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1. Introduction

The purpose of this review is to familiarize the quantum chemist and
molecular physicist with some of the ways one can apply the Green’s function
technique to the problems of calculating excitation energies, ionization
energies, ground state energies, transition matrix elements, electron absorp-

tion coefficients, frequency dependent polarizabilities for atomic and molecu-

lar systems, as well as electron-atom, electron—molecule elastic and inelastic
scattering cross sections. The Green’s function technique was originally
defined and applied in quantum field theory (Feynman, 1948; Schwinger,
1951)* and extensively used in many-body physics (Galitski and Migdal,
1958) statistical mechanics (Matsubara, 1955; Martin and Schwinger, 1959)
and nuclear physics (Migdal, 1967). The sources in these latter fields are
difficult for the non-initiated to read since there are different physical con-
ditions, spatial homogeneities, terminologies, etc., which do not apply in
atomic and molecular physics. Another form of the field-theoretic or many-
body method, the diagrammatic perturbation theory, has been used effectively
in the last several years for atomic systems by Kelly (1968) for ground state
energies, and by Kelly (1969), Dutta et al. (1969) for frequency dependent
polarizabilities. There are also early attempts at using Green’s functions in
quantum chemistry by Linderberg (1968), Reinhardt and Doll (1969), Hedin
et al. (1969); and in atomic scattering theory by Schneider et al. (1970), Janev
et al. (1969), and Csanak et al. (1971). As will be seen, the advantages of this
technique are: :

(a) Nonperturbative, self-consistent approximations (i.e., schemes similar
to the Hartree-Fock self-consistent theory) can be developed which go well
beyond the Hartree-Fock; e.g., 2 self-consistent theory of electron scattering
cross section and the linear response (Schneider ef al., 1970) which leads to
self-consistent excitation energies and transition probabilities.

(b) The formalism works directly in terms of densities, transition amplitudes,
and other quantities (e.g., linear response function) that are measurable,

4 J. Schwinger (1951) has defined the many particle Green’s function (called renormalized
—or real—or full Green’s{ function). The free particle Green’s function or propagator has
been introduced by R. P. Feynman (1948, 1950). For further application, see any book on
field theory; e.g., S. S. Scj:hwcbcr: An Introduction to Relativistic Quantum Field Theory,

Row Peterson and Co., Illinois (1960).
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and not in terms of wave functions. This is a great advantage of the Green’s
function technique. These new functions lend themselves to known approxi-
mations that can now be more generally applied. For example, in the calcula-
tion of linear response functions (called also frequency dependent polariz-
abilities), coupled, time-dependent methods are known to be useful (Dalgarno
and Victor, 1966; Jamieson, 1969). It will be seen here how such coupled
time-dependent methods can be applied to the variety of problems listed in
the first paragraph.

(¢) Density matrices and natural orbitals can be calculated directly without
prior calculation of the wave functions (Reinhardt and Doll, 1969) and
therefore the Green’s function technique is closely related to the density
matrix methods already developed in quantum chemistry.

(d) The optical potential (the effective one particle scattering potential)
can be calclated using the experience gained in coupled time-dependent
problems (Schneider et al., 1970).

(e) Self-consistent perturbation theories can easily be formulated (i.e., we
expand the optical potential in terms of the “real” Green’s function, then
we choose a trial value for it and calculate an improved “real” Green’s
function from the Dyson equation, which we substitute back to the perturba-
tion series for the optical potential until self-consistency is achieved) and the
derivation of the random phase approximation (R.P.A.) (Ehrenreich and
Cohen, 1959; Thouless, 1961; Brout and Carruthers, 1963; Pines, 1961)
(called also time-dependent Hartree—Fock theory) can be placed into the
context of a hierarchy of approximations (Schneider et al., 1970). These
approximations, in turn, can be made self-consistent at each truncation. As
in simple Hartree-Fock theory, self-consistency will be seen to be a physically
desirable feature of the approximation method. As will become evident, this
review is formal, in that there exist at this time no self-consistent results.

It is hoped that this exposition will encourage quantum chemists and
molecular physicists with practical calculational experience to put the
formalism to the test. The authors of this review believe the formalism is
as préctical as present-day configuration interaction, perturbation, close
coupled and adiabatic methods that are presently being used. Tt is hoped that
self-consistency will yield better results for equal effort.

In :_Section IT we shall introduce the formalism of second quantization,
define, the many-particle Green’s functions and outline some elementary
propetties of the one- and two-particle Green’s functions. It will be shown
how p‘hyéical information can.be obtained from a knowledge of these func-
tions. 1& Section I11 the hierarchy of equations for the Green’s functions is
Aderived_' ‘As important are alternative forms of these hierarchies in terms of
the spectral functions for the Green’s functions and in terms of optical (effec-
tive) one-, two-, and many-particle potentials. In Section 1V the expressions
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for scattering cross sections are derived. In Sections 'V and VI, respectively,
nonperturbative and perturbative self-consistent methods of solving for the
Green’s function are given. It is in Sections V and VI that physical intuition
comes into play. :

Throughout this review a familiarity with the methods of second quantiza-
tion as well as the use of the Heisenberg and interaction representation will
be assumed.’

II. Many-Particle Green’s Functions and
Physical Quantities®

A. Tue MANY-PARTICLE GREEN’S FUNCTION—PHYSICAL QUANTITIES AND THE
ONE-PARTICLE GREEN’S FUNCTION

The general n-particle Green’s function (also called real or full or re-
normalized Green’s function) is defined as

G2, 1,2, )
= ()" Wol TIY(L) -+~ YW () - Y (1D o). @)

Here, i =1;, 1;;7 | W, is the ground-state of an N-particle system; /(i) is the
field operator in the Heisenberg representation, i.e., the operator which
destroys an electron at position r; at time #;; ¥'(i) is the analogous * creation”
operator. As always in| the Heisenberg representation, the operators are
time dependent even when the corresponding operator is time independent
in the Schroedinger representation, since

Op(i)Heisenberg = eth‘Op(ri % ())e—iHu
iHt
=é ‘ Op(ri)Schroedingere

Here H is the Hamiltonian of the total system and f is set equal to 1. It is
well to remember that antisymmetry is automatically built into the second
quantized formalism since all operators are written in terms of ¥ and YT
(e.g., the potential is written as

V=4 [dr de gt E) V(In — r VeV )

@

—iHt;

s For elementary introduction to second quantization and many-body theory, see, e.g.,
Falkoff (1962), Roman (1965), Kirzhnits (1967), March et al. (1967) and Mattuck (1967).

6 Matsubara (1955), Galitjski and Migdal (1958), Martin and Schwinger (1959), Falkoff
(1962), Roman (1965), Kirzl}nits (1967), March ez al. (1967), Mattuck (1967), and Migdal
(1967). |

Ti=1,2,..., 0. Ty means position and spin coordinate. Any integration for r means
integration in position space and summation in spin space.

5
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3
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in the Schroedinger representation, and as

= %f dr, de, Y Y @ ) V([ — r DY v (1) ©)

in the Heisenberg representation) and these in turn satisfy for equal times the
anticommutation rules for Fermi-Dirac particles

WD), YDl = Wi, Yiadl, =0
W, ¥l = 8@ — ).

The symbol T in Eq. (1) is the Wick time-ordering operator, which, when
applied to-a product of operators, arranges them in chronological order of
their time arguments with a multiplicative factor of +1 depending on
whether the chronological order is an even or odd permutation of the original
order.

As an example note

TN = vOR NS¢ — 1)
-yt WD, — ) ®)
where © is the Heaviside (unit step) function, hence
Gy(1, 1) = ()™HOq, — 1, KYW'AD)
-0, — )XYW} (OX

From this formula flows a simple interpretation of the one-particle Green’s
function. 1f 1, < t; then

G(1, 1) = (/1) YY1
= (1/i) e/ W [(r e HO T () | o)

Now, y'(r;")|Wo) represents a state where a particle was created at position
r,’ in the background of the N-particle ground-state and

&~ (e )| Wo)

represents the state which was formed from the previous one (assuming it
was created at time t,") from time ¢, to time ?,. The second factor in the
previous expression therefore represents the scalar product of this state with
the state Y'(r,)| Wo> which is an extra particle at point r; with the ground-
state background of N particles. The first factor is a phase factor. Therefore
G(1, 1) for t," < 1, is the probability amplitude that if an extra particle is

@

8 Where it will not cause confusion we shall usually use angular brackets to denote an
expectation value with respect to 19>, i.e., .

<0p> = (0| 0,1 ¥ 0>
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created at time ,” and point r,’, then it will be found at time ¢, at the point r,.

G(1, 1) describes the propagation of a particle in an N-particle ground-
state, therefore G(1, 1') is also called the <« real” or *“full” or “ renormalized”
one-particle propagator, because it describes the actual propagation of an
extra particle in the “medium” of the N-particle ground state. For 1, < t,’
we destroy a particle at point r at time £, and then measure that this destruc-
tion shows up at time ¢, at the point r,". We shall call this process the creation
and propagation of a ““hole.” .

We can define the following related functions

G (1, 1) = (1KY A)>
G=(1, 1) = —(1/)<¢' AW
These are called correlation functions, and
GR(1, 1) = (1D O(t; — t, )W), ¥ AN

the retarded one-particle Green’s function

GA(1, 1) = =18 — t )XY AWML

the advanced one-particle Green’s function.
Since

QT = (Frp(r)em e gi(e,)e™ D
= (ot (r,)e MO Y (r, Yo TIEN
= QY(r)e I N(E,)) @)
where © = 1, — t,’, G; depends only on < and can be written as
Gy(1, 1) =()" 1{_@(f)<!l/(lf1)e"“'" D
— O(— )P (r, ) EY(x,)0}
=G(r, 1y, 7) )

which expresses time homogeneity for time-independent potentials.

As will be seen later, similar, but more complicated formulas can be
written for higher G,,. | ' ) -

To justify going further it will now be demonstrated how a knowledge of G
(or G<) enables one|to calculate the one-particle density matrix of the
system (and thus all expectation values of one-particle operators over the
ground state ¥;) and also the ground-state energy.

The density operator p,,(r), whose expectation value is the density at
position r, is given in the Schroedinger representation as

e i s ot 1

F
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Pop® = ¥, 8@ — 1) ®
i=1
and in the Heisenberg second quantized form as

Poet) = [ Ayt DdE — WD)

= '@ @d)- (10
Therefore, the density at position T and time t is
plrt) = YHEWED)>
= 1ti,m o(tl/*(rt')llf(rt)) an

Since in taking the limit, ¢' approaches ¢ from above (—0 means ¢’ is always
Jarger than f), we can insert T and write®

px)= lim (T EWEOD

= _lim_c{—_ (T i(rt)D}
= lim {—iG(r,T; 7)} 12)
t—=-0

From Equation (11) one could alternatively have written

p(xt) = —iG= (xt, 1t) (13)

" and we see that G< (r1,1f) gives the density. In practice G(r)'® will be

determined as its time Fourier transform G(w) where

G(w) = [  HG@)E (14a)

“ -0

for any complex w and the inverse transform
G(r) = 5172 [ doc@e (14b)

Similarly we can define G (o), G” (w) as well as GX(w), GA(w).

Then Eq. (12) simply means that if G(w) is known, then ip(r) is deter-
mined by integrating this function over a semicircular contour going
along the real @ axis from —oo to +® by closing counterclockwise in the
upper half plane (uhp). The closure is in the uhp because 7 is always negative,

9 Where it will not cause confusion we shall sometimes drop the superscript 1 on Gy, 1,
4, etc. Hence an unsubscripted G, r, ¢ means Gy, 1y, 11, etc. ] )
10 §omietimes we waive writing out all coordinates. Here we omitted the space coordinates

of G.
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hence ¢~ * will only vanish along the semicircle when Tm o is positive. After
fixing the path of integration we can take the limit behind the integral sign
and we shall get a unit factor instead of the exponential. The sometimes
confusing limit in Eq. (12) simply specifies a contour. Clearly -the density is
now known if G(r) or G*(7) or G(), or the poles and residues of G(w)
are known in the uhp. In the practical problems which we are concerned
with in this review, the residues and poles of G(w) shall be solved for and
used to obtain the density. Such being the case, the so-called spectral repre-
sentation of G(w), which shows explicitly its poles and branchcuts, residues
and discontinuities along the branchcuts, will soon be discussed.

If for some reason the poles are more difficult to obtain than an expression
for G(w), p(r) and (as we shall see shortly) E,, the ground state energy canbe
evaluated by integrating over the contour directly. This is accomplished
most easily by rotating the contour counterclockwise by m/2. The spectral
representation will show that the rotated contour encloses the same poles as
the original one. On the infinite semicircle in the left half plane the form of
G(w) will be obvious from the spectral representation and the integral can be
performed analytically. On the part along the imaginary axis one can integrate
numerically (there are no singularities along the imaginary w axis) moving
symmetrically (up and down) from the real axis until G(w) reaches its large @
asymptotic form, at which point analytic integration again can be used.

It will now be shown that the same residues and poles also determine the
ground state energy. In this demonstration the equation of motion for (1), to
be derived in the next section must be used. This equation is

[i Z% = h(r)] W) = [V — W E N E DY (15)

where & is the one-particle part of the Hamiltonian and ¥ is the two-particle
potential. The key to obtaining the energy is to evaluate the derivative of
G(rt; rt’) with respect to ¢ in the special case of t < t' =0 which specifies the
time ordering, viz.

[0G(r1; '0)/0t);<0 = i (x'0) ofory(xt))
= Y'@0) fdr"V(r — W E Y DY)
+ YT OAEY D). (16)
Using the right-hand side of (16), the following limit can be taken
lim aG(rt; r’O).

ror ot

t—»-0

an
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A comparison of (16) with the second quantized expressions for {(H,» and
(V> gives the value of the limit in (17) after integration for r as {Ho) +
2(VY. Since Eq = (Hoy + V) one obtains

1 oG(r,1';
Ey=> {j dr lim f—(a—q + <H0>} (18)
=—-0

From Eq. (12) the second term on the right-hand side is

(Hoy = —i j Arlim R(r)G(r, r';7)

t=+-0
r-r

hence the ground-state energy:

—+-0
' =r

0
E, =-§ dr lim [5; - ih(r)]G(r, r';7)

= do [ drlim [ + HEOIGE, ¥ @) 19)
47: - r’—r .

Again the limit 7 — —0 simply means that one must close the contour in the @
plane in the uhp, and also the knowledge of the spectral representation of
G(w) will allow the calculation of E, . Note that both Eo and p depend only on
G= (0.

Fgo)m the interpretation of the one-particle Green’s function it is obvious
that G, will be related to the elastic scattering cross section (Bell and Squires,
1959; Kato et al., 1960; Namiki, 1960). Though the formula for the cross
section is simple, the explanation is not straightforward and we should refer
to the adiabatic principle and the formulation of field theory in the Heisenberg
representation (Roman, 1965). We shall give only a simplified schematic
description.

The elastic scattering cross-section in the Green’s function formalism was
first formulated by Bell and Squires (1959) and by Namiki (1960). One can
formally simplify the calculation using the so-called in-out or LSZ reduction
formalism (Falkoff, 1962; Roman, 1965; Kirzhnits, 1967; March et al., 1967)
in which adiabatic decoupling is applied to the operators.

Let us denote by y/(r?) the electron field operator and by |¥o» the ground
state of the target (Romém, 1965). It can be shown that as t— F oo with
simultaneous adiabatic decoupling of the electron—atom interaction the field
operator will converge to an asyraptotic form which obeys the free equation
of motion (Roman, 1965). Therefore, :

lim Y(rf) = lim Y (rt) = Ii;m Piree(re) (20a)
t—~Fo t+ ¥

t~>F oo
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where y*°(rt) and °*'(zt) is the asymptotic form of i(rt) in the distant past
and distant future. It is stressed that the adiabatic decoupling considered here
refers to the electron-atom interaction. This process can be handled in a
nontrivial manner in the field theoretic formalism. See, for example, Klein
(1956) and Klein and Zemach (1957). Yi"(rt) and Y°*(rf) can be expanded
in terms of propagating plane waves ¢,(r?) of momentum k:
in in
Yo = 3 aiou(rt) . (20b)
k
This defines a2*. Now, the scattering state corresponding to an { ot
electron of momentum K can be written as

|¥, £ = al*| ¥od ‘ (1))
and from Eq. (202) and (20b)
al*t= lim a,'() (20¢c)
t=>Foo

where a,(f) is the expansion coefficient appearing in the expansion of y(rt)
: t)= g
Y(rt) Z,ak(t)fl’k(n) ; (20d)

Basically, Eq. (21) says that the scattering functions |¥,*) are those that
connect adiabatically, when the electron—-atom interaction is turned off
infinitesimally slowly, to the state in which a free electron moving “in”
toward or “out” from the target is created in the field of the ground state.
This, of course, is an idealization of the experimental situation. The | P
of Eg. (21) can be shown to satisfy the Lippman-Schwinger equation for
electron—atom scattering (Bell and Squires, 1959; Namiki, 1960). (See also
Klein, 1956; Klein and Zemach, 1957; Fetter and Watson, 1965.) The
scattering matrix can be written

Sex = Pl = <‘¥‘o|a2?‘a£‘"l‘l’o>
= lim {¥ola()a! ()1 ¥od

'~
1~ —c0

lim (¥olau(t)al ()] ¥o)

lim f dr dr'gi(r't ¥ oW W (T ¥ odou(r?)

t——o
t'++o

Il

I

=ilim f dr’ droi(r't)G(x't', )@ (r1). (22)
= —a0
t'— 4+ o0

®

Pl

g
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Note that since G contains only |¥,», as opposed to |¥,> (n#0), it alone
cannot supply inelastic scattering information. Equation (22) shows clearly
how elastic scattering is related to a knowledge of G.

A knowledge of G can be shown to give the natural orbitals and the
ionization potential of the bound electrons of the target. The former statement
is fairly obvious at this point, since a slight generalization of (12) shows that
G gives the density matrix, and natural orbitals are those functions which
diagonalize this matrix. Its general matrix element is

P(r» l',) = N_[er = drN l*’0’"(“7 Tyseees rN)‘*’O("’? | S FREEE rN)

= YY)
or .
p(r,r')= —i lim G(r,r'; )= —iG=(1%, 1. 23)
t—=-0

The density matrix, since it is diagonal in the natural orbitals x;(r), can also
be written as (Léwdin, 1955)

pr, ©') = ) nix @) (24)
where n; are the occupation numbers. The y,(r) are orthonormal as p(r, r’)
is an Hermitian matrix. The Green’s function method is clearly the way to
calculate the density matrix and the natural orbitals directly. It might seem
somewhat redundant to obtain natural orbitals once G, is known and E,
can be calculated. This is really a question of practicality in that it has been
shown that it is easier to calculate good approximate natural orbitals than
p(r, ') in that the occupation numbers in the method of Reinhardt and Doll
(1969) are poor. It is then suggested that E, be calculated variationally with the
natural orbitals as the basis set. Since the iterative methods, to be discussed
later, were not tried by Reinhardt and Doll (1969), it is hoped that by
using them a direct calculation of E, using Eq. (19) will be more successful.
To further illuminate the relationship between the natural orbitals, the
ionization energies and the density matrix it is well to write what is known as
the spectral representation of Gy (mentioned earlier in this section). Starting
with Eq. (6) and inserting-a complete set of N + 1 and N — 1 particle state
functions in the first and second terms on the left-hand side, respectively gives

Gy(1,1) = (1/i){9(11 B RCTULLOIE AIC AR TACHIL 10

—o ~1)Y <%”1¢'<1')|~vz-'><\vz-*\¢(1>m">]. 25)
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The superscript now denotes the number of particles. Introducing the
« orbital” definitions, called Feynman—Dyson amplitudes :

Fi1) = CHWDIEY 1y = (Ko lY(r) %7 expl = i(Ey " - EgMt]

= fy(xr,) exp[—i(E} "' — Eo")t] (262)
(1) = CEY T YD o™y = CEN YD) o™ expli(EY " — Eg")t1]
= g,(r;) expli(E} ™' — Eo")t]- -, (26b)

Equation (25) becomes in terms of the fand g orbitals

G(1,1) =~ i{@(f) YD) - 6(=7) g gm*(l')gm(l)}

- i{e(r) T FD A expl— (BN — EgV)]

0= Y gu(D)gn*(r) expl— i(Eq" —EN” l)r]} @7

From a comparison of (23), (24), and (27), it is tempting to equate the one-
hole (N« N — 1) Feynman amplitudes with the natural orbitals, because we
obtain

P, 1) = ¥, gu®)gn*(®) (282)

Unfortunately, the g’s are not orthogonal, nor even linearly independent. The
f’s, the one-particle (N «» N + 1) Feynman amplitudes are also not linearly
independent. In fact the only thing that can generally be proved about f and
g is the completeness of the total set

Y LX) + Y 909 @) = 5(r — ). 250

Goscinski and Linder (1970) have shown how to use Lowdin’s (1956) method
of canonical orthogonalization to transform the g's into the x’s. This pro-
cedure shall not be reviewed here since it is readily available in the original
reference and is clearly readable to quantum chemists. '

The ionization energies and electron attachment energies to various states
of the N—1and N o | particle system clearly appear in Eq. 27).

To see how the ionization energies are poles of G,, Eq. (27) is Fourier
transformed using |

il —iary it — 1 !
j _‘wdt[e(t)e e = ”1:1310 T (292)
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or
0 Utim 7 deo 2 e (29b)
= —~— lm .
27 g +0 Y- ww+iqe

The former formula is easily verified by performing an inverse transform of
the right-hand side, i.e., multiply by e~ *!2n and integrate from w = —«a
by completing the contour. For t < 0 the contour must be closed in the uhp
resulting in a zero value for the integral. For ¢t >0 the contour must be closed

in the lhp and 2 single pole at « — ix, gives a residue which in the limit is
e ™. Similarly,

[ ae(—ne=1e= = lim —!

o et @—a—in
With this the Fourier transform of Eq. (27) is obtained using (14), i.e.,

65 = i[5 SO s edte) ]

n—+0 nw—(E,7+1—EON)+i)] "'w—(EON_E,h,'._l)——iﬂ

(E2Y)

Clearly, in the limit, the poles of the second term are at the ionization energies
which can take on both discrete and continuous values. One discrete value
occurs for each bound state of the N — 1 particle system. For a neutral N
electron system the physical poles of the second term appear in the second
quadrant of the complex plane and fall on a line & = in, n > 0, i.e., infinitesi-
mally above the real axis. They are discrete for small negative real w, and
merge into a branch cut for a larger negative @. The physical poles of the
first term of (31) all lie in the lhp along a line @ = —in, n > 0. If there exist
bound states of the negative ion discrete poles appear in the third quadrant.
A cut always appears along this line in the fourth quadrant. The situation is
schematized on Fig. 1.

These analytic properties will be useful later when G(w) is found by solving
for its spectrum. A knowledge of where these singularities lie narrows the
region of the complex plane to be searched. Clearly our arguments must be
modified if N does not represent a neutral system. The reader should also be
reminded that if the definition of G(w) which is essentially given for real o,
is extended into the whole complex plane, then the mentioned poles and
branch cuts arise. Because G(w) has branch cuts on a part of the real axis we
can define by analytic continuation a function on the double-sheet complex
plane which has no branch cut. By this analytic continuation new poles will
appear on the unphysical sheets which are reached when the path of con-
tinuation crosses the above-mentioned physical cuts. This shall be discussed
more fully in the next section where the poles and residues are sought. One
can prove that G(w) coincides with G4(w) below the left-hand branch cut

(30)
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Fic. 1. Poles and branch cuts of G(w). ~

and G*(w) is the analytic continuation of G(w) above this branch cut and
G(w) coincides with G*(w) above the right-hand branch cut and GR(w) is the
analytic continuation of G(w) into the lower half plane across this cut. GRw)

is regular in the upper half plan¢ whereas GA(w) is regular in the lower half.

plane. It will be seen‘that the ability to use finite discrete basis sets greatly
simplifies this problem.

B. THE Two-PARTICLE GREEN’S FUNCTION

It is now useful to turn to a discussion of G,. In G, four times appear and
as might be expected/from the discussion of G,, different specific time order-
ings yield different information. An equation analogous to Eq. (6) could be
written but each ter‘m would now require three Heaviside functions (four
times three relative times). Fortunately for the purpose of this review, which is
concerned with excitation energies and inelastic scattering of electrons from

atomic and molecular targets, only a few specific time orderings shall be
|

: ,._.\_Jr.. oo

T A vy Gsiameieee s
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necessary to obtain such information. To illustrate this, several time orderings
shall be considered.

Case I Sett,, t, > t,,t; forarbitrary order of t, and t,” and for arbitrary
order of t, and t,’. Then for this case

Ga(1,2; 1%, 2) = () %" TRHOPW WA ¥
= — (| T OW AT @)1 o™ ’
— ¥ ¥ | TR E T T Eo™>

=3 CFM T AN E T T @NIE"™>
e Z er(l’ 1’)1,,(2, 2,)' (32)

1

I

Here an N particle-state closure has been inserted and the hole-particle
(Bethe-Salpeter) amplitudes have been defined as

(L, 1) = Q¥ TWAW AN
71, 1) = QBN | TWAOW A ¥o™ -

It is well to note that it was the specific time ordering that resulted in two
hole-particle products, i.e., the pairing of creation and annihilation operators.
Other time orderings will give other pairings such as hole-hole and particle~
particle. This point is important because only for hole-particle pairings do the
intermediate states have to be N-particle states; it shall be seen that this results
in poles related to the excitation energies of the N-particle system and not
intermediate states representing double positive and negative ion states with
poles representing double jonization and affinity energies, respectively. To
see this explicitly, it is well to write out the right-hand side of Eq. (33) in
detail using the Heaviside functions for the time of two time orderings and
making the times explicit by using Eq. (2). If this is done, after some algebra
the following result is obtained

(1, 1) = exp [(D(E" — EM)t1 + t:)alrn 1173 7) (34)

(33)

where
@ 1 ) = ©(xy) exp [iEs" + E,)raf2]
x (oM [Y(Ede” th"l’T(r Ol o
— ©(—7y) exp [—i(Ee" + E)11/2]
X (B | WA N @) E," L)

Using Eq. (32), this gives

G,(1,2; 1, 21)‘ = = Z,OCXP [i(E)N - EnN)T]Xn('n 1 T)%(T2, r,';t,) (36)
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for ty, t, > t,, t,’ but arbitrary 74, 7z Here the following changes to relative
time variables have been introduced. ; '

T=3(t + 1) — 3 + 1) =ttt (i=12).

The important point is that (36) has three relative times, the exponential
argument of one of them being simultaneously completely factorable from
the matrix elements and being an excitation energy. The only other time
ordering giving this property is the other hole-particle case, t2, 12’ > 11, '
The result here is:

Case 11.
G5, 2; 1520 =~ Z,oexp [—i(Eo™ — EYtln(t)xa(T2)- 37N

By an analysis similar to the one we have just gone through it can be
verified that the other time orderings do not have factorable exponentials in
which E,N — E,N appear.

In general, G, can be written

G,(1,2; 1, 2) = G,(1,2; 1, 2)'0(c — %7 | = 3t20)
+ Gy(1,2; 1, 2W0(—1 — ¥[7;| — 3|72]) + other orderings
(382)

where the Heaviside functions satisfy the time orderings of Case I and IT above.
Let us define the first two terms as the hole—particle Green’s function,

G**(1,2; 1, 2) = — Y exp [i(Eo" — ENltrs, 115 02, 125 72)
x Ot — 3| — $le2l)
- Z €Xp ["i(EoN — EMt)fu(r s )25 T2’ 72)
X ®(—T—‘HT1|—‘HHD- ) (38b)

The spectral representation of G, is obtained from (38b) by using (29b)
and Fourier transforming the variable 7, as in Eq. (14), to give

3 - ’ ’. 1€
Go(ry, T2, Ty 5 Ty, T2 @) = Go(ry, T2 1y 5 T2 5 Ty T2s )
‘

+ Gy, Tp, Ty’ B2’ T T2 )" + other terms 39)

|
i
U RPN | S0 =
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where
GZ(rls 1'2, rllv 1'2’? T15 T2y 50)1
i %05 115 T)Fa(T2s B2 T2)
=- lim & = -
iges0s o—(E"—Ed)+in
i
exp|+5 [ — (B — EMI(Im | + 152D (402)
and
GZ(rb Iy, rll5 rz'Q T15 T25 CL")“
- 1 XoT1> T3 T (T2 125 T2)
=i lim N N =
igmtos o+ (EN—Eg)—in
x exp{—(i/2)[® + (E," — Eo")[I.} + 7211 (40b)
Consequently

G5¥(w) = G:’.(a’_)l + Gy(w).

Let us define a new variable w, which runs through all EY — E¥ and all
E,N — E,N values. Correspondingly sgn (w,) =1 and sgn (w,) = —1.
Let us define '

X (r, 1,3 7) = Xty 115 7) for @,>0
X, @13 1) =T 15 0) for ,<0 (40c)
and
X, 137 =Fry,27)  for @,>0
¥ (r, 110 =xalry,1y';7)  for 0, <0
Let us define _
X, (1,1)= et X (r, 13 T)

where t' = 3(¢;, +1,") and

X (1,1) =X (r, 1,5 7,)
then
G¥(1,2;1,2)
- ¥ X,,10%,2,2)0( - flt,] — 3lz])

©n>0

— ¥ X,(1,10%,2,270(-7 — }l7:| = l20)

0,<0

-2 X_,,(l, 1%,(2, 2)0(sgn (w)r — 3171l — 11720

Il
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and

{7 Xy, 13 1) X2, 72 T2) sgn (@)
Go(T4, T2, W) =T hm{z /—(1 3 T2 A2 X2 3 T2
wa>0

i g0 » — o, + i sgn (©,) )
Xn(rl’ ['1’; Tl)Xn(rZ’ rZI; ’52) Sgn ((‘un)}
wn<0 w — o, + in sgn (@)

w exp (5 sen (@~ @Il = (=21}

L. Xn(rh l'"', Tl)Xn(rza "z", 72) sgn (CO,,)
=- lim z -
I g=»+0 on w— _a)ll + i Sg]‘l ((D,,)

w exp (5 sgn (@)l — @l + a1} (40d)

and obviously (38) becomes
Gty Tao T T2'5 T T25 o) = G5P(ry, T2, r/, T3 T T2 w) + other terms. (40e)
The “other terms” of G have poles at real ® values that differ from
+(EN - EoN). Therefore, while (39) does not have Heavisid_e functions to
distinguish its térins, they ail have poles at different positions in the complex
o plane. Sk E -

In this work -wé shall concentrate on G%® of Eq. (38b) 'aﬁ'(_i-":lisc it in the
next section to obtain an- equation for X,,. e

The information contained in GhP is clear, namely its poles give the
target excitation (or deexcitation) energies. As interesting is that.'th'e ‘resi'du.e
of G&° at the nth pole gives’ X, r'; ©) which is, from (35), in thg_hr}ut
7 — —0, just the matrix element ¥ |y @ ¥, - This is 2 cas'e"whxch
shall be, in practice, obtained in our approximate solutions (see Section IV?.
This residue then allows the calculation of all one-particle transition matrix
elements between W' and wNIf

0p» = ¥, 0pVE)
then in second quantized form
|
op® = [ ary 0PV
= dr dr g E)0p OO — 1.
Therefore

(¥o" \%“’l‘*‘o"& = fdr dr Op(E)CE N Y E W) F, > 8 —1)
\
|
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where the integral over the & function is taken only after the operator is
applied. In particular, from (10), (¥o | W @Y @)| ¥, the diagonal element in
the position representation is just {¥o|p()|¥.> the transition density.
Moreover, if our Fourier transforms Eq. (9) to get

N N
= 2 jdl’ 5(1_ _ ri)etkr = Z eik-n’
i=1 i=1
it is seen that the Fourier transform with respect to of the element

S SRUAOMOIE #i

is just
N
<\}10NI ‘-Zl gxk'n l "Pn~>

the generalized oscillator strength (Schneider, 1970).

Therefore the pole and residues of the hole-particle part of the two-particle
Green’s function, in the form in which they shall be obtained by the approxi-
mation methods to be given later, shall yield the excitation energies, the
generalized oscillator strengths, and enable one to calculate all one-particle
transition matrix elements. )

To calculate expectation values of n-particle operators (n > 1) other than
H, in the ground or in excited states takes a knowledge of higher Green’s
functions and the rest of G, . These are more difficult to calculate in the sense
that the nonperturbative approximation to be discussed in Section IV will
not yield this information. As such this review will not discuss these quantities
though, in principle, extensions of the perturbative methods of Section V
could formally, but at this time probably not practically, calculate them.

It is now time to turn to the question of calculating G, and G, , in principle,
exactly. Certainly their calculation is now amply justified.

III. Coupled System of Equations for Green’s Functions
(The Method of Functional Differentiation;
The Dyson Equation; The Bethe-Salpeter Equation)'*

A. A SYSTEM OF EQUATIONS FOR THE MANY-PARTICLE GREEN’S FUNCTION

In this section various useful and equivalent forms of the equations of
motion for G, and G, shall be given.
To determine the equation of motion for Gy, the time-derivative of G, is

11 Galitski and Migdal (1958). For further references see Pines (1961), Abrikosov ef
al, (1963), Matsubara (1955), Martin and Schwinger (1959); for an introduction see
Kadanoff and Baym (1962), Migdal (1967), Falkoff (1962), Roman (1965), Kirzhnits
(1967), March et al.(1967), Mattuck (1967).

I———
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needed. In the definition of G, the time only appeats in the ¥ and ¥’ (and in
the time ordering) so it is evident that oy/1/at is needed. Since Y isa Heisenberg
operator, its equation of motion is

i@/ () = W), H]. ' @1)

To evaluate the commutator in (41) one substitutes the second quantized
form of H in the Heisenberg representation into the commutator bracket.
The resulting commutator, now only between y(rf) and the annihilation and
creation operators coming from H can be evaluated, after a little algebra, by
using the anticommutation relations between Fermi-Dirac particles, Eq. (4)
and integrating over the resulting & functions, yielding

@Io0wn = (@) + [dyiE@aV(ir —rDbEdlpE @)

where A will symbolize the one-electron parts of H. One should note that
Eq. (42) is of the form of a time dependent one-particle Schroedinger equation
for Y(rt) (the Schroedinger matter field). A useful shorthand notation is
obtained using the definitions

l=r,1t 2=r1,,1

v —-2)=v(r - r2|)o(t, — 1)
and '
dl =dr dt,
With this, (42) becomes
li@/at,) — h(DW(1) = f d2v (1 — 2" Q2. @y
Now differentiating Eq. (6) with respect to t," (note 06(1)/ot = &(1)), gives

?E_;tl.l_) = (%] 8(t; — 1YW, Y4 [ Wod
1

+ wl T ) 19> )

Introducing the definition
‘ 5(1 — 1 = 8(r, — 7,)o(t; — 11) (44)
using (4) and (42) (for G,) gives
i(alatl)Gl(jl, 1y =601 — 1) + K(1)G,(1, 1)
- f av(l — T WP MYIAN>.  45)

12 Different forms of the same equation shall be given the same number with primes to
distinguish them.
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The matrix element in the last term on the right-hand side can be related to
G,, if a positive infinitesimal time ““¢” is added to t, in¥"(2) and the limit
e—>0 is inserted inside the integral sign. Now that there are two different
indicesr, , 1, +&(r;, t; + & = 2%) and 2, permutations of time ordering under
T can be made as discussed in the previous section. These permutations are
made to give the ordering as in G,, with the result that (45) becomes

[ig-t - h(l)] G,(1,1) + ifd2V(1 —2)G,(1,2; 1,29 =6(1 - 1), (46)

where “2* " implies that the limit 27 =2 (¢ — 0) must be taken before inte-
gration. This equation is the first equation in the coupled hierarchy relating G,
to G,., and G,_;. The rest of the hierarchy can be derived by analogous
methods, i.e., differentiating the definition of G, with respect to ¢,, commuting,
rearranging, etc., to express the ground state matrix elements on the right-
hand side in terms of G,., and the lower order G,’s. This coupled hierarchy
is the new form of the Schroedinger equation in Green’s function theory.

B. THE DysON EQUATION AND THE SELF-ENERGY

Now, in preparation for the derivations and approximations in the next
section it is useful to write some other exact forms of the equation for G,.
To do this it is efficient to define an unperturbed (i.e., V' is temporarily set
equal to zero in the Hamiltonian) one particle Green’s function G,° by

[G,°Q, 1Nt = [1£— - h(l)]&(l - 1. (47a)
. 1
Inserting (47a) into (46) gives
fdl"[Gﬁ’(l, NG (7, 1)y + ifd?.‘/(l —2)G,(1,2; 1,27) = &(1 — 1'). (46)

The integral kernels in (46") can be thought of as matrices with continuous
indices 1, 1’, etc., thus implying an operator equation

[G°17'G, +iVG, =1 (46"
When (46") is multiplied by G,° from the left .
G, = G,° +iG,°VG, (46"

which is an integral equation form of the equation of motion, i.e.,
G,(1,1N=G,°(1, 1) + i_[d2 d2'G.°(1, 2V (2 — 2)G,(2,2'; 1, 2+). (46™)

Operating from the right on (46") with G! gives
[G,°1 + iVG,G{' = Gy! 46Y)
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a form which lends itself to the introduction of a new function: T called the
self energy, the optical potential, or the one-particle effective potential-deﬁned
as :

¥ = —iVGyGy! (47b)
or
(1,1) = —i j d2d2V( = 2)G,(1,2: 2,296, 7@, 1) (47D)

With (47b), Eq. (46") can be written as

G, = G + X (48)
Multiplying on the right by G, gives -
[G°17'G, —2G, =1 48"

or
{i—a—— — h(l)]Gl(l, 10— !dZZ(l, 2)G,(2, 1) = &1 — 1). 48"
oty

Multiplying Equation (47b) from the right by G, and inserting the results in
(46™) gives

G, = G,° + G,"ZG,. 8™

Equations (48"), (48™),and (48) are, respectively, the differential, integral,
and operator forms of the equation of motion for G; and are called the
Dyson equation. In the Dyson equation G is replaced, using (47b), by T and
so the determination of G, and G, becoming equivalent to the determination
of T and G,. Hence a change of functional variables has been made. It will

soon be seen that the reason for changing unknown functions is that our .

intuition as to approximate forms for G, is not as well developedas it is for Z.
One sees from (48) that the Dyson equation, or the one-particle equation
is closed for G, if £ is known and that T plays the role of an effective potential,
which is generally energy dependent, complex and nonlocal. Clearly, G, is
not a true Green’s fi inction'? in that only if Zis a local, energy-independent
potential does one obtain the usual * operator times a Green’s function equal
to a delta functionT’ relation, but is rather a «driven”’ Green’s function
equation. It should be realized that 48)is a one-particle equation, which if
3 is known is equivalent to the Schroedinger equation. The effective one-
particle potential has folded in it all the effects of the rest of the system; as
such, it would indeed be surprising if it were not complex, nonlocal, and

13 By “true” Green’s function we mean the usual Green’s function discussed in mathe-
matical physics in connection with differential equations.
1
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energy-dependent. Thus, an exact one-particle picture has been achieved at
the price of a complicated potential. A detailed study of T will show it to be
real when  is set to an energy value below the first inelastic threshold of the
system. Above the threshold T is complex, the complex part can be shown
(Mott and Massey, 1965) to represent the absorption of incident particles
by the system. Since we are working with an effectively closed equation for G,
which in turn starts and ends in | ¥, inelasticity must be taken into account
by an absorption potential. Since such phenomenological potentials play a
key role in optics, they are called optical potentials.

At this point, it shall be assumed that T is known and the method of
solving (48) shall be discussed, after which the discussion will return to the
question of finding Z.

It will be useful to Fourier transform the time variable in (48”). It should be
noted that Z(1, 1) depends on ¢; — 1’ only, since from (48) it has the same
time variable as Gy and G,° which have this property. Using (14) and the
Fourier convolution theorem, (48") becomes

le — A@IGE, ¥'58) — Jdr;zz(r, r,; )G, ;8 =8 —r)  (49)

As is well known, Green’s functions are more difficult to solve for than
wave functions since they are basically nondiagonal matrix equations. As such
it is reasonable to seek what is always sought in such cases, an eigenfunction
expansion which diagonalizes Eq. (49). To do this, it is pedagogically useful
to define an integral operator (Layzer, 1963)

L=h+Z
and to write Eq. (49) symbolicaily as
[e — L()IG(e) = 1. 49)

Since L is generally non-Hermitian, G admits a biorthogonal expansion
(Morse and Feshbach, 1953) in the assumed complete set of eigenfunctions
0.(e) and 3,(e) of L(e) and its adjoint L' (€), respectively, of the form, for a
given &
2.Oe) -
Gy =) —/———~-
@=2 50 (50)

If (50) is put into (49) and its adjoint, respectively, and the limit ¢ = E (8)
taken, the set of equations obtained are

[L(e) - E(&)lpale) =0

51
(L) — E*@]7.() = 0 6N
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with the biorthogonality condition appearing as
Pn(e)| Bn(E)> = Opun- (2
The detailed forms of Egs. (51) are

h(x)@,(re) + fdr'E(r, r'; )@ur'e) = E()@ure)

HOFAre) + [dr'Ba's T, 13 8) = EHE)Pr0). (51

For the nonperturbative methods of this review, (51") shall be the form
of the Dyson equation that will be used to determine the one-particle Green’s
function via the E,(), ¢.(c), and &,(e). Equations (48) will be of formal use.
While (51') is a strange beast in theoretical chemistry and atomic and molecu-
lar physics, it is important to emphasize that the eigenvalue problem for
non-Hermitian matrices can be solved by techniques which are standard
in the applied mathematics literature (Wilkinson, 1965). In principle this
non-Hermitian eigenvalue problem must be solved for each and every value
of ¢ in the complex plane. Each ¢ gives a complete set of eigenfunctions and
eigenvalues. Clearly, if all this were needed to represent Eq. (50) the method
would be impractical. The saving grace is that as seen in Eq. (31) G(g) can be
represented in a form where all the energy dependence comes into the
denominator. In (31) only one set of functions {f, g} as well as a specific set
of energies are needed for all real &. Of course for complex ¢ the poles of G
in (32) must be found so as to allow analytic continuation to achieve a com-
plete complex plane representation. Hence, to obtain a form in the spirit of
(31) it is desirable to use (51) to solve for the polesand residues of (50)
and then to use the Mittag-Leffler theorem to represent G(e) in terms of its
residues and poles [G(w) is analytic on the double-sheet except for poles].
Now a great deal is actually known about the poles of G(g). From the dis-
cussion of Eq. (31) it was seen that:

(a) For an infinite system, branches exist parallel to, but in above and below
the real axis, in the second and fourth quadrants of the physical sheet.
Therefore, all poles must lie on the nonphysical sheets, and the residues of
these singularities arei not simply related to the {f, g} set which are related to
the branch cut.

(b) For finite atomic and molecular systems, the branch cuts are replaced
by a set of poles and adjoining branch cuts. Poles can exist on the physical
sheet, as well as on the nonphysical sheets reached by continuing across the
cut. The physical pojles are clearly related to residues which are g, g.* from
Eq. 31). ‘

(c) For a finite s;{stem described approximately by a finite basis set, both
the branches are replaced by poles, since the effect of the finite basis set is

SO SO
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to put the system into the Hilbert-space “box "’ spanned by the set and hence
to give only a discrete spectrum. In this latter case the poles are real (in the
limit # — 0) and from Eq. (31) correspond to ionization and electron-affinity
energies. The residues are clearly related to g,g,* and f, f.*.

Now in atomic and molecular physics experience has shown that ground
state problems, response functions, and even effective scattering potential prob-
lems, can be represented by discrete basis sets whichspan (in a mean value sense)
the short range region of real space (physical or configurational) in which the
particles of the system are simultaneously interacting. It is in this region that
the dynamics of the problem occur. The continuum relates the system to
boundary conditions which describe the experiment being done on the system.
Therefore, to solve for £ and G,, which characterize the system, it will be
physically reasonable and practical to use finite basis sets; in particular, those
bases known to give good energies, correlations, response functions (i.e.,
polarizabilities), etc. In the case (c) that concerns this review, a comparison of
(31) and (8) shows that the poles occur near the real axis at solutions of

&, = E(e,)- (52

The residues of the Green’s function at the poles are obtained by the
standard procedure under the assumption that Eq. (50) has only simple poles.
That is, it is assumed that there are no contributions from singularities in the
energy dependence of ¢,(e), @(e), and E(e). Thus applying the standard
formula for the residue of a simple pole

lim (¢ — &,)G(¢)

e2En

to the Green’s function in (50) the residue at the nth pole &, = E,(&,) is

T, ¢.(6)Px(2n) (53a)

where
I, =[1 - (d/de)E(&)].-=..-
that is, I, is the residue of 1/[e — E,(¢)] taken at the ¢, pole. Hence
rﬂ n(an)an(en)
Ge) = X ._%tg— A

(53b)

Clearly in case (c) the ¢, are related to the g’s and fs. The &, with Re g, < 0
give residues g, g, and with Re g, > 0 give residues I', @, @u- Thus to get G(&)
for case () it is, in principle, necessary to solve Eq. (51) for all real & and to
choose from the complete spectrum those ¢’s and E’s satisfying the eigenvalue



S RSP TAS

s »...!;_.-..«.-—-»-.‘.s} s

312 Gy. Csanak, H. S. Taylor, and R. Yaris

equation (52) (we shalt discuss the finding of I',, shortly). In practice one will
solve at a finite set of real & values and extrapolate between them or for a
finite basis set the determinant associated with (52) will be solved for. Since,
as will be seen, Eq. (51°) and the equation to be derived for T will be solved
iteratively and self-consistently, the first approximation for G will be taken
as that of the Hartree-Fock model. In this model the ¢, are the Hartree-Fock
bond and virtual orbital energies. It should be noted that for the Hartree-Fock
model (or indeed for any true single particle model) all T, = 1, since the model
is a solution to an energy-independent effective potential. These Hartree-Fock
poles can be used as a grid of ¢ points on the next iterate. As in any iterative
method a reasonable first guess, which the Hartree-Fock model is, is needed
for convergence, thus it is hoped that the final poles will not differ greatly (in
the mean) from the initial guess. This will simplify the search for &,. To find
T, it is necessary to know E,(¢) in the neighborhood of the poles, but this is
just what the extrapolation procedure will give us. Then knowing this one
can find 9E,/de numerically.

It is perhaps worth stressing that a method to solve for G,(e) for a given
3 has now been sketched out. In doing this for the physical reasons discussed
above it has been assumed that a finite discrete basis set will be adequate to
represent X and G,. Mathematically this means that the branch cut has been
replaced by a discrete set of poles on the real axis. This can be done if it is
assumed that (a) the poles far from the real axis do not affect the physics and
(b) that the @,(e) and 3,(¢) do not give poles themsetves. The former is
justified (Goldberger and Watson, 1964) because poles far from the real axis
describe effects that take place in extremely short times relative to the times
for the total process, c.g., for a scattering process they describe events that
occur before the particle fired from the gun can arrive at the target. The latter
assumption follows from the idea that the ¢,(g)’s are effective, one-particle
orbitals for a given energy. If 2 singularity existed 2 small change in & would
cause large changes in @,(¢) which would die out as g is changed again,
infinitesimally. This is similar to an extremely narrow resonance phenomenon
which would not be observable in the finite resolution measuring processes
used in experiments. In other words, if such poles existed they would not
effect observables. :

Assumption () is further justified by realizing that a pole near the cut
causes a heavy weighting of the continuum functions in the neighborhood of
the pole. This weighting is analogous to forming a wave packet out of the
functions near the pole. The discrete basis essentially says that if only such
poles exist, the spectral density result and packeting phenomenon can be
anticipated by trying to represent the packets themsleves with a finite discrete
function (calculated from a finite range basis). For poles far from the cut the
wave packet is very broad containing contributions from a wide range of
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continuum functions. Such broad resonance type phenomena result in little.
change in the spectral density and are essentially unobservable. Once the poles
and residues of G, are known the integrals for p(r, ') and E, are easily done.

C. HIERARCHIES FOR GREEN'S FUNCTIONS AND RELATED QUANTITIES; THE
METHOD OF FUNCTIONAL DIFFERENTIATION

Now that G, is known given Z, equations for finding G, or ¥ must be de-
veloped. In the spirit that the equations for Gy, G, ...,0rT G,.Z,...,will be
solved simultaneously, it will be assumed that G, is known and an equation
for G, or T shall be the object of this subsection. Clearly the equation for
G, or T will involve a knowledge of G, or its equivalent. As in the case of
G,, physical insight and incisive approximation will be facilitated by writing
the equation for G, in terms of a closed equation with an effective (two-
particle in the media) potential (the knowledge of which is equivalent to
having G,) called Z. Several sets of equivalent functional variables are in the
process.of being defined, viz., Gy, G2, G35 -5 G1s G2, 5, .5 G X, =, ..
G, %, Gs, ...: G, X, 828U, «..i {@p» &ad» 5 E, -5 ELC The various
hierarchies are all, of course, formally equivalent, in the sense that no new
physical content will be contained in any of the alternative forms to the
Gy, G, G;, ... set of coupled equations. However, since the set of coupled
equations must be truncated by an approximation at some stage, different
forms of the hierarchy lead naturally to different approximations, and hence
to different truncation procedures.

In Section VI, perturbation expressions are derived which give G, or X in
terms of ¥ and G,. It will be pointed out in Section VI that the perturbation
expansion for G, (or %) in terms of Gy, and the Dyson equation for G; form
self-consistent perturbation theories for G, and G, . The perturbation expan-
sion for G, involves G, and G;. The two closed equations for G; and G and
the expansion for G again give a self-consistent perturbation theory of higher
order. Of course, closing the set of equations at G will be much more work
than closing at G,. Only experience will show how high in the coupled

. equations the truncations must be made. Fortunately, since anything above

G, will be inordinately difficult to calculate, diagrammatic analysis and
experience (Kelly, 1968; Karplus and Caves, 1969) tends to indicate that
G- will not be needed for most atomic and molecular problems. The com-
pletion of the G; truncation perturbative strategy does not require the
derivation of the closed equation for G, in terms of Z since it has already been
indicated how the equation for G, in terms of G, is derived. The closed equa-

tion from the perturbative point of view is only an alternate equation in the

sense that (48) is an alternate to (46). The real reason that this closed alternate
form will be derived is to introduce the method of functional differentiation
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and the expression of G, in terms of functional derivatives of lower order
quantities. This method will lead to nonperturbative approximations to be
discussed in the fifth section.!* The fundamental idea of the functional
derivative method of Schwinger is (Schwinger, 1951; Galitski and Migdal,
1958) to introduce into the problem an arbitrary nonlocal time dependent
potential U(1, 1), that is turned on slowly (adiabatically) at ¢t = —oo and
off at t = + co. This potential “ probes” the system, and the physical quanti-
ties G,, G5, Z, etc., are calculated in the limit U(1, 1’) = 0. The idea’is exactly
that of studying generalized response properties of the system. The method
is quite physical in that all experiments actually probe the system and measure
its response in one of its several forms, e.g., absorption coefficient, dielectric
constant, etc. It shall be shown that G, (for a given G,) can be replaced by a
knowledge of 6G,/3U]|y-o i.e., the variation of G, with respect to the small
probe potential in the limit that the potential goes to zero. What will resultisa
sequence of coupled equations relating T (or G,) to 8Z/6U; dZ/U to second
derivatives, etc. It is worth repeating that the advantages of the new hierarchy
over the original one are both physical and formal.

Physical arguments will allow one to make approximations to variations
that were not evident when G5, G, , etc., were used. The idea, as will be seen,
is that approximations to Z and G, that are inadequate to represent T and G,
themselves may suffice to calculate small variations in £ and G, . The formal
advantage of the method is that closed equations for G, etc., can be derived
without invoking perturbational diagrammatic summation procedures.

In the situation that a small arbitrary external nonlocal two time-dependent
potential U(2', 2) of the form :

U@2,2)=U(r,'ty, 12 1,)0(t," — 1)

(where the Heaviside function maintains t, earlier than ¢,") is turned on at
t=—coand offat t = +©

G,(1,1;U) = % ¥ ()| T WM (1) ¥o(U)) (54)

where the symbol U reminds us that the new Hamiltonian has U(2, 2) added
to the one of the previous section. Since the defining equation was for an
arbitrary Hamiltonian, the derivation still holds and the equation can be
written as

G =[G -U-Z. (55)

14 Historically the equation for G in terms of =, was first derived by Bethe and Salpeter,
using formal complete diagrammatic perturbation summations. The method chosen here
has the advantage of giving functional derivative expression for E and leads to approxima-
tions that might not be obvious in the diagrammatic formalism.

|
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We can consider U as a functional variable and we can form the functional
derivative of a functional of U. The exact definition of the functional deriva-
tive will be given in Appendix A as well as the derivation of the fundamental
equation (Schwinger, 1951) for the functional derivative of G{(U). We note
that if F is a functional of U(x) of the form

FIU)] = [ dxK(U)
then the functional derivative of F with respect to U is
SFIsU(x) = K(x).

In Appendix A we derive the Scawinger equation which will be of funda-
mental importance in the following

5G,(1, 1'; U)
U2, 2)
and as a special case for a local potential

8G,(1,1; U)
3U(2)

= —G,(1,2;1'2) + G,(1,1G,(2,2)  (562)

U=0

= —G,(1,2;1,2%) + G,(1, 17Gy(2,27).  (56b)

u=0

This is the desired functional relation that for a given G, replaces G, by
8G,/6U | y=o-

For a given G,, the derivation of the hierarchy for T in terms of 6X/6U
is easily carried through. Since

fdzc(l, 26712, 1y =81 — 1)

taking the variational derivative with respect to U(4, 5) yields
FR R

fdz{g—% G2, 1)+ 6G(1,2) ‘igwf”s—l)—)}
which can be multiplied from left by G(1’, 2') and integrated over d1’ to give
8G(1,2) 8G71(2,1")

oU@4, 5) 8U4, 5)

To evaluate §G~1/8U Eq. (55) is varied giving
(%%5-1)9 = -82-48(1" —-5)— ?I:]((ZA;IS;
Substituting (58) into (57) givesi

8G(1,2")
U4, 5)

G(@1',2). (&)

= fdz d1'G(1, 2)

(58)

52(2, 17

— G(1, 4)G(5, 2) + f d2dVG(Q, 2)37(4—5)

61,2y (59
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which on using (56a) gives
—Gy(1,5;2, 4 + Gi(1, 2G,(5, 4) = G(1, 4)G,(5,2)
ST21) -
—— L GV, 2).
U4, 5) 129
(602)

Equation (60a) is the promised equation which replaces G, by OZ[éU.
Again the special case of a Jocal potential is .
—Gy(1,4; 2, 4%) + Gy(1, 2)G,(4, 47) = G(1, 4)G,(4,2)
6X(2,1")

& j a2 d1'G,(1, D G2y
(60b)

We can now substitute 6Z/8U for G, in the definition of Z, Eq. (47b). It
should be noted that in this definition G,(1,2; 1, 2+) the so-called * three-
point” Green’s function appears rather than the more general four-point
Green’s function G, (1,2; 1’,2") because the two-particle potential in the
Hamiltonian is a two-point instantaneous potential (in the case of more
general four-point retarded or advanced potentials the more general four-
point Green’s function appears). Thus, in the hierarchy for X.in terms of
6%/6U only local potentials as in Eq. (60b) need be used. However, to develop
a closed equation for the general four-point G, in terms of = the more general
functional derivative in terms of a nonlocal two-time potential will be needed.
Hence, substituting (60b) into 47b)

+jd2 d1'G,(1,2)

(1,1) = —i J.dl" 42V(1 = 2)G,(1,2; 1%, 2967 (1", 1)

i j d1” d2v(l — z){cla, 2)G4(2, 1) = Gy(1, 1)G (2, 2%)

. 52(3’ 4) n} -1 " ’
+1jd3d4cl(1,3) e G,(4, 1N}GT* (1", 1)

1

i [d2v(1 - 2){01(1, 2)8(2 - I') — G,(2,27) 61 = 1)

, 55(3, 4) ,
+i j?n d4G(1, 3)_53(7)5(4 -4 )}

et 5(11 -1 jdzvu — 2)G,(2,2%)

4 v - 1)6,(1,1)
52(3, 1)

i [a2d3v(1 - 26,19 50y

(61)
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Equation (61) is the first equation of a new hierarchy which for a given Gy,
replaces the coupled equations for G, in terms of G, G in terms of G, etc.,
with equations relating  to §3/8U, 6Z/6U to second variations, etc. Higher
equations in the hierarchy are obtained by functionally differentiating (61).
For example, the first variation yields

SE(LY)

, , 3G(3,3*)
= —i8(1~ 1) [d3V(L ~ B) 55

sU(2)

5G(1,1'%)
sU(2)

5G(1, 3" 8%(3, 1)

ST NS0@ UG

i _[d3 d3'v(l —

523(3, 1)

% ifds 43V(L 360 ~ 3 555550

(62)

D. THE BETHE-SALPETER EQUATION-—ANOTHER HIERARCHY OF EQUATIONS

For purposes of physical insight and ease of derivation of exact cross-
section expressions, a third form of the hierarchy will now be derived. This
third form, which is equivalent to the previous two forms stresses the “ op-
tical” potentials. Closed equations shall be given for each Green’s function.
The unknown part of each equation will be an effective potential that requires
a knowledge of higher Green’s functions or equivalently higher functional
derivatives of Z. :

The first equation of the hierarchy is again (48") whose effective potential
nature has already been discussed.

The second equation is obtained by replacing G, by a more convenient
functional variable called the generalized linear response function and
defined as

8G(1,1; U)
U2, 2)

It is a generalized linear response because it is the coefficient of the linear
term in the expansion of G;(1, 1'; U) in a power series in U2, 2). For small
U, it is the most important term describing the effect U has on the system.

The usual linear response is a special case of (63) and is (recalling that
" =r/,t+68

R(121'2) = (63)

Uu=0

5G (1,175 U)

. 6p(1,17)
rit + —_— e —3 e—
R(121'*2%) = )

b0 SUQ)
Therefore (64). gives the linear term in the expansion of the density matrix
in a local potential. Comparing (56) and (63), it is clear that for a given Gy,
R and G, give equivalent information, i.e.,

G




eppiieebpiaa

e ee o b 2

318 Gy. Csanak, H. S. Taylor, and R. Yaris

R(1212) = —G,(1,2; 1, 2N+ Gl(l,l 17G,(2,2) 65)

To obtain a closed equation for R, Eg. (59) is combined with (6_3) and
5%/6U is replaced, using O

8(2)3) - f §32(2,3) 8G,(6,7)
sU®4,5) 5G,(6,7) 8U(4,3)
= j d6 dTE(2T36)R(6574). o (66)
In the last step (63) has been used and the new definition
o SE@ D) ;
E(2736) = 3 5.6 (67)

has been introduced. The result s, after some changes of dummy integration
variables, the Bethe-Salpeter equation

R(121'2) = G,(1,2)G;(2, 1)
4 j 43 43" da d&'G (1, 3)Gy(3, 1)E(343'4)R@E242).  (68)

Equation (68) is a closed equation for R (or G,), which when compared to
Eq. (48”) shows that it is an integral equation for R describing the motion
of two *“ Dyson”” or ““ dressed” particles** [i.e., particles traveling in solutions
of (48")]—this is evident since G; and not G,° is the unperturbed part of
(68)—interacting via the effective media potential which already has removed
from it the purely single particle effects. Of course, Z requires a knowledge of
6%/6G,, which can be shown to be equivalent to 2 knowledge of G5 or higher
functional derivatives of Z with respect to U. Similar closed equations for
higher Green’s functions can be derived for dressed particles in the media.
These shall not be needed here and shall be left out. The Dyson equation,
(68) (called the Bethe-Salpeter equation) and the other effective potential
equations form our last hierarchy.'®

As in the case of the Dyson equation, solution of Eg. (68) is facilitated by
deriving an equation for the spectral amplitude which has fewer variables.
The property of (68)|thdt 1, and t,’ are parametric is very useful for such a
derivation. Changing the parametric time variable to ’

T = tz - t2,
1
2 =3, +1t) dnpdt)=dn at,'.

15 Note that a Dyson iparticle can be a particle or a hole.

16 The usual form of the Bethe-Salpeter equation that appears in the literature involves
G, and not R and is derived in Appendix B.
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Equation (68) can be written as
R(1, 1, 1,17, 1%, 72) = Ro(1, 15 T2, T, 15, T2)
% fd3 43 dA di' Ry(13'1'3)E(343'4)R(', 4,12, T3/, %5 72)
(692)
where
Ro(121'2) = G,(1,2)G4(2, 1). (69b)
Now, Fourier transforming with respect to (—1?) gives
R, 1,13, I, T2, £) = Ro(1, 1, 12, T2/, T2, €)
+ j d3d3 dadd Ry(13'1'3)E(343'4)R(&', 4,7, T2, T2, 8)-
(70)

Since for the purposes of this review, only hole-particle amplitudes are of
interest, further details will only be done for the hole-particle part of R, i.e.,
RY®. The expression for R*? in terms of the amplitudes is from (65) exactly
that for G4° given in (40d) except for an overall sign change (from “+” to
«_»Y and the n =0 term is removed from the summations (it is cancelled by
the G,G, term). Since the Fourier transform of G, has been given in (40e), the
Fourier transform of R can be obtained exactly as (40a) and (40b) were
obtained. Simply noting from Eq. (38b) that

Re(12127) = T €U X(, 1)X (2, 725 T2)
Y .
and then proceeding exactly as in going from Eq. (38) to (40d) gives

X (LXK, (x5, 755
th(l, 11’ 1'2 : ‘fz', T2, E) e llm i Z n( ) n(IZ -1.2 1:2) sgn ((D,,)
7—=++0 op*0 E—w,— 1 sgn (OJ,,)

< oxp s santots — il + 21} 0D

Exactly as (38) compared to (40¢), one obtains
R(l; 1,5 Iy, 1'2’: T2 E) = th(l’ llv I3, '-'2,, T2 8)
+ non-hole—particle terms with poles not at w,. (72)

Substituting (72) into (70) and comparing the #th residues on both sides of
the resulting equation and multiplying by & — o, — in sgn (@) and taking the

~ limit e > o, gives, after the common factor x.(t2) is canceled,

x,,1)= f d3 d3' d4 da' Ry(13' 1'3)E(R43'4) X, (4', 4). (73)
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Equation (73) is the desired equation for the Bethe—Salpeter amplitude. It
has been assumed the R, has no poles at @, . This is clearly not true for scatter-
ing states and hence (73) is a bound-state equation. However, as was previously
discussed in connection with solving the Feynman-Dyson ‘equation, for
atomic and molecular problems one can span the relevant region of space with
a discrete basis set. Within such a discrete basis the assumption holds and
(73) can be used for the X’s necessary to evaluate R.

Equation (73), the Bethe-Salpeter amplitude equation for bound states,
is clearly a closed equation for the two-particle, hole-particle amplitude.
Since R, depends on Gy and not G,°, the hole and particle “move” in Dyson
orbitals (the Dyson equation is assumed to be solved) and interact via 2
which is the effective potential for hole-particle interactions of “dressed”
particles and contains only true two-particle interactions with the single-
particle average effects removed.

In order to obtain a Bethe-Salpeter equation valid for @, in the continuum,
one must proceed slightly differently. Starting with the equation for R in
terms of the X’s where the (continuous) index is now integrated over

R(1212) = j doo, X1, 1DX,2,2)

multiply both sides by X (2, 2") and integrate over 2 and 2'. It is not, in general,
true that the X’s are orthogonal, however, they have an exponential time
dependence, Eq. (34), that goes as £ Since the times are integrated from
— o to +co one obtains a §(w,, — @,) from the time integration. Hence,

X (1,1) = j 42 d2 R(121'2)X,(2, 2); 4

where the X’s are assumed to have already been normalized, and if there is any
degeneracy that the X’s within the degenerate set have been orthogonalized
(which can always be done). Notice that Eq. (75) says that R is the two-
particle kernel that propagates the two-particle amplitude X, from space time
points {r, 12, T2’} to {rity, r,'t;’}. Now substituting (68) into (74) and then
again using (74) in the resulting equation gives

x,(1,1) = jd; d2'G,(1, 2)G,(2, 1DX,(2,2)
3 ]jda 43 db d&'G,(1, 3)G,(3, INEG4I X, (4,49 (79

which is the Bethe—Salpeter amplitude equation for continuum states, i.e., un-
bound hole-particle ﬁaairs. Note that it is of the same form as the bound state
equation (73) except that it has an additional inhomogeneous term on the
right-hand side. In Section IV we will elaborate this inhomogeneous term.

A similar equatio‘n could have been derived for hole-hole or particle—

'._._.hy
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particle amplitudes. The two-particle Green’s function G, would have been
used and the terms in Eq. (39) with the proper poles stressed. An equation
exactly like (73) would result except that X, would be a hole-hole or particle-
particle two-particle amplitude, and Z would be replaced by W (see Appendix
B). These equations will not be stressed in this review since they do not, as
discussed in Section II, lead to excitation energies.

In summary, three equivalent forms of the hierarchy of equations have been
derived in this section: (i) that for G, related to G, G, to G, etc.; (i) that
for G, related to %, T to 9%, 5% to 2% and (6T)?, etc.; and (iii) that for G,
given by a closed equation with a potential £, which requires a knowledge of
R (or G,) and a closed equation for R in terms of a potential Z, which depends
on G, or higher variations in Z.

Much time has been spent in obtaining various useful equivalent forms of
the hierarchy-equations.

IV. Scattering'’

The formulas and equations for scattering are here further developed using
the exact relations of the previous section.

First the case of elastic scattering is considered. The purpose is to give a
simple prescription for calculating the 7 matrix when X is given in exact, or
approximate, form. The S matrix has already been given in Eq. (22) in terms
of G. Here it shall be expressed in terms of solutions of (51) with proper elastic
outgoing boundary conditions. It is here assumed that T has already been
solved for exactly, or, on a finite basis set, approximately. To do this consider
the one-particle amplitude that corresponds to the boundary conditions of
an “in” or “out” elastic scattering experiment, i.e., the one related to ¥, .
This amplitude is, from Equation (26a),

F$8) (1t) = (FoMYED | BF WV + 1. (76)

Using (21), the inverse of (20), and inserting T since the limit already specifies
the ordering, gives

FO = lim CFolYal () ¥od

' — o

lim [drCTy(eny' ('t Deulrr)

t'»>—

Il

lim i. f G, (xt, ') (X't (17)

t'—>—

~ where it is recalled that ¢ is a free-particle function.

17 See Klein (1956), Klein and Zemach (1957), Bell and Squires (1959), Namiki (1960),
Fetter and Watson (1965), Janev e? al. (1969), and Csanak e? al. (1971).



sevmppersssam st riaR )

322 Gy. Csanak, H. S. Taylor, and R. Yaris
Putting (77) into (22) gives for the “4+” case

Sew=lim [drob(VM). (1

'~

Therefore a knowledge of fi* (r' 1) gives Si: k- Substituting (48”) into (77)
and using (77) again the expression for f§T) becomes :

£ty = lim { j dr'Go(tt, Ty’
t'—+—oo
+ fdf1 dt, dr, dt, Go(rt, Tyt)E(Tsy, T2 t,)Gi(r2t2, r't')(pk(r't')}

= o5, )+ [dry dt, dr dt Golet, 1yt )2ty T2 1LY (Fata): 9)
1t is now necessary to Fourier transform Eq. (79). To do this, time homo-
geneity is invoked to give

=(1,1)=Z(@,¥; 1 — 1)
and the fact that f{* (r, 7) can be rewritten as
£ () = Q" W g @+ D) = QWM | eFy(r)e™ RSN

=exp [—i(EJ"! — EMIKEN W)™

= e~ "' f{F)(x)
where

= BN B £O0 = (RO

to give from Eq. (79)
FE(0)e 0 = pyle)e i

+] drydt ey dty Golr, T3 £ — 1)E(E, T3 g — L) (E)e™ 0
| (79)
Letting .
p=plny meh=h dt, dt, = dudr;
multiplying through by ea, and integrating 7, and 7, using’ the standard
Fourier transform definitions, gives

|
FE(1) = gr) + lim _(Go(r, ry; &g + INE, T3 efs V() dry dry (797)
n—+0

‘ . . - . -
where the in is added because, since t — + 00, T1S positive, which requires that
the inverse transform of Go(¢) be done by closing the contour in the lower
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half plane. The “in” guarantees, by the residue theorem, that nonzero
solutions only occur when the contour is closed properly, and that Eq. 797
has the proper boundary conditions.

Equation (79”) is the integral form of (51") with the elastic “out-going
scattering wave,” “‘incoming free wave” boundary conditions built in. It
shows that £,(*? is a solution of Eq. (51) for a given energy &, = k?/2 and with
outgoing boundary conditions. Hence, if = is solved for in any way, the
solution of the elastic scattering problem is exactly the same as a nonlocal
potential problem, for which many methods are known (Reinhardt and Szabo,
1970), the determinental method being especially appropriate. In deriving
Eq. (79) the integral without = was replaced by ¢y, the plane wave. To see the
correctness of this procedure, note that

lim fdr’Go(rt, r't o (r't")

t'——c0

= lim fdr'<To°IlPo(ft)!I/o*(r’t')l‘i‘o°>¢x(r't')

' -

= lim (¥’ Yoo’ ()¥e"> = CE W) 2.

' —c

Here the new “0” indicates *“ unperturbed”” and (¥° | Wo | We ¥ is clearly
the free-particle one-particle amplitude, which by the Dyson equation, since
S is here zero, is just an incoming plane wave.

It is now convenient to have a T matrix form and then to convert from time
variables to energy variables. To this end, if Eq. (79) is substituted into 81)
and the analog for (27) is used for Gy,

1
Go(xt, 'ty ==Y o) *(r't’)  for t>1
L
the equation for Sy, becomes

Sy = lim { fdr’wk(r’t’yp:.(r’t’)

'+
1 .
T J' dr'o(r1)oR(et) [ dr di dr' dio () R(es, TEILV(T) }
= o .
3
Using the conservation of energy and momentum in the form

lim j dr'oyr't)e, (') = lim ™ j dr'oy(r')p,*(r)
t'—+ o

t'=+o

= 6(g, — aj)aip
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gives
i .
Sy = 0(ex — sw){éw + " fdr’ dt’ dr” dt" o't )T’ rv"t")f'{_‘+ ’(r”t”)}. . (80a)

Now defining T by the standard relation
S=1+4+T
gives

| .
Tiex =~ f d1 d1' gt (D)L, 1. (80b)

Note that T has the advantage over S that the limiting process which is

difficult to perform is eliminated. To express the T matrix in terms of fi(r),
(80b) is written as

1 : R

qu - _l jdlr dln@p*(r) e!spr E(l", l'"; t: i t”)fs+)(rll) e—naqt
1 ’ " ’ - ieo T n _i(ep— (4 ¥
=—ij.dl' dr qo:(r)fd‘cE(r,r ;T) e fdz &ilep cq)tfé+)(r)

= 6(gp — &q) 2—7 Jdr dr'e, *(DX(r, r'; e)fH(T). . (81)

Equation (81) is what shall be used in practice since Z(g;) and f () is
what is usually available when time-independent methods (which are easier
to work with) are used. :

The next equation to be derived is for inelastic scattering. Analogous to the
derivation of Eq. (21), the expression for the S matrix element for a scattering
process that excites the target from state O to state » with electron initial and
final momentum p and g, respectively, is '

Sop.m = (EofM T IIEANEDy = Tim (¥o¥lay()a 1"

t'—+ o

t—+—~ o
= lim J dr dr'e, (T’ t)1', Deg(rD)- (82)
U=+
t+—®

It is evident that the two-particle, hole-particle amplitude is needed here,
which requires a knowledge of £ (or G3). An alternative viewpoint comes from
a comparison of the definitions of G, and g, , which shows that x, is reasonably
considered an “off diagonal one-particle Green’s function,” and should be
related to off diagonal optical potentials and responses. If the bound state
Bethe-Salpeter equation for hole-particle amplitudes (73) is substituted
into Eq. (82), another form, which is possibly more useful for making
approximations, is obtained.

R rata T "-gz'kvv'g#i 5
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1 -Y(1\3 +
Sop.na = = fdl d2 d3 d4 f§ *(1)Z(1423) 135 HIEI2) (83)

where the f’s are special solutions of the ground state Dyson equation defined
by

)= lim i f dry' 0 (2)G(2,2)

1+ —®
FE*@) = lim i [dr;c(l'x)goq*(l'). (84)
1~
The time independent form of Eq. (83) showing the proper energy con-
servation is obtained by substituting Eq. (79') and (34) into (83), with the
changes of variables
t=13(t; + tg); u=t —1
w,=E,— Eo

T=1t3— 1,
s=5(t, +13) o=5—1;

to obtain
1 %
Sop.ma =72 f do dt du dr dr, dr, drs dr, [N (R)

X ei(zp—:q)a ei(cp—:q-—mﬂ)z ei(zp+aq)u/25(r1r4 r,r; #TU)X..(I's . o ‘E) .

Integration over ¢ gives the energy conserving S-functions. Integration over
o and p Fourier transforms =y, T, 0) to El(e, + €2, T5 & — e integration
over T after substituting in the Fourier integral representations of Z(z) and
() gives finally

1 R =
Sop,ng = = 8(ep — 8q — ©n) '[drl dr, dr drg f§ *)fE(ry) st

g, + &q

= e =
X _(r1r4r2r3,

sy s raTe) (85)

If = is known (e.g., by solving for it perturbationally by the method to be
discussed in Section VI, D) then the inelastic electron scattering cross section
can be evaluated from Eq. (35)-

The equation for inelastic scattering of an electron off a target, since
it only uses electron amplitudes for a ground state target [see, Eq. (84)], has a
somewhat strange appearance. The more usual description of inelastic scatter-
ing as in Eq. (82) has the electron leaving the target with the target in its
excited state. It is just this necessity of describing the system in terms of its
excited state wavefunction that the Bethe—Salpeter amplitude equation does
away with. That is, the excited state wavefunction is considered to have been
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created adiabatically from an excitation of the ground state system, this
process will be described in detail below for a somewhat different case. If one
recalls the derivation of the Bethe-Salpeter amplitude equation in Section III,
where one starts with an equation for R in terms of an XX product, one sees
that this is exactly analogous to the process of obtaining excited state infor-
mation such as oscillator strengths by looking at the poles and residues of
a ground state property, the frequency dependent polarizability. There, one
obtains inelastic photon scattering information, the absorption oscillator
strength, by using the polarizability, whose defining équation involves only
ground state quantities.

To complete the scattering picture, formulas for y, are needed when @, is
greater than the ionization potential. Here g, is a continuum function and R,
has poles (or rather a cut) at w,, SO that the bound state Bethe-Salpeter
equation no longer holds. Special continuum y, are needed if exact R or G,
are to be calculated and the discrete basis approximation not made. A
second reason for calculating the continuum g, is that it ebviously contains
information about the ionization continuum of the target. From this infor-
mation it should be possible to obtain information about scattering from the
ion. To do this it is necessary to study the effect of adiabatic decoupling on
the electrons of the target atom itself. The ground state and some specific
states of the ion can be described in the independent particle model-as a hole
in the ground state of the atom.

| @ = dm| Do)

where |®,) is the ground state in this approximation and m is a quantum
number referring to a ground state occupied orbital. In the following the
Hartree-Fock independent particle model is used and 4, creates a Hartree-
Fock hole. Also the field operator is ‘

Y@ =Y, 4, 04" @)
The Heisenberg operator is expressed as

Y(r i) =Y, a0 )

where @EF(r) and @} (r 1) are the Hartree—Fock orbitals for the time indepen-
dent and a freely propagating time dependent case, respectively. @,(?) is
neither a pure Heisenberg nor interaction operator, but is a mixed representa-
tion. It is defined by the equation for ¥(r) and (r ) which are related by the
usual Heisenberg transform. The tilde on the 4, simply distinguishes it
from that for free (ne‘utral targets) or Coulomb (charged target) waves. Now
starting from the uncoupled state, by adiabatically turning on of the correla-

tion potential, an exact ion state can be reached:

sicele
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| ¥y = dm | ¥o?
where

it = lim d,(f)-
1~ — 0
This | ¥,y will be used as an ionic target state in the formalism used previ-
ously for electron-atom scattering. In this case, the scattering matrix assumes
the form:

SP"‘h qmz = <\yp—m1 l \P:'M) = <\¥m1 | a;ulajlin I lez)
= lim @yt (1)ad (1)@ (1)
1312 — 0 F

t)t2’ >+

lim fdrx dr, dr,’ dry G(r,t),13t5 5 T1ly, ry'ty")
iz — 0
11’12’ >+ ©

X (Pp*("1't1')<P§:f(:rzltz’)(9q(r111)(025*('2 1) (86)

where @, (rt), ¢,(rt) are Coulomb waves whereas @fF(rf), @b (rt) are Hartree—
Fock one-particle stationary states (m,, m, are Hartree-Fock quantum
numbers). The change here from the electron-atom scattering case is that the
indices p and q refer to Coulomb wavenumbers and @,(rt) and @ (rt) are
Coulomb functions. The use of Coulomb functions is conditioned by the long
range electron—ion interaction. The scattering matrix formula can be simpli-

fied by defining the Bethe-Salpeter amplitude referring to the state |Wo>:
Ximl(1, 2) = {¥ol T (I ¥gm?
lim (ol T (Dldn(Hag(t) ¥od

t, o> —ic0

tim [ dr dr’ CTIHCOW QUGN @D o4 ), (D)

t,t’+—c0

I

lim (—1) J-dr dr' G,(1,rt; 2, ') (r't) o, T (rt) 87
- .
t'+e—>—00

Using this expression in the scattering matrix formula, it becomes
- ’ APPEE fiy ¥ F, ’ 1yt re 1
Spmy, qmz = lim fdrn dr,’ @, (r,'ty YORR(r,'t, )xf,f..l(n 1y, 15150 (88)
t't2’+—®

“From the Bethe-Salpeter equation, an inhomogeneous (nonlinear) integral
equation can be derived for the x;‘,‘,‘,g(l, 2) Bethe—Salpeter amplitude.
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Inserting (65) and (68) into (88) and using the following identities

lim j dr dr’ G(1, 1) (1Ne¥F*(1)

= — o
t'+e—~+—

= lm [ drdr’ YA 1Nen"(D)

lim {an(f)ag’ (1)) = (Fol¥e> =0
t——c0
t'+e+—

and

lim i _|' dr,’ G(1, 101" =57 (1)

= —c0

lim i j dr, G(1, 2)ofF*(1) = —g,*(2)

tj—~—

the following equation is obtained for the Bethe-Salpeter amplitude

A5, 2) = £ (Dgat(2) + fd3 d3’ d4 d4’ Ry(1423)E(34'43 )43, 4)
' (89)

where f,(1) is the solution of the Dyson equation with incoming Coulomb
wave of wave vector q boundary condition and g.(2) is the solution of the
Dyson equation with Hartree-Fock boundary conditions

D=0+ fd3d4GHr(2, 3)Eeon(3, H944) (90)

where Gyp(2,3) is the Hartree-Fock one-particle Green’s function and
Teore = T — Zyp Where Zyp is the Hartree-Fock potential. This equation
follows from the following form of the Dyson equation

G = Gyr + Gur Zeorr G-

Now, the substitution of x{})from Eq. (89) to the scattering matrix expression
given by Equation (88) gives

Spmuyama= lim [y 0,0y 1) lim ey ol (5 13)
| t2 o0

130

x g1 (e/) + 2T, lim [dry o *(r/ 1t

‘ pom o

x Tim [dry o (1;)gn"(x; 1) [ 43 d3' d4 d4SEV7C3)
[P d]

\
X g(DEGA 43N EN3, 4). 91
\
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This formula can be simplified noticing that
lim f dr’ @ KT (X') = Spyr- (92)
t'—~ o

The same expression occurred previously in the electron-atom scattering
formula, however, p and p’ here refer to Coulombic functions.
Similar expressions can be defined for the “hole scattering”

lim j dr’ QFF (') (£'1) = Sy (93)
t'—©

Finally the following formula is obtained:
Spm.qm; ot Spq§m1m1+:22 Spp'gm;m'Tp’m', qmy (94)
pom

where

Tonrigms = fd3 d3' d4 d4’ ,ff"*(B)g,,,.(4)5(34’43’)xf,;2’(3’, 4"). (95)
The first term in Equation (94) describes the independent scattering of the
particle and the hole, the second term expresses the interference of these
scatterings.

The energy-dependent form of the T matrix in (94) is

T qms = 06y + S — Oqmy) | dr. dry’ dry Aty f(11)gn{r2)2m [de

&,y — E
—_ p 'm +
X ‘:(rl7 rz’» T, rl'a __2_ 3 & ap' = Em')xsmz(ﬂ' s Tzl)‘ (96)

It is this form of the equation for the electron-ion T matrix which should
prove most useful when combined with the perturbation expansion for Z, as
given in Section VI.

The formula for the scattering matrix equation (94) can be made more
symmetric. The equation for the Dyson orbital £E9(1):

L) = oD + fGo(l, 2)5(2, MR (3) d2d3 on

can be solved in two steps. In the first step we construct the Hartree-Fock
orbital @i¥F(1) with outgoing Coulomb wave boundary condition:

O (1) = ou(1) + [ Goll, DEue(2 DolTB)d2d3 -~ (99)

and then solve the Dyson equation with .o, =% — Iy using ©lF as the
inhomogeneous term
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1) = (1) + [ Guell, Do HE B 239

Spq Can be written as

Spa= lim [dry @, (/100570 + lim 3 [ary @Ryt
1S r ~

x 95%(8,1y) [ PFTH (D)2 33 42 3. . (100)

In the eigenphase representation the Hartree-Fock scattering matrix is
diagonal, therefore

lim [ Q¥ (10, " (1) dr)' = S(2) & e ()

1’

and consequently

Spq = S(p) 5:"1 o Z S(r) ‘Srp Tq

= S(P) Opq + S(P)Tpa

= 5E)Spas . (0
where
Tyo= [ OFT (2 een(2, 3)/(7(3) 423 (103)
and
Spe = Opa+ Toa- (104)

The substitution of the form of S, into (94) gives
Spm.qmz e S(P)qu §mmu + 2 Z S(p)gpp' gmm’ Tp'rn'.qmz
ol

= S(p){sm 8 ms+ T TSy S Ty m}. (105)
P m

V. Nonperturbative Approximation Method'®

Now that the formal equations are developed an “equation decoupling

procedure” is need?d to truncate any of the three equivalent sets of coupled
equations of Section ITL This approximation will also simplify the scattering

formulae involving =. The idea behind the approximation is to guess a

18 See Dyson (1949);1Feynman (1951); Matsubara (1955); Martin and Schwinger (1959);
Baym and Kadanoff (1961); Schneider e? al. (1970); Csanak et al. (1971),

il . s s e
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functional form for T (the reason that the Gy, G,, Gj, ... hierarchy was.
replaced by the two other equivalent ones which stressed functional deriva-
tives, was to make £ more visible). A functional form” means a specified
dependance of £ on G, for unspecified G; . Since this guess defines the model
and will be used to generate the physics of the problem, it must be physically
well motivated. Once this is done the hierarchy can be closed in any one of an
infinite number of ways each of which gives a higher order self-consistent set
of equations, viz.: If 2 = T4(G,) is put into the Dyson equation, the system is
truncated to one closed equation for G, requiring no other information. Since
this equation is nonlinear it will be solved iteratively (or self-consistently). If,
on the other hand, T ~ Z4(G,) is used in 6 = §TA4(G,) with 8" -0, for
n > 2, a set of two coupled equations are obtained, namely the Dyson equa-
tion for G, in terms of Z; 2 formula (not “eaqution”) for Z in terms of G,
¥,and R, and a closed equation for R in terms of G, . There two coupled equa-
tions must be solved iteratively and hence self-consistently. If the approxima-
tion is made for higher functional derivatives, i.e., 0"Z/dU", n =0, 1 is un-
specified but §°% ~ 6°Z4(Gy) with 8" /5U" = 0,n =3,4,... larger and higher
self-consistent sets are defined. Hence, it is seen how higher and different types
of self-consistencies can be developed. It is hoped (and moreover physically
reasonable) that higher self-consistencies are better, since the model =4 is
being used only to calculate smaller and smaller variations of T rather than
S itself. This will be seen to be true explicitly in the context of perturbation
theory in Section VI.

The problem now is to choose the form of X4(G,); from the discussion
above, especially with reference to the single equation truncation, the choice
of Z;#(G,) as the Hartree-Fock functional form is suggested. In Section VI
this will be shown to be the first-order perturbational approximation to
2(G). Now

5 o(1, 13 Gy) = Zag(l, 1) = —id(1 — 1) [d2V(1 = DGy(2,27)
+iV(Q1 - 17G, (1, 1Y) (106)

. because if G, is taken as Gy (i€, the Dyson orbitals and energies in the

spectral representation of G, are taken as Hartree—Fock orbitals and energies)
%.e(G,) becomes the Hartree—Fock potential. Note that =u(G)) is generally
not the Hartree-Fock potential since Gy # Gyyr- If this approximation is
made in the Dyson equation, the total theory reduces to the Hartree-Fock
model which is unsatisfactory for anything except the ground state density
and expectation values of one particle operators. The next step, -and the

_contribution by Schneider et al., (1970}, is to do the second step, i.e., leave Z

alone but use
5% — 8%y (107
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With this, using Equation (67), the approximate form of Z is obtained

e 62(3,3)  0Zue(3,3) _ -
(UL ) = o2 HET T = E (3434
(BB 5G,(4,4)" G4, 4) A )

= i6(3 — 4)(3 — V(-3
63— 3)6E—ATWE— ). (108)

It will be shown in Section VI that Eq. (108) is the first-order term in the
perturbation expansion of = as a function of G.
Now inserting (108) into (73) gives

X,(1,1) = —i j d2d2 R(1212)V (2 — 2)X,(2'2'")
4 j d2 d2 Ry(121'2)V(2 — 2)X,(22' ). (109)

Using the &(t, — t,") hidden in the definition of V(2 — 2') shows that on the
right-hand side of (109) the first and second terms contain, respectively,
X,y ; 1?, —0) and X, (ry,1y; 12, —0). Hence, in this approximation
X,(1,1" is obtained from a knowledge of X,(r;,T2'; 12, —0) and G;.
Xi(ryiFals {2, —0) is obtained from the closed equation obtained from (109)
by choosing ;" =t; + &, SO that {t,t,}~>{ =t; =1,, 11 = -0}
X, —0=— ijdr2 dr,' d?Ro(ryt, 1ot 1t ", 1, t%)
X V(|r2 5 rll I)Xn(rll, rll’ t21 e 0)
+ —i Jdrz dr,’ d2Ro(m,t 1o 5,1 ', T, 1)
x V(| = 1/ X215 5, =0 (110)
where from Egs. (40c), (34), and (35)
_e_iw"t’cPoNN’Y("{)‘p(rl)l\i‘g ha w,>0
— e QPN YA W) [ Wo' D, @n <O
= —e i X (1), Ty). _ (111)
Thus Eq. (110) is now

X, x,t,—0)= {

X, (r/, rl)e‘i‘”"" = —i J.dr2 dr,’ di*{G(r,t', 12 17)G (T2 2, 1,'t)
|

| x V(Iry — 1 DX (x> 1)
| — Gy(ryt, 1 )G (112, 1 WV (T, — 1)
X Xn(r2’$ rz)}e—imnﬂ’ (112)
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Multiplying both sides of (112) by 2o replacing the four Gy’s by their

Fourier integral representations, and integrating over 12 to give d-functions,
which are then in turn integrated over, gives

i
X ey, 1) =5 [ dry dry [ delCn, 123 G0, 71 8 — @)

x V(r, — ) X1y, 12) — G(r,, 1, £)G(r3; r,, &8 — ®,)
x V(Ir, = 12’ DX, 12} (113)

In Appendix B the integrals over & are carried out. If these results are used
the definitions made that

Vialrs) = [ dra SXEIV(Ir2 = T3Dgs(r2)

q)q:fn’ I‘[q=0;
Pq=9n> Ng=1; Regy <0,

(114)
Regy> 0

the resulting equation is

o Nq)‘;oq(rl)q):'(rll)

£q— Eq — On

' N %
X (x/ 1) =— Z( 4
aq

x J‘ dry Vo (£a) X (X4 T)

+ Z (Nq’ S Nq)(pq(rl)q):'(rlr)

qq’ &g — Eq — W,

x [ dry drg o, E)V(IEs = LDeg DX lre, 1) (15)

The (N, — Ng) factor assures that only hole-particle X’s are solved for
(Schneider et al., 1970).
A closed set of equations has finally been achieved. Equation (115) can be

" solved by standard non-Hermitian matrix diagonalization techniques. If the

Dyson orbitals and energies are known the knowledge of the X,(r;, T,) and
w, values enables the complete construction of only a special case of the
general R(121'2); namely, from (40d) the hole particle—R“"(rl,rz,r",
0t*,0%); 1e.,

R(121'*2'%) = R™(r,1.x, 12’3 0%0%¢)

Xn(rl,’ rl)Xn(rZ ,»fj’) Sgn(wn)

{ 3
== - 116
i on¥0 & — W, + "I Sgn ((D,,,) ( )
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This and G, are all that is needed to calculate Z in this approximation con-

sistent with (107). This result is then substituted into Eq. (71), which result

is in turn substituted into (67) to give [recall U(2, 21 = U2)]
(1, 1) =Z4(1, 1) — de d3v(l - 2)G(1, v’ - 3)R(321'*2%)
+G(1, 1) .fd2 d3v(l —2)V(1" — 3)R(32 3+t2%). (117)

Noting the 8(t; — t5) in V(1' — 3) indicates that the part of the general R
needed in (117) is R(t;2,t, ¥ 2, ) = R(0¥, 07, ¢* — 1) whichis the Fourier trans-
form of (116). In Fourier space equation (116) is

4 # i 11/
B0y 11, 2) = Se(ry, 1)) — 5 [ dra dry &2V, —13)
x RE(ry1, 1315, 070% 2 )V (r; — 1) )G(ry, r,z—2)
+ 2% Jdrz drsy dz’V(r, — 1)R (13X, {15, 070%2")

x V(ts —1,)G(ry, 13,2 = 2)- (118)

The final set of self-consistent approximate equations are, then, (1) Eqg. (51)
—the Dyson equation; (2) Eq. (115)—called the generalized R.P.A. equation;
and (3) the formula in Eq. (118) after (115) is substituted in. The method of
solution is then to start in Eq. (51) with T, & Zyr and solve for the Hartree—
Fock orbitals and energies which are the ¢, and ¢,. .

These are then introduced into (115) which now becomes the R.P.A.
equation (since the @’s are Qyg’s)- The X’s and w,’s are found and combined
with the ¢.’s and &,’s to form a new Z. The procedure is repeated until self-
consistency is achieved. On higher iterates Eq. (1 15) is no longer the
R.P.A. equation but the G.R.P.A. equation. Equation (115) need be solved
only for w, > 0 as seen from (111). Once convergence is reached and G is
known, Eq. (19) gives E,, and Eq. (23) gives the one-particle density from
which one-particle averages and natural orbitals can be found. As previously
noted the w, are the excitation energies and the X, give the generalized
oscillator strengths. Of course R is [compare Eqs. (64) and 116] the linear
response (not the general response) from a generalization of the R.P.A. or
coupled time-dependent Hartree-Fock (which are just different namies for the
same equation) which is consistent with the one-particle orbital equation.

The converged I, can be put in (51) with & = g*/2 set to the desired scatter-

ing energy to give an equation for the S of Eq. (76). These scattering orbitals, -

with the boundary conditions given in Eq. (79), can be solved for by any,
and all, methods used for solving potential scattering problems (Reinhardt
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and Szabo, 1970).. When solving for f{*’ the finite basis set used in solving .
Equations (51) and (115) is no longer used. Equation (80b) with X, sub-
stituted for T gives the approximate T matrix for elastic scattering. An
approximate expression for inelastic scattering is obtained by substituting
Eq. (108) into Eq. (83) which after Fourier transforming gives

Sup.0a = —0(6, — 8= @7) [ dry dr, V(r; —12)

X zn{f;_)*(rl)fsl+)(r1)Xn(r2 ,T2)
i fé_)*(rﬂfgﬂ('z)xn('z . N2 (119)

The approximate equation for inelastic scattering (119) is expected to be
less accurate than the other approximate equations given in this section.
The reason for this is that the truncation approximation (107) is closer in
the hierarchy to the desired quantity than in the case of quantities depending
on G,. The philosophy of this approximation scheme is that a first-order
approximation to E when integrated over gives a moderately good R (or X,),
which when integrated over gives a good G;. In the case of inelastic scattering,
however, one is not integrating over R (thus averaging out its deficiencies),
but using the X, directly (and hence exposing them in their nakedness), so
it would not be as surprising to see the approximation show deficiencies. If
that proves to be the case, it will be necessary to either use higher order self-
consistent sets of coupled equations (e.g-, 52F ~ 62Zyy) or use higher order
truncations of the Bethe-Salpeter equation as discussed in Section VL

Clearly a generalization of Hartree—Fock theory has been achieved, with
the advantage of overall self-consistency. The result is to give a theory that
calculates with one basic approximation E,, p(1', 1), Sox, ok’ » Sop, na> Xn> Pn>
and the linear response. Hopefully, if the scheme is performed on a finite basis
set, the calculations will be tractable. In solving these equations, the non-
Hermitian matrix diagonalization, the energy dependence of Z, and the linear
dependence of the set of Dyson orbitals, are all new but hopefully tractable

- problems.*® The discrete basis set should not be any restriction since the ¢’s

and R represent phenomena that are localized in a small region of space.

19 The linear dependance of the ¢’s means that the set is overcomplete hence new roots
of Eq. (116) may show up at w,= 0. Physically it is felt that these should be ignored
and it is pleasing that the equation for R has w,=0 omitted from the summation. The
word *‘may” is stressed since in Eq. (116) X is seen to be expanded in the product space
@, X @x. So while the set @,, @u is overcomplete, and of course the product of two
overcomplete sets in the product space, the partial, hole-particle, product is not necessarily
overcomplete in the product space. In any case, such pew roots, if they occur, will not cause
any difficulty.
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The successful computation, using such bases, of orbitals and frequency
dependent moments for atoms and molecules is well documented. 4
The topic of the use of a discrete basis also brings up a point of caution.
Equation (116) comes from Eq. (73) and is valid for bound-type functions
only, i.e., functions that go to zero as r; Or I, g0 to infinity. In a finite
basis this is true of all functions obtained. If a method of solution is used
which includes continuum functions, the continuum hole-particle amplitude
equation, (89), will have to be used for the continuum amplitudes. After
Eq. (107) is substituted in and the usual Fourier transform (the changes
are essentially the same as for the bound state problem) taken, an equation is
derived that is exactly as Eq. (116) except that n —p, m and an inhomo-
geneous term appears on the right-hand side which is simply the product of

outgoing

{incoming} wave particle and hole Dyson states with particle index p; and
standing

hole index m, respectively. For the purpose of calculating R, the normaliza-

tion of the Dyson orbitals does not matter since they differ by a phase factor

which in turn causes the X’s to have different phase factors which cancels in

the product XX appearing in (117).

A convenient matrix form of X is easily derivable even though the ¢’s

are linearly dependent. Simply noting that Eq. (116) can be written as
X (s 1) = 3, 04(r)og(r ) X oo (120)
aq
with

(Nq_ Nq’)

Xoa =
W g — Ey — @,

{ j drV (DX,(r, 1)

|- f dr dr'e @V(Ir — ' Do (DX, r)}. (121)
Substituting Eq. (120) into (121) gives the desired matrix form
(8 — g — O)Xyq=(Ng— Ng) Y Kap' | VIa®> - {gp'IVIpq' 11X,
| PP
(122a)

where

@b\ Vied) = [ drdr'y X (Do @V~ )oWou)  (1220)
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Similarly the matrix form of R is
R™(r,r,1 (15, 070* )= Z QDq(rl)QD:'(rx’)‘Pp(rz')(P:'(rz)
qq’

PP’
X .R“P(0+0+z)‘;?l; (123a)
with

hp(+tQ*2)P = | X:;'qX;’p
R0 0* )% =i )

. o ] i AR 1
oo w, — z — iesgn(w,) (1235)

Now that the basic approximate equations are exposed, a further discussion
of the physics of the approximation is in order. Up to now the approximation
has been introduced by appealing to the attractiveness of having higher order
self-consistent theories which generalize the Hartree-Fock and the coupled
time-dependent Hartree-Fock approximations. Also the point has been
stressed that even if £ ~ Zyr is not 2 very good approximation, O ~ OZyp
may be a much less damaging one. Further justification for expecting that
the approximation will give good results comes from the experience that the
coupled time-dependent Hartree—Fock equation gives in actual calculation
good frequency dependent responses (Dalgarno et al., 1966), that the R.P.A.
gives reasonable excitation energies (Dunning and McKoy, 1967) and that
schemes which (i) use the R.P.A., (i) solve for the ground state R.P.A.
wave function, (iii) use the latter-in place of | ¢,y in (97) to solve for new
orbitals, and (iv) use the orbitals in Eq. (115) to get new w, and X, get
generally improved agreement with experiment (Rowe, 1968; Gutfreund and
Little, 1969) with only one iteration. Moreover, it has been shown that the
types of correlation effects required in R, i.e., hole-particle effects (Kelly,
1968; Karplus and Caves, 1969) are zll included in our iterated R. Note that
the final linear response here is ““nonlinear” in the sense that the zeroth
order model has been greatly refined upon iteration.

Perhaps the most persuasive argument for the approximation comes from
the physical model of elastic scattering that is implied. Here one starts with
the Hartree—-Fock virtual continuum orbital as the scattering orbital. This is

. called the static exchange approximation. The target electrons are also taken

as in Hartree-Fock orbitals with Hartree-Fock exclusion correlations.
The scattered or “test electron” in the virtual orbital now causes the target
to respond, this response is calculatec in the coupled time dependent Hartree-
Fock (or R.P.A.) approximation. The response, which in this approximation
is much better than perturbation theory applied to the Hartree-Fock Hamil-
tonian and which contains correlation and exchange effects and depends on
the energy and position of the test particle, is then coupled with the Hartree-
Fock orbitals (118) which “drive” the response to give a new effective
potential. This potential is then used to calculate new target and scattering
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orbitals. Everything is then iterated until the scattering orbital, the target
orbital, and the response are all self-consistent. Sincé the electrons are all
indistinguishable, the correlations in the target are as well represented as
the ones between the test particle and the target; this must be reasonably
well done since as said above, even the R.P.A. gives good responses.

To obtain the generalized R.P.A. equation for an electron scattering from
an ion, in terms of quantities calculated for the neutral particle, (108) is
substituted into (95) which after integrating over he delta functions gives

TCEEA f dl d2f EO(1)gk (VL — DXL, 27)

q2m2

= f d1 d2f 5 (DGt V(L — DXT(2,2%). (124)
This can further be approximated by its first iterate the RPA. Then X is
replaced by I, in the generalized R.P.A. equation (115), £ (1) by @ F (Due
and g,,(2) by ¢,(2)ur- These substitutions reduce Eq. (124) to

TREA e = 1 [ 4142635 Ve 97,2 V(L = DXn (12

— i [ @1 4203 (Dur 02, Due V(L = DXGHC2 pn (129)

where the X’s are the first iterate to Eq. (115). Also making the above sub-
stitution in (105) reduces the S and S matrices to their d-function terms only.
For the elastic R.P.A. case they become the unit matrix and the summations
over p’ and m’ drop out. For the inelastic case the first term in (105) vanishes
and in the second term there is only one nonzero term in the summation. We
now remind the reader that the inelastic cross-section formula refer only to
states that can be achieved by adiabatic coupling from a particle-hole inde-
pendent particle state. For helium, there is only one particle-hole state, ie.,
the 1sq state and therefore for electron-helium scattering this formalism is not
able to describe inelastic process at all. In Be one can think of two hole-
particle states, i.e., (1s)*2sq and (1s)(2s 2¢’; as such one can study elastic
scattering on either of these states or inelastic scattering between them (though
this inelastic process is not very interesting physically). We note also that even
in the case where the formula can be applied for an inelastic process, the ap-
proximation is probably poor, because the R.P.A. is a refinement of the HF
and the HF is not able to describe inelastic processes. The formula so ob-
tained is well knowr}x as the R.P.A. elastic scattering formula (Dietrich and
Hara, 1968; Lemmer and Veneroni, 1968). Dalgarno and Victor (1966) and
Jamieson (1967) ha\fe used this equation by solving for X, using the R.P.A.
equation for X with G taken as Gy, and with Hartree-Fock hole-particle

s v

iy etk ky
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boundary conditions. They solved this R.P.A. scattering elastic formula for
the p-wave phase shift for the elastic scattering of an electron off a helium
positive ion. Their agreement with the close coupled results of Burke and
McVicar (1965) was quite good. Although obvious, it should be mentioned
that in molecular systems, noting the facts that (1) for each geometry, excita-
tion energies are calculated self-consistently and directly, and (2) Eq. (19) can
be used to get the consistent absolute energy of the ground state (hopefully the
errors in this formula will not be very sensitive to the geometry changes), im-
plies that all potential surfaces of the raolecule can be calculated self-consist-
ently in one calculation.

V1. Perturbation Methods®®

A. G° PERTURBATION METHOD

One of the most straightforward ways (in principle) of solving for the
one-particle Green’s function is as a perturbation expansion in terms of a
“bare” or “free particle” (or unpe:rtuibed) Green’s function G° and the
residual interaction potential V. G° satisfies the equation of motion (47a)
where h(1) is some suitable single particle Hamiltonian (e.g., free particle,
Hartree, or Hartree-Fock) leaving over an interaction potential V(I —2).
While there are many ways to develop a perturbation series, we shall use the
Dyson equation (48™) and substitute the self-energy expressed in terms of the
functional derivative of G, obtained from substituting (56b) into (47b"),

(1, 1) = —is(1 — 1) f d2v(1 — 2)G(2,2*)

8G(1,2)

%7 J' d2d2V(1 -2 =5t

G2, 1) (126)
yielding

G(1,1)=G%1,1) — i j 42 d2G°(1, 2)V(2 = 2)

o
G°2,2'") — ———|G(2, 1. 127
«[e°@. 2 - g9 1 (127)

To ‘develop a perturbation expansion, one just iterates on Eg. (127),
that is, one first substitutes G°(2, 1) for G(2,1') on the right-hand side
and evaluates the resulting expression

20 See Matsubara (1955), Martin and Schwinger (1959), Falkoff (1962), Roman (1965),
March ez al. (1967), Kirzhnits (1967), Mattuck (1967).
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G(1,1) =G, 1) — iJ.dZ d2'G°(1, 2)¥(2-2")
x [G°(2', 2%y — —5—] G°(2, 1') + higher order terms, (128)

oU(2)

obtaining the lowest order corrections to G°. If one wishes to go further, one
substitutes the Iowest order terms back into (127) and repeats the process.
Clearly in order to solve Eq. (128) we must be able to evaluate terms such as

[6/6U2)16°0, 17).
Varying
j d2[G°(1, 2)17'6°@2, 1) = 8(1 — 1)
yields
86%(1,1) o S EEESE
o ——J.d3d3G G- (3, 1)

where [G°]" satisfies [in the presence of the external potential U(Z)]

[6°Q, 1N] ™" = [i(9/aty) — A(1) — UDSA — 1)

hence
5G°(1, 1)
sUQ) :
This equation is the basic result necessary to develop a perturbation expan-
sion. One should note that the right-hand side of Eq. (129) is an ordinary

product and not an operator product. Substituting (129) into (128) yields the
Green’s function correct to first order in the interaction potential

G(1,1) =G, 1) - inZ d2'G°(1,2)V(2-2)
x [G°(2', 2’ )G°(2, 1) — G°(2,2)G°(2, 1)] + O(2). (130)

1t is useful at this point to look at a diagrammatic interpretation of Eq.
(130). :

= G°(1, 2G°(2, 1). (129)

Ve A—S—
61,10 7 |

29

(130')

g
E
:_%
¥

T PRI

e
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In (130") the diagrams correspond one to one with the three terms on the right-

hand side of Eq. (130). However, note that there is, as yet, no indication of the
signs of the terms (we shall discuss how to determine the sign of a diagram
presently). To interpret the diagrarms one reads a straight line as a G°
with the space time points at the two ends of the line as its arguments.
A wavy line is a V interaction between the space time points at its two ends
(remember that ¥ has a §-function of its time arguments denoting an instan-
taneous interaction). All internal points in parentheses are to be integrated
over. Recall that since in the Green’s function both time orderings are present
they represent both particle and hole propagators and all time orderings
consistent with instantaneous interactions are implied. One can easily go
over to the more common Goldstone diagrams (Goldstone, 1957) by taking
account of the above orderings ‘

SRt e | (131a)

G0 o

Hence (131a) depicts the propagation of a “free” particle or “free” hole
depending on the time ordering; (131b) is the interaction of a particle (hole)
with a passive particle,and (131c) is the exchange term of (131b). Clearly these
diagrams describe the Hartree—-Fock interaction. By looking at Eq. (130)
we see that (131b) and (131c) are multiplied by (i) and (131b) comes in with a
negative sign. The general rule is to multiply each diagram by (i)", where
n is the number of ¥ interactions (wavy lines, i.e., the order of perturbation
theory) in the diagram and also multiply each diagram by (— 1) where [ is the
number of closed loops:composed solely of G° lines [notice (131b) has
=1, (131c) has I =0].

To proceed to second order one merely replaces the G on the right-hand
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side of the Dyson equation (127) by the first-order. G, Eq. (130), and again
uses (129) to evaluate the functional derivatives. Rather than write out the
analytic forms for the second-order corrections to G we shall draw the dia-
grams o e

(2‘)?A g}m 92')
(Gl (fjmqj_\
Sl R v T i MR D)

2) ~ (3) 317
(a) (b)

©
3 3)
@
@
o @ R
(c)

@ A
@

QMZ ﬂ @ @)
) ZME) & T/W 1
)

(e) {f

3
(3) 3 (S‘M'l
o+ S 7“1,\;»‘) T v - B - TR - R
: 0]
(@
P &
0

@) @)
e 21 2
0 - (132)

As an example of going from the diagram to the analytic form of a perturba—
tion term we shall write the formula for term (i). Reading from right to left
on the diagram there is a G°(1,3); 2 V(3—3); three G° lines: G°3,2);
G°(3',2), and G°(2/, 3'); then there is a V(2' —2); followed by 2 G°(2, 1).
The integration is over space time points 2, 2', 3, and 3'. Since there are two

¥ lines there is a factor (i), and one closed loop there is a factor (— 1). Thus,
1
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(132i) = (—i)? f d2d2 d3 d3'G°(1, VG — 3)G°BG.2)
x G°(3', 2)G°2, 32 — 2)G°(2, 1).

The only point not illustrated in the above example is when a G° line begins
and ends on the same vertex, such as in (132h), this is written as G°(3', 3" ).

Thus the rules for obtaining a perturbation expansion of G in terms of G°
and ¥ can be summarized as follows:

(1) G is the sum of all topologically distinct connected diagrams through
the desired order in the interaction with two external solid lines. (Diagrams
which differ only in their time ordering are not distinct, e.g., interchanging
(2)«(3) and (2) (3 in (131e) does not lead to a different diagram.) A
diagram is connected if every vertex is connected to at least one other vertex
by at least one G° or ¥ line (i.e., it is not composed of disconnected pieces).

(2) Interpret each straight line as 2 G, function of its end points reading
from right to left. If there is any ambiguity in time interpret the furthest right
point as having a+ on it.

(3) Interpret the wavy lines as ¥V functions of its end points.

(4) Integrate over the space time arguments of all internal points.

(5) Give each diagram a multiplicative factor of (i), where 7 is the number
of V lines.

(6) Give each diagram a multiplicative factor of (— 1)}, where I is the
number of closed loops made up solely of Go lines.

In order to transform the perturbation series to a sum over states one first
goes over to an energy dependent representation by introducing the time
Fourier transformed G%'s in their spectral expansion form, Eq. (53b). One
then integrates over the &'s instead of the times taking care to include the
S-functions coming from the V’s and the infinitesimal positive and negative
imaginary contributions to the energy denominators coming from the particle
and hole terms, respectively.

The major difficulties with the G° perturbation method are concerned with
rapidity of convergence. This becomes most evident from the fact that while

.G has poles off the real axis (on the nonphysical sheets) G° does not. Hence,

one is building up the damping terms in G by a series expansion which does not
converge rapidly for large times.

B. £ PERTURBATION METHOD

If we know the self-energy operator, then we can solve the non-Hermitian
eigenvalue equation for G as described in Section III. Hence as an alternative
to obtaining G directly in a perturbation series one can develop a perturba-
tion series for £ and then solve for G. This can be done by resumming the G
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perturbation series, or by again using the techniqué of functional differentia-
tion. The procedure is much the same as that used in the preceding section.

Starting with Eq. (61) for £ as a function of ¥, G, and 8%/0U the lowest
order terms in T are obtained by just replacing the G’s in the first two terms
on the right-hand side of (61) by G®’s yielding

(1, 1) = —is(1 — 1) j 2v( —2)6°2,2%)
+ V(1 - 176°(1, 1) + 0Q2) (133)

or diagrammatically

- cj::_/ilq:
TN = + C l
{1 4

+ 0 (2. i (133,)

Clearly, this procedure can be continued by putting higher order terms in the
perturbation expansion for G into the first two terms on the right-hand side
of Eq. (61). There are also terms in the expansion for = which come from the
third term on the right-hand side of (61). We shall evaluate the lowest order
terms (second) coming from this third term by substituting G for G and (133)
for Z, yielding

sT(2,1) _ (L 1)

i | Q242vQ - 26(1,2) _B—U(—l)—

=i j d2d2V(Q —2)G°(1,2) 5—05_(_2)

x [-ia(z' ~tn j A3V —3)6°3,3) + iV — 1')65(2', 1')] +003).
Using Eq. (129) for 5G°/6U and integrating the first term over 2
. @ 1) =~ (i)? de d3v(l — 2)G°(1, 1yvQa' — 3)G°(3, 2)G°(2,3%) .
+12 de d2’v(l — 2G°(1, 2.')V(2’ —176°(2, 2)G°(2, 1)

+ 0(3) . (134)

¢ EREE ey e i
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or diagrammatically
(3)§ 3(2)
Ig WY = |
@ 1
IR
+ 0 (3. (134")

One should notice that all of the diagrammatic rules given in Section
VLA for the perturbation expansion of G carry over unchanged for the
perturbation expansion of T except for rule (1) which is modified as follows:

(1) T is the sum of all topologically distinct strongly connected diagrams
through the desired order in the interaction with no external lines (however,
there are two vertices which are not to be integrated over and have the space
time designations of the two arguments of Z). A connected diagram is strongly
connected if it does not fall into two disconnected pieces when any single
straight line, ie., Green’s function line, is cut. For example, 132c,d f,g,1,]
are strongly connected second-order diagrams, the rest of (132) are not.

The reason for the changes in rule (1) can be easily seen by expressing the
Dyson equation (48")

G=G°+G°ZG

in diagrammatic form as

— - >+ —= (135)

which on iteration becomes

—— - —— + =D

+ ...

(136)

From (136) we see that all weakly connected diagrams in G are composed of
strongly connected X pieces connected by a single G° line. Hence, if we had
included weakly connected diagrams in = we would have overcounted them
when the equation of motion is solved for the resulting G.

Hence, the T perturbation method is to solve for the self-energy perturba-
tionally to the desired order and then to solve the equation of motion for the
resulting Green’s function. While one has to do more work than in the
Green’s function perturbation method, in that one must also solve the non-
Hermitian eigenvalue problem, one gets considerably more out of the method.
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It is equivalent to iterating the diagrams considered in Z to all orders in G
[see (136)]. Naturally this implies that a smaller number of perturbational
terms must actually be solved for in order to obtain good answers. Of course
one can never show in any partially summed method that one is not losing
some canceliation with diagrams that are not being considered. However,
one hopes that by considering the most important diagrams in X (perhaps one
should consider this as a “model ™ self-interaction) and solving its equation
of motion exactly will lead to useful results. Only future theoretical experi-
mentation will tell.

It is important to realize that it is the ability to solve the equation of
motion for the Green’s function on a finite basis set for atoms and molecules
that makes the £ perturbation expansion a practical calculational method.

C. RENORMALIZED £ PERTURBATION METHOD

One can also develop a renormalized or self-consistent perturbation ex-
pansion for T in terms of the interaction ¥ and the full Green’s function G
(not the “free particle” G°). One can obtain the expansion analytically
using much the same functional differentiation method as that employed in
the previous two sections; however, it is so easy to see diagrammatically that
we shall proceed in that fashion.

The diagrams in the renormalized perturbation expansion are again inter-
preted. as in Section VI,A except that the straight lines will now denote
the full one-particle Green’s function, and rule (1) which gives the class of
diagrams to be summed must again be modified as follows:

(1) T is the sum of all topologically distinct strongly connected basic
diagrams with the desired number of interaction lines, full Green’s function
lines, and no external lines (there are two free vertices). A diagram is a basic
diagram if it cannot be constructed by inserting other diagrams into the
Green’s function lines. For example,

cﬁ:ﬂ_q:s (1372)

3 3
and ' :
(5«)@(5) . . (137b)
3 3

m 13
$ W3 (137¢)

A
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are basic, but

G (57 (5 L (1 383)

and

(138b)

are not. [Note that (137b and c) are the only second-order basic diagrams].
The reason for excluding insertion diagrams is that when the full Green’s
function line is expanded as in (136) all insertion diagrams are included in the
G line. Hence, putting them into the class of renormalized T diagrams will
overcount them. A
Thus, there is a practical scheme for self-consistently solving for G using
the renormalized T perturbation expansion:

(i) Take a set of strongly connected basic £ diagrams, correct to the
desired order, and solve for T interpreting the Green’s function lines as
“bare” G° lines.

(ii) Solve the equation of motion for the resulting G,‘which will be obtained
in a spectral expansion form.

(iii) Repeat step (i) now using the result of step (ii) for the Green’s func-
tions.

(iv) Repeat step (ii) now using the result of step (iii) for X, and repeat until
self-consistency is achieved.

Again we see that in the self-consistent perturbation method one must do
more work, in the sense of repeatedly solving the same set of equations until
self-consistency is achieved. However, again, one obtains more results for
more work in that not only iterates of the basic diagrams considered in Z
are obtained to all orders in G, but one also obtains all diagrams which can be
constructed by insertion of the basic diagrams into Green’s function lines (to
all orders) with these multiple insertion diagrams also iterated to all orders
in G. Thus, we would expect tha: starting with a rather small number of
basic T diagrams solved for perturbationally would give good answers in the
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self-consistent perturbation method. Again, it is our ébili,’_ty to solve the equa-
tion of motion for G in a finite basis set which makes this self-consistent
perturbation approach practical for atomic and molecular calculations.

D. PERTURBATION METHODS FOR R AND X,

From the discussions in the previous sections it is evident that if. one is
interested in problems where there is a transition of the target system from
one state to another, e.g., excitation energies, inelastic scattering, etc., then
knowledge of G, is insufficient and one must look at the information con-
tained in G, (or equivalently R). For this reason perturbation methods of
solving for R, and X,,, will now be derived. The hierarchy of perturbation
methods will be derived in the opposite order from that of the previous
subsections. That is, first an expansion for & in terms of G, will be derived
to be used in conjunction with the Bethe—Salpeter equation to find R (or X,)
as a function of G,, V,/and R (or X,) itself; this is analogous to the I per-
turbation method where X is used in conjunction with the Dyson equation
to obtain G,. Then by expanding the Bethe—Salpeter equation a perturbation
expression for R directly in terms of G, and V is derived (thus eliminating the
need to solve the Bethe-Salpeter integral equation if one so desires). That
such perturbation expansions can be derived is, of course, obvious, since
their derivation just undoes the work of Bethe and Salpeter in summing the
perturbation series to obtain an integral equation in the first place. The
present philosophy is that it is preferable to derive perturbation expansions

by expanding closed equations derived analytically rather than to sum per-

turbation series to obtain closed expressions.

Since 2 is defined as 6Z/6G, [Eq. (67)] a perturbation expansion for = can
be obtained by simply differentiating the expansion for I as a function of G,
obtained in Section VI, C, with respect to G,. Using the first-order correction
to ¥, Equation (133) with the G,%’s teplaced by G,’s (this is equivalent to
functionally replacing = by the Hartree—Fock approximation to Z) one
obtains

EN(3434) =i —5(3-3) j dsv(3 — 5)G(5,5%)

O
oG(4', 4) {
+ V3~ 3)6G, 3’)}

8G(5,57)

s gy TV

= i{6(3 ~3) [dsv(3 - 5) 60, 3')}

8G(@4',4)

ek
;
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—i33-3) jdsm —5)8(5—4) (5" —4)

+iV(3—3)6(3—-4)4(3 -4

I

—i5(3 — 3) 84 — 4 (3 —4)
+iV(G3—3)8(3—4)6(3 —4). (139)

Equation (139) is now inserted into the Bethe-Salpeter equation (68) and
integrated over the é-functions to give

RA212) = G(1, )6, 1) + i [ d4 d4'G(1, 4)G(4, 1)V (4 — 4)
x R(@'242) — i [ 3 d4/G(1, 3)GG, 1)V (3 — #)RW2A4"2)

+0(2) (140)

which is the same equation obtained in Section V by using T = Zur, Eq.
(106). Equation (140) can be expressed diagrammatically as

1 2! I 2
(=) -
) 2 1 2
| 49 2
* O
| 4 2

| (3) 4} 2’
. b~ CI saw (D (140')
4 2 :

where the heavy lines depict the R lines and the light lines are G, lines. The
analytic expression corresponding to (140'a) carries a factor of (i) and that
corresponding to (140'b) a factor of (—1i). '

To obtain the second-order terms in = one can just take the analytic
expression for the second-order expression for T as a function of G,, which is
given by the basic diagrams (137b) and (137¢) and perform the differentiation
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as above. However, it is more convenient, and much simpler, to perform
this completely diagrammatically. It is clear looking at the Z diagram,
(137a), which leads to (140'a) that taking the derivative with respect to
G(4', 4) just deletes the Green’s function line G(3, 3') and gives two d-function
factors 8(3 — 4) and 63" — 4)

140 b
5 (3'-4) Sl o

When this diagram is put into the Bethe—Salpeter equation and the §-functions
are integrated over the diagram is just linked up to the R diagram

g 2

i : ’ (140 ¢}
2 .

4

with the d-functions telling where the linkages go, the “free” vertices of
the original % diagram (which in this case are also 3’ and 3) are linked up
with the two Green’s function lines G(1,3) and GG, 1'), and the intermediate
points are integrated over leading to (140'a). Also since the original diagram
carried a factor of (i) (one ¥ line, no closed loops) so does the analytic
expression corresponding to this diagram. Thus, there are a set of rules similar
to those of the previous subsections for constructing the Bethe—Salpeter
diagrams for R as a function of ¥, G;, and R itself to a given order in the
interaction.

R is the sum of all topologically distinct Bethe-Salpeter diagrams con-
structed by

(1) Taking the basic strongly connected diagrams for £ (in terms of Gy
and V) to the desired order.

(2) Erasing an internal G line in'each of the T diagrams and connecting its
exposed vertices to the free ends of the R diagram lines. '

(3) The free vertices of the original X diagram are each connected up to a
G line.

(4) Step (2) [followed by step (3)] is repeated for each topologically distinct
internal G line in each of the considered T diagrams.

The analytic formula corresponding to a given diagram is obtained in the
same way as in the previous subsections, remembering that the G lines are
now full G lines, with the following two exceptions:

(i) The factor (— 1)! must be obtained from the T diagram before erasing
the G line since one can open up a closed loop by erasing a line.
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(i) If the G line being erased has g other topologically equivalent G lines

the diagram carries a weight factor g. rather than repeating the diagram g
times. '

As an example of the use of these rules, we shall now obtain the Bethe-
Salpeter diagrams for the second-order corrections to R. The two second-
order basic diagrams are (137b) and (137c). Applying the above rules leads
to the following four topologically distinct Bethe-Salpeter diagrams

T -
S
T

ZE0

Diagram (141a) comes from (137b) by erasing the 3'—3G line. Diagram
(141b) is obtained by erasing cither of the two 5'—5 lines in (137b) and hence
carries a weight factor of 2. Diagram (141c) is obtained from (137c) by erasing
either of the two topologically equivalent G lines 3'—5 or 5'—3, hence it also
carries a weight factor of 2. Diagram (141d) comes from erasing the 5—5' G

"line in (137c). Diagrams (14la and b) have a factor of (— 1) since (137b)

has one closed loop, and all four have a factor of (i)? since there are two- V
lines.

Since the Bethe-Salpeter amplitude equation (73) for X, is of exactly the
same form as that for R (except that X, has only two variables), one can
immediately write down the perturbation expansion for X,. All that is
necessary is to define 2 symbol for X, which has only two free lines corres-
ponding to the two variables. Hence, X, correct through second order is
given by

e,
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Xo (L1 = Xn )
) é 9+

.0
D@D
ElD IS

o

+0 (3 (142)

where the terms have exactly the same interpretation (except for replacing the
R piece in each diagram by an X, piece) as those in the Bethe-Salpeter expan-
sion for R.

Clearly, a self-consistent scheme of solution for G, and R is possible. That
is, the Bethe-Salpeter perturbation series is truncated at some point. Then
assuming a G (usually the Hartree-Fock G) one solves the truncated Bethe-
Salpeter integral equation for R (or the X,’s). Then knowing R one has the
for solving the Dyson equation for G, as was discussed in Section III. The
Dyson equation is then solved for G keeping . fixed. This G is then mserted
back into the truncated Bethe-Salpeter equation and the process is repeated
until self-consistency between G,.and R is obtained. The above procedure is
obviously a higher order (and more difficult) procedure than the self-consistent
procedure described in Section VI, C, since it requires the self-consistent
solution of a coupled pair of integral equations, and the Bethe-Salpeter
equation now has an energy dependent kernel. The self-consistent method
described in Section V as the generalized R.P.A. method is the lowest order
case of the method described above, that is, the Bethe-Salpeter perturbation
expansion is truncated at first order (a simple superposition approximation
for G, is the truncation of the expansion at zeroth order which obviously
eliminates the Bethe-Salpeter integral equation). Clearly higher order
truncations will work better (especially for transition problems where one
really needs R, or X,) and also be correspondingly more work.

As an alternative to the above Bethe-Salpeter perturbation series (which
is really a perturbation series for £ which is then inserted into the Bethe—

Xn

i
i

T ]
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Salpeter integral equation) the truncated expansion can be iterated thus.
eliminating the integral equation in favor of its perturbation expansion. This
step undoes the original summation derivation of the integral equation.
Diagrammatically this is just done by iterating the diagrams. That is, first
replace the R part of a diagram by the zeroth order result (two G lines) thus
obtaining the lowest order approximation to the original diagram. This is
then used to replace R in the original diagram obtaining a higher order approxi-
mation, etc. For example, iterating one of the first order Bethe-Salpeter
diagrams (140'a) gives

e (1) - 38
" gé R ggg o (1432)

which is the “ladder” diagram series. Similarly just iterating (140'b) gives
the bubble” diagram series.

e GRS DVC
o O

There are also clearly combination diagrams of ladders and bubbles if one
takes both (140'a) and (140'b) into account together by iterating all of (140°),

such as
EVC ) Df@: ' (143¢)

to second order, and
DACERN TG
SE - o
-

(143b)
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to third order. The sum of all of the diagrams in (143) plus, of course, the
diagram consisting of two G, lines gives the third-order perturbation approx—
imation to the first order Bethe-Salpeter equation (140).

This iteration can clearly be performed to any desired order starting with
any set of Bethe-Salpeter diagrams, thus obtaining a truncated expression
for R in terms of ¥ and G, only. For a given set of Bethe-Salpeter diagrams
one can thus eliminate having to solve the integral equation to find R. A
price is again paid for this simplification in the amount of work, since the
integral equation sums the diagrams to all orders and here one only sums to a
finite order.

Again, an iterative process can be carried through for self-consistently
solving for R and G,. It is, however, exactly equivalent to the renormalized
3. self-consistent method described in Section VI, C, since knowing R (as a
function of G and V) to any given order is equivalent to knowing X (as a
function of G and V) to that order.

Lower order approximations to R can be obtained by replacing the G, lines
in diagrams like those of (143 a, b, c, d) by some perturbational approxima-
tion to G, as formulated in Section VI, A. R is then given by a perturbation
expansion containing only G,%s and ¥’s. Now it is no longer possible to
solve for R and G, self-consistently, since G, does not appear in the truncated
expression for R. Of course, R can be used together with the Dyson equation
to solve for G,, but this is equivalent to the use of unrenormalized X perturba-
tion theory as described in Section VI, B.
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Appendix A

THE DERIVATION OF THE SCHWINGER RELATION

It is useful to write G(1, 1’; U) in terms of the quantities appearing in the
case when U is zero, which is accomplished by going over to the interaction
representation. To do this, the homogeneity of time is used to set the time at
which the Heisenberg |representation (in terms of which Equation (54) is
written) and the interaction representation are equivalent at time ¢t = —oo.
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At this time |¥o(U)) = |¥o). To go over to the interaction representation .

one uses a generalization of Eq. (2) for a time-dependent Hamiltonian

t t
Op(i)H:isenbcrg =T exXp [l f_ d‘L'H(T)] Op(ri)SchroedingerT exp[_i f d‘CH(T)]

The time ordering is necessary (Dyson, 1949; Feynman, 1951) because the
Hamiltonian taken at two different times does not in general commute, hence
the power series expansion of the exponential would be ambiguous as to the
ordering of the operator. The time-ctdering operator defines the ordering
and hence removes the ambiguity. Thus

U(1) = T exp [i jl_mdrH(r)] W(r)T exp [- i f _ mdtH(t)]

=T cxp{i Ji di[H + H,,(7)]w(@)T exp{—ift_ di[H + Hin,(t)]}
=T expi [ _detiin(o)] explifls - (oMo

x exp{—iH[t — (—o)}T exp [.—z‘ f: dTHim(‘C)]

=Texp[i f_ Al :k(l)t:xp[—i. j— drHim(‘c)] (A.1)

where use was made of the fact that the time-ordered exponential of a sum is
equal to the time-ordered product of exponentials (this, of course, is not true
without time ordering for noncommuting operators) and where

j dt H, (1) = j d2d2UQ, 201 QW Q) (A2)
which sirce the time ordering is specified as #,” > t, can be written as
j dt Hy () = — f d2d2UQ, DT )] (A3)
Deﬁning
St t)=T exp[-—i f‘ ' dr Him(r)] : (A4)

Eq. (54) becomes
G(1, 15 0) = ; {Wol TS(— o, DY(D)S(, tWADS(', — 0)|¥od. (A5)

Using the fact that U =0 at t = +0, Wo(U) is again ¥, (to within an
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unobservable infinite phase), the (¥,| at ¢t = —do can be replaced by the

{¥,| at t = 4o using i
(¥ o(+0)|S(+ 0, — )

(¥ o(+0)|5(+ 00, — )| Yo(— )

(Fo(—o)| = (A6)
where the denominator accounts for the phase and preserves normalization.
Equation (A.6) is justified by a series of steps quite similar to that gone
through in (A.1). Substituting (A.6) into (A.5), moving S(4 o0, —0) to be
thought of as lim ., S(t, #") under the T (which can be done since T 2=T)

t'——o

and combining the exponentials in the S’s gives

1 {¥o! TIS(+ %, — )Y (NI ¥o>

G, Vs V)= 5= [5(+ 00, — o) Foy A7

This is the desired expression for Gy(1, 1'; U) in terms of the quantities that
appear in G, for U = 0. To evaluate 5G,(U)/6U in the limit of small U, let
U — U + 86U (where 8U is an arbitrary infinitesimal change in U) and thus
Hy — Hyp + 0Hy, and G—G + 8G. The change in § arising from the
infinitesimal change in U is given by

T cxp{ -if delHon) + 5Hin,(r)]] -T exp{ —i f dr[Him(t)]}

— 15, )l =i [ dwsHL @) @A)
(=1 [ dwstto)

yielding
G(1,1; u) + 6G(1, 17; U)

_(TS(+w, —oo)[1 — i |55, dedH QIO
{TS(+c0, —oo)[1 — [2 dvéHiu(D ’

(A9)

If the denominator is expanded in powers of §H,,, and only the lowest order
term in the infinitesimal is retained then Eq. (A.9) gives, after (A.7) is used to
subtract G,(U) from both sides

8G(1,1; U) = —i{-—i<TS(oo, — ) [ j & 5Him(¢)¢(1)¢f(1')]>

— G(1, 1'; UXTS(c0,—0) fd-céHim(r»} x {S(c0, —oo))—1

(A.10)
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which after substituting (A.3) into (A.10) yields
5G(1, 1’5 U) = { [ 42 d2¢TS(0, — @U@ WMDY
x §U(2,2) + % G(1,1; h j d2 d2’{TS(c0, — WY (2))

x U2, 2)} x {S(c0, —0)> 1. (A.11)

Permuting the creation and annihilation operators under T, with proper sign
changes to give the order of the definitions of G; and G, as given by Eq. (1)
gives

1 2
oG(1, 1, U) = { - (7) fd2 d2'{TS(c0, — o)W (1 (2)

x Y W)U, 2) + % G{,1;U) j d2dy

x (TS(00, — YWQY'(2)YSU(2, 2)}(5(00, —oo)) L.
(A.12)

The functional derivative is then

6G,(1,1'; U 12
—51(4(2_', 2) Y= (- (3) <rsteo, —commemiewian

1
+ 6(1, 1'; UKTS(c0, — 00)!//(2)4/*(2’))}(5(00, —oo)7?

(A.13)
or
3Gy(1,1; U)
oU(22)
Several special cases of (A.14) which prove useful can be obtained. By letting
2'2'* je., 2 and 2', are at the same time with 2’ infinitesimally earlier,
one gets the case of the variation of G, with respect to a nonlocal one time
potential U(2,2%) = U(r, t,, 12/t )0(t, — t5)
8G,(1,1; )
sUR'",2)
The special case of the variation of G, with respect to a local potential U(2)
is obtained from (A.15) by letting 2' —» 2
8G,(1,1'; U)
U

= —G,(1,2; 1,29+ G,(1,1)G(2,2). (A.14)

U=0

= —Gy(1,2: 1, 2 + Gy(1, 19G(2,2'*).  (A.15)

U=0

= —Gy(1,2;1,2%) + Gy(1, 1)G(2, 2%).  (A.16)
U=0
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For the definition of the functional derivative we note that if Fis a functional
of U(x) and we change U(x) in the neighborhood of the point x by SU(x),
then F will change by 8F. The limit of (1/A)[6F/6U(x)] is called the func-
tional derivative (where A—0 and A is the length of the interval). If F
can be written in the form

FIUG)] = f K(x)U(x) dx
then

5F = [ K(') U(x") d

where [x,, x;] is the interval around x where 6U(x") is different from zero.
If we write

8F = (x; — x0)K(X)oU(x)
then

; OF
=m0

Appendix B

Here Eq. (68) is converted to a closed equation for G,, with an effective
potential W (sometimes called a vertex function) so as to give the usual form
of the Bethe-Salpeter equation. Combining Eq. (68) with (65) gives

G,(1,2; ', 2) = Gy(1, 1DG,(2, 2) — Gy(1,2)G(2, 1)
+ f d3d3 d4 d4'G,(1, 3)G,(4, 1)E(4’ 43)R(32 42). (B.1)
Defining W by '
f d3' db d4'G(4, 1)E(34'43")R(3'24'2)
= j d3' da d'G,(2, )W (343'4)G,(3, 4, 1,'2) (B.2)
(B.1) becomes
G,(1,2; 1, 2) = Gy(1, 1NG,(2, 2) — G,(1,2)Gy(2, 1)
+ f 43 d3' da d&'G,(1, 3)G,(2, HW(343'4)G,(3'4, 1'2)  (B.3)

which is the usual form of the Bethe-Salpeter equation. Again the equation is
for two dressed particles interacting through an effective potential W which
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has only the truly two-particle correlations. Experience shows that (B.3) is
more convenient for hole-hole or particle-particle processes, while Eq. (68)
is more useful for hole-particle processes of the type encountered in this work.

Equation (B.2) can easily be converted into an integral equation for WG,
which has E as its kernel. Clearly a knowledge of = and R is equivalent to a
knowledge of W and G,.

Appendix C
Here the following integral is evaluated
It r,rar,) = ffwdaGl(rl, ry; £)G (T3, Ty € — &) . {(C.))
If Eq. (53b) is inserted into (C.1) with the changes in notation
Ly (w,)

= Rew,>0
@\ -2

g (w,) Rew, <0 (C2)

then Eg. (C.1) becomes

I= J‘ da{ T z S D)o (x3)fi(xs)

nro+ ki (€ — & + in)(e — & — & + in)

. (e )fl(2)g:(r3)gr(1s)
* nl-l'rgl+ ; (e— & +in)(e —&,— & —in)
. gl(rl)gl(IZ)fk'(rs)fk'(r-t)
% "l_{{)n+ g;(e — & — in)e — & — & + in)
. ai(r)G(r2)g,(r3)3,(x4)
+ .,l—g)l}r zzx: (e—g—ine—e —& — iﬂ)}‘

(C.3)

The first and fourth integrals venish since both factors in each integral
have poles only in the same half piane. If the integration contour is closed
in the half plane which does not contain any poles, the residue theorem assures
us that the integrals are zero. For the other two integrals, since they have
poles in both half planes the contours can be closed either way giving the same
result. The second term can be closed in the lower half plane giving

lim j de—FB  _ _oni lim F(e — in) = lim —2ui

20+ e— g +in =0+ 70+ & — & — & — I
(C4

where the (—1) comes in because the contour is traversed in a clockwise
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manner. Similarly closing the contour for the third term in the upper half
plane gives o :

1 2ni .
lim |d — = lim —8M8M8—. C.5)
,,.30+ s(s —g—in(e—& —& +in) gm0+ & — & — & T I (
Hence the integral is
r
I(eyr,vs7,) = 27 lim {_z e Dfilr2)gr(r3)g(ra)
n—0+ ki’ Ep— €= & in
4 Zgz("1)gl(rz)fk'("3)fk:(r4) j (C.6)
w g—&—¢g t+In
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