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Time-dependent density functional theof/DDFT) is applied for calculation of the excitation
energies of the dissociating,Hnolecule. The standard TDDFT method of adiabatic local density
approximation(ALDA ) totally fails to reproduce the potential curve for the lowest excited singlet
13 state of H. Analysis of the eigenvalue problem for the excitation energies as well as direct
derivation of the exchange-correlatignc) kernel f,.(r,r’,w) shows that ALDA fails due to
breakdown of its simple spatially local approximation for the kernel. The analysis indicates a
complex structure of the functiof(r,r’,w), which is revealed in a different behavior of the
various matrix elemen )fc::,lc (between the highest occupied Kohn—Sham molecular orpjtahd

virtual MOs i) as a function of the bond distanBéH—H). The effect of nonlocality of (r,r")

is modeled by using different expressions for the corresponding matrix elements of different
orbitals. Asymptotically corrected ALDAALDA-AC ) expressions for the matrix elememé‘g(ﬂ;)

are proposed, while for other matrix elements the standard ALDA expressions are retained. This
approach provides substantial improvement over the standard ALDA. In particular, the ALDA-AC
curve for the lowest singlet excitation qualitatively reproduces the shape of the exact curve. It
displays a minimum and approaches a relatively large positive energy aRérgeH). ALDA-AC

also produces a substantial improvement for the calculated lowest triplet excitation, which is known
to suffer from the triplet instability problem of the restricted KS ground state. Failure of the ALDA
for the excitation energies is related to the failure of the local density as well as generalized gradient
approximations to reproduce correctly the polarizability of dissociatingTHe expression for the
response functioly is derived to show the origin of the field-counteracting term in the xc potential,
which is lacking in the local density and generalized gradient approximations and which is required
to obtain a correct polarizability. @000 American Institute of Physid§0021-960600)31143-§

I. INTRODUCTION Excitation energies as well as polarizabilities are obtained in

, ) . TDDFPT from the linear response of the densip(r, ») to
The recent success of time-dependent density functiong},e external electric field of frequenay

perturbation theoryfTDDFPT) in calculations of molecular

excitation energids’ is based on its efficient treatment of

electron correlation. The effects of electron correlation in the ~ dp(r,0)= f df’Xs(fyf',w)[ Ovex(l’, )
stationary ground state are embodied in the single local
Kohn—-ShamKS) exchange-correlatiofxc) potentialv,(r)
which, together with the external potential,(r) and the
Hartree potential of the electrostatic electron repulsion
vy(r), determines the KS orbitaks; where x; is the response function of the noninteracting KS
system and the change of the xc potential is expressed
through the xc kernel functiof,(r,r’, ),

op(r”,
+f dr"vaxc(r',w)], (1.3

{= 2V vedN) + v(D+ v D}(ND = €i(r), (1D

and the electron densify(r) of a many-electron system 5ch(r',w)=j dr”sp(r”,w)fy(r’,r", w). (1.9

This function is defined in TDDFPT as the Fourier transform

N
p(D=> [¢(r)|? (1.2 of the second functional derivativé; (r,r',t,t") of the
= ' ' quantum mechanical action xc functiondlJp] with re-

0021-9606/2000/113(19)/8478/12/$17.00 8478 © 2000 American Institute of Physics
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spect to the time-dependent densitigs,t) and p(r’,t’),8 grafted onto the LDA potenti&! and the xc potential of the
for more refined definition see Ref. 9, for an alternative defigeneralized gradient approximatiéGGA)," while in Ref.

nition see Ref. 10 and E¢3.19: 16 an approximate orbital-dependent employing a statis-
o tical average of different model orbital potentidBAOP?’
A p] _ovglelint) has been developed. Combined witif-°" | these model

B tt)= Sp,(r,t)ép(r',t)  Sp(r',t) - potentials have produced considerable improvement of the

(1.9 calculated excitation energies for some small molectfte.
The vertical excitation energies, can be obtained in TD- Thus the conclusion has been drawn that, at least for small

DFPT from the solution of the following eigenvalue molecules at their equilibrium geometry, the frequency de-

11 pendence of the xc kernel is not important and reliable exci-
problem: : : : : =
) tation energies can be obtained with a combination of the
[62+ 22K e ?]F = wiFy, simple frequency-independent ALDA kernel E4.9) and a

— — (1.6 properly modeled potential,..

Bica,jdr= (Eco™ 8ig) O70ij Ocay This conclusion promises a bright future for TDDFPT
where the matrix indicesandj correspond to the occupied applications to molecular excitation energies and related
KS orbitals, the indices andd correspond to the unoccupied properties, such adypeppolarizabilities, as it is reasonable
orbitals, ando and 7 are the spin indice¢real orbitals are to expect further improvements in the modeling of the xc
considered, we use indicesandd instead of the more com- potential in the near future. Indeed, TDDFPT has not only
mon indicesa and b as these are reserved for the atomicbeen successfully applied to the excitation energies of small
orbitals, which will be introduced belowThe first term in  molecules, but alsgand perhaps more importarto such
the L.h.s. of Eq.(1.6), the orbital energy difference, repre- diverse systems dhighep fullerenes®!° (metal-containing
sents the zero order of TDDFPT. The second term represeng®rphyrin-based system$;?2  transition metal
the correction, which is calculated with the coupling matrix complexe$>2*In all of these cases the TDDFPT results be-
Kiw'delz long to the highest level results available. We believe that the

1 ALDA is a minor source of errors in those applications, as it
Kin.dT:f drf dr,lylfio(r)l:bco(r)[—/ is for the small molecules.
' r=r'] However, there are cases where TDDFPT calculations
are not so accurate. It has been shown in Refs. 25-27 that
i (r)ha 1), (1.7 LDA/ALDA calculations strongly overestimate thégypen
polarizabilities of both symmetric and asymmet(iermi-
where the frequency dependence arises from the frequengyated with strong donor and acceptor groupenjugated
dependent xc kerndl(r,r’, o). molecular chains. This problem is related to an increasing

To our knowledge, in all molecular TDDFPT calcula- underestimation of excitation energies in such systefis
tions the adiabatic approximation is used, which reddggs and has been analyzed in detail in Refs. 30, 31. It has been
to the time(frequencyjindependent second derivative of the shown that the LDA xc potential of a molecular chain in a
ground state xc energy functiorg} p] or, equivalently, to finite electric field misses a linear term, which counteracts
the first derivative of the xc potential of Eq. (1.1) the applied electric field. Such a term is present in the exact

SE. [ p] Sy (1) xc potential and in the Krieger—Li—lafrat&LI )32 exchange-

~ xc.P = (1.8  only potential. In a TDDFPT calculation the counteracting

Spo(r)SpAr')  pr") term should be present ifiv,. and the lack of it indicates a
This seems to be a rather restrictive approximation for caldeficiency off,c, cf. Eq.(1.4).
culation of excitation energies, since with it all the excita-  Another important case where the use of the popular
tions should be calculated from Eqgd.6), (1.7) with the  ALDA xc kernel Eq.(1.9) drastically fails is the dissociating
same operatorsr—r'| " and f(r,r’). In practice, how- Hz molecule. It is already knowf*' that LDA/ALDA cal-
ever, already the zero order TDDFPT vyields a decent esticulations strongly overestimate the polarizability in finite
mate of excitations and, usually, reasonably good lowest exfield calculations on this system due to the lack of the term in
citation energies are obtained in the adiabatic local density¥xc, Which counteract®ve,. Analysis of this problem in
approximation(ALDA ) with the LDA xc potentialyZ{-C% terms of the conditional probability amplitudes performed in
and the ALDA xc kernel Ref. 31 reveals that the field-counteracting terndof rep-
resents the effect of the nondynamickft—right) Coulomb
correlation. When using the linear response approach of Eq.
(1.3 to calculate the polarizability, it is clear from E({..4)
that this term has to be generated with the correlation com-
As was found in Ref. 13 for atomic systertend small mo-  ponent off,. having proper magnitude and spatial form.
lecular system)s further significant improvement of the re- In the present paper we will focus on the problems with
sults can be achieved, when an essentially accurgteon-  the TDDFPT calculation of the excitation energies and ex-
structed from theab initio density p is combined with the cited state potential energy curves of the dissociating H
foTALDA) of Eq. (1.9). To improve the quality of approxi- molecule. We will address specifically the error for the first
mate v,,, specialized asymptotic corrections have beerexcited singlet state, which is particularly large and which is

+fe(r,r’,w)

foa(r,r’)

o(LDA)
VXC

dp-

Pr=Pr(sSCPH

f)‘{g(A"DA)(r,r’)=6(r—r’) (19)
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related to the strong overestimation of the polarizability
mentioned above. We will include in our discussion the trip- 14
let state, which has been considered befote(see for a
discussion of the analogous TDHF case Rej. 3he prob-
lems with the excitation energies are of great importance
because of possible applications of TDDFPT in photochem-
istry, where the excited state energies are needed for various
separations between the products of the photochemical reac-
tion. The potential energy surfaces of molecular excited
states can be calculated by collecting for a certain excited
state k the corresponding vertical excitations(R)
=E(R) — Eo(R) calculated with TDDFPT at various geom- 6 :
etries{R}. In this way, one can produce the differential po- f
tential energy surface of the stalewith respect to the 44 A
ground state. Then, adding the total ground state energy |
Eo(R) calculated within the standard density functional
theory (DFT), one can obtain the total potential energy sur-
face E,(R) of this state, provided the ground state potential
curve is of good quality. Potential energy curves obtained 0
with this technique have been reported recetftf L2 3 4 5 6 7

In this paper TDDFPT is applied to calculation of the RE-H.A
differential potential energy curves of the lowest excited Sin+G. 1. Comparison of the exact and ALDA differential potential curves
glet and triplet states ok, symmetry of the H molecule. for H,.
Comparison of the exatt®® and ALDA potential energy
curves in Sec. Il shows that at large(H—H) ALDA fails to . N
reproduce even qualitatively the shape of the potential curve{f"lure of E).F'§r0r3(alsponse theor'y fcﬁhypen)po!arlzapllltles of

for the®s " and’S ! states. In this case the zero order TD- o chains.>™ The behavior offy(r,r’,) is much
DFPT, the differencé\ e,; between the energies of the low- hardgr to dern_/e_ in the more realistic e_xtent_jed orb|ta_l quel

) . : than in the minimal model, but an adiabatic approximation
est unoccupiedLUMO) -, and highest occupiedHOMO) : . . .
. . . (w-independent,.) should still be possible with such a spa-
1 Kohn—Sham orbitals of Hgive a poor estimate of the . . .
lowest singlet—singlet excitation, vanishing wiRiH—H). In tial structure off,, that theK, 1, matrix element diverges
S - ._.._but not the otheK-matrix elements. In Sec. VI the implica-

Sec. lll the electron response and excitations in dlssomatmgons of these results for TDDEPT are discussed and the con-
H, are analyzed within the minimal two-orbital model, in clusions are drawn
which only 1s atomic orbitals(AOs) of H atoms are taken '
into a_ccount. An analysis of the rigorous TDDF'I_' e|genval_ue“_ COMPARISON OF THE ALDA AND EXACT
gquanons shows, that fo_r the Iowes)'f singlet—singlet excitas S TENTIAL CURVES
tion wg the correct matrix elemer5 ,, of f,. between
HOMOy; and LUMOy, is positive and diverges with in- Figure 1 compares the exact excitation energies
creasing bond length proportionally to the inverse HOMO-[E(*2) —E(*24)] and[E(a'S) —E(*2)] for the low-
LUMO gap (Ae,) 1. In Sec. IV this feature is taken into est®3 ! and 'S states of H with the lowest triplet and
account by means of an asymptotic correction to the matrixsinglet ALDA excitation energies,;,ws;. The exact curves
eIementK’l‘Cz(’AleDA). The corresponding asymptotically cor- have been produced from the benchmark data of Refs. 36,
rected ALDA (ALDA-AC) provides a substantial improve- 37, while the energiesw;; and wg; are obtained from
ment over the standard ALDA. In particular, the ALDA-AC Egs. (1.6) with the LDA xc potential vZ-°*)(r) and the
curve for the lowest singlet excitation qualitatively repro- ALDA xc kernel Eg. (1.9). The ALDA calculations have
duces the main features of the exact curve. In Sec. V aheen performed in the triple-zeta basis set of the Slater-type

extended model with the Heitler—London wave functionsorbitals (STO) augmented with two polarization functions
built from 1s,2s,2po AOs is applied to obtain a direct esti- and ones, p, andd diffuse function per each H atom. Al-

mate of the interacting response functignthe noninteract- though this is a reliable basis set, we have made no attempt
ing xs, and the xc kerndl,(r,r’,w). The response function of obtaining results very close to the basis set limit.

x of the extended model affords a realistic polarizability of ~ The exact excitation energi¢€(®s ) —E('2;)] and

dissociating H, which properly approaches the polarizabil- [E(*S ) —E(*X4)] differ very much in their dependence

ities of two isolated H atoms. The derived expression for theon the interatomic distancR(H—H): the triplet excitation
response functioly is also used in Sec. V to show the origin energy decreases monotonically with increas®igl—H) and

of the field-counteracting term in the xc potential, which isit vanishes in the limitR(H-H)—oc. Contrary to this, the

required in order to reproduce correctly within TDDFT the singlet excitation energy increases beyond the equilibrium

polarizability of dissociating K This establishes the connec- distance for the stab®S | state and it approaches 10.2 eV
tion between the current problem of excitation energies witHfor R(H-H)—c«. This indicates a different nature of the

TDDFT in the adiabatic local density approximation and thestates’>. and'3" . The former state, as well as the ground

(eV)
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statelig , Is of covalent type, i.e., they both represent the 14—|

two electrons of Hlocated instantaneously on theAOs of

different H atoms. Whether these electrons are of the same

spin (as in the’s. | state, or of opposite spirtas in the'X

statg makes less difference with increasiffH—H). Be- -

cause of this, the differential potential energy curve 104

E(PY,)—E('=,) gradually approaches zero at larger

R(H-H) (see Fig. 1 Contrary to this, thé3 state is rep-

resented by a combination of the ionic state, which eventu-

ally dissociates to M and H and the “promoted” states,

which dissociate to one normal H atom and one excited atom

H* (in H* the electron is promoted to thesar 2p, AO).

At distancesR(H-H)<3.7 A the ionic component prevails, VY

while at largerR(H—H), due to the avoided crossing of the Y

potential curves, the “promoted” states bring a dominant L

contribution. Due to this, the corresponding exact curve ap- 5 "

proaches the value of 10.2 eV, which is just the atomic en- Y

ergy of 1s—2s or 2p, promotion. e

We proceed with the comparison of the exact and ALDA 0 | ‘IAllA-I-—Al

potential curves. For short&H—H) arourd 1 A the ALDA 1 2 3 4 5 6 7

triplet w;; and singletwg; excitation energies are rather close R(H-H).A

to the exact ones. However, for largefH—H) the ALDA '

curves have a very different form Compared to the exacf!G. 2. Comparison of 'the exact differential potential curves with the KS

. . s HOMO-LUMO energy difference for H

ones. In particular, the ALDA curve for the triplet excitation

suffers from the triplet instability probleri¥. It reaches the

zero value at the triplet instability point aR(H—H)

=1.75A, beyond which the solution of the TDDFPT eigen-[E(®S ))-E('2,)], so that[E(’S[)-E(*S,)]/As,<1

value problem Eq(1.6) yields an unphysical negative value at largeR(H—H). ThusAe,, can be considered as an accept-

of w? for this state. And, in a complete disagreement withable zero order estimate of the exact triplet excitation energy

the exact theory ALDA predicts a small lowest singlet exci-[E(°%j)-E(*24)], i.e., the correction to the zero order

tation energy for the dissociating,Hsince the calculated from the coupling matrix Eg(1.7), which is needed in order

wg; value gradually approaches zero at larBéd—H). Fur-  to reproduce the exact triplet curve, should be relatively

thermore, the corresponding ALDA solution of the eigen-small. Contrary to this, the zero order ALDA provides a very

value problem Eq(1.6) does not exhibit the characteristic poor estimate for the lowest singlet excitation, i.e. the analo-

features of the avoided crossing of potential curves, whiclyous correction taAe,; to reproduce the exadte(1S)

was mentioned above for the exact curves. As follows from— E(lzg)] curve should be positive and large lB(H—H)

the analysis of the calculated weights of the single-particle>2 A (see Fig. 2 Clearly, taken together in E¢1.7) with

transitions, ALDA describes the lowest singlet excitation asthe Coulomb term, the simple ALDA approximation Eg.

a nearly pure transition from the HOM@(r) (1.9 for f,. cannot provide such a correction. This causes
the abovementioned failure of ALDA for the lowest singlet

2.1) excitation, which is illustrated in Fig. 1. In the next sections
the cause of the ALDA failure as well as the features the
correct xc kernel should possess to remedy this failure will
be analyzed.

(eV)

1
Pi(r)=1loy(r)= \/2+—Ts[al(r)+b1(f)],
1

to the LUMO i»(r)

1

r=21lo,(r)= ———=[ay(r)—by(r)]. 2.2
Both orbitals consist almost purely ofsAOs a;(r) and o ) ) L )
by(r) located on atoms kKand Hs, respectively, so that the A minimal two-orbital model of dissociating +tonsid-
ALDA solution exhibits no admixture of €2p AOs, the lat- €S 0Ny 5 A0s a,(r) andb(r) located on atoms jdand -
ter being the characteristic feature of the avoided crossing dfis: reéspectively. With these orbitals, a quahti\tlve descrip-
potential curves. tlon_ of the electronic structure of the grouﬁEIg and the

In order to gain some insight into this failure of ALDA, €XCIte

d®s; '3, ,'=, can be given with the corresponding
Fig. 2 compares the exact potential curves with the HOM

lll. A MINIMAL TWO-ORBITAL 1 s-MODEL

O_Heitler—London(HL) wave functions, which become more

LUMO gapAe,; which, according to Eq.1.6), is the ALDA accurate for largeR(H-H)

zero order estimate for both singlet; and tripletw;; exci- Lt s

tation energies. Thde,; curve resembles the exact excita- Yo ("%g)= 2(1+—82)1/2[a1(rl)b1(r2)+bl(rl)al(rZ)]
tion energy for the triplet excitatiom\ e, also vanishes with !

R(H-H), although more slowly than the difference X[a(1)B(2)—B(1l)a(2)], (3.1
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orbital ¢, differs at the bond midpoint from the simple com-

vitCE )= 21/2(TS2)T/2[a1(r1)b1(r2)_bl(rl)al(rZ)] bination of the & atomic orbitals Eq(2.1). This reflects the
! fact that in the exact wave function the doubly excited con-
[a(1)B(2)+B(1)a(2)]/2Y2, M=0 figuration ng mixes strongly into the Hartree—Fock configu-
x{ a(l)a(2), Mg =1 , ration z/xi, modifying the density at the bond midpoint where
B(1)B(2), M=-1 ¥, has a node. We refer to Ref. 39 for an analysis of the

behavior of the KS orbital of dissociating,Haround the
bond midpoint; for the present paper this subtle point is un-
important.

We proceed with the analysis of the rigorous eigenvalue
equations(1.6) for excitation energies of 5 Within the
spin-restricted TDDFPT, the only legitimate approach for the

(3.2

1
220 = g ggymlanrianra) ~burby(ra)]

X[a(DB(2)=B(1)a(2)], @3 closed-shell H molecule, triplet and singlet excitation ener-
(142112 gies are obtained separately from the solution of the follow-
2 h . X
NCE9)=| iy gy (A aur) Db (r)] ing eigenvalue equations
S OF joFk= ofFy, (3.5
1
T AT g alrbi(ra) O jaFi= okFr, (3.6
— Coul
+b1(f1)al(fz)]][a(l)B(Z)—ﬁ(l)a(Z)]- Vijo= i deol e 1)+ 2\(oem e (2K
KXC,d(ww 3.7
(3.9
KXC. KXCTT + Kl ID(w), 3.8
In Egs.(3.1)—(3.4) « and g are the spin functions ar@} is ie.ja( @) =Kic jal@) T Kicja () 38
the overlap integral betweea (r) and bl(r) The function 2, *_ xe([ 1)
§-(*=y) is properly orthogonalized ta¥ (12 ). Itis D jg = 8y dee = 81"+ 2V(ee— e [KITg (w
WeII known that the covalent wave funct|0h 12:) be- Ixcc(]tdi (0)]N(eq—e; (3.9

comes a better description of the ground state at long bond
d|StanceS while closer to the equ|l|br|um bond |ength theln Eqs (3 7) (3 9) the Coup“ng matrix is Sp“t into the Cou-
ionic wave functior{the first term of¥} (12 )] mixesinto  jomp part
the ground state. In the context of thls paper it is important to
note, from Eqgs(3.2—(3.3), the covalent nature of the ex-
cited statew!“(33}) and the ionic nature of the state ﬁoj‘c',—f drf dr’ i(r) apc(r)| |1ﬂj(l’ Yibg(r'),
WAL (3 ). Indeed, the spatial part of the wave function Eq. T (3.10
(3.2 represents a covalent situation with the two electrons of
H, located on the & AOs of different H atoms, while that of
the wave function Eq(3.3) [and indeed the first term of Eq.
(3.4)] represents an ionic picture with both electrons instan-
taneously located on the same H atom. K ( w):f drf dr’ i (r) e (r)FLLD

Within the KS theory, we are dealing with an indepen-
dent particle picture with—usually—a single determinantal X(r,r" o) g (r) gg(r’), (3.11)
wave function. The KS determinant need not be a good ap-
proximation to the true ground state wave function. In disso-
ciating H, the KS ground state is represented with the deter- ,ch(ﬂd“ w)= j er dr’ ¢i(r) () fLLD
minant ¥ = 4{"(1)¢{"(2)|, where y; is the HOMO Exq.
(2.1). This holds even at very long bond distances, where the X(r,r' @) gy (r') gy(r’), (3.12
KS determinant becomes an equal mixture of the covalent
and ionic Heitler—London functions Eq$3.1) and (3.4), In the present minimal two-orbital model the rigorous matrix
whereas the true ground state wave function is the covalerEgs. (3.7), (3.9 reduce to the straightforward formulas for
Heitler—London wave function. As a matter of fact, the KSthe excitation energiess; and wyq

and the xc parts

ws1= VAe [ Aep+ 4K A 2(K3S 1D (0= 0g) + K331 (0= 0g))], (3.13

o= VA Aeo+2(KS 1Y (0= 0y) — K51 (0=0y))], (3.14
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where the matrix elements,, ,, are calculated with the or- From Eq.(3.19 follows that the KS response function(w)
bitals ¢, and #,. First, we consider the expression Eq. of dissociating H diverges as- (Ae,;) ~ ! at small frequen-
(3.13 for the lowest singlet excitationvs;. For larger cies |w|<Aey;. In the static limitw—0 this divergence
R(H—-H) the orbital energy differencAe,, approaches zero leads according to Eq1.3) to a much too large uncoupled
and the Coulomb integra\(gfz?"i'2 remains finite(it reduces to  polarizability [neglecting the induced Hartree and xc poten-
twice a local atomic contribution so that, after multiplica- tials in Eq.(1.3)]. As a matter of fact, special behavior of

tion by Ae,;, we can neglect the first two terms under the év,. must prevent such unphysical large polarizability. It can

square root of Eq(3.13), indeed be shown that in dissociating KHv,. will exhibit a
D) ST step behavior in going from the high-field to the low-field H
0= V282,1(Ki§ 1P (0= 0q) + KIS H (0= 0g)). atom, which counteracts the applied field. It has been noted

(3.15 inRef. 30 that this behavior is analogous to the counteracting
However, as was indicated in the previous section, the exadi€ld that has to be produced BBy, in calculations on linear
singlet excitation energy)(12+ I3 5y remains finite(and chains in a polarizing field® Of course, the far too low sin-
large at largeR(H—H). From this and Eq(3. 15) follows  9let excitation energy, related they; going to 0, is related
that the sum of the matrix eIementsKi@T (w=wg) O the overestimation of the LDA and GGA polarizability

+ K’ﬁ”ﬁ)(w wg;)) should be positive and it should diverge @nd the counteracting potential problem. The ionic situation,

as (Ae,y) ! with increasingR(H—H): in state'S ", corresponding to a highly polarized system,
should not be so easily accessible, i.e., should be at much
(0= 0g)+ K5 (0= 0g) higher energy. We return to this problem in Sec. V.
At larger frequenciefw| > A5, the functiony(w) van-
, at large R(H=H). (3.16  ishes ase,;. From the established behavior gf(w) fol-
Agy lows that its inversex;l(w) vanishes at small frequencies
Contrary to this, the exact triplet excitation energy*S |w[<Asz andy, ‘() diverges afw|>Aep;.
35 %) approaches zero at larg(H-H) with w(lz‘i The interacting response function can be calculated

32 "Y<Ae,. From this and Eq(3 14 follows that the straightforwardly wi_th the ground and excited state Heitler—
dlfference [Kxcm(w wy1)- Kxe(rl (w wy)] should be London wave functions Eq$3.1), (3.3), (3.4 and the cor-

12,12 12,12 . . . .
negative and it should approaquaZI/Z from above responding energies from the following expression for the
density—density response function

(K31 (0=w0u) —KiS 15 (0=0y)] ) 2 2[E;—Eq] W
r,r 1 = — r
— —Ag/2+0, at large R(H=H). (3.17) A = AN
Since the exact xc function&’5}) and K155 are not XU p(r)wEh), (3.20

known, we can anal.yze_ various variants satisfying Eqswherep(r) EIN L8(r;—r). Only singlet states contribute to
(3.16, (3.17). Orgg o)ptlon Is a strong frequency 913pendencethe sum Eq (3.20 and in the mlnlmal model these are the
of the funct|onK12T112(w). It can diverge as{e,,) * at the stateswHL of Eq. (3.3 and WL of Eq. (3.4). Inserting Egs.

frequency o= wg, While it remains finite and close to 3.3 and (3.4) in Eq. (3.20), and performing the required

xe(1)e - i i xc(11)
Kizp(0=wn) at o=wy. With a finite Ky;15(w) at all e qrations, we obtain the following explicit expression for
frequenues this can satisfy Eq8.16), (3.17). Another op- 4 interacting response function

tion is that both Ki3l) and K351 are approximately 5
frequency-independent and diverge as:¢;) " X. Then, their X(r,r )~ 2(E;—Eo) Sy [a2(r)— bz(r)]
sum [ K1) +K3$1Y] produces the required divergence, cf.” = ' [0°—(E;—Eg)®] (1-S)*"*
Eq. (3.16, while their difference[K3 15— K35 151 in Eq. 2(Ey—Ey)
(3.17 could vanish as- Ag,,/2. One can get further insight X[a2(r")—b2(r") ]+ —p
into the form of the xc kernel,(w) using its expression in [0 (Es—Eo)]
terms of the difference between the invepgg! of the KS [ S,a2(r)— S;b2(r) +2a4(r)by(r)]
noninteracting response function and the inveysé of the 1 11 > ! !
interacting response functidn (1+S)

, L L 1 [ S1a7(r') = SibZ(r’) +2a(r')by(r')]

Foc(r 1 0)=x, (r,r")—x *(r,r ,w)—m. (1+S§)
(3.18 (3.21)

The expression Eq3.18 is an alternative definition to Eq. Note that both terms in Eq3.21) are proportional to the
(1.5 of f .. In the present minimal model the noninteracting SquareS; of the atomic orbital overlaffor the second term

response functionys, which enters Egs(1.3) and (3.18,  We can consider the produagr)b(r) anda(r')b(r’) in the
consists of just one term numerator proportional t§,]. Thus for all but the resonance

frequenciesy(r,r’,w) of Eq. (3.21) vanishes a$: with the
bond lengthR(H—-H); this is true, in particular, for the static
response functiony(r,r’,0). From this it follows that the

4A¢e
XS 10) = == (1)) a1 ().
21
(3.19 inverse response functiog (r,r’,») diverges asSl’z.
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With the established behavior af *(») andx (o), =K{1}+KSY [} and the exchange part in the case of the
one can estimate the behavior of the xc kemg{w) from  two-electron closed-shell Hs just minus the Coulomb inte-
the relation Eq.(3.18. In particular, at small frequencies gral
|w|<Ae,; the functionf,(w) diverges, since the interacting X(11)— _ g Cou @.1)
function y “(w) diverges, while the noninteracting, *( ) 12,12 1212 '
vanishes at these frequencies. At frequengigs Ae,, both  which provides the exclusion of the electron self-interaction.
xs () and x (o) diverge. Still, the corresponding re- Based on Eqgs(3.13—(3.17 and(4.1), we propose the fol-
sponse functions Eq$3.19 and (3.21) are not identical to lowing asymptotic expression for both matrix elements
each other, so that one can assume that the divergencies Iéﬁ(fz) and Ki“;ﬂlz):

Xs_l(w) and y~}(w) would not cancel each other and, as a fZOliI-|2)2

result, thef,(w) will also diverge at these frequencies. Thus K33 1)@m= Kigﬁ;gﬂawmp:T— KSY. (4.2
from this analysis it follows, that in the minimal model the 21

xc kernelf,(w) diverges withR(H—H). This result is con- Inserting Eq.(4.2) in (3.13), one can see that the finite inte-
sistent with the divergence E3.16) of the corresponding grals ng‘i'zin the Coulomb, exchange, and correlation parts
matrix elementk’S ;= (K35 15+ K35 19), which has been cancel each other. Thus, neglecting a snalf, term, we
found from the analysis of the eigenvalue problem. In theobtain for the singlet excitatiom;

next section a model asymptotic correction to the ALDA xc wor ~ 2K Soul 4.3
kernel will be proposed, which recovers this divergence. st 1212 '

In the end of this section we would like to point out the Which is a fair asymptotic estimate for the energy of excita-
limitations of the minimal model. To illustrate these limita- tion from the covalent configuration to the ionic configura-
tions, we insert the interacting response function @1  tion. On the other hand, the compone#t|3@™ and
of the minimal model in the expression for the static densityKi3 15 *¥™ cancel each other in the expression E3j14)

responsedp(r,0) to the external fieldvg,(r) for the triplet excitationw,;, so that we obtain the proper
zero asymptotics fow, .
5’)“’0):[ dr/ x(r,r",0)8vex(r’). (3.22 The expression Ec{.4..2) incorporates t.he asymptotic di-
vergence of the xc matrix elements, which has been estab-

We assume a fieldvq,(r)=Ez wherez is the molecular lished with the analysis of the eigenvalue problem. It can be
axis, so that H is the down-field atom and gds the up-field used to correct the ALDA matrix elemeﬁ@{%ﬂg(ALDA) and
one. In this case the second term of E§.21) has zero K){ngllz)(ALDA) calculated with the ALDA xc kernel Eq1.8).
contribution to Eq.(3.22 due to the symmetry andp is  Since ALDA yields a reasonable estimate of the excitation

defined with the following expression energieswg; andwy; for shorterR(H—H) where the HOMO-
) 2 LUMO gap Ae,, is relatively large, but fails at larger
_ 1 2,0\ 2 R(H—H) whereAe,; is small, one can us&e,; as an argu-
op(r,0)= az(r)—bi(r 21 21
p(r0 —(E;—Ep) (1—S§)2[ o(r)~ba(n)] ment for exponential interpolation betwedti545"* and
- . xc(asymp : = .
X (8Vp1— 67m1), (3.23 K1533™ in order to produce corrected elemeHt; 1,:

— . . K — 2 ALDA
where v, and Svg; are the one-center field integrals K’{Zﬂ?—[l—exq—k[Aszﬂ )]Kﬁ(ﬂ)( :

Svpr=Jdrag(r) ove (r), vpi=/drbi(r)Sver) with n KT A £,12)KXS( ) (@symp
Var=J Arag(l) Ovexd ). : vith - K , 4.4
Sva1<Ovgy, Ova— dvgi~—ERag. Since only the ionic eXp(— k[ Az21] K12 12 “.4
state Eq.(3.3) contributes to Eq(3.23, & of Eq. (3.23 KX D=[1—exp(— K[ Ag1]d) TKIG ] HALDA)
represents interatomic charge transfer from the up-field atom ' ’
Hg to the down-fieldH,, which in the minimal orbital +exp(—K[Aep]?) KIS 5™ (4.5)
. . . 2 .
model vanishes withR(H—H) proportionally to Sj. Evi- At the equilibrium geometry, the dominant terms of Egs.

dently, the minimal orbital model does not recover the trug4 4) and (4.5 will be the ALDA ones, while for larger
limit for dissociating H, which would be a nonzer@hough R(H-H) the decrease ofe,; will lead to larger contribu-
small &p, representing interaatomic polarization of noninter-tions from KX D@YmD ang KXS1DEY™  thys providing a
a(_:ting H atoms. The proper description can be achieved O”Mroper behavior of the corrected matrix elements.
with an extended orbital model which, besidesAOs, em- We proceed with calculations for the dissociating H
ploys_also 2,2p AOs. The extended model will be consid- \yith the asymptotically corrected ALDAALDA-AC) of
ered in Sec. V. Eqgs.(4.4), (4.5 see Fig. 3. The important point is that in the
eigenvalue Eq93.5—(3.9) the corrections are added only to
the diagonal matrix elements]s ;, between the HOM@;
and LUMQy,. They are not added to other diagonal or off-
diagonal elements; in particular, they are not added to the
From Egs.(3.13—(3.17 one can attempt to derive the coupling elementK’¢ ;. betweeny; and unoccupied orbit-
asymptotic expressions for the matrix elemek§}) and ~ als ¢, which consist of 3 and 2p AOs (the calculations
K394, The additional useful information is that the matrix displayed in Fig. 3 have been carried out with the extended
elementk’3 1) for electrons with the same spin can be fur- orbital modeJ. Thus we use the elemerksS) and K1)
ther subdivided in exchange and correlation pak& )  of Egs. (4.4), (4.5 for the coupling betweens; and ¢,

IV. AN ASYMPTOTIC CORRECTION FOR THE ALDA
MATRIX ELEMENTS
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14 " R(H-H)=3.0A the transitionsf;— i, and ;— i3 bring
almost equal contributions; at largeH-H) the contribu-
tion of the former transition gradually vanishes, and for
R(H-H)=4.0 A the lowest singlet transition becomes an al-
PR b most purei; — i3 transition. As a result, the singlet excita-
""""""""" tion energy calculated by ALDA-AC approaches the value
Ae3;=8.6eV, which is just the LDA difference between the
energies of the orbitalg, and 5. In fact, some oscillation

(eV)

6
of the ALDA-AC singlet curve around the exact one appears
4 . to occur just because of the difference of the corresponding
~ asymptotics, 10.2 eV for the exact curve, corresponding to
o ...... the exact $—2s excitation, and 8.6 eV for the TDDFT
N curve, corresponding to the LDAA2s orbital energy differ-
0 - — . 1 ence. The asymptotic error of ALDA-AC is an artifact of the

3R(H-H) A ; P : (lDA)
: ground state LDA calculations with the xc potentigt®* .

FIG. 3. Comparison of the exact and ALDA-AC and ALDA differential The exact KS potential of dl;SOCIateC& Will have to pro- .
potential curves for i duce the exact H atom density around each H nucleus, i.e.,
the occupied orbitaj;; must in that region be identical to the
while for other couplings the elemert§?5P*) of the stan-  H 1s atomic orbital and the KS potential must be equal to
dard ALDA are retained. No explicit frequency dependencehe bare nuclear potential of the H atom. The unoccupied
of the matrix elements is introduced and we remain, for-KS 2s orbital must also have the exacs 2rbital energy and
mally, in the domain of the adiabatic approximation. In thisa TDDFT calculation based on an exact KS potential should
context, the use of different expressions for the matrix eleprovide an exact valuAe;,=10.2 eV, which is the atomic
ments of different orbitals simply means that we are trying toenergy of —2s or 2p promotion. Thus further improve-
reproduce properly the action of a spatially nonlocal xc kerment of the TDDFPT results can be achieved by the replace-
nel f,(r,r") on those orbitals. It will be argued in the next ment of »{-°*) with a more refined potential, which would
section that the use of different expressions for the matrixncorporate correctly the effects of exchange and nondy-
elements of different orbitals simulates a rather complex spanamical correlation in dissociating,Ho as to produce the
tial behavior of the xc kerndf,(r,r’,w) with diverging be-  pare nuclear field around each H atom. The corresponding
havior only in the atomic regions. refinement still presents a problem for DFT and, to the best
Figure 3 compares the exact differential potential curvesf our knowledge, none of the existing model potentials can
with those calculated with the ALDA and ALDA-AC with guarantee the proper dissociation limit. It is interesting to
the parametek=100. The functions Eqg4.4), (4.5 radi-  observe that singly excited configuratian y;=10420,,
cally improve the performance of TDDFPT for the singlet githough capable of yielding in the TDDFT calculation an
excitation. Unlike the purely repulsive ALDA curyeee Fig.  exact excitation energy, does not correspond to a correct
1), the ALDA-AC curve exhibits a minimum, although it is asymptotic wave function. Completely analogous to the situ-
somewhat displaced from that of the exact curve. Thetion for the ground state, where the determinant
ALDA-AC curve does not depart very far from the exact 0ne|10-ga10-gﬁ| is an equa| mixture of ionic and covalent wave
and the calculated excitation energy does not vanish withynctions, the configurationdy2o, leads to an equal mix-
R(H-H) as was the case for the standard ALDA. Thetyre of ionic configurations, describing negative Hbns
ALDA-AC potential energy curve does not go asymptoti- with an electron in & and a promoted electron ins2 and
cally to an ionic H —H™ situation, but in agreement with the “covalent” configurations with a & electron on one H and a
exact curve it exhibits the effect of the avoided CrOSSing abromoted electron in € on the other H. To get a correct
larger distance of the ionig;— i, 'S excited staté¥5",  wave function without ionic character one needs configura-
Eg. (3.3] by a'S, state representing a H*Hsystem i.e., tion mixing with thedoubly excitectonfiguration 20410
one H atom is excited. The excitation will be te 2vith  remove the ionic terms. We have here a case where the so-
admixture of a 5—2p, excited state. So in the TDDFT |ution vectorF of the eigenvalue problem E¢.5) or (3.6),
calculation the'Y [ excitation energy asymptotically no which has only coefficients referring to singly excited con-
longer corresponds to a pure transition from the HOMOf  figurations, does not at all represent the composition of the
Eq. (2.1) to the LUMOy, of Eq. (2.2. Starting from excited state wave function. This is related with the fact that
R(H-H)~2.50A, as indicated by the analysis of the calcu-the ground state KS determinant in this case is not a good
lated weights of the single-particle transitions, an appreciabl@pproximation of the ground state wave function, for which
contribution comes from the transition from the HOMO to admixture of the doubly excited configuration €J? is

the antibonding orbitalss needed.
The function Eqs.(4.4), (4.5 also definitely improves
Pa(r)=20,(r)= [a™®(r)—b"Wo(r)], (4.6)  the performance of TDDFPT for the triplet excitati¢see
V2=2S Fig. 3. The ALDA-AC curve goes closer to the exact one in

wherea™®(r) and b™"(r) are hybrid orbitals consisting of a larger interval than the ALDA curve. Due to the admixture
2s,2p,AOs of atoms H and H;, respectively. At of the LDA functional in Egs.(4.4), (4.5 the ALDA-AC
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curve also suffers from the triplet instability, although the
corresponding instability point &R(H-H)=3.6 A is about
twice as far out as the ALDA instability point at 1.75 A.
Further refinement of the simple model E4.4), (4.5) will,
hopefully, remove the triplet instability altogether.

V. RESPONSE FUNCTION x AND
FIELD-COUNTERACTING TERM OF THE xc
POTENTIAL IN THE EXTENDED 1s,2s,2p MODEL

Our discussion of the behavior &f;. and the asymptotic
behavior of theK,, ;, matrix elements has employed the
minimal orbital model for H. The conclusions should not be
dependent on the use of this limited model, and in this sec-
tion we shall consider an extension of the minimal two-
orbital model of Sec. Ill. In this 4,2s,2p model the set Egs.
(3.1)—(3.4) of the Heitler—London wave functions of the
minimal model is extended with additional HL functions,
which describe §— 2s,2p electron promotions. We will de-
rive the response functiog(r,r’,o) within this extended
model, and the KS response functign(r,r’,w). As ex-
pected, the polarizability derived witf(r,r’,w) will now
correctly reproduce the intra-atomic polarizations of the dis-
sociating H atoms. We will also derive from the response
functions the established occurrence of a counteracting
field* in the KS potential for stretched ,Hn a external
field 34 or in év,. in linear response calculations. In par-
ticular, however, this section will serve to study the
asymptotic behavior off,. beyond the rather limited minimal
orbital model.

Only '3 states are considered, since these are important
for our further analysis. They are represented with the folyyhere a,(r),b,(r) are

lowing functions:

are P, AOs located on atoms Hand H;,

Gritsenko et al.

1

RO R ey

) [ai(r1)bs(ry)

—by(ry)as(ry)+as(ry)bs(ry)

—bi(ra)as(r) fa(1)B(2) - (1) a(2)],
(5.2

1
g'L(lEg): 23/2(1+8182+ 852)1/2[a1(r1)b2(r2)

+by(rp)as(ry)+ag(ry)by(ry)

tha(ro)ax(r)[e(1)B(2) - B(1)a(2)],
(5.3

‘I’S'L(lig)= 23’2(1+8153+S§3)1/2[a1(r1)b3(r2)

+by(ry)as(ry)+as(ry)bs(ry)

tha(ro)as(r)fa(1)B(2) - B(1)a(2)],
(5.9

X A0s and ag(r),bs(r)

respectively S,

is the overlap integral between,(r) and by,(r),S; is
that betweeras(r) andbs(r),S;, is the overlap integral be-
tweena,(r) andb,(r), andS,; is that betweera,;(r) and
bs(r).

The interacting response functiop calculated in this
model has terms arising from the functions Es1)—(5.4)
in addition to those of Eq3.2))

WHL (s )= ! [ax(r)by(r2)

4 u 23/2(1_8182+ 852)1/2 L1/ M2t 2
—ba(ry)ax(ry)+ay(ry)by(ry)
—by(rp)ay(r)l[a(1)B(2)— B(1)a(2)],

(5.2
|
7
X(rre)=2, ﬁ(‘l’oLIﬁU)N’T“)(“’T”IﬁU’)I‘I’S'L
2(E;—Eo) St

[0?—(E;—E)?] (1-SF

[ S1ai(r) — S;b3(r) +2ay(r)by(r)] [~ S;a3(r’) -

)z[al(m b2(r)J[a%(r")—bi(r")]+

2(Ez—Eo)
[wz_(Ea_Eo)Z]

S1bi(r')+2a(r')by(r")]

(l+S)

(l+Sl)

i (Ei+2—Eo) 1

[0 (Ei+2—Eo)?] (1+SDYA(1-S,S+S5)

X[ay(r)ai(r)—by(r)b;(r)+S;by(r)a;(r) —Sa; (r)bi(r)][a.(r

")ai(r’)—by(r")b;(r")
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3

+Sby(rai(r')—Spay(r)bi(r')] + (EiraEo) 1
A e T S [0 (B4 0Pl (1+S)YA1+5,5+ %)

X[ay(r)ai(r)+by(r)bi(r)+Siby(r)a;(r)+Siay(r)b;(r)+2Syay(ryby(r)]
X[ay(r)ai(r')+by(r")bi(r")+Sby(r")ai(r’)+Sa.(r’)bi(r’)+2Sya,(r" )by (r')]. (5.9

Unlike the function Eq.(3.21) of the minimal model, the the interacting response functigr(r,r’, ). In fact, the in-
response function Ed5. 5) of the extended model contains traatomic polarization terms, which are lacking in the expres-
in the numerators of the last two sums the one-center termsion Eq. (3.23 of the minimal model, are properly intro-
ai(r)aj(r) and by(r)bi(r), which represents €-2s,2p  duced by they(r,r’,w) of the extended model. To see this,
promotions, and do not vanish wil(H—-H). Then, neglect- one can insert the expression K§.6) into the formula Eq.
ing all the terms with overlap integrals in EG.5), one can  (3.22). The second sum of E@5.6) has zero contribution to
obtain the following asymptotic expression gfw) for all 5 due to the symmetry, which vyields the following
frequencies except those in the neighborhood of the resasymptotic expression fasp(r,0)
nance frequencies:
3 [Svgo— 6vasl

X o)=3 2(_E|+2 _Eo) ~ay(r)a(r) op(r,0) (E.—Eo) [ai(r)ax(r) —by(r)by(r)]

i=2 [0°=(Ej+2—Eg)“]

[ 5783 - 57A3]

—by(nbi(r)][ay(r")ai(r")—by(r")bi(r’)] +——= = Lai(r)as(r)—by(r)bs(r)],
; (Es—Eop)
(Ei+4—Eo) (5.9
+i:Ez [0~ (Ei+4—Eg)?] _ _ _
where v, and dvg; are the one-center field integrad®
*[aynai(n)+by(nbi(NI[ayr)air’) = fdray(r) dvedr)ai(r),  Svei=[drby(r) Sveg(r)bi(r).
+by(r)by(r)]. (5.6) Unlike the vanishing density response [E8123 of the mini-

mal model,p(r,0) of Eq. (5.8 remains finite aR(H-H)
So x(w) does not any more go to zero Iilé, but as one can —. It represents the correct intraatomic polarization of
see from Eq(5.6) that the functiony(w) will have nonzero noninteracting H atoms. Indeed, while the orbital products
values in large andr’ regions forR(H-—H)— oo (in particu- bi(r) and ai(r) in EqQ. (3.23 are both positive and, taken
lar, also in the static limitw—0). From the finiteness of together, produce interatomic charge transfer, each of the
x(r,r',o) of Eq. (5.6 it follows that we can no longer con- productsa;(r)a;(r) andb,(r)b;(r) in Eq.(5.8) changes sign
clude that the inverse response functypn’(r,r’,») has to inside the corresponding atom and they produce intraatomic

diverge. polarization. In particular, the first term of E(.8) repre-
The noninteracting response functigg can be written  sents “in—out” polarization from & to 2s AOs, while the
in the extended model as follows: second term represents “left—right” polarization frons fo

2p, AOs and the signs of the products(r)as(r) and
b,(r)bs(r) provide the proper polarization of the density
along the field.

With the response E@5.8), the change of the xc poten-
tial can be expressed as the following integral with the xc
kernel:

4A821
Xs(rr' )= wg_—AS%l%(f)lﬂz(f)lﬂz(f’)%(f’)

g 4Aeq, o
2 Rz VWUl ) (),

(5.7

where i3 — s are the bonding and antibonding KS orbitals 5ch(r):f dr’ p(r') fe(r,r’)
built from 2s,2p, AOs andAe.; are the corresponding en-

ergy differencesAe,;=¢.—€,. Just as the function Eq. :[5752—57/\2] J' dr'[ay(r')ay(r’)
(3.19 of the minimal modelys(w) of Eq. (5.7 diverges as (E4—Ep) 1 2

—(Aeyy) ! at small frequenciesw|<Ae,,. However, un-

like Eqg. (3.19, x<(w) of Eqg. (5.7) is finite at larger frequen- ~ by (r)ba(r) Jxe(r.r")

cies |w|>Ae,q, since its first term vanishes, while other [ 5Vg3— OV ps]

terms are finite due to the finiteness of the energy differences (BB f dr'[as(r")as(r’)

Aeg,. From this follows, that the inverse response function

xs X(r.r’,w) vanishes atw|<Ae,; and it remains finite at —bq(r")bg(r")]fy(r,r’). (5.9
|w|>Agy;.

We now first consider the static density responseThe potentialbv,.(r) is a part of the KS response expression
Sp(r,0) to an external fieldSv.,(r)=Ez as obtained from Eq. (1.3 in the special case ab=0
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) ) Then, the first term diverges as(Ae,;) ~* at small frequen-
5P(f)=f dr’xs(r,r’) cies|w|<Ae,; and it vanishes ade,; at larger frequencies
|w|>Aeg,,, while other terms of Eq(5.7) remain finite.
op(r") Thus at|w|>Ae,; the noninteracting response function
X ! e Nt ~ el o . ; o
{ﬁve"‘(r HJ dr [r' —r"| vl xs(r,r',w) vanishes in the atomic regions and it is finite in

(5.10 the outer regions. One can expect, that the corresponding
' inverse functior’p(s‘l(r,r’ ,w) diverges in the atomic regions,
Note, thatdp(r) in the L.h.s. of Eq(5.10 is, of course, the and is finite at the atomic periphery.
well-defined and finite function Eq5.8). However, as fol- From these results and the relation £§.18 one can
lows from Eg. (5.7) that the static KS response function conclude that the extended model leads to a complex spatial
xs(r.r’) diverges as fe,;) "' with R(H-H). From this it  structure of the xc kerndi,(r,r’, ) with diverging behav-
follows that the potential changes within the brackets of Eqior only in certain regions.f,(r,r’,») diverges in the
(5.10 should cancel each other: atomic regions, where y (r,r’,w) diverges, while
Sp(r") xs H(r.r',w) vanishes atlw|<Ag,; and di_verge; af ol
Sy (1)~ — Svay(r') — f dr’———-. (5.12) >Aeg,q. On the other hand,(r,r’,w) remains finite at the
[r'=r"| atomic periphery, where botf(r,r’,») and xs *(r,r’,)
Thus with Eq.(5.11) TDDFPT requires generation of a field- are finite. This conclusion of the extended model generalizes
counteracting terndv, in the xc potential, which compen- that of the minimal model in Sec. lll. The established com-
sates the combined effect of the external field and the inPlex spatial behavior of, could be, in principle, reproduced
duced Hartree potential in order to produce witi{r,r') a  in some analytical form, although the corresponding expres-
finite density response E¢5.8). This compensation means Sion for f,(r,r’) might be rather involved. For TDDFPT
that the potential changéu,(r) should be positive on the applications, however, only matrix element§c;q of
low-field atomH , and it should be negative on the high-field fx(r.r") are required, and the present corrections E4s)
atomHg. This is — 8vey. Since dp only represents polar- and(4.5) simulate the effect of the complex spatial structure

ization of atomic density, its potential is basically zérm  Of fx(r.r") onKic 4. Indeed, the introduced divergence of

monopole termand indeed the matrix elementKJ5, ;, corresponds to these integrals
involving spatial integrations with the slfunctions af(r)
Sye(1) = = OVex(T). (5.12 and bi(r) as “weighting” functions. These integrations

Thus a field-counteracting term emerges in the xc potentiatnerefore samplé,; in the atomic region where it has diverg-
which completely compensates the external field in the dis!"9 behavior. On the other hand, the_ f.|n|teness of the matrix
sociation limit. Note that such a term is lacking in LDA and €lement3s, ;5. corresponds to the finitenessfgf(r.r ') at
GGAs, which is related to the established failure of theth® atomic periphery, where the produas(r)a;(r) and
ALDA for the excitation energies. by (r)bi(r) have significant values.

Finally we address the question what one can conclude
about f,. and its matrix element:t(f‘f:jd in the extended \; conCLUSIONS
model. We have observed that the divergence of(w) at
all frequencies and the divergence gf *() at w>Agy, In this paper time-dependent density functional perturba-
found in the minimal model will not apply strictly in the tion theory(TDDFPT) has been applied to calculation of the
extended model. Indeed, while the first two terms of Eq.differential potential curves of the lowest excitédl, and
(5.5 vanish with R(H—H), the additional terms contain in '3 states of H. It has been found that the standard
the numerators the one-center orbital produatér)a;(r) TDDFPT method ALDA fails to reproduce the correct form
andb,(r)b;(r), which represent4— 2s,2p promotions, and  of both potential curves. The ALDA curve for tR& | state
do not vanish withR(H—H). Note that these two groups of displays the triplet instability of the ALDA solution, while
terms are located in different regions. Containing the orbitathe ALDA curve for the'> | state, instead of having the
productsa; (r) andbi(r), the vanishing terms are localized correct positive asymptotics, approaches the zero asymptot-
in atomic regions, while the producta;(r)a;(r) and ics at largeR(H-H).
b1(r)b;(r) with the diffuse orbitals;(r) andb;(r) bring the The main conclusion of this paper is that ALDA fails
nonvanishing terms to the outer regions of the atomic periphdue to a breakdown of its simple spatially local approxima-
ery. Thus one can come to the conclusion, that the interaction for the xc kerneff,(r,r’,w) in the case of dissociating
ing response function Eq5.5) of the extended model be- H,. The combined analysis of the eigenvalue problem for the
comes very small only in the atomic regions, while it excitation energies and the direct estimate of the xc kernel
remains finite at the atomic periphery. From this picture forhas indicated a complex structure of the function
x(r,r’,w) one can expect that the corresponding inverse ref,(r,r’,w), which is revealed in a different behavior of the
sponse functiory " (r,r’,w) diverges in the atomic regions, corresponding matrix elemerks; ;. with the bond distance
while it remains finite at the atomic periphery. R(H-H). In particular, the matrix elemett’5 ,, for the or-

For the noninteracting response functigg, Eqg. (5.7), bital ¢, which represents the ionic configuration, has been
we have a picture similar to that for the interacting functionfound to diverge withR(H—H), while the matrix elements
Eq. (5.5): the first term of Eq(5.7) is localized in the atomic for the orbitalsy., which represent an electron promoted to
regions, while other terms are localized in the outer regions2s and 2 AOs, are to be finite. The complex structure of
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