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The one-shot GW method, beginning with the local density approximation (LDA), enables one to calculate
photoemission and inverse photoemission spectra. In order to calculate photoabsorption spectra, one had to
additionally solve the Bethe-Salpeter equation (BSE) for the two-particle (electron-hole) Green’s function,
which doubly induces evaluation errors. It has been recently reported that the GW+BSE method significantly
underestimates the experimental photoabsorption energies (PAEs) of small molecules. In order to avoid these
problems, we propose to apply the GW (�) method not to the neutral ground state but to the cationic state
to calculate PAEs without solving the BSE, which allows a rigorous one-to-one correspondence between the
photoabsorption peak and the “extended” quasiparticle level. We applied the self-consistent linearized GW�

method including the vertex correction � to our method, and found that this method gives the PAEs of B, Na3,
and Li3 to within 0.1 eV accuracy.
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I. INTRODUCTION

Photoabsorption (PA) plays a decisive role in many pho-
torelated phenomena such as photosynthesis, photovoltaic
cells, photocatalysts, photochemical reactions, photoinduced
phase transitions, and so on. Photoabsorption energies (PAEs)
have important information on these phenomena. The physics
behind PAEs for all wavelength regions, if one ignores vibronic
effects, is that each PAE is quantum mechanically identified to
the total energy difference between the ground state (GS) and
an excited eigenstate (EES) with one electron excited from the
GS of the Hamiltonian.

So far, we have three different first-principles approaches
to calculate PAEs: (i) the quantum chemistry (QC) approaches
such as the configuration interaction (CI) and coupled-cluster
(CC) methods [1], (ii) time-dependent density functional the-
ory (TDDFT) [2], and (iii) the GW+Bethe-Salpeter equation
(BSE) approach [3–7]. The � self-consistent field (�SCF)
method, which calculates the difference between the two
total energies EN

ν and EN
G , has been commonly used in QC

approaches. They are very accurate but the computational cost
required in the QC approaches scales as O(νNn), where ν

represents the number of peak positions of the PA spectrum
[8,9] and n represents the computational cost required in
the GS calculation; for example, n = 6 for multireference
single and double CI (MRDCI) [8]. (This is because EN

ν

is calculated after EN
ν−1,E

N
ν−2, . . . ,E

N
G in the orthogonality

constrained method [9].) Due to their heavy computational cost
and low parallel efficiency, QC approaches are not applicable to
large molecules. TDDFT is probably the most economic option
among the three, but the results strongly depend on a choice
of the exchange-correlation functional. TDDFT is suitable for
a coarse estimation of large molecules.

*ohno@ynu.ac.jp

The GW+BSE approach is still heavy, but, owing to
the high parallel efficiency, its computational cost can be
well dispersed. Recently, this approach has been applied to
various materials [10,11]. The approach is composed of two
procedures: One is the GW approximation (GWA) [12,13] to
determine the quasiparticle (QP) energies, which represent the
difference between the total energies of the N -electron GS and
the (N ± 1)-electron EES. They correspond to photoemission
and inverse photoemission spectra (PES/IPES), where one
electron is removed from or added to the N -electron GS. The
energy gap εN

g can be obtained by the difference between
two QP energies, εN

LUMO − εN
HOMO, but this εN

g is different
from the PAE, �N . To calculate PAEs, one has to additionally
treat the electron-hole, two-body problem by solving the BSE
[3–7]. In this way, the method has to deal with not only
the one-particle Green’s function in the GW part but also
the two-particle (electron-hole) Green’s function in the BSE
part, which doubly induces evaluation errors. Indeed, it has
been recently reported by several authors that the GW+BSE
method significantly underestimates the experimental PAEs
of atoms and small molecules [14–16]. The use of the Heyd-
Scuseria-Ernzerhof (HSE) functional or the self-consistent
GW calculation improves the results, but they are not perfect
[15,17]. This problem is difficult to solve in many-body per-
turbation theory (MBPT) unless one uses a more sophisticated
approach, such as the self-consistent LGW�+BSE approach
[16]. In any approach solving the BSE, the resulting two-
particle (electron-hole) wave functions are complicated linear
combinations of the products of the electron and hole QP wave
functions. Therefore, there is no one-to-one correspondence
between each peak of the PA spectrum (corresponding to an
N -particle EES) and the QP energy level (corresponding to an
N ± 1-particle EES).

In the present Rapid Communication, we propose a com-
pletely different and very tractable approach, which allows a
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FIG. 1. The first peak PAE �PA
1st is equal to the extended QP energy

difference εN−1
LUMO − εN−1

HOMO obtained by the GW calculation for the
(N − 1)-electron cationic GS. Here, εN−1

LUMO and εN−1
HOMO correspond,

respectively, to the total energy differences between the final PA state
and the initial cationic GS and between the neutral GS and the initial
cationic GS.

rigorous one-to-one correspondence between the PA peaks and
the (“extended”) QP levels [18], although each peak height
(intensity or oscillator strength) is not obtained. Our idea is
to treat a cationic system instead of a neutral system and to
consider the following three processes:

(1) Consider a cationic state having one hole in the neutral
GS and calculate the largest energy gain when one adds one
electron to this cationic hole level to retrieve the neutral GS.

(2) Calculate the second (or third, …) largest energy gain
when one adds one electron to the higher empty levels of this
cationic state to construct the final PA state.

(3) The first (or second, third, …) PA peak energy is directly
obtained as the difference between these two energy gains
without any relaxation, as shown in Fig. 1.

A significant point of this method is that the two energy
gains, i.e., the minus of the two “extended” QP energies, in pro-
cesses (1) and (2) can be obtained simultaneously by applying
the standard GW method to the cationic system instead of the
neutral system, and process (3) is just a simple subtraction
of these two energies and does not require any relaxation
procedure such as to solve the BSE. Therefore, it offers a very
simple and elegant method which enables one to calculate the
electron excitations from the highest occupied molecular or-
bital (HOMO) level to the lowest unoccupied molecular orbital
(LUMO), LUMO+1, LUMO+2, …levels just by a single GW

calculation. (Note that some other PA peaks may correspond to
the energy difference between the HOMO-1 level or, in general,
the HOMO-n level and the LUMO+1, LUMO+2, …levels. To
obtain such PA peaks, it is necessary to repeat a similar GW

calculation by starting from the cationic EES with one hole
at the HOMO-1 level or, in general, at the HOMO-n level.
Anyway, this is a simple and transparent task on the basis
of the “extended QP theory” [18].) It allows one to identify
the rigorous one-to-one correspondence between the PA peaks
and the (“extended”) QP levels. Since our method requires
the GW calculation only and does not require the BSE, we
named this the “GW (�) method without BSE.” This method
is, without doubt, faster and simpler than the GW (�)+BSE
method because the complicated BSE is no longer necessary.
This method is named “GW (�)” but our framework allows
one to replace the GW (�) calculation with any other method
which can calculate the (“extended”) QP energies.

Although the present method is very powerful, some com-
ments should be given here. It delivers excited-state energies,
but no oscillator strengths. This is crucial in the majority of
applications, since experimental absorption spectra need to be
understood and/or predicted. The BSE method does not need
to consider the fact that the excited state can be characterized
by a single configuration (for example, a HOMO-to-LUMO
transition), although it cannot specify the characterization of
each transition. In addition, the vast majority of systems is spin
unpolarized. For such systems the present approach requires a
spin-polarized GW calculation (see below), while the standard
GW+BSE approach can be done on closed-shell systems.

II. BASIC THEORY

In this section, we derive the GW (�) method without BSE
to calculate PAEs and compare the method with the previous
formalism. We apply the “extended” QP theory [18] to the
(N − 1)-electron system to obtain PAEs of the N -electron
system.

Our purpose is to calculate the one-electron EES of the
N -electron neutral system. One observable in such a single
photoexcitation process is the vertical PAE. The corresponding
physical quantity is the PAE defined as

�PA
ν = EN

ν − EN
G, (1)

where EN
ν and EN

G represent, respectively, the total energies of
the νth EES and the GS of the N -electron neutral system.

The simplest and most clever way to calculate the PAEs is
to consider the (N − 1)-electron cationic system γ , in which
the photoexcited electron is removed from the final PA state
ν. In this idea, the PAEs are obtained by comparing the total
energy of this system (EN−1

γ ) with those of the final state (EN
ν )

and the GS (EN
G ). This γ th eigenstate of the (N − 1)-electron

system plays a central role as the initial state. The N -electron
neutral GS is retrieved if one electron is added to the one-
electron-missing hole level in the initial cationic state γ , while
the final photoabsorbed state ν is retrieved if one electron is
added to the νth empty level. In other words, the “extended”
QP energies, ε0 and εν , defined as the total energy differences
between these states,

ε0 = EN
G − EN−1

γ , (2a)

εν = EN
ν − EN−1

γ , (2b)

represent the energy gains when one electron is added to this
initial (N − 1)-electron cationic state γ . Such electron attach-
ment energies of cations can be observed by the PES/IPES.
Note that the former energy ε0 is identical to the electron
affinity (EA) of the cationic state γ [or to the ionization
potential (IP) of the neutral GS if γ is the cationic GS], while
the latter energy εν corresponds to the νth EA of the cationic
state γ . Equation (2b) becomes identical to Eq. (2a) when
ν = 0 is the neutral GS. By using those energies, the PAEs
can be simply obtained as

�PA
ν = εν − ε0, (3)

without introducing any further relaxation.
The electron attachment energies εν (including ε0) can be

calculated by solving the “extended” quasiparticle equation
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(EQPE) [18],

h(1)
s φν(r,s) +

∫
	s(r,r ′; εν)φν(r ′,s)d r ′ = ενφν(r,s), (4)

where h(1)
s and 	s represent the one-body part of the Hamil-

tonian and the self-energy, respectively. The symbol ν may
be either an occupied state or an empty state, but, in order
to distinguish occupied and empty states, we will use μ for
occupied states and ν for empty states in what follows. In the
usual cases, the equation is solved for the neutral GS of the
N -electron neutral system, but, in the present case, it must
be solved for the initial (N − 1)-electron cationic state γ .
Although the form of this equation is the same as the usual QP
equation, we call it the EQPE to clarify that the initial system
is not the N -particle neutral GS |
N

G 〉 but the (N − 1)-electron
cationic state |
N−1

γ 〉. For atoms and small molecules, we have
confirmed that the EQPE can yield reasonable values of the
extended QP energies [18] by using the GWA.

Eigenvalues and eigenfunctions of Eq. (4) are identical to

εμ = EN−1
γ − EN−2

μ , (5a)

εν = EN
ν − EN−1

γ , (5b)

and

φμ(r,s) = 〈

N−2

μ

∣∣ψs(r)
∣∣
N−1

γ

〉
, (6a)

φ∗
ν (r,s) = 〈


N
ν

∣∣ψ†
s (r)

∣∣
N−1
γ

〉
, (6b)

where ψs(r) and ψ
†
s (r) represent for annihilation and creation

operators, respectively. Here, the level from which one electron
is excited by the PA process of the neutral GS is labeled by the
index γ , and the initial cationic state |
N−1

γ 〉 is none other
than the state with one electron missing at this γ level in
the neutral GS. If γ = 0, then the PA energies correspond
to the HOMO-electron excitations. In principle, there is no
difficulty to consider the γ > 0 cases [corresponding to the
(HOMO-1)-electron, (HOMO-2)-electron, …excitations] as
well. This enables us to know only the special sort of PAEs
associated with a particular orbital γ . As a matter of fact,
the total energy EN

ν and total electron density nN
ν of the final

N -electron state ν can be calculated via the simple relations

EN
ν = EN−1

γ + εν, (7)

nN
ν (r) = nN−1

γ (r) + φ∗
ν (r,s)φν(r,s), (8)

where EN−1
γ and nN−1

γ stand for the total energy and the total
electron density of the (N − 1)-electron cationic state γ .

Another merit of this method is that PAEs of spin-polarized
systems can be calculated more easily than those of spin-
unpolarized systems, because PAEs of spin-polarized systems
can be calculated using spin-unpolarized cations. Consider a
spin-polarized system, in particular, a system whose spin multi-
plicity is a doublet. The Hamiltonian of the system is, of course,
spin polarized. However, by removing one electron from the
HOMO level, the cationic system becomes spin unpolarized,
which makes the calculation easier. This simplification occurs
in the case of γ = 0, i.e., the excitation from the HOMO level
to the LUMO + n levels (n = 0, 1, 2, …). In what follows, we

restrict ourselves to the γ = 0 case only, although this is not a
necessary constraint in our framework.

The most important issue here is how to solve the EQPE (4).
This issue is identical to the problem of how to approximate
the self-energy 	s . One popular approximation is the one-shot
GWA (G0W0), but this method depends on the exchange-
correlation functional of density functional theory (DFT) [19].
The self-consistent GWA has no functional dependence but
usually overestimates the energy gap [20,21].

Ren et al. [22] treated the second-order screened exchange
(SOSEX) and renormalized single excitation (rSE). Their
results for the binding energies of rare gas and copper clusters
are in fairly good agreement with the experimental data;
the mean absolute error is about 0.25 eV for random phase
approximation (RPA)+SOSEX and about 0.15 eV for the
renormalized second-order perturbation theory (rPT2). Hung
et al. [23] calculated IPs, EAs, and PAEs of aromatic molecules
within the GW+BSE method. They included in their GW

calculation a local density approximation (LDA)-derived ver-
tex function (GW�LDA). The first GW� calculation [the
GW�1@HSE method] was performed by Grüneis et al. [24],
who used the GWTC−TC@HSE+single-shot vertex correction
for the self-energy with the static approximation. The results
for the QP energies of various semiconductors and insulators
are slightly better than those of GWTC−TC@HSE, but there is
still at most a 0.7 eV difference from the experimental values.
Maggio and Kresse [25] recently applied the one-shot Hedin’s
scheme with the vertex function (GW�) for a set of small
molecules. The agreement with the experimental IP is fairly
good although not excellent.

There are two important steps toward the self-consistent
GW� calculation. One is the problem the energy dependence
in the correlation part of the self-energy 	c

s = 	s − 	x
s .

Shishkin et al. [21] proposed to linearize the energy depen-
dence, but their method does not satisfy the Ward identity and
the nonorthogonality problem remains in the resulting QP wave
functions. Kuwahara et al. [26] proposed to linearize the energy
dependence so as to satisfy the Ward identity and remove
the nonorthogonality problem of the QP wave functions. The
Green’s function Gs and the polarization function P are renor-
malized in the LGW approach as follows: Gs is renormalized
using the lower triangular matrix L as G̃s(ω) = L†Gs(ω)L.

This L is defined by the Cholesky decomposition of 
 as


 = 1 − ∂	s(ω)

∂ω

∣∣∣∣
ω=ω0

= LL†, (9)

where ω0 means the energy around which the self-energy is
expanded. It can be set, for example, at the mean value of
the HOMO and LUMO eigenenergies. Renormalization of the
polarization function P̃ is achieved by replacing the Green’s
function with the renormalized one: P̃ = −i

∑
s G̃sG̃s . If the

exact vertex function � is known, then the GW� approach
gives the exact “extended” QP energies, but this is of course
impossible. Kuwahara et al. [16] developed the self-consistent
GW� method by approximating the vertex function � to
first order in the dynamically screened Coulomb interaction
W (the GW�W method) or in the bare Coulomb interaction
v (the GW�v method). They showed that the lineariza-
tion procedure mentioned above is applicable also to the
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self-consistent GW� approach just by replacing the Green’s
function Gs with its renormalized version G̃s (the LGW�W

and LGW�v methods) [16]. Their LGW�W+BSE calcula-
tions produced excellent PAEs of Na, Na3, B2, and C2H2 within
a 0.1 eV difference from the experimental values. In this Rapid
Communication, we use the (L)GW�W methods without BSE
for cationic systems.

III. CALCULATION RESULTS AND DISCUSSION

A. Computational detail

We calculate the PAEs and IP of some spin-polarized iso-
lated atoms and molecules by solving the extended QP equation
(4) for the (N − 1)-electron cationic GS, where one electron
is removed from the HOMO level of the neutral GS. All
calculations are performed using the all-electron mixed basis
code TOMBO [16,26,27], which uses (numerical) atomic orbital
(AO) and plane-wave (PW) basis sets together. The minimal
number of AOs including all occupied orbitals is used, although
valence AOs are truncated within the nonoverlapping atomic
spheres. Cutoff energies of 11.06 (44.20), 14.44 (57.76), 2.18
(30.7), and 2.76 (38.9) Ry are used for PW, P , and 	c

s (for
the cutoff energy for 	x

s ), respectively, for Al, B, Na3, and
Li3. The edge lengths of the face-entered-cubic unit cell are
chosen as 18, 14, 18, and 16 Å, respectively, for Al, B, Na3, and
Li3. Moreover, the Coulomb spherical cutoff [3] is adopted to
avoid the unphysical electrostatic interaction between periodic
images. To apply this technique, a large enough unit cell is used.
The bond lengths are 3.23, 3.23, and 5.01 Å for Na3, and 2.76,
2.76, and 3.38 Å for Li3. We use the plasmon-pole models
[12,28] and 800, 1400, 600, and 600 levels, respectively, for
Al, B, Na3, and Li3. For the LGW� calculations for B, Na3,
and Li3, we set ω0 at the value of HOMO+3 eV.

B. Comparison of the results for IP/EA and first PAE

Theoretically, the IP of the neutral systems must be identical
to the EA of the cationic systems if the same atomic geometry
is assumed for neutral and cationic systems [29]. Here, the
one-shot GW results for the IP of the neutral systems [GW (IP)]
are listed in Table I together with the one-shot GW and
self-consistent LGW� results for the EA of the cationic
systems [GW (EA) and LGW�(EA)], all of which should
be compared with the experimental data [30–33], for Al, B,

TABLE I. GW results for the ionization potential (IP) of neutral
systems [GW (IP)], GW and LGW� results for the electron affinity
(EA) of cationic systems [GW (EA) and LGW�(EA)], and the
corresponding experimental data [30–33] in units of eV.

Atom/molecule GW (IP) GW (EA) LGW�(EA) Experiment

Al 5.81 5.88 5.98a

B 8.45 8.45 8.20 8.30b

Na3 4.24 4.35 4.21 4.08 ± 0.05c

Li3 4.24 4.44 4.12 3.97 ± 0.05d

aReference [30].
bReference [31].
cReference [32].
dReference [33].

TABLE II. GW+BSE (neutral) and GW (cation) results without
BSE (present work) for the first PAE compared with the experimental
data [31,34–36] in eV.

Atom/molecule GW+BSE GW present work Experiment

Al 2.94 3.23 3.14a

B 4.53 5.24 4.96b

Na3 0.76 1.71 1.85c

Li3 0.50 1.64 1.81d

aReference [34].
bReference [31].
cReference [35].
dReference [36].

Na3, and Li3. If we compare GW (EA) with GW (IP), the
former is in better agreement with the experimental value
for Al [the difference between GW (EA) and the experiment
is 0.1 eV], while GW (EA) is in worse agreement with the
experiment for Na3 and Li3. Therefore, we performed the
self-consistent LGW� calculations for B, Na3, and Li3. The
resulting LGW�(EA) is in excellent agreement with the
experimental value for these systems; the difference between
LGW�(EA) and the experiment is about 0.1 eV.

Next, we show the GW+BSE (neutral) results and the GW

(cation) results without BSE of the first PAE corresponding
to the HOMO-LUMO transition for Al, B, Li3, and Na3

together with the experimental data [31,34–36] (the peak
corresponding to the A band observed by experiments for
Na3 [35] and Li3 [36]) in Table II. The GW+BSE (neutral)
results significantly underestimate the experimental PAEs as
anticipated (the mechanism of the underestimation is reported
in the previous research [16]), while the GW (cation) results
without BSE are in fair agreement with the experimental PAEs;
the difference between the GW method without BSE and
the experiment is about 0.2 eV. This means that the GW

method without BSE for spin-unpolarized cation systems is
simpler and more accurate than the GW+BSE method for
spin-polarized neutral systems.

C. Comparison between the GW , GW�, and LGW� methods
without BSE and the QC methods for PAEs

Here, we show the PAEs of B, Na3, and Li3 calculated
by the GW , GW�, and LGW� methods without BSE and
compare them with the previous results of highly accurate QC
calculations such as multiconfiguration Hartree-Fock (MCHF)

TABLE III. B: GW , GW�, and LGW� results (without BSE)
for the PAEs compared with the previous MCHF results [37] and
experimental data [31] in units of eV.

Transition GW GW� LGW� MCHFa Experimentb

2s2 2p-2s2 3s 5.24 4.39 4.92 4.93 4.96
2s2 2p-2s2 3p 6.37 5.57 6.09 5.99 6.02
2s2 2p-2s2 3d 7.00 6.15 6.71 6.76 6.79
2s2 2p-2s2 4s 7.02 6.34 6.89 6.78 6.82

aReference [37].
bReference [31].

060502-4



GW (�) METHOD WITHOUT THE BETHE-SALPETER … PHYSICAL REVIEW A 97, 060502(R) (2018)

TABLE IV. Na3: GW , GW�, and LGW� results (without BSE)
for the PAEs compared with the previous MRDCI [38] and full CI
[40] results and experimental data [35] in units of eV.

Transition GW GW� LGW� MRDCIa FCIb Expt.c

2B2-1 2A1 0.75 0.77 0.80 0.52 0.48
2B2-2 2B1 1.14 1.14 1.10
2B2-2 2A1 1.21 1.34 1.34 1.07 1.09
2B2-2 2B2 1.43 1.69 1.67 1.33
2B2-1 2A2 1.71 1.92 1.94 1.77 1.85
2B2-4 2A1 1.96 1.99 2.12 1.97 1.96 2.02
2B2-3 2B1 2.34 2.36 2.50
2B2-2 2A2 2.55 2.38 2.56 2.61 2.51 2.58
2B2-6 2B2 3.04 2.56 2.60 2.85

aReference [38].
bReference [40].
cReference [35].

[37], MRDCI [38,39], full CI [40], and estimated full CI [39]
as well as the corresponding experimental data [31,35,36,41].
We employed the self-consistent GW� approach and its
linearized version (LGW�) as the beyond GW methods
without BSE. All these data are listed in Tables III–V, which
show the PAEs for the transitions designated in the left
column.

Our self-consistent LGW� results show excellent agree-
ment with the experiments within 0.06 eV on average and
0.10 eV at maximum. This accuracy is enough to compare
with other highly accurate QC calculations such as MRDCI
and full CI.

The LGW� results are roughly the same or more accurate
compared with the QC calculations; see also Fig. 2. However,
the nonlinearized GW� results for the B atom and, in partic-
ular, higher excitations for Na3 and Li3 are not very good.
This disagreement is caused by the wide gap between the
QP energies at the HOMO and LUMO levels. In the case
of narrow-gap systems, i.e., when the HOMO and LUMO
QP energies are not very different, approximating the energy
dependence of the self-energy by substituting the HOMO QP
energy is a good approximation. On the other hand, if the

TABLE V. Li3: GW , GW�, and LGW� results (without BSE)
for the PAEs compared with the previous MRDCI and estimated
full CI (esFCI) results [39] and experimental data [36,41] in units
of eV.

Transition GW GW (�) LGW� MRDCIa esFCIb Expt.

2B2-1 2A1 0.32 0.34 0.36 0.317 0.216
2B2-1 2B1 0.71 0.73 0.71 0.787 0.711
2B2-2 2A1 1.16 1.19 1.25 1.206 1.136
2B2-2 2B2 1.33 1.63 1.67 1.430 1.346
2B2-3 2A1 1.64 1.80 1.89 1.612 1.498 1.81b

2B2-1 2A2 1.77 2.08 2.18 1.975 1.937
2B2-2 2B1 2.22 2.32 2.47 2.320 2.245
2B2-3 2B2 2.73 2.43 2.63 2.615 2.407 2.61c

aReference [39].
bReference [36].
cReference [41].

FIG. 2. Comparison of PAEs calculated by GW+BSE, GW

present work (without BSE), MCHF (for B), FCI (for Na3), MRDCI
(for Li3), and LGW� present work (without BSE). Green, blue, and
red bars represent, respectively, the deviations of the calculated PAEs
from the experimental values for B, Na3, and Li3. The GW present
work greatly improves the GW+BSE result but most of the deviation
is still more than 0.1 eV. The LGW� present work shows excellent
agreement with the experimental value to within 0.1 eV, while the
MRDCI result for Li3 shows a >0.1 eV deviation. Experimental
values as well as MCHF, MRDCI, and FCI values are taken from
Refs. [31,35–40].

LUMO QP energy is much higher than the HOMO QP energy,
the approximation is no longer valid and should be improved
by using the linearized LGW� method as shown here.

IV. CONCLUSION

In this Rapid Communication, we proposed the GW (�)
method without BSE to calculate photoabsorption energies
(PAEs). This method is in particular useful for spin-polarized
systems. As a result, this method yields good agreement with
the experimentally observed PAEs for Al, B, Na3, and Li3.
The results are much better than those of the GW+BSE
method. The result for Al is already excellent within a 0.1 eV
difference from the experimental value. We also applied the
beyond GW methods without BSE such as the self-consistent
GW� and (linearized) LGW� methods, and found that the
LGW� method without BSE yields excellent agreement with
the available experimental data to within 0.1 eV for B, Na3, and
Li3. Our nonlinearized GW� results (without BSE) suggest
that, in the calculation of the QP energies much higher than
the HOMO energy, the energy dependence of the self-energy
becomes a very important problem. The linearization of the
energy dependence is essential to avoid this problem. The
best is to use the self-consistent (linearized) LGW� method
including the vertex correction. Its computational cost scales as
O(N2M3), where N and M are the numbers of basis functions
and empty states, respectively, if the plasmon-pole model [28]
is used for the �-related calculations (full frequency integration
can be used for the GW -related calculations) [16]. This is
comparable to the MRDCI method, but much less expensive
than the full CI calculations. It is left for a future study to apply
this method to larger molecules.
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