
for pp-RPA can in a way be viewed as an extension of TD-
DFT for a pairing field.38 Since the reference |0̃⟩ and the target
states have different numbers of electrons, the quantities γ0̃I

pq

and hence gξ
0̃I

are naturally zero. However, the fo-NACME g
ξ
IJ

between two N-electron states are accessible by pp-TDA. A
nice feature of pp-TDA/RPA lies in that the N-electron ground
and excited states are treated on the equal, correlated footing.
Using the excitation operators (96), the transition density ma-
trix γIJ

pq can be calculated as

γIJ
pq = ⟨0̃|[OI ,[Epq,O

†
J]]|0̃⟩

=



4[X̄ S
I X̄ S

J ]pq, s = 0
−4[X A

I X A
J ]pq, s = 1

. (98)

Here, the symmetrized (X̄ S
I ) and antisymmetrized (X A

I ) matri-
ces are defined as

X̄ S
I =

1
2
(X̄I + X̄T

I ), X A
I =

1
2
(XI −XT

I ), (99)

with the scaled vector X̄I being defined by the eigenvector XI

for s = 0,

X̄I,pq =
1

1+δpq
XI,pq,

=




1
√

1+δab
XI,ab, a ≥ b

0, other cases
. (100)

2. Derivatives of the Lagrangians

The pp-TDA equation (97) can be written explicitly as

(ϵa+ ϵb)XI,ab+
2

√
1+δab

kab[X̄ S
I ]=ωIXI,ab,

(s = 0, a ≥ b), (101)

(ϵa+ ϵb)XI,ab+2kab[X A
I ]=ωIXI,ab,

(s = 1, a > b), (102)

with

kab[X̄ S
I ] =

1
2


c≥d

1
√

1+δcd
[(ac|db)+ (ad |cb)]XI,cd

=

µν

(aµ|νb)X̄S
I, µν, (103)

kab[X A
I ] =

1
2


c>d

[(ac|db)− (ad |cb)]XI,cd

=

µν

(aµ|νb)XA
I, µν. (104)

In terms of the notations in Sec. II A 2, the generating function
gIJ can then be written as

gIJ = ω
−1
J IQIJ+ ⟨d;γIJ⟩, (105)

QIJ = ⟨F;TIJ⟩+ ⟨k;ΓIJ⟩, (106)

ΓIJ =



2{X̄S
I ,X̄

S
J}, s = 0

2{XA
I ,X

A
J }, s = 1

. (107)

Consequently, the pp-TDA fo-NACME g
ξ
IJ can be written in

the same form as Eq. (63), viz.,

g
ξ
IJ = L(ξ)

IJ =ω
−1
J I L̃

(ξ)
IJ , (108)

L̃(ξ)
IJ = ⟨H(ξ);PIJ⟩+ ⟨g(ξ); {D,PIJ}⟩+ ⟨k(ξ); ΓIJ⟩

+⟨gXC[1](ξ);PIJ⟩− ⟨S(ξ);W̃⟩+ ⟨d(ξ);γ̃IJ⟩, (109)

with PIJ defined in Eq. (65). As shown before, the expressions
for gξI and gξIJ have a similar structure, such that the gradient for
state |I⟩ can, in view of Eq. (109), be obtained immediately as

g
ξ
I = L(ξ)

I = ⟨H(ξ);PI⟩+ ⟨g(ξ);{D,PI}⟩+ ⟨k(ξ);ΓII⟩
+⟨gXC[1](ξ);PI⟩− ⟨S(ξ);W⟩, (110)

with the relaxed difference density matrix PI defined in
Eq. (49).
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3. Equations for the multipliers Z and W

Similar to the TD-DFT g
(pp′)
IJ (87), the pp-TDA g

(pp′)
IJ can

be obtained for singlet states as

g
(pp′)
IJ = ω−1

J IQ
(pp′)
IJ +γ

IJ
p′p, (111)

Q(pp′)
IJ = ⟨F(pp′);TIJ⟩+ ⟨F;T(pp′)

IJ ⟩+2⟨k;{X̄S
I ,X̄

S
J}(pp′)⟩

= 2(DG[TIJ])pp′+2(TIJF)pp′+4(X̄ S
J k[X̄S

I ])pp′

+4(X̄ S
I k[X̄S

J])pp′, (112)

and for triplet states as

Q(pp′)
IJ = ⟨F(pp′);TIJ⟩+ ⟨F;T(pp′)

IJ ⟩+2⟨k;{X̄A
I ,X̄

A
J }(pp′)⟩

= 2(DG[TIJ])pp′+2(TIJF)pp′−4(X A
J k[XA

I ])pp′

−4(X A
I k[XA

J ])pp′. (113)

Likewise, the matrices g(pp′)
I for the gradients of singlet and

triplet states can be obtained simply as

g
(pp′)
I =Q(pp′)

I

=



2(DG[T I])pp′+2(TIF)pp′+8(X̄ S
I k[X̄S

I ])pp′, s = 0

2(DG[T I])pp′+2(TIF)pp′−8(X̄ A
I k[X̄A

I ])pp′, s = 1
.

(114)

The quantity TIJ appearing in the first term of Eq. (106)
remains to be specified. Actually, it can be obtained in the same
way as Eq. (40) by using the first term of Eq. (97), viz.,

TIJ =CVTIJCT
V ,

TIJ =
1
2
(XT

I XJ+XT
J XI)+ 1

2
(XIXT

J +XJXT
I ). (115)

However, the generating function gIJ (105) with the so-obtained
TIJ (115) is not invariant with respect to rotations among the
virtual orbitals, so as to violate property (67). Because of
this, the Lagrangian (6) has to be augmented with the term

a>b ZabFab. Following the same procedure in Sec. II A 4,
the corresponding Z-vector equation can be obtained as

Zab(ϵa− ϵb)= g(ab)−g(ba), a > b. (116)

At first glance, this equation will become ill-defined for acci-
dentally degenerate virtual orbital pairs. Fortunately, such

instability is spurious due to the underlying canonical repre-
sentation. To see this, we spell out the expression

g
(ab)
IJ −g(ba)IJ =ω

−1
J I(Q(ab)

IJ −Q(ba)
IJ )+γIJ

ba−γ
IJ
ab

=ω−1
J I2(ϵa− ϵb)[2(X̄ S

I X̄ S
J + X̄ S

J X̄ S
I )−T IJ]ab

(117)

for singlet states. It is hence clear that the factor (ϵa− ϵb) in
Eq. (116) can be cancelled out by that in Eq. (117), thereby
leading to

Zab =ω
−1
J I2[2(X̄ S

I X̄ S
J + X̄ S

J X̄ S
I )−TIJ]ab, a > b.

(118)

As a result, the TIJ (115) term in PIJ (65) is cancelled out
precisely by that in Z̃S = 1

2ωJ I(Z + ZT), leading finally to
PIJ = 2C(X̄ S

I X̄ S
J + X̄ S

J X̄ S
I )CT . Effectively, this is equivalent to

choosing Zab = 0 and

TIJ = 2(X̄ S
I X̄ S

J + X̄ S
J X̄ S

I ). (119)

Similarly, the following expression can be obtained for the TIJ

of triplet states:

TIJ =−2(X A
I X A

J +X A
J X A

I ). (120)

With Eqs. (119) and (120) for TIJ, the Z-vector equation (116)
for Zab is no longer needed and the original Lagrangian (6)
including only the virtual-occupied part Zai is sufficient also
for pp-TDA. Actually, it can be verified that Eqs. (119) and
(120) are nothing but the TIJ of pp-TDA in a noncanonical
representation. The situation is quite similar to the deriva-
tives of Møller-Plesset correlation energy,42 where the spurious
singularity for accidentally degenerate orbitals appears only in
the canonical representation but not in a noncanonical repre-
sentation.

III. BENCHMARK CALCULATIONS

The implementation of the above formalisms is based
on the existing DFT and TD-DFT modules (restricted, unre-
stricted spin-conserving/spin-flip, and spin-adapted open-shell
TD-DFT3–6,43) in the BDF (Beijing density functional) pack-
age,44–46 which are further modified for performing pp-TDA

FIG. 1. Excitation energy curves of HeH+. ω1 and ω2: excitation energies of the first two 1Σ+ states; ω21: energy difference between the lowest two excited
states in each symmetry.
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type of calculations. A new module R47 is developed to
calculate linear/quadratic spin-independent/spin-dependent
response properties, excited-state gradients, and fo-NACME.
For such properties of closed-shell systems, the spin adaptation
is trivial by employing a spin-restricted HF/KS (RHF/RKS)
reference. Yet, for open-shell systems, the spin adaption3–5

based on a restricted high-spin reference remains to be devel-
oped. It also deserves to be mentioned that the computed
fo-NACME are in general not translationally invariant, mean-
ing that the sum of all gξIJ is not zero. Following the recipe
in Ref. 18, the translationally invariant fo-NACME
can be obtained by using only the symmetric part [d(ξ)]S
= 1

2 (d(ξ)+d(ξ)T)= 1
2 S(ξ)of d(ξ) in the AO representation, (d(ξ))µν

= ⟨χµ | χξν⟩. The derivatives of one- and two-electron integrals
with respect to nuclear coordinates are evaluated with the

G1I package48,49 and the ERI module in BDF, respec-
tively. The third order derivatives of XC functionals
are computed with the XCF library.50,51 The implementation
of the analytic formulations has been verified by comparing
with results from the finite-difference calculations, see Eqs.
(94) and (95).

In the following, we report the results obtained with
TD-HF/CIS and TD-DFT/TDA using the VWN5 parametriza-
tion52 of the local density approximation (LDA). For compar-
ison, the fo-NACME were also computed by using CASSCF
(complete active space self-consistent field) or FCI (full config-
uration interaction) with the  (Ref. 53) program.
The atomic units are used for all the quantities, including
coordinates, energies, transition dipole moments, and fo-
NACMEs.

FIG. 2. Nonzero components of the TDM and fo-NACME between the lowest two excited states of HeH+ in each symmetry.
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FIG. 3. (a) Potential energy curves for the 11Σ+ and 21Σ+ states of LiH. The energy minima of 11Σ+ by different methods are aligned to the same zero energy
point. (b) The fo-NACME g

ξ
01 between the two states.

A. fo-NACME gξ
IJ of HeH+

For a better understanding of the above comprehensive
formulation, we first take the simple two-electron system
HeH+ as an example, for which pp-TDA is identical with FCI.
The lowest two excited states in each of the 1Σ+, 3Σ+, 1Π, and
3Π symmetries were calculated with pp-TDA, TD-HF, and
TD-DFT and the aug-cc-pVTZ basis set.54,55 The excitation en-
ergy curves are depicted in Fig. 1. The nonzero components of
the transition dipole moments (TDM) and fo-NACME between
the two excited states in each symmetry are plotted in Fig. 2,
where the fo-NACME obtained only with the transition density
matrix γIJ

pq(II) (29) (designated by TD-HF(n) and TD-DFT(n))
are also shown. According to Eq. (32), for a nonvanishing
VIJ element, the irreducible representation (irrep) of the basis
operator Λ must be contained in the direct product of the
irreps of OI and O†J. Since both OI and O†J belong to either
1,3Σ+ or 1,3Π for the present case, only 1Σ+ type of Λ operator
enters Eq. (30). It is then readily envisaged that, when the
excitation energyωk of a 1Σ+ state coincides at some geometry
with ωJ I =ωJ −ωI , the response part γIJ

pq(I) of the transition
density matrix γIJ

pq (29) will diverge as 1/(ωk −ωJ I). As can
be seen from Fig. 1, the first 1Σ+ excited state by TD-HF is
very close to but does not intersect with the ω21(1Σ+) curve at
a distance around 4 a.u. However, the first 1Σ+ excited state by
TD-DFT intersects with theω21 curves in each symmetry. This
is because the energy of the first 1Σ+ excited state, which has
strong charge transfer character from He(1s) to H(1s) at long

distances, is severely underestimated by the adiabatic LDA.
Consequently, while the TD-HF fo-NACME g

ξ
IJ between the

two 1Σ+ states exhibits only a hump, the TD-DFT ones all
diverge at the intersection points. The same situation can also
be observed from the TDM, whose nonzero element for HeH+,

pqzpqγ
IJ
pq, can be viewed as a simple measure of the transition

density matrix. It is seen that, for all the cases, the TD-HF(n)
and TD-DFT(n) TDM curves, calculated as


pqzpqγ

IJ
pq(II), are

smooth and close to the corresponding pp-TDA/FCI results,
while the TD-DFT(r) TDM curves, calculated as


pqzpqγ

IJ
pq(I),

indeed diverge. It can also be seen that the overall accuracy of
the TD-HF and TD-DFT fo-NACME follows closely that of
the TDM, as compared with pp-TDA/FCI.

Given the simplicity of the HeH+ system, it can be con-
cluded that the response part γIJ

pq(I) of the transition density
matrix γIJ

pq (29) should not be included in TD-HF and TD-
DFT calculations of the fo-NACME as well as TDM. The
(occasional) divergence of γIJ

pq(I) represents a deficiency of
quadratic response functions of approximate models. For a
more detailed analysis, see the Appendix.

B. gξ
0I of LiH and BH

The fo-NACME g
ξ
0I between the ground state 11Σ+ and

first excited state 21Σ+ of LiH and BH are revisited here to
compare with the previous TD-HF and TD-DFT calculations.17

The potential energy curves and the fo-NACME (with respect

FIG. 4. (a) Potential energy curves for the 11Σ+ and 21Σ+ states of BH. The energy minima of 11Σ+ by different methods are aligned to the same zero energy
point. (b) The fo-NACME g

ξ
01 between the two states. Black squares designate the results of Ref. 58.
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FIG. 5. CAS(4,4) and CAS(4,6) potential energy curves and fo-NACME for the lowest three 3B2 states of MgH2. Blue squares and green circles designate the
results of Refs. 57 and 58, respectively.

to the interatomic distance) for the two 1Σ+ states of LiH
were calculated with FCI, pp-TDA, TD-HF, CIS, TD-DFT, and
TDA and the cc-pVDZ basis,56 see Fig. 3. It is first seen that
pp-TDA is an excellent approximation to FCI throughout the
whole distance. By contrast, both TD-HF and TD-DFT have
large errors at distances beyond 4 a.u., simply because the
underlying RHF/RKS reference does not dissociate correctly.
In particular, the hump of gξ0I due to the avoided crossing
of the two states at the ionic-covalent transition point around
6.5 a.u. is totally missed by TD-HF and TD-DFT. The situ-
ation does not change much even if the unrestricted Hartree-
Fock/Kohn-Sham determinant is taken as the reference.17 It is
also seen that, in this region, TDA (CIS) performs somewhat
better than TD-DFT (TD-HF), whereas in the region around the
ground-state equilibrium (between 2 and 4 a.u.), TDA (CIS)
performs rather similarly as TD-DFT (TD-HF). Overall, TD-
DFT (TDA) performs somewhat better than TD-HF (CIS).

The results for the first two 1Σ+ states of BH are shown
in Fig. 4. The aug-cc-pVDZ basis set56 was employed here.
The present CAS(4,18) (viz., 4 electrons in 18 active orbitals)
results for gξ0I are very similar to the previous CAS(4,14) ones58

using a cc-pVDZ basis augmented with several nonstandard
diffuse functions, see black squares in Fig. 4(b). Noticeably,
the pp-TDA g

ξ
0I deviate significantly from the CAS(4,18) ones

around 2 a.u. This can be traced back to the particular mecha-
nism of pp-TDA for getting the two 1Σ+ states: both are treated
as excited states by adding two electrons to the double-cation
reference (BH)2+. Since the highest occupied MO (HOMO)-
1 (B2s-like MO) is energetically close to the HOMO of BH,
treating only the latter active but the former inactive will result
in an unbalanced treatment of 11Σ+ and 21Σ+, viz., the former is
less correlated. As a result, the pp-TDA gap between 21Σ+ and
11Σ+ is too small as compared with the CAS(4,18) one. Yet,
more severe is that the pp-TDA 21Σ+ energy curve has in this

FIG. 6. (a) Potential energy curves for the first two 3B2 states of MgH2 calculated by pp-TDA and CIS. Two Hartree-Fock references of 1A1 symmetry are used
for CIS, with the respective occupations 4012 (in blue) and 5011 (in red) in the A1, A2, B1, and B2 irreps of C2V . (b) Potential energy curves of the two 3B2
states (left) and their deviations from CASSCF (right). Both CIS and TDA are here based on the 5011 reference.
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FIG. 7. Nonzero components of the fo-NACME between the first two 3B2 states of MgH2.

region a much larger curvature than the CAS(4,18) one. This
argument is further confirmed by the good agreement between
the pp-TDA and CAS(4,18) gξ0I nearby the second minimum of
21Σ+ at ca. 6 a.u. (due to the avoided crossing between 21Σ+ and
31Σ+), where the error in the pp-TDA gap between 21Σ+ and
11Σ+ is very much the same as that nearby the first minimum,
but the 21Σ+ curve has a roughly correct shape in this region. As
a rule of thumb, pp-TDA performs only well if the HOMO of
the N-electron system is well above the HOMO-1. Finally, the
rather similar performance of the other approximate methods
observed in LiH can also be found here.

C. gξ
IJ of MgH2

Another example is the fo-NACME between the lowest
two triplet states 3B2 of T-shaped MgH2, which was also inves-
tigated previously with state-averaged multi-configurational
self-consistent field (MCSCF) (Ref. 57) and linear response
MCSCF (Ref. 58). Here, we employed the same basis set
but in the uncontracted form. In addition to the incomplete
valence space CAS(4,4) used before,57,58 the full valence space
CAS(4,6) was also considered. The CASSCF potential energy
curves along the distance between Mg and the center of H2
(the H-H distance was fixed to 2.5 a.u.) are shown in Fig. 5(a),
and the gξIJ for three coordinates (zMg, zH= zH1+ zH2, and yH=

yH1− yH2) are displayed in Fig. 5(b). It is clear that the present
CAS(4,4) results almost coincide with those in Refs. 57 and
58 but are quite different from the CAS(4,6) ones. It is the
latter that are employed for the purpose of benchmarking. Note
in passing that, while pp-TDA can directly be applied to this
example, there exists an ambiguity for TD-HF/CIS or TD-
DFT/TDA, viz., two spin-restricted closed-shell references of
1A1 symmetry, with the respective occupations 4012 and 5011
in the A1, A2, B1, and B2 irreps of C2v symmetry, are possible.
The potential energy curves for the two HF references and the
corresponding four CIS 3B2 states are shown in Fig. 6(a). It is
clear that the linear combination of the two 1A1 references will
give rise to an avoided crossing around 3 a.u., as can be seen
by the two pp-TDA 1A1 states. While the first CIS 3B2 state is
almost independent of the references, the second CIS 3B2 state
based on the 5011 reference is significantly lower than that
based on the 4012 reference. Therefore, the 5011 reference is
always employed subsequently, although its energy is actually

higher than the 4012 reference at distances shorter than 3 a.u.
Since both TD-HF and TD-DFT yield imaginary excitation
energies near the intersection point between 11A1 and 13B2, the
corresponding results are not to be documented. Then, only the
CIS and TDA results are meaningful, see Fig. 6(b) and Fig. 7
for the potential energy curves and fo-NACME, respectively.
Again, the CIS and TDA fo-NACME become divergent when
the response part γIJ

pq(I) of the transition density matrix γIJ
pq (29)

is taken into account, but behave well when it is ignored. It
is seen from Fig. 7 that the yH-component of the TDA(n) fo-
NACME becomes increasingly too large as the two TDA(n)
3B2 states get closer in energy (cf. Fig. 6(b)). In contrast, both
CIS(n) and especially pp-TDA perform rather well throughout
the distance.

IV. CONCLUSIONS AND OUTLOOK

Both the TD-DFT and pp-TDA formulations of the fo-
NACME have been discussed in depth. They are specific reali-
zations of the rigorous theory26 rather than introduced in some
ad hoc manner as done before. In particular, the Lagrangian
technique combined with the well-defined notations leads to
expressions that are very compact on one hand, and can directly
be implemented using atomic orbital-based direct algorithms
on the other. While more extensive applications are certainly
necessary, some decisive conclusions can already be drawn
based on the preliminary results for the prototypical systems
considered here. It is generally true that TD-DFT can faithfully
describe the fo-NACME as long as it can well describe the
excited states. The latter can be monitored by the quality of
the TD-DFT excitation energies and transition dipole mo-
ments. The TD-DFT(n) variant of TD-DFT, which ignores the
response part of the transition density matrix, is particularly
recommended for practical calculations of the fo-NACME,
even around a conical intersection point.20 Moreover, pp-TDA
can be recommended as an alternative of spin-flip TD-DFT
for describing excited-state energy surfaces and nonadiabatic
couplings when near degeneracy and double excitations are
encountered, given that the treatment of correlation needs to
be further improved.

Many interesting developments can be done in near future.
Obviously, the same Lagrangian technique applies also to the
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gradient difference gξI −g
ξ
J with gI−gJ as the generating func-

tion. Further combined with the fo-NACME g
ξ
IJ, conical inter-

sections can be located. The nuclear derivative of gξIJ, i.e., gξζIJ
= Dζ⟨ΨI |Dξ |ΨJ⟩, which is required by the so-called group
Born-Oppenheimer equation59 for nonadiabatic dynamics, can
also be formulated, similarly as the analytic Hessian gξζI (55)
of the TD-DFT excitation energy. All these can be incorporated
into the spin-adapted open-shell TD-DFT.3–5 Work along these
directions is being carried out at our laboratory.
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APPENDIX: POSSIBLE DIVERGENCE OF gξ
IJ BY

APPROXIMATE RESPONSE THEORY

The linear (LRF) and quadratic (QRF) response functions
of TD-HF or adiabatic TD-DFT are compared with those of
exact theory, so as to reveal the origin of divergence of gξIJ by
TD-HF or adiabatic TD-DFT. The exact LRF and QRF in the
frequency domain take the following sum-over-states (SOS)
forms:29–31

Ab(ωk)=PAB


I>0

⟨0|V a(ωσ)|I⟩⟨I |V b(ωk)|0⟩
ωk−ωI

, (A1)

Abc(ωk,ωl)=−PABC

×

I,J>0

⟨0|V a(ωσ)|I⟩⟨I |V̄ b(ωk)|J⟩⟨J |V c(ωl)|0⟩
(ωσ+ωI)(ωl−ωJ) ,

(A2)

V̄ b(ωk)=V b(ωk)− ⟨0|V b(ωk)|0⟩, (A3)

where the time-independent operator V a is formally associated
with a frequency ωσ equal to the negative of the sum of the
other frequencies in a response function, e.g., ωσ = −ωk in
Eq. (A1), and the permutation operators PAB = 2!SAB and
PABC = 3!SABC symmetrize both the perturbation operators
and the frequencies, e.g.,

SAB f ({a,ωσ},{b,ωk})= 1
2
[ f ({a,ωσ},{b,ωk})
+ f ({b,ωk},{a,ωσ})]. (A4)

To extract excitation energies and transition moments between
the ground and excited states from the LRF of TD-HF/TD-
DFT, it is important to note that, by using O†I (25) or O†I = |I⟩⟨0|,
the LRF of TD-HF/TD-DFT and exact theory can be written
in the same mathematical form

Ab(ωk)=

I>0

*
,

⟨0|[V a,O†I]|0⟩⟨0|[OI ,V b]|0⟩
ωk−ωI

−
⟨0|[V b,O†I]|I⟩⟨0|[OI ,V a]|0⟩

ωk+ωI

+
-
, (A5)

such that the TD-HF/TD-DFT excitation energies and tran-
sition moments can be identified from the respective poles
and residues of LRF unambiguously. However, such termwise
correspondence does not hold for the SOS QRF of TD-HF/TD-
DFT and exact theory (A2). Instead, the QRF of TD-HF/TD-
DFT and exact theory can both be written as28–31

Abc(ωk,ωl)=−κa†(ωk,ωl)Vbc(ωk,ωl)
+⟨0|[κb(ωk),[κc(ωl),V a]]|0⟩, (A6)

with

κa†(ωk,ωl)[E− (ωk+ωl)S]=Va†, (A7)

[E−ωkS]κb(ωk)=Vb, (A8)
[E−ωlS]κc(ωl)=Vc, (A9)

where Vx = ⟨0|[Λ,V x]|0⟩ (x = a,b,c) and Vbc(ωk,ωl) is defined
as26

Vbc(ωk,ωl)=SBC

(
⟨0|[Λ,[κb(ωk),[κc(ωl),H (0)]]]|0⟩

+⟨0|[Λ,[κb(ωk),ωlκ
c(ωl)]]|0⟩

+2⟨0|[Λ,[κb(ωk),Hc(ωl)+V c(ωl)]]|0⟩
+⟨0|[Λ,H̄bc(ωk,ωl)]|0⟩

)
. (A10)

Here, Hb(ωk), Hc(ωl), and H̄bc(ωk,ωl) denote perturbed
Hamiltonians depending on κb(ωk) and κc(ωl) (for details, see
Ref. 26). By introducing the quantities Vb

J(ωk) and VIJ via

limωl→ωJ
(ωl−ωJ)Vbc(ωk,ωl)=Vb

J(ωk)(t†JVc), (A11)

limωk→−ωI
(ωk+ωI)limωl→ωJ

(ωl−ωJ)Vbc(ωk,ωl)
= (t†−IVb)VIJ(t†JVc), (A12)

the single residue of the QRF (A6) can be obtained as

lim
ωl→ωJ

(ωl−ωJ)Abc(ωk)=[−κa†(ωk,ωJ)Vb
J(ωk)

−⟨0|[κb(ωk),[O†J,V a]]|0⟩](t†JVc),
(A13)

which can be compared with that obtained from Eq. (A2), so
as to identify the transition moment as

PAB


I>0

⟨0|V a(ωσ)|I⟩⟨I |V̄ b(ωk)|J⟩
ωσ+ωI

= κa†(ωk,ωJ)Vb
J+ ⟨0|[κb(ωk),[O†J,V a]]|0⟩.

(A14)

By using the spectral form of the resolvent

(E−ωS)−1=

I>0



tIt†I
ωI −ω

+
t−It†−I
ωI +ω


, (A15)

the right hand side of Eq. (A14) can, in view of Eqs. (A7) and
(A8), be further written in a SOS form

κa†(ωk,ωJ)Vb
J+ ⟨0|[κb(ωk),[O†J,V a]]|0⟩

=

I ′>0



(Va†t′I)(t†I ′Vb
J(ωk))

ωI ′− (ωk+ωJ) +
(Va†t−I ′)(t†−I ′Vb

J(ωk))
ωI ′+ (ωk+ωJ)



+

I ′>0



(⟨0|[Λ†tI ′,[O†J,V a]]|0⟩)(t†
I ′V

b)
ωI ′−ωk
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+
(⟨0|[Λ†t−I ′,[O†J,V a]]|0⟩)(t†−I ′Vb)

ωI ′+ωk


. (A16)

Several important differences between Eqs. (A14) and (A16)
can readily be identified.

First, compared with the exact expression on the left hand
side of Eq. (A14), the pole structure of Eq. (A16) is more
complicated, since apart from the common poles ωk = ωI ′

− ωJ and ωk = −ωI ′, Eq. (A16) contains additional poles
at ωk = −(ωI ′ +ωJ) and ωk = ωI ′ if the numerators of the
second and third terms of Eq. (A16) are nonvanishing. This
is usually the case for TD-HF/TD-DFT. For instance, the
⟨0|[Λ†tI ′,[O†J,V a]]|0⟩= ⟨0|[O†

I ′,[O†J,V a]]|0⟩ term in the numer-
ator of the third term of Eq. (A16) involves double excitations
O†

I ′O
†
J |0⟩28 and is not necessarily zero. In contrast, this term

is zero for exact theory as can be verified by inserting the
state transfer operator O†I = |I⟩⟨0|. Similarly, in exact theory,
we have Vb

J(ωk) = ⟨0|[Λ,[−O†J,V
b]]|0⟩ (see Eqs. (A10) and

(A11)), such that t†
I ′V

b
J(ωk)= ⟨0|[OI ′,[−O†J,V

b]]|0⟩= ⟨I ′|V̄ b |J⟩
in the first term, and t†−I ′V

b
J(ωk) = 0 in the second term of

Eq. (A16). That is, in exact theory, the second term of Eq. (A16)
vanishes and the first term therein has the correct form in view
of the left hand side of Eq. (A14).

Second, it is important to note that the pole ωk = −ωI ′

presents not only in the fourth term of Eq. (A16) but also
in the first two terms through κb(ωk) in Vb

J(ωk), whose pole
structure can be inferred from Eq. (A8). The dependence of
Vb

J(ωk) on κb(ωk) in TD-HF/TD-DFT implies that the first
term of Eq. (A16) contains terms with a pole structure like
1/[(−ωk−ωJ I ′)(ωk±ωI)]. The two first order polesωk =−ωJ I ′

and ωk =−ωI will merge into a second-order pole when ωJ I ′

=ωI . This is exactly the origin of divergence observed in the
calculations of TDM and fo-NACME between two excited
states |I⟩ and |J⟩, since the corresponding formula for these
two properties are obtained by taking the first order residue
of expressions like Eq. (A16) at ωk =−ωI . To the best of our
knowledge, this point has not been noticed in previous studies
of transition properties between two excited states. Only by
assuming ωJ I ′,ωI for any I ′, we can identify

⟨I |V̄ a |J⟩=

I ′>0



(Va†t′I)(t†I ′VIJ)
ωI ′− (−ωI +ωJ) +

(Va†t−I ′)(t†−I ′VIJ)
ωI ′+ (−ωI +ωJ)


+⟨0|[OI ,[V a,O†J]]|0⟩
=Va†[E−ωJ IS]−1VIJ+ ⟨0|[OI ,[V a,O†J]]|0⟩
=

pq

V a
pqγ

IJ
pq, (A17)

which is just the formula used before for the TDM.
Therefore, the standard way for identifying transition

properties from the residues of approximate QRF may be
plagued by second order poles, which are otherwise not present
in exact theory. A frequency-dependent kernel of TD-DFT
may bring in some extra terms, so as to cancel the erroneous
poles. However, such a frequency-dependent kernel is not yet
available. As a practical solution, only those terms that have the
same structure as in exact theory will be retained. Specifically,
for the transition moment (A14), the terms in Eq. (A16) to be

retained are
I ′>0

(Va†t′I)(t†I ′⟨0|[Λ,[−O†J,V
b]]|0⟩)

ωI ′− (ωk+ωJ)

+

I ′>0

(⟨0|[Λ†t−I ′,[O†J,V a]]|0⟩)(t†−I ′Vb)
ωI ′+ωk

=

I ′>0

⟨0|V a|I⟩⟨0|[OI ,[V b,O†J]]|0⟩
ωI ′− (ωk+ωJ)

+

I ′>0

⟨0|V b |I⟩⟨0|[OI ,[V a,O†J]]|0⟩
ωI ′+ωk

, (A18)

which suggests immediately the transition moment between
two excited states should be

⟨I |V̄ a|J⟩= ⟨0|[OI ,[V a,O†J]]|0⟩. (A19)

For TD-HF, this amounts just to neglecting γIJ
pq(I) (29), thereby

going back to the RPA derived from the EOM formalism.26

One disadvantage of Eq. (A18) lies in that, for such transition
moment, the implicit summation over all the excited states
furnished by solving the response equation as in Eq. (A14)
cannot be achieved. Finally, we mention that for the spe-
cial case of I = J, Eq. (A17) is always well-behaved unless
ωI ′= 0.
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