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In this supplemental material we list the vertical ion-
ization energies (VIEs) of the 30 closed shell molecules
shown in Fig. 4, show the sc-GW electron density of the
CO dimer and give more details on the implementation of
the self-consistent screened Coulomb interaction. Finally,
we provides a derivation of the matrix representation of
the Galitskii-Migdal formula for the total energy (Eq. 6).

VERTICAL IONIZATION ENERGIES OF

CLOSED-SHELL MOLECULES

Table I reports the quasiparticle HOMO level obtained
from G0W0@HF, G0W0@PBE and sc-GW (present
work) and frozen-core sc-GW reproduced from [2]. DFT-
LDA eigenvalues are also reported. All ionization ener-
gies – with the exception of the sc-GW results repro-
duced from [2] – were obtained with the FHI-aims code
using a Tier 2 numeric atom-centered orbital basis set [3].
The experimental values are taken from the photoemis-
sion data compiled in Ref. [1]. A graphical comparison of
LDA, G0W0@HF, G0W0@PBE and sc-GW with experi-
ment is reported in Fig. 4 of the Rapid Communication.
The discrepancy between our sc-GW VIEs and those re-
ported in Ref. [2] can probably be traced back to the
frozen-core approximation employed in Ref. [2] as we ob-
serve larger deviations for molecules composed by heavier
atoms (e.g. F2, P2 and SH2). However, this trend is not
observed for the whole set, and a more rigorous study
of the effects of the core-valence interaction in sc-GW is
therefore needed.

DENSITY OF CO FROM SC-GW

Additional information on the quality of the sc-GW

ground state can be obtained from the ground-state den-
sity n(r). Figure 1 illustrates the effect of many-body
correlations in the CO dimer by comparing coupled clus-
ter singles doubles (CCSD) calculations and sc-GW with
HF which we obtained using the aug-cc-pVTZ basis
set. CCSD and sc-GW both exhibit left-right correla-
tion (density is shifted from the bonding region to the
individual atoms) and angular correlation (the angular
distribution of charge becomes more pronounced). The
similarity between the CCSD and sc-GW density reflects

FIG. 1. Difference ∆n(sc-GW−HF)= n
scGW

− n
HF between

the sc-GW and Hartree-Fock densities (right) for the CO
dimer, the density differences ∆n(CCSD−HF) (center) and
∆n(PBE−HF) (left) are defined similarly in terms the CCSD
and PBE densities. Dark regions correspond to negative val-
ues whereas positive regions are light. Units are Å−3 and the
calculation were performed using an aug-cc-pVTZ basis set.

the good agreement of the sc-GW dipole moment with
the experimental one (see text). In PBE, on the other
hand, electron density drifts out of the bond region as a
result of the delocalization error, which ultimately leads
to an overestimation of the dipole moment (Fig. 1, left).

COMPUTATION OF THE SCREENED

COULOMB INTERACTION

The computation of the polarizability constitutes the
main bottleneck of a numerical implementation of the
GW approximation. To avoid the computation of convo-
lutions, the polarizability can be expressed in imaginary
time as:

χ0(r, r
′, τ) = −iG(r, r′, τ)G(r, r′,−τ). (1)

Here iτ labels imaginary time and the Green func-
tion is updated at each iteration of the self-consistent
loop. Equation 1 is then expanded in an auxiliary basis
{Pµ(r)} by means of the resolution of the identity (RI)
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TABLE I. Ionization energy for the systems in Fig. 4 evaluated with G0W0@HF, G0W0@PBE, sc-GW . The Hartree-Fock
(HF), Kohn-Sham LDA (KS-LDA) and PBE (KS-PBE) eigenvalues are included for comparison. Photoemission experiment
are reproduced from [1] and literature sc-GW values are taken from [2].

Molecule Experiment [1] G0W0@HF G0W0@PBE sc-GW [2] sc-GW HF KS-PBE KS-LDA

C2H2 11.49 11.60 10.87 10.6 10.92 11.19 7.19 7.36

C2H4 10.68 10.77 10.27 9.8 10.18 10.30 6.78 6.96

CH3Cl 11.29 11.52 10.72 11.0 11.09 11.86 7.07 7.16

CH4 13.6 14.76 13.72 14.1 14.24 14.83 9.45 9.46

Cl2 11.49 11.71 10.92 10.9 11.22 12.07 7.30 7.41

ClF 12.77 12.99 11.97 12.4 12.52 13.45 7.84 7.98

CO 14.01 14.74 13.35 13.4 13.91 15.13 9.02 9.10

CO2 13.78 14.24 13.21 13.1 13.70 10.26 5.14 5.38

CS 11.33 12.96 10.69 10.8 11.26 12.58 7.34 7.39

F2 15.7 15.98 14.44 15.2 15.93 18.23 9.45 9.64

H2CO 10.88 11.36 10.29 10.4 10.92 12.07 6.24 6.32

H2O 12.62 12.86 11.73 12.3 12.64 13.91 7.22 7.37

H2O2 11.7 11.78 10.80 11.0 11.68 13.03 6.20 6.34

HCl 12.74 12.77 12.11 12.2 12.36 12.98 8.04 8.14

HCN 13.61 13.86 13.15 12.7 13.19 13.51 9.02 9.19

HF 16.12 15.99 14.98 16.0 16.22 17.76 9.64 9.81

Li2 5.11 5.31 5.26 4.6 4.92 4.92 3.21 3.22

LiF 11.3 11.26 10.09 11.7 11.59 13.01 6.11 6.24

LiH 7.9 8.17 6.91 8.0 7.91 8.20 4.36 4.39

N2 15.58 17.09 14.89 15.1 15.53 16.75 10.22 10.37

Na2 4.89 4.88 5.01 4.1 4.84 4.51 3.12 3.21

NaCl 9.8 9.27 8.45 9.0 8.96 9.63 5.27 5.40

NH3 10.82 11.15 10.13 10.8 10.84 11.67 6.13 6.23

P2 10.62 10.57 9.99 9.2 9.81 10.10 7.13 7.25

PH3 10.95 10.63 10.14 9.9 10.33 10.50 6.64 6.70

SH2 10.5 10.83 9.88 9.8 10.02 10.67 6.56 6.69

Si2H6 10.53 11.07 10.01 10.2 10.48 11.03 7.28 7.34

SiH4 12.3 13.16 12.06 12.3 12.71 13.24 8.52 8.53

SiO 11.49 11.81 10.87 10.9 11.24 11.92 7.45 7.59

SO2 12.5 12.21 11.77 11.3 12.17 12.39 7.51 7.68

technique. The auxiliary basis functions Pµ(r) are de-
fined to span the Hilbert space generated from the prod-
ucts of numerical atom-centered orbitals {ϕi(r)}, so that:

ϕi(r)ϕj(r) =

Naux
∑

µ=1

C
µ
ijP

µ(r). (2)

Naux is the total number of auxiliary basis functions, and
C

µ
il are the expansion coefficients. The way to determine

C
µ
il is not unique as different variational procedures may

be employed to minimize the error in the expansion in
Eq. 2. In the present work, the expansion coefficients Cµ

il

were computed following the RI-SVS approach [4] and
we refer to Ref. [5] for a detailed discussion of the techni-
cal aspects involved in the computation of the expansion

coefficients. The matrix elements of the polarizability in
the auxiliary basis representation are then given by:

χ
µν
0 (iτ) = i

∑

ijlm

C
µ
ilC

ν
jmGij(iτ)Glm(−iτ), (3)

where Gij are matrix element of the Green function in
terms of numerical atom centered orbitals (NAO).
Subsequently, the polarizability is Fourier transformed

to imaginary frequency, and the screened Coulomb inter-
action is obtained from

Wµν(iω) =
∑

ν′

Vµν′ [1− V χ0(iω)]
−1
ν′ν , (4)

where Vµν is the product basis representation of the bare
coulomb interaction.
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MATRIX REPRESENTATION OF THE GALITSKII-MIGDAL FORMULA

In atomic units (h̄ = e = m = 1), the Galitskii-Migdal formula can be written as [6]:

EGM = −i

∫

d3r dt lim
r
′→r

lim
t′→t+

[

i
∂

∂t
−

∇2
r

2
+ vext(r)

]

G(rt, r′t′) , (5)

where vext is the external (time-independent) potential, and we omitted spin variables. Using the equation of motion
for the one-particle Green function:

[

i
∂

∂t
+

∇2
r

2
− vH(r)− vext(r)

]

G(rt, r′t′)−

∫

dr′′dt′′Σ(rt, r′′t′′)G(r′′t′′, r′t′) = δ(r− r
′)δ(t− t′) , (6)

where vH is the Hartree potential, Eq. 5 may be rewritten in a form more suitable for practical calculations:

EGM = −i

∫

d3r d3r′′dt dt′′ lim
r
′→r

lim
t′→t+

[(

−∇2
r
+ 2vext(r) + vH(r)

)

δ(r− r
′′)δ(t− t′′) + Σ(rt, r′′t′′)

]

G(r′′t′′, r′t′) .

(7)

Making use of the matrix representation of the Green function G(r, r′, τ) =
∑

ij φi(r)Gij(τ)φj(r
′), the first three

terms in Eq. 7 can be rewritten as:

− i

∫

d3r dt lim
r
′→r

lim
t′→t+

[

−∇2
r
+ 2vext(r) + vH(r)

]

G(rt, r′t′) =

− i

∫

d3r lim
r
′→r

[

−∇2
r
+ 2vext(r) + vH(r)

]

∑

ij

φi(r)Gij(τ = 0−)φj(r
′) =

− i
∑

ij

Gij(τ = 0−)
[

2tji + 2vextji + vHji
]

(8)

where we assumed [7] that the Green function depends only on the difference of time variables τ ≡ t− t′. We defined,

in the last step of Eq. 8 the matrix representation of the kinetic energy operator as tij =
∫

d3rφi(r)
[

−
∇

2
r

2

]

φj(r),

and a similar representation for vextji and vHji. Finally, the last term in Eq. 7 can be rearranged by using the Fourier

transform of the Green function and the self-energy G(t, t′) =
∫ +∞

−∞

dω
2π e

−iω(t−t′)G(ω), and substituting the matrix
representation of G:

−i

∫

d3r d3r′′dt dt′′ lim
r
′→r

lim
t′→t+

Σ(rt, r′′t′′)G(r′′t′′, r′t′) = −i
∑

ij

∫

dω

2π
Σji(ω)Gij(ω)e

iωη (9)

Summing Eqs. 8 and 9 and separating the self-energy in its exchange and correlation components Σij(ω) = Σx
ij+Σc

ij(ω),
one can finally rewrite the total electronic energy as:

EGM = −i
∑

ij

[

2tji + 2vextji + vHji +Σx
ji

]

Gij(τ = 0−)− i
∑

ij

∫

dω

2π
Σc

ji(ω)Gij(ω)e
iωη (10)

We refer to Ref. [8], for a discussion on the evaluation of the Galitskii-Migdal formula directly on the imaginary
frequency axis.
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