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ABSTRACT: The GW method in its most widespread variant
takes, as an input, Kohn−Sham (KS) single particle energies
and single particle states and yields results for the single-
particle excitation energies that are significantly improved over
the bare KS estimates. Fundamental shortcomings of density
functional theory (DFT) when applied to excitation energies
as well as artifacts introduced by approximate exchange-
correlation (XC) functionals are thus reduced. At its heart lies
the quasi-particle (qp) equation, whose solution yields the
corrected excitation energies and qp-wave functions. We
propose an efficient approximation scheme to treat this
equation based on second-order perturbation theory and self-
consistent iteration schemes. We thus avoid solving (large)
eigenvalue problems at the expense of a residual error that is comparable to the intrinsic uncertainty of the GW truncation
scheme and is, in this sense, insignificant.

1. INTRODUCTION

A convenient theoretical tool to study interacting electron
systems in condensed matter theory is the (causal) Green’s
function (G).1,2 There are two reasons for its popularity. First,
several important observables, such as the ground state
particle density, the local density of states, and the electronic
addition spectrum, can be derived from G straightforwardly.1

Second, a systematic perturbative treatment of G in the
(screened) Coulomb interaction is relatively straightforward to
organize.3 Accordingly, in the last decades, many approaches
applying methods based on Green’s function have been
developed for the study of the electronic structure of
solids.4−13 Recently, also applications have been advanced in
the context of quantum chemistry.14−45

Our work indicates that, for molecular systems, G0W0

energies employing (nonselfconsistent) single-shot approx-
imations to the quasi-particle equation (and starting from a
semilocal functional) acquire significant corrections, on the
order of 1 eV, when including self-consistency on the pole
positions; by contrast, corrections on the orbitals (probed by
off-diagonal terms), in most cases, appear less relevant. For
many applications, such uncertainties are not acceptable.
Therefore, developments in the direction of self-consistency
should be welcome. Indeed, these developments are becoming

more common practice, especially in the applications to
solids.12,46−63

For the purpose of this paper, we consider G(z) to be a
family of matrices G(x,x′;z) with indices x denoting the
combined spin and position coordinates (x = (rσ)) and a
family parameter z representing the (complex valued) energy.
Let GH denote the Hartree approximation of G. Then, we can
define the self-energy Σ via the Dyson equation G(z) = GH(z)
− GH(z)Σ(z)G(z), where the conventional matrix notation
was used. Σ can be obtained as a solution of Hedin’s
equations.64 However, the exact solution of the full set of
equations is computationally too demanding. Therefore, in
practice, Σ is approximated. A common scheme is the G0W0

approximation.3 However, we would like point out that the
self-energy could also be another approximation to the self-
energy, such as the Moeller−Plesset second-order (MP2) self-
energy. The approach proposed in this paper is generally
applicable. For the MP2 self-energy, the quantities needed to
calculate the perturbative corrections proposed here are
already available in standard quantum chemistry codes, since
they are also needed for the computation of quantities like
geometry gradients.65
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In this paper, we consider a many-body system, such as a
molecule, assuming that the corresponding Kohn−Sham (KS)
states (ψn) and energies (ϵn

KS) of the associated density-
functional problem are already known (n = 1, ..., N).
Furthermore, we also take the self-energy as a given functional
of the KS−Green’s function, Σ[GKS](z), for instance
constructed on a G0W0 level. The question that we here
address is how (for given functional Σ[GKS](z)) to calculate
the perturbative corrections to ϵn

KS efficiently, in order to
estimate the quasi-particle energies ϵn

QP(z) (i.e., the poles of
G(z)) that belong to this molecule. Technically speaking, we
would like to solve the quasi-particle equation,

∑ ⟨ |Σ ϵ − | ̲⟩ = ϵ − ϵ
=

′ ̲ ′ ′ ′n V n( ) ( )
n

N

n n n n n n n
1

,
QP

xc
QP KS

,
(1)

where the poles ϵn
QP and the matrices ≡ ϵ′ ′( )n n n n n, ,

QP are
to be found. The matrix elements ⟨n|Σ(z) − Vxc|n⟩ are
assumed to be given functions of z.66

Equation 1 has a formal structure reminiscent of an
eigenvalue problem. However, it is more challenging to solve,
because the self-energy matrix entering the left-hand side
(LHS) is dependent on the pole positions, ϵn

QP. Two
difficulties arise from this. First, each pole comes with its
own set of matrix elements Σ(ϵnQP) . Therefore, if one were to
determine all poles, one would must solve N eigenvalue
problems, each of the size N × N. Second, since the pole
positions are not known a priori, the LHS of eq 1 is not
exactly known either. Hence, the solution relies upon a self-
consistency procedure. Because of the energy dependency of
Σ, the solution of the qp equation defined by eq 1 is at least

N( )4 and, thus, very expensive. Therefore, in view of
current efforts striving at approximate schemes for Σ of

N( )3 (and less expensive),31 the efficient solution of eq 1
becomes a relevant topic.
1.1. Commonly Adopted Approximation Schemes.

The standard schemes to solve eq 1 have in common that (i)
they focus on n = n′ and, hence, select one out of possibly
several solutions and (ii) they ignore corrections to the quasi-
particle states, Ψn, i.e., the real space structure of the Green’s
function is adopted from the KS reference states and

δ→̲ ̲n n n n, , :

ϵ + ⟨ |Σ ϵ − | ⟩ = ϵn V n( )n n n
KS QP

xc
QP

(2)

Thus, we are left with N self-consistent iterations.
Considering the decomposition

δ λ⟨ |Σ − | ̲⟩ = + ·̲

‐

 
n z V n z M z( ) ( ) ( )n n n nnxc

diagonal off diagonal (3)

Equation 2 would be exact if λ = 0, i.e., in the absence of off-
diagonal terms in Σ. Here, λ is a formal parameter used later
to organize a perturbation theory in off-diagonal matrix
elements.
In order to avoid self-consistency loops, often one more

approximative step is taken. To the extent that corrections to
the KS energies are small enough, one can try to expand the
self-energy in eq 2 near the KS energies. This approximation
is typically valid if the initial guess for the quasi-particle
energy, i.e., the KS energy, is sufficiently remote from a pole
of the self-energy. The linearized qp spectrum reads

ϵ = ϵ + ⟨ |Σ ϵ − | ⟩Z n V n( )n n n n
QPlin KS KS

xc

introducing the qp weight,

= − ∂Σ
∂ =ϵ

−⎡
⎣⎢

⎤
⎦⎥Z n

E
E

n1
( )

n
E

1

n
KS

1.2. Motivation and Idea Behind This Work. In this
work, we calculate the leading corrections to the qp spectrum
described by eq 2 that originate from (i) self-consistency in
the poles of G (implying a shift of the self-energy poles of ϵn

QP

− ϵn
KS) and (ii) from off-diagonal elements of Σ. The latter

account for the deviations of the qp-wave functions Ψn, from
their KS parents ψn.
(i) The particular type of self-consistency effects that we

would like to address here relate to the fact that the Green’s
function, GKS, that is fed into the functional Σ[GKS] could be
taken having the poles belonging to the KS system, but it
could also be another Green’s function, Gfo that derives from
GKS by shifting the bare KS energies to the (updated) qp
positions, but keeping the KS wave functions fixed; in other
words,

δ
η

⟨ | | ′⟩ =
− ϵ +

′n G E n
E

( )
n

fo
nn
QP

Thus, we have the trivial property ⟨n|Gfo(E)|n′⟩ = ⟨n|GKS(E +
ϵn
KS − ϵn

QP)|n′⟩ (where fo denotes fixed orbital). It ensures that
the numerical cost for determining a self-consistent solution
of eq 2 is the same, irrespective of whether the poles of Σ are
updated in each iteration (i.e., working with Gfo) or not (i.e.,
working with GKS). Further details can be found in the
appendix.
(ii) Physically, one expects that wave function corrections

should be small for those cases where the spatial structure of
the qp states is plane-wave like: wave functions are extended,
and the charge density is almost homogeneous. For solids,
this condition generally holds and, only in special cases,
corrections from off-diagonal elements of Σ contribute
significantly, namely, when the underlying DFT calculation
wrongly predicts a metal or the localization of d-
electrons.12,55,67,68 In contrast, in situations with more
structured charge distributions, as they occur with small
molecules, off-diagonal terms could be significant. [Note:
Even if the node-structure of wave functions is dictated largely
by molecular or crystal symmetries, the ground-state charge
distribution may not be given sufficiently accurately by
common DFT functionals in order to reproduce hybridization
and charging effects properly. This situation typically arises
with open-shell molecules or in the presence of degeneracies.
In particular, a strong impact of off-diagonal terms in Σ might
be expected in charge-transfer compounds, where the amount
of charge transfer is controlled by level alignment and
hybridization.69 In this case, the ground-state charge density
may differ significantly from KS-LDA or KS-GGA estimates,
so that wave function updates should be very important to
understand the ground-state structure. This situation typically
arises with open-shell molecules or in the presence of
degeneracies.] In order to illustrate quantitative aspects, we
consider two examples: benzene and acrolein. The corre-
sponding self-energies Σ (G0W0 level) are displayed in Figures
1 and 2. These examples suggest that typically off-diagonal
matrix elements are smaller than diagonal entries by an order
of magnitude. However, they cannot be neglected, because
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there are many of them ( N( )2 ). This suggests a perturbative
treatment of off-diagonal terms in the matrix depicted by eq
1.
Paragraphs (i) and (ii) outline the route that we explore in

this work. We will show that the solution of the diagonal
equation, eq 2, acquires significant corrections upon updating
the poles of the self-energy. To investigate the effect of off-
diagonal terms of Σ on the spectrum, we implement a second-
order perturbative analysis of eq 1 that operates in a
quantitative and computationally very affordable way. As it
turns out, off-diagonal corrections, in most cases, are
quantitatively negligible within the test set of molecules that
we have studied.

2. MODEL AND METHOD
We analyze eq 1 by employing conventional perturbation
theory in λ. Up to second order, the (generalized)
eigenvectors and eigenvalues read

δ λ

λ λ

ϵ = ϵ + · ϵ

+ · ϵ +

′ ′ ′ ′ ̲ ′ ′

′ ′

( ) ( ) ( )

( ) ( )

n n n n n n n n n n n

n n n

,
QP

0 ,
QP

1 ,
QP

2
2 ,

QP 3
(4)

λ λ λϵ = ϵ + · ϵ + · ϵ +′ ′ ′ ′ ( )n n n n
QP

0
QP

1
QP 2

2
QP 3

(5)

Plugging this into the qp expression represented by eq 1, we
find that the first-order energy correction vanishes,

ϵ =′ 0n1
QP

(6)

while the second-order calculation yields

∑ϵ =
ϵ ϵ

ϵ − ϵ − ϵ′
≠

′ ̲ ′ ̲ ′ ′

′ ̲ ′ ′

( ) ( )

( )n
n n

n n n nn n

n n n n
2

QP
QP QP

0
QP KS QP

(7)

Equation 7 gives the corrections to the spectrum originating
from off-diagonal terms of ⟨n|Σ(ϵn′QP) − Vxc|n⟩. Since the pole
positions are not known a priori, one still must iterate the
initial guess of poles and matrix elements to self-consistency.
We call the self-consistent solution of the jth-order
approximation zn

(j). Details of the calculation are given in
the Appendix.

2.1. Validation. In order to validate the accuracy of the
second-order treatment, we will compare to exact solutions of
eq 1 obtained by full diagonalizion. These terms are fozn

(∞)

and zn
(∞), representing the two situations with and without

updating the self-energy poles. Such solutions are available for
small system sizes and benchmark our second-order results.
In the exact diagonalization approach, the qp equation

described by eq 1 is solved for every single pole ϵn′
QP(z)

separately. This is necessary, because the solution involves a
generalized eigenvalue problem with a matrix (operator) that
is dependent on its eigenvalues. To tackle the problem, we
choose an initial guess, then diagonalize the matrix operator
for this guess and determine its eigenvalues. One of these
eigenvalues is closer to the initial (previous) guess than all
others. We choose this (closest) eigenvalue as an improved
guess and reiterate until self-consistency is reached. We
mention that, by construction, this procedure delivers a
number of N solutions, but many additional solutions are
being discarded. A discussion of their physical significance has
been given in recent work.70

2.2. Calculational Details. The implementation of the
perturbative expressions described by eq 7 has been done in
the framework of the G0W0 module integrated in the
TURBOMOLE package within a local version basing on
V6.6.42,71 For the screening, we employed KS-RPA with
resolution of the identity approximation (RI). All calculations
employ the TZVPP basis set.72 For the DFT part the PBE
functional was used.73

To accelerate convergence, we found it helpful to initialize
the self-consistency cycles of higher-order approximations with
the estimates obtained from lower-order ones: initial guesses
to obtain the diagonal approximation, zn

(0), have been the bare
KS energies ϵn

KS: the second-order cycle (result zn
(2)) was

initialized with zn
(0). Finally, the full diagonalization (exact)

cycle was initialized with the self-consistent second-order
result, zn

(2).
2.3. Observables. We have performed calculations of

ionization energies/potentials (IPs) on a subset of 24
molecules of the test set GW27.42 IPs are a standard
observable for testing electronic structure methods, because
(i) they are an important indicator to understand charge
transfer processes and (ii) reliable experimental reference data
are available. The first IP measures the (negative) energy of
the highest occupied molecular orbital (HOMO).

Figure 1. Visualization of the matrix that governs the G0W0
correction on KS eigenvalues expressed in KS reference states. The
matrix elements ⟨n|Σ(0ϵnQP) − Vxc|n⟩ are calculated at fully converged
G0W0 qp energies 0ϵn

QP from the diagonalized qp equation. The data
show that off-diagonal elements are significantly smaller than the
diagonal ones. Thus, a perturbative treatment of off-diagonal
elements is justified. The high number of nonzero elements suggests
that they introduce significant corrections on the qp energies. The
matrix shown is representative for the molecule benzene.

Figure 2. Visualization of the matrix that governs the G0W0
corrections on KS eigenvalues expressed in KS reference states,
similar to Figure 1. The matrix in this figure is representative for the
molecule acrolein. Again, we find diagonal matrix elements, which are
orders of magnitude larger than off-diagonal elements.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00394
J. Chem. Theory Comput. 2015, 11, 5152−5160

5154

http://dx.doi.org/10.1021/acs.jctc.5b00394


2.4. Computational Cost. Since the self-consistency cycle
associated with solving the qp equation described by eq 1
requires recalculation of the matrix elements of Σ anyway,
there is no extra computational cost for updating the self-
energy poles, i.e., for the replacement of GKS with foGKS.
The computational effort solving the qp equation exactly

exceeds the bare G0W0 time by almost 2 orders of magnitude
(see Figure 3). Therefore, large-scale applications of this

solution strategy are strongly discouraged. However, as our
results will show, typically the effect of off-diagonal matrix
elements are small in a sense (but not necessarily negligible);
hence, they are already captured in second-order perturbation
theory. This allows one to reduce the computational cost
significantly. In our present implementation, it is typically a
factor of 2−5 above the common diagonal approximation (see
Figure 3). [Note that no rigorous attempt to fully optimize
has yet been made.]
In second-order calculations most of the computational

time of the GW calculation is spent in the construction of Σ,
like in the zeroth-order approach. For the latter, the solution
of the diagonal qp equation requires a maximum of 15% of
the time needed for the construction of Σ. Because of the
calculation of the off-diagonal matrix elements of Σ, the
enhancement at the second-order level is particularly large.
Finding the exact solution of the qp equation is even more
expensive; however, the iterative diagonalization of the qp
equation also requires a significant amount of time (about as
much as the construction of Σ). [Note that the full GW
calculation consists of three steps: DFT, response function,
and GW (constructing Σ and solving the qp equation). For
small systems, the computational cost of the DFT part is
already <5% of the total. The calculation of the response
consumes most of the total time (∼85% of a zeroth-order
G0W0 calculation). These computational costs are the same
for both zeroth-order, second-order, and full-diagonalization
calculations. Therefore, the increased computational effort of a
second-order calculation, discussed above, is only ∼40%−50%
when we consider the entire calculation.] Notice that the
second-order approach does not deteriorate the scaling of the

computational cost with system size. Once the polarization
has been calculated, which is formally a fourth-order process,
we can construct the diagonal elements in a formally third-
order process and the off-diagonal elements in a formally
fourth-order process. Hence, the overall scaling exponent is
not changed by moving from zeroth order to second order.

3. RESULTS AND DISCUSSION
Table 1 summarizes the key results of this work. It displays
the estimates for the ionization potential of 24 molecules
based on the (negative of the) HOMO energy as obtained
from the different approximation strategies to the qp equation.

3.1. Updating Self-Energy Poles. Figure 4 displays the
IP (energy of the HOMO) as it is obtained from solving the
diagonal equation described by eq 2, with and without
updating the self-energy poles. Two observations are to be
made:
(i) The differences between updated and nonupdated

calculation, fozn
(0) − zn

(0), are seen to be relatively small,
compared to the bare G0W0 shift zn

(0) − ϵn
KS from the KS

result.
(ii) Updating the pole positions is still important in the

sense that updating brings fozn
(0) much closer to the coupled-

cluster reference solution than the bare result zn
(0). It is seen

that updating self-energy poles helps to reduce the deviation
between the coupled cluster and the solutions of the G0W0 qp
equation by typically 1 order of magnitude.

3.2. Accuracy of Second-Order Approximation
(Leading Ionization Potential). As one sees directly from
Table 1, the second-order corrections from off-diagonal
elements of the self-energy have a tendency to be smaller
than the diagonal corrections, typically by an order of
magnitude. Thus, the perturbative treatment is justified a
posteriori. This observation holds true regardless of whether
the poles of the self-energy are updated or not. In other
words, the solutions of the diagonal equation, zHOMO

(0) and

fozHOMO
(0) , are already close to the exact ones (zHOMO

(∞) and

fozHOMO
(∞) ). To illustrate this point, we plot only the deviations

of the diagonal and the second-order HOMOs to the exact

Figure 3. Growth of the computation time (per cycle) with the
number of basis functions for solving the qp equation (eq 1).
Different approximations scheme are compared: zeroth-order,
second-order, exact treatment of off-diagonal matrix elements of
the self-energy. The calculations were performed on the HC3 cluster
of the Karlsruhe Institute of Technology using the standard nodes
(two Quad-Core Intel Xeon E5540 processors with 2.53 GHz and 24
GB RAM).

Figure 4. Deviations to leading IP estimates from ΔCCSD(T)74 to
HOMO energies obtained from the diagonal qp equation without
(G0W0) and with updating the poles (GfoW0). Methods: Hartree−
Fock (HF), DFT with PBE, G0W0, and GfoW0 (@PBE using RPA
response for W0). The dashed horizontal line gives the deviations
(±0.5 eV). As seen from the data, self-consistency in the poles
improves the agreement with the reference by up to 1 eV, in
comparison to the G0W0 results.
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diagonalization results in Figure 5. Still, in some cases, such as
the Au-dimer and the N-dimer, off-diagonal terms can reach

values of 500 meV, bringing the GfoW0 result closer to the
coupled-cluster reference. The second-order approach cap-
tures these corrections.
3.3. Higher Ionization Potentials. To further validate

our methods, we investigate higher ionization energies. They
correspond to the energies of quasi-particles that are bound
more strongly than the valence electrons.
Figure 6 displays the 10 lowest IPs of benzene. The data

confirm the earlier observations made for the first IP:

updating the self-energy poles bring the approximate solutions
of the qp equation significantly closer to the reference results.
Importantly, in those cases where the bare qp equation (with
Σ featuring poles at the bare KS energies) is not successful to
significantly reduce the DFT error, updating the self-energy
poles achieves this. Conversely, if the bare equation gives
accurate results, the updating corrections are insignificant.
This positive impression is further supported by two more
test cases that we have considered. Figure 6 shows higher IPs
also for the water and the nitrogen molecules. Again, updating
self-energy poles has a tendency to improve the results
obtained from the bare qp equation. In all cases, the
contribution of off-diagonal self-energy matrix elements is
typically small, with sizable corrections only for very high IPs.

4. CONCLUSION AND OUTLOOK
At the heart of any G0W0 calculation is the solution of the
quasi-particle (qp) equation. It determines corrections to the
single particle excitation energies of the reference calcu-
lationtypically Kohn−Sham (KS)-based density functional
theory. In standard G0W0 implementations, the qp equation is
solved within a diagonal approximation that (i) takes the
poles of the self-energy at the (bare) KS-energies and (ii)
neglects off-diagonal matrix elements of the self-energy. The
latter step implies that the KS wave functions of the reference
system are also adopted for the qp states.
In this paper, we investigated the effect that conditions (i)

and (ii) can have on the ionization energies of small
molecules. On a quantitative level, our findings suggest that
shifting (updating) the self-energy poles (by the qp-
correction) from their bare KS values to the (approximate)

Table 1. Table of the Experimental (Vertical) Ionization Potentials (Exp), the (Vertical) IP in the ΔCCSD(T)
Approximation (ΔCCSD(T)) and Minus the Calculated HOMO Energies for DFT(with functional PBE), Hartree-Fock (HF)
as well as at the Zeroth-Order G0W0 (G0

(0)W0), Second-Order G0W0 (G0
(2)W0), Zeroth-Order GfoW0 (Gfo

(0)W0), Second-Order
GfoW0 (Gfo

(2)W0), and Exact GfoW0 (Gfo
(∞)W0) Levels of Theory

Ionization Potential (eV)

molecule DFT HF G0
(0)W0 G0

(2)W0 Gfo
(0)W0 Gfo

(2)W0 Gfo
(∞)W0 ΔCCSD(T)74 Exp

H2 10.25 15.96 15.57 15.58 15.99 16.00 16.01 16.21 15.42
Li2 3.21 4.89 4.95 4.98 5.15 5.16 5.19 5.20 5.11
Na2 3.13 4.50 4.78 4.79 4.91 4.92 4.94 4.92 4.89
Cs2 2.30 3.10 3.40 3.43 3.44 3.49 3.56 3.58 3.70
F2 8.97 17.68 14.55 14.59 15.15 15.19 15.19 15.46 15.70
N2 10.20 16.54 14.69 14.71 14.69 15.22 15.26 15.54 15.58
BF 6.80 11.07 10.43 10.45 10.76 10.78 10.77 11.14 11.00
LiH 4.36 8.18 6.52 6.57 7.63 7.65 7.66 7.93 7.90
CO2 9.02 14.79 12.96 13.01 13.35 13.40 13.40 13.67 13.78
H2O 7.02 13.85 11.87 11.91 12.38 12.41 12.41 12.61 12.62
NH3 6.02 11.69 10.24 10.28 10.67 10.70 10.70 10.85 10.85
SiH4 8.47 13.15 12.11 12.13 12.51 12.53 12.53 12.70 12.82
SF4 8.09 13.81 11.88 11.91 12.24 12.24 12.23 12.62 12.30
Au2 6.32 7.90 9.84 9.74 9.62 9.11 9.09 9.10 9.50
Au4 5.63 6.41 7.45 7.45 7.67 7.65 7.61 7.67 8.60
methane 9.44 14.83 13.79 13.82 14.19 14.21 14.21 14.36 14.35
ethane 8.13 13.23 12.22 12.24 12.57 12.59 12.60 13.12 12.00
propane 7.67 12.59 11.54 11.56 11.89 11.91 12.00 12.13 11.51
butane 7.58 12.43 11.39 11.40 11.74 11.42 11.44 11.58 11.09
isobutane 7.60 12.46 11.26 11.27 11.60 11.53 11.54 11.68 11.13
ethylene 6.78 10.33 10.24 10.26 10.40 10.45 10.43 10.70 10.68
acetone 5.59 11.20 8.84 8.87 9.37 9.44 9.43 9.71 9.70
acrolein 5.96 10.72 9.23 9.26 9.88 9.89 9.88 10.20 10.11
benzene 6.31 9.17 8.87 8.90 9.03 9.07 9.08 9.34 9.24

Figure 5. HOMO energy obtained from solving the qp equation
with updating the self-energy poles, taking into account only the
diagonal contributions (fozHOMO

(0) ) and second-order treatment of off-
diagonal elements (fozHOMO

(2) ) as deviating from the exact diagonaliza-
tion results (fozHOMO

(∞) ). Dashed horizontal lines give the deviations
(±0.5 eV).
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qp positions contributes to the ionization energy (typically a
few hundred millivolts) and are thus comparable in size to the
corrections expected for fully self-consistent GW calculations.
In this sense, updating energy poles is very significant. By
contrast, our calculations suggest that the contributions of the
off-diagonal matrix elements of the self-energy are, in most
cases, smaller than the corrections due to updating, typically
by an order of magnitude.

■ APPENDIX

A. Self-Consistency in Poles of G
Within the fixed-orbital approach, we aim only for self-
consistency in the pole positions of G. To this end, we recall
the real part of the matrix elements of the correlation part of
the self-energy from the G0W0 implementation42

∑ ∑

∑

ρ ρ
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ρ ρ
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with the KS energies (ϵi
KS and ϵa

KS), the excitation energies
(Ωm), and densities (ρm), and η, which is set to zero at the
end of the calculation. In each iteration step, we replace all KS
energies ϵKS with (current guesses for) the qp energies ϵQP.
We thus construct, on the fly, the correlation contribution of
GfoW0:
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Here, the screening and, hence, Ωm and ρm, are still calculated
from the underlying KS reference system. Hence, the charge-
neutral (particle-hole) excitations that enter the bare polar-
ization function are not given by the differences of single-
particle (charged excitation) energies. This feature of our
approximation scheme is somewhat reminiscent of the effect

of vertex corrections as they are imbedded in the Bethe−
Salpeter equation.

B. Appendix B: Off-Diagonal Contributions
The formal structure of the qp equation reads as follows:

∑ ϵ = ϵ − ϵ′ ̲ ̲ ′ ′ ′( ) ( )
n

n n n n n n n n n
QP QP KS

(B1)

The matrix family z( ) is assumed to be given, while ϵn′
QP

and the set of eigenvectors that forms the columns of ′ ̲n n
are to be found. We face a typical self-consistency problem
that features a (generalized) eigenvalue problem with a matrix
operator that is dependent on the eigen-solutions. A
peculiarity appears, compared to situations familiar from
Hartree−Fock or Kohn−Sham theory, because is
dependent on the eigenvalues, but not on the eigenstates.

B.1. Formal Perturbation Theory. The matrix has a
grading in the sense that its diagonal elements are much
larger than the off-diagonal ones. This suggests the following
decomposition:

δ λϵ = ϵ + ϵ̲ ̲ ̲M( ) ( ) ( )n n n n n n n n n n
QP QP QP

(B2)

With eq B2, the solutions of B1 are dependent on λ:
λ λϵ ′ ′ ̲( ), ( )n n n

QP . The grading of suggests a perturbative
expansion,

⏟
λ λ λ λϵ = ϵ + · ϵ + · ϵ +

λ =

( ) ( )n n n n
QP

0
QP

solution 0

1
QP 2

2
QP 3

(B3)

δ λ λ λ= + · + · +̲ ̲ ̲ ̲ ( )n n n n n n n n n0 1
2

2
3

(B4)

Note that we are aiming at self-consistency at every order of
λ. In this way, the expansion coefficients will effectively pick
up their own (weak) λ dependency.

B.1.1. Self-Consistency Cycle. The iteration cycle is
initialized by defining the first guess for ϵn

OP, which we
denote as (0)ϵn

OP (parent generation).
(1) For j = 0, 1, ..., calculate

ϵ →̲ ′ ̲ ′( )n n
j

n
j

n n n
( ) QP ( )

; (B5)

(2) Decompose

δ λ= +̲ ′ ′ ̲ ̲ ′Mj
n n n

j
n n n n

j
n n n

( )
;

( )
;

( )
; (B6)

(3) Solve, in perturbation theory in λ, the substitute
problem

Figure 6. Deviation of the G0W0 HOMO energy from experimental ionization potentials using diagonal approximation without (zn
(0)) and with

self-consistency (fozn
(0)) and second-order approximation of off-diagonal contributions (fozn

(2)) for benzene (left), H2O (center) and N2 (right). As
seen from the plot, the self-consistency reproduces higher IPs with roughly the same accuracy as for the first IP. The self-consistency solutions, as
previously mentioned, brings bare results much closer to the experimental results.
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The perturbation theory has the structure given by eqs B3

and B4 for the quantities (j+1)ϵn
QP and +

̲
j

n n
( 1) .

(4) Return to step (1), replacing (j)ϵn′
QP with its update

(j+1)ϵn′
QP

As usual, the perturbation theory is organized via sorting
powers of λ after inserting the formal expansions B3 and B4
into the expression
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where, in our notation, we have dropped the prefixes of
+

′
+

′,j
n

j
n n

( 1)
0

( 1)
1 .

B.2. Lowest (Zeroth)-Order Perturbation Theory. In
lowest-order perturbation theory, we obtain the diagonal
approximation (eq 2).
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j
n n

( )
;

( 1)
0

QP KS
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δ=̲ ̲
j

n n n n
( )

(B10)

There is no wavefunction update and eq 2 is iterated to self-
consistency in 0ϵn

QP.
B.3. First-Order Perturbation Theory. As usual, we collect

terms,
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and then consider two cases. If n = n′, then (again, dropping

the prefixes of +
′
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By construction, the diagonal elements of ̃, are all zero
and therefore the LHS of this equation vanishes; hence,

ϵ =+ 0j
n

( 1)
1

QP
(B13)

We conclude that corrections due to off-diagonal elements in
appear in the qp energies ϵQP only at second order in λ.

The linear corrections to the eigenvectors are extracted
from the off-diagonal case, n ≠ n′; we have

=
ϵ − ϵ +

′ ≠′ ′
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j
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j
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j
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1 0
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;
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while = 01 nn . Equation B14 gives the leading order mixing
of the KS states into the qp wave functions. (The set of
coefficients n0 is found from the normalization condition.)
Note that, as long as one is only interested in the leading
order corrections to the eigenvectors, one can first find the
self-consistent zero-order solution

= − ϵz z( )n n n n
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(B15)
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B.4. Second-Order Perturbation Theory. We collect all
terms of order λ2:
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As in first-order calculation, we only need the diagonal case,
n′ = n, to obtain the energy corrections:
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where = 02 nn has been employed. Using B14, we find
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Also note that, in the second-order expression, only terms of
type ̲m nn n; nn;n survive, i.e., only two indices are different.
From third-order calculations onward, terms with three
different indices also appear in the energy correction.
We arrive at an updated qp energy, with

λ λϵ = ϵ + · ϵ ++ + + ( )j
n

j
n

j
n

( 1) QP ( 1)
0

QP 2 ( 1)
2

QP 3
(B20)

These improved estimates ((j+1)ϵn
OP) are plugged back into eq

1 to update the matrix elements when iterating the process
toward the self-consistent point. The cycle is terminated after
a fixed number of iterations. In our case, we choose 20. This
way, we ensured that that the increment |(j+1)ϵn

OP − (j)ϵn
OP|

dropped below a threshold of δ = 0.1 meV.
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