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Self-Consistent Approximations in Many-Body Systems
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This paper investigates the criteria for maintenance of the macroscopic conservation laws of number,
momentum, and energy by approximate two-particle correlation functions in many-body systems. The
methods of generating such approximations are the same as in a previous paper. However, the derivations
of the conservation laws given here clarify both why the approximation method works and the connection
between the macroscopic conservation laws and those at the vertices.

Conserving nonequilibrium approximations are based on self-consistent approximations to the one-
particle Green's function. The same condition that ensures that the nonequilibrium theory be conserving
also ensures that the equilibrium approximation has the following properties. The several common methods
for determining the partition function from the one-particle Green s function all lead to the same result.
When applied to a zero-temperature normal fermion system, the approximation procedure maintains the
Hugenholtz-Van Hove theorem. Consequently, the self-consistent version of Brueckner's nuclear matter
theory obeys this theorem.

I. INTRODUCTION
' 'N an earlier paper' we underlined the importance, in
~ ~ developing a quantum theory of transport phe-
nomena, of making approximations to two-particle
correlation functions in a manner that preserves the
conservation laws for particle number, momentum, and
energy. We described a method for generating such
conserving approximations, but the connection- between
the conservation laws at the vertices and the macro-
scopic conservation laws was somewhat obscure. A
question raised is how can a diagrammatic type ap-
proximation maintain the conservation laws at the
vertices and yet not conserve number, momentum, and
energy over all? One purpose of this paper is to illumi-
nate the relation of the over-all conservation laws to
those at the vertices. In doing this, we shall discover
that the three criteria given in I for an approximation to
be conserving can be condensed to one simple criterion.

The basic point is that to have the macroscopic
conservation laws obeyed, the two-particle correlation
function

I.(12,1'2') =Gs(12, 1'2') —G(1—1')G(2 —2') (1)

must be the variational derivative of the one-particle
Green's function G(1,1') with respect to an external po-
tential U(2', 2) nonlocal in space and time:

L(12,1'2') = &PG(1,1')/bU(2')2)3& p. (2)

The U dependence of G is given in the equation of
motion

Our prescription for generating conserving approxi-
mations is to replace the VGs term in Eq. (3a) by a
functional of 6 the Green's function itself and V, i.e.,

V(1—3)Gs(13,1'3+; U) ~

Z(1,2)G(2,1', U), (4)

where the self-energy Z is a functional of G(U) and V.
This functional dependence is to be given by a sum of
diagrams constructed of 6 and V—some subset of terms
in a complete expansion' of Z in 6 and V. The self-
consistent Hartree and Hartree-Fock approximations
are examples in which Z is of the 6rst order in its explicit
V dependence. A possible such term of second order in
its explicit V dependence is

Z(1,2) = W did2 V(1—1)V(2 —2)G(1,2)G(1,2)G(2,1).

This is illustrated in Fig. 1(c) on the right.
In these approximations, Z is taken to be a functional

of G(U), and therefore it depends on U through the U
dependence of G. Inclusion of the U dependence of Z,
through expanding Z in terms of G(U) and not just
G(U=O) is fundamentally what leads to the conserva-
tion laws. This will become more clear later. The Green's
function G(U) is then to be determined self-consistently
from the equation

t Gp
—'(1,1)—U(1,1)jG(1,1'; U)

=h(1 —1')&i V(1—3)Gs(13,1'3+; U). (3a)

d 1/Go '(1,1)—U(1,1) Z(1 1)j
XG(1,1')=8(1—1'). (5a)

It directly follows that G also obeys

d1G(1,1))Gp '(1,1 )—U(1,1')—Z(1,1')]
Here V(1—2) means v(r~ —rs)8(t~ —ts).

=8(1—1'). (Sb)* National Science Foundation Postdoctoral Fellow.' G. Baym and L. P. Kadano8, Phys. Rev. 124, 287 (1961),
hereafter referred to as I. The present notation shall be the same
as in that paper.

' Such an expansion may readily be constructed along the lines
set forth by J. Schwinger in Proc. Natl. Acad. Sci. U. S. 87, 452
(&95j.).
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That G obeys this equation in addition to (Sa) is a much With this U, Eq. (3a) becomes
weaker statement than condition A in I. Condition A {,a/at aA(1)/at +(1/2 )L- +.
requires that G also obey the "left-hand" equation of
motion

g(1,1; G(A))G(1,1'; A) =8(i —1'). (7)

d1G(1,1)LGp '(1,1')—U(1,1')$

=8(1—1')ai Gp(13,1'3)V(1'—3), (3b)

where G2 is approximated by the same functional of G
and V as it is in (4). In general, Eq. (3b) differs from
Zq. '(Sb). It shall turn out that one condition to be
placed later on the functional form of Z will imply that
(3b) and (Sb) are the same, i.e., that condition A is
satisfied by the approximation. At this point we write
approximations only to the "right-hand" equation of
motion (3a), and place no further restrictions on the
functional dependence of VG2 in this equation.

II. CONSERVATION LAWS FOR I.

Just demand that Z be a functional of G(U) ensures
that the approximation for L(12,1'2'), generated by
Eq. (2), obeys the over-all conservation laws in the 2, 2'
variables. Ke shall now show how this follows. In order
that L be conserving in the 1, 1 variables also, it will be
necessary to place one restriction on the possible func-
tional dependence of Z on G.

For now we must notice that in a diagrammatic type
expansion of Z in terms of G and V, the conservation
laws at the vertices are obeyed. At each vertex in Z (1,2),
except at the exterior vertices 1 and 2, there is one
interaction line, two particles entering and two particles
leaving —thus there is particle conservation at the
vertices. The intermediate points are integrated over all
space. This, in the absence of any external disturbances,
leads to momentum conservation. Also, the intermediate
times are integrated over the range 0 to iP, consistent—
with the periodic boundary conditions, and this, in the
absence of external disturbances, leads to the appro-
priate form of energy conservation at the vertices.

We shall first show that the approximate

L=&(8 68/U)p p

A(r, o) =A(r, —iP). (10)

The crucial point in the argument now is that the effect
of A is to transform G as it transforms Go, that is,

G(1,1'& A) =e '~o G(1—1'; A=O)e'~"'). (11)

To be convinced of this it is only necessary to see that
under the transformation

G(2,2'; A) ~ e '~&')6(2&2', A.)e'i"',

Z transforms as

Z(1,1; G(A))=e '~")Z(1,1;6)e'~&') (12)

This follows directly from the conservation of particles
at the vertices. Under the transformation

G(2 2~) ~ e
—iA(2)6(2 2I)e~A(2')

the exponential factors cancel at the internal vertices in
2 because the factors from the particles entering the
vertex cancel the factors from the particles leaving the
vertex, Only the factors at the external vertices remain.
Thus, 6 obeys the equation of motion (7) with A=O,
and, therefore, 6(A) =G(A=O).

We may now expand both sides of (11) to first order
in A. Because L, by definition, gives the linear change in

G, we find

The following argument is familiar from discussions of
gauge invariance in quantum electrodynamics. The
equation for Gp(1, 1'; A) in the presence of A is

{ia/at —aA(1)/at, + (1/2m)LV, +iVA(1)j j
XGp(1, 1 ' A) = t)(1—1 ), (8)

which has the solution

Gp(1, 1'; A) = e 'i")Gp(1 —1')e'i&') (9)

where Gp(1 —1') satisfies Eq. (8) with A=O. This solu-
tion obeys the boundary condition if we assume

obeys the differential number conservation law. ' To do
this, let us consider G in the presence of a U that corre-
sponds to a gauge transformation. This external dis-
turbance is local in time and given by

Pt (1)U(1,1')))t (1')d1d 1'

d2 L(12,1'2') aA(2)/at,

Vp —Vp
+ i

I.(12,1'2')
2im ~ 2 2

VgA(2)

1
&~ @~0)

l j(&)+ vA(&)PO))
2m,

aA(1)
+ t(1)

8t]
' This proof was suggested to me by Dr. L. P. Kadano8.

Integrating by parts on the left-hand side, using (10)
and setting the coeKcient of A(2) in this equation equal
to zero yields the number conservation law for L:

/Vp
(6) (a/atp)L(12, 1'2)+Vp

~

L(12,1'2')
~

2im

=+ill(1 —2) —8(1'—2)36(1—1'). (13)
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Compare this with (I,35).The number conservation law
in the 2, 2' variables thus follows from L being of the
form &5G/5U and having each G that occurs in Z
depend on U. This latter requirement is what is re-
sponsible for Z transforming as in (11).The conserva-
tion laws in 1, 1' will follow when we demand that L be
symmetrical under 1, 1' ~ 2, 2'.

The total momentum conservation law follows as
simply. Because of its connection to the translational
invariance of the system, over-all momentum conserva-
tion for L can be demonstrated by choosing a U that
corresponds to the system being described by an ob-
server whose origin of coordinates is at the time-varying
point R(t). Then this observer would describe the sys-
tem with the extra term (to first order in R)

dR(t) dR(t)
dr mj(r, t) = — P(t)

dt dt
(14)

Z(1,1; G(R))G(1,1'; R) =b(1—1'). (15)

The argument now parallels the number conservation
argument. In the variable coordinate system, Go obeys

{Za/at, +vp/2n z/dR(t, —)/dt, ] v, j
&(Gp(1,1', R) =b(1—1'),

and hence

Gp(rt, r't', R) =Gp(r+R(t), t; r'+R(t'), t', R=O), (16)

as may be checked by direct differentiation. Kith no
loss of generality we may assume R(0) = R(—iP). Then
the solution (16) also obeys the boundary condition.

Again Z and G are transformed by R exactly as Gp.
Under the substitution

G(rt, r't', R) —+ G(r+R(t), t; r'+R(t'), t'; R),
Z becomes

Z(rt, r't'; G(R))
=Z(r+R(t), t; r'+R(t'), t', G(R)). (17a)

This follows because at each internal vertex in Z, the
two-particle potential V is local in time and depends on
the difference of the spatial coordinates, and the spatial
integrations are over all space, so that the spatial
integrations are invariant under a shift in the origin.
Thus, G(1,1') obeys Eq. (15) with R=O so that G(R)
=G(R=O) and

G(rt, r't'; R) =G(r+R(t), t; r"+R(t'), t'; R=O). (17b)

Clearly the Green's function as "seen" by an observer
with a variable origin of coordinates is obtained by just

added to the Hamiltonian. Here P(t) is the total mo-
mentum operator. Kith this external disturbance G
obeys

{i&/Bti+Vi'/2m —ifdR(ti)/dti) vi) G(1,1'; R)

shifting the coordinates in the equilibrium (R=O)
Green's function.

The proof of momentum conservation would break
down at this point if V were nonlocal in time, as it
would be if it represented, say, the effective interaction
between electrons due to phonons in a metal. In this
case one would not, of course, expect the electrons alone
to conserve momentum, since they can transfer mo-
mentum to the phonons.

We now expand both sides of (17b) to first order in R.
Since L, by definition, gives the linear response of 6, we
have

-V2- V2'
d2 L(12,1'2')

2i

dR(t, )

8
812

Bt2

V2—V2

2i
L(12,1'2')

—2'=2

+viG(1 1 )L~(ti t&) ~(tl t&)j (1g)

This is the momentum conservation law for L in the
2, 2' variables. Compare it with (I,37a).

It is from the momentum conservation argument that
we can most clearly see the connection between the
conservation laws at the vertices and the statement of
over-all momentum conservation. The conservation of
momentum at a vertex is equivalent to the statement.
that the vertex is invariant if the origins in the spatial
integrations are both shifted by the same amount. Be-
cause of this invariance Z transforms by (17a), G by
(17b), and from this it follows that L is over-all mo-
mentum-conserving in the 2, 2 variables. This is the
extent to which conservation at the vertices inQuences
over-all conservation. Conservation at the vertices is
necessary, but not sufhcient. The other necessary point
is that each line in Z transforms when one uses a shifting
coordinate system. Suppose that we had decided to let
some internal line in Z be a G(U=O) instead of a G(U).
Then when we formed L as

I.= +8G/8U= wG(6G '/6U)G
= wGGwG(bx/&U)G, (19)

the G(U=O) line in Z would not be differentiated with
respect to U. This would correspond to leaving a, certain
term out of the equation for L. Though momentum
would be conserved at each vertex in the L equation, I.
would not in general be momentum conserving because,
with a G(U =0) line, Z and thus G would not transform
as in (17).

To prove the energy conservation law for the 2, 2'

variables in I., we consider the system as described by an

= viG(1 —1') PR(ti) —R(ti')$.

Since this is true for arbitrary R(t), the coefficient of R
must vanish at each time. Integrating the left side by
parts and picking out the coefficient of R(tp), we have
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observer who uses a rubbery clock, i.e., his "Rexible"
time t would be measured by us as 8(t), where 8(t) is
some imaginary function of the imaginary time variable
t, chosen such that d8/dt is never zero and such that
8(0)=0 and 8( i—P) = iP—S.uch an observer would,
because of the irregularity of his clock, describe the
system with the additional term

therefore obeys the equation

(
8 V,') d8, '/' d8, '~ —'/4-

+
I Gp(rI4, rI't '; 8)

881 2m) dt, dt, ')

=8(81—81')8(rI—r,'), (25)

f(d8/dh) —1)a(t) (20)
and consequently Gp (1,1 ',8) is given by

d8 )'/' d8, )'"
Gp(r1, 8(t1); r1',8(t1') ) ~, (26)

dt1 dtI )

added to the Hamiltonian of the system. However, be- Gp(r14, r1 4 8)
cause H is not a two-particle operator, the linear effects
of (20) on G are not given in terms of L To derive the
energy conservation law for I- we therefore simulate the
external disturbance (20) by the two-particle operator

/(d8 i1 -t' 8 8 V V'i«
I

»——»—+-
ddt )4 &8t 8t' m )

where the Go on the right is the equilibrium free-particle
Green's function.

We may now easily verify that G in the presence of the
disturbance (21) is also related to the equilibrium G by

Xft(r' t')f(rt), (21) G(r t
—r'=r, t'=t

d8 I/4 d8 (4 I/O

G(rI,8(tl) r1,8(4'))
I

. (27)
dt1 dtI')

which to linear order in d8/dt 1will pro—duce essentially
the same effect on G as (20). By using the equations of
motion of 1t and pt one can see that (20) and (21) agree
to linear order in d8/dt —1. The disturbance (21) corre- To do this we must notice that
sponds to a U given by

1)d8(tI) y t 8 VI»
~(1',1)= -I

2k dt1 ) k BtI 2m

(dd ) "' (dd') '44

G (r It», r, 't1', 8) I

&dt, ) Edh, ' (2g)

+4id'8(tI)/dtI» 8(1—1'). (22)

Then G, to linear order in d8/dt 1, obeys the —equation
of motion

-t'd8Iy —'/' 8 )d8IqI/' V' i d'8—
'—+I

EdtI ) BtI kdhI ) 2m 4 dhI'

Z(1,1;G(8))G(1,1';8)=5(rI—rI')5(tI —tI'), (23)

(d84)
'"

Edt»

(d8
( —I/4

Z(1,i; G(8))G(i, 1', 8)
~

dt I'

dt's
8(tI—t )b(r1r1'I). (24)

d8g

where 81 stands for 8(t1). To see the relation between
G(1,1',8) and the equilibrium Green's function, we mul-

tiply both sides by (d81/dt1) p/4(d81'/dtI') ' '.

( d( 8 14,' ( 88"1,dd '') "4—+ i I
G(1,1', 8)

k d81 Bt» 2m kd4) dt, '

-1~d8» ~ t
8 Vp»~

d2d2 L(12,1'2') -I
2Edt, ) k Bt, 2m)

d'8—
+-,'i 8 (2—2')

dt2'

=—G(1-1)L(8 -t )-(8. -h. )j
Btg

+-', G(1—1')
dt~

dtII
I

—1+ —1
dtj'

obeys the equilibrium Green's function equation, written
with 8(t) as the time variable. Now at each internal
vertex in Z, the four factors of (d8/dk)"', from writing Z
in terms of (28), convert dt into d8. The excess three such
factors at the r&t& external vertex in Z are explicitly
canceled by the (d81/dtI) P/4 factor in Eq. (24), and at
the r&t& vertex they contribute towards converting dt&

into d81. The net result is that the quantity (28) obeys
the equilibrium equation, and hence G in the presence
of the disturbance (21) is given by Eq. (27). That 8(t)
is the natural time variable is clear from the physical
interpretation of the external disturbance.

We now expand Eq. (27) to linear order in 8—t. This
gives

The free-particle Green s function in the presence of 0 Integrating by parts on the left side and picking out the
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coeAicient of 8—t we 6nd exact 8" is

d 1- a 8
dr2 — i —i—+ ~L(12,1'2')

Ct2 4 Btm Bt2'

aG(1—1')
L~(t~ —»)-~(t~' —t.)j

2 ~2

5'=~ln Tr e—~&~—&~&

XT exp~ —i

d——,'G(1—1')—Lb(t —t2)+b(t&' —t,)j. (29)
dh2

This statement is essentially one of a vanishing "curl."
Thus (barring possible pathological counter-examples),
there exists a TV such that

G(1,1')=HV/BU(1', 1). (31)

We know that this statement is true for the exact 6,
since, except for a possible term independent of U, the

This is the energy conservation law obeyed by L in the
2, 2' variables. Compare this with Eq. (I,37c).

In the above proofs of the conservation laws we need
not have required all the internal lines in Z to be
G(U)'s. They could also have been Go(U)'s. The
conservation laws are obeyed by L in the 2, 2' variables
because L(12,1'2') is in the form of a derivative of
G(1,1')—which has the proper transformation prop-
erties —with respect to a function U of 2, 2'. Because L
is such a derivative, all the effects of U are taken into
account in the linear order. It is the inclusion of all the
effects of U(2, 2') on the system that guarantees that
L(12,1'2') obeys the conservation laws in 2, 2'. lf L
were not in the form of a derivative, because certain
terms were omitted in the integral equation determining
L, then L would not in general obey the conservation
laws in 2, 2'.

In a perturbation expansion of L in terms of V, each
order will obey the conservation laws in both the 1, 1'
and 2, 2' variables. The reason why we must pay atten-
tion to the conservation laws is that we want to have
terms to arbitrarily high order of V in L in order to use
L to describe transport phenomena, and yet at the same
time we want to have an approximate equation for L
which we can solve. This requires picking some subset
of terms in each order in perturbation theory. It is the
correct way of choosing the subsets in each order that is
the difhculty. Generating L as a derivative with respect
to U is a correct way of choosing the subsets of terms
and, as we have seen, it is physically the correct way.

The conservation laws for the 1, 1' variables in L are
guaranteed by requiring condition C of I, i.e., that any
approximation for L be symmetric under the inter-
change 1, 1'+-+ 2, 2'. This is, of course, obeyed by the
exact L We shall therefore impose this one requirement
of symmetry on any approximation. If L is symmetric,
then, since L= +8G/8U, we have

hG(1, 1')/bU(2', 2) =5G(2,2')/8U(1', 1). (30)

If an approximation maintains the 1, 1'+-+ 2, 2' sym-
metry of L, then the approximate G is derivable from
some approximate 8'.

We see that the W in (32) is closely related to the
partition function of the system. In equilibrium, that is,
when U(1,1')= h(tx —t&') U(r~, r~'), W is the logarithm of
the partition function. In fact, in the general case, if the
partition function is evaluated as a path integral from 0
to —ip, as Feynman' did for He', then W is just this
same path integral only with the nonlocal potential
U(1,1') acting along the paths from 0 to ip-

The 1, 1' conservation laws for L may be stated as a
condition on Z. We consider only approximations in
which Z is a functional of only G(U) and V and not of
Go(U) also. Then, since Z depends on U only through
its dependence on G(U), we may write 5Z/8U in Eq. (19)
for L as

8Z (1,1') bZ (1,1') bG(2', 2)
d2d2

SU(3',3) SG(2', 2) SU(3',3)

Then Eq. (19) may be written as

(33)

LG '(1—2')G '(2 —1')—8Z(1,1')/8G(2', 2)jL(2'3,23')

=&5(1—2') 5 (2—1'). (34)

4 R. P. Feynman, Phys. Rev. 91, 1291 (1953).

Now L will be symmetric under 1, 1' ~ 2, 2' if L ' has
this symmetry, and this will be so if and only if

8Z (1,1')/6G(2', 2) =bZ (2,2')/5G (1',1). (35)

This is a vanishing curl condition on 5, and thus it
follows that there exists a functional C of G and V such
that

Z(1,1') =b4/8G(1', 1). (36)

The effective "particle-hole" interaction, 8Z(1,1')/
8G(2', 2), is therefore

PC'/C BG (1',1)8G (2',2)].
(Since differentiation with respect to G means just
plucking out a line from a diagram, two such derivatives
commute. ) Conversely, if Z is of this form, then L will
be symmetric and obey the conservation laws in the
1, 1' and 2, 2' variables. This is the one condition that
must be imposed on any approximation for Z as a
functional of G and V. There must exist a "closed"
functional 4 of G and V such that Z=N/BG
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&/2 x

In this notation (39) becomes

(a)

1/p x

P Q

I I I I I
I I I I I
I I I I I

III. CONSERVATION LAWS FOR G(U)

The reason for imposing condition (36) on an ap-
proximation was to guarantee that the conservation
laws be obeyed by L in the 1, i' variables. These laws
are special cases of the conservation laws obeyed by the
nonequilibrium function G(U). Now when Z is derivable
from a C, we can give simple proofs of these more
general conservation laws as well.

First, consider transforming G by

G(1,1'; U) —& e'4&' G(1,1'; U)e '4&'& (41)

(e)

FIG. 1.Diagrams for Z and the corresponding C 's. On the left of
each set is the C diagram, and on the right the corresponding term
in Z. The direction of time is not associated with any direction in
these diagrams. (a) is the Hartree approximation, (b) the exchange
term in the Hartree-Fock approximation, and (c) is one term in-
volving U explicitly to second order. (d) shows a typical term in
the T-matrix approximation described in I, and (e) is a typical
term in the shielded potential approximation described in I. The
factors 1/I refer to the number of G's occurring in the particular
term in C.

In the figure we give several examples of Z's and the
associated 4's.

For the Hartree approximation, C is given by

d1d2 G(1,1+)V(1—2)G(2,2+), (37)

The first-order change in 4 induced by this change in G
is, from (39),

8C = d1d1' Z(1,1')it A(1') —A(1))G(1',1)

= —i d id1'(Z (1,1')G(1',1)

—G(1,1')Z (1',1))A(1). (42)

On the other hand, from the number conservation at
each vertex in 4, i.e., one line leaves wherever one line
enters, the transformation (41) must be an invariance of
C. Thus the coe%cient of A(1) in (42) must vanish
identically. Hence'

and for the exchange term in the Hartree-Fock ap-
proximation,

z
4=—

2
d1d2 G(1,2+) V(1—2)G(2, 1+). (38)

The diagrams for C bear a strong resemblance to
ground-state energy diagrams, but with the zero-order
Green's functions replaced by the self-consistent G's.

Suppose that G is changed by the amount 8G. Then C

as a functional of G will change by the amount

64
didi 8G(1',1+).

8G(1,1')
(39)

The way in which the f~ limit is to be taken in 8G is
significant only in the Hartree-Fock terms in 4, and it
is clear from (37) and (38) that this ti' must approach
the ti' in N/8G(1, 1') from "larger" values, i.e., from
lower on the imaginary axis.

We will frequently use a four-dimensional matrix
notation, and by the trace of a quantity we mean

d1'PZ(1, 1', U)G(1', 1; U)

—G(1,1'; U)Z(1', 1; U)7=0. (43)

Subtracting Eq. (Sb) from (Sa), setting 1'=1+, and
using (41) we find the number conservation law (I,22)
obeyed by G(U).

A similar consideration of the invariance

G(r, t; r', t'; U) ~ G(r+R(t), t; r'+R(t'), t'; U) (44)

of C leads to the momentum conservation law (I,25).
The energy conservation law follows from an only
slightly more complicated argument. The appropriate
invariance of C is

G(r, t; r', t'; U) ~
(d8/dt)"'G(r, 8(t); r',8(t') U)(d8'/dt')"'. (45)

This is an invariance since four G's entering each vertex
supply a net factor d8(t)/dt which changes dt into d8.
Then

d8 &/4 (d8 r/4-

O=N = d1d2 &(1,2)8 G(rs, 8s, rr, 8r)
~

dts kdtt

dt dr X(rt, rt+).
~ The reader may convince himself from Eq. (43), written in

(40) terms of the original approximation to Gs, 'that "4-derivable" ap-
proximations obey condition A, Eq. (I,29).
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and taking the coefFicient of term linear in Oi —]~ we
have |
0= —— —LZ (1,2)G(2, 1)+G(1,2)Z(2, 1)fd2

4 Btg

8
+ —G(1,2).Z(2, 1)+Z(1,2)—G(2,1) d2. (46)

Btq Btq

An argument similar to that given in the appendix to I,
in which Eq. (44) plays the role of Eq. (I,A1), leads to
the energy conservation law (I,28).

To summarize, if one starts with an approximation
for Z as a functional of G(U) and V such that Z is of the
form 6C/8G, then the nonequilibrium function G(U)
obeys the differential number conservation law, and
the total momentum (angular momentum) and energy
conservation laws. In addition, the effective "particle-
hole" interaction, in Eq. (34) for 1., is given by
Se/SAG.

The results up to now can be formulated for supercon-
ductors. 4 is composed of the matrix Green's functions
defined by Xambu. ' For the BCS theory, 4 is just the
Hartree-Fock C, Fig. 1(a), (b), but with the lines
standing for matrices rather than single functions.

IV. CONSISTENCY OF APPROXIMATIONS TO
THE PARTITION FUNCTION

The one-particle Green's function, in addition to
giving the single-particle excitations of a many-body
system, contains information about the equilibrium
statistical mechanics of the system. This information is
found from the grand partition function, which can be
constructed from the one-particle Green's function by a
variety of means. The more common methods include
integrating the expectation value of the potential energy
with respect to a coupling constant —this is the linked
cluster expansion, integrating the expectation value of
the number with respect to the chemical potential p, and
integrating ((H—pS)) with respect to the inverse tem-
perature P. It is often desirable, when making an ap-
proximation to the one-particle Green's function, to
have these various methods lead to the same result, so
that one has a consistent picture of the equilibrium
properties. This requirement, at the same time that it
places great restrictions on an approximation to G,
provides us, when perturbation theory is no longer
valid, with a possible guide in truncating the infinite
hierarchy of coupled Green's function equations.

Also, by requiring that the solution to a given ap-
proximation obey certain general theorems we provide
ourselves with additional criteria to decide whether the
approximation is good. An important example of such a
theorem is the Hugenholtz-Van Hove theorem for zero-
temperature normal fermions, a theorem which should

~ Y. Nambu, Phys. Rev. 117, 648 (1960).

W=C —trZG —tr ln( —G). (47)

We shall now show that formula (47) for W, with no
added term, is equivalent to the linked cluster expansion
for the expectation value (32) and, in the equilibrium
case, (47) becomes an expression for the logarithm of the
partition function.

To do this we let the potential V become XV, where )
is a numerical coupling constant, and then differentiate
Eq. (47) with respect to X. Now C depends on X in two
ways; first, through its explicit dependence on V, and
second, through its dependence on G. Therefore (de-
noting the X dependence by a subscript),

(dC)/dX) = (BCg/BX)g+trZ~(dGg/dy). (4g)

Thus the derivative of (47) is

dW), /dX= (BC),/BX) G. (49)

We can find the derivative of 4 at constant G by
noticing a simple invariance of C. Suppose we let each
explicit V in 4 become n V, and let each G become n '"G.
Then, because each G in 4 joins two vertices, and each V
is joined to four G's, the n transformation is an invari-
ance of C. Thus, under this transformation

dCy X BC), 64g d
+tr —(n "'Gg)

dn n N g BG), dn

84), —-'n —'" trZ), Gg.
n BX g

Evaluating the above at n=1 yields

(BC ),/N, ) 0——(1/2X) trZgGg.

Thus, integrating (49) with respect to X from zero to
7 We choose the branch of the logarithm so that the cut is along

the negative axis and ln1=0.

be obeyed, for example, by a satisfactory theory of
nuclear matter.

The self-consistent 4-derivable approximations, de-
scribed. by Eqs. (5) and (36), which lead to a fully-
conserving transport theory, have the further prop-
erty that when specialized to the equilibrium case, they
satisfy all the requirements set forth above. The re-
mainder of this paper shall be given to a discussion of
these equilibrium properties.

We begin by pointing out the relation between C and
the quantity W in Eq (3.1). This shall lead to a very
useful formula from which all the equilibrium properties
of 4-derivable approximations follow. Consider a small
variation in U. This induces a change in 4 given by
N = trZ5G, whereas from Eq. (31) the change induced in
W is 8W= tr(8U)G. Thus,

5W=N —8 trZG —trP(Gp —' —U —Z) jG.

But the last term is' —tr(6G ')G=6 tr ln( —G), so that
to within a possible added term independent of U,
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one:
'dX—trZgGg.W= —tr»L —G, (U)]+

(N) =&i G(rt, rt+)dr.

drdr' Pt(r') U(r', r)P(r)r . (52)

Thus,
a lnZ a~, , „,,= —(P/l )(~~).

g

BG 8 BG '
t Z ——trZG —tr G .tr —— —tr G .

8JR p

Now the interactionof the system. ) Now(0 is the volume o
energy is

8 lnZ
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—j.'=1
, +)=+iP drG(rt, ri+), (5gdtdr G(r/, r/+ =+i

g2
G rt, r t+

m

arise from ym vary g

7 459 (1958).Phys.
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m'
Bm '

dtdr G(rt r't+) . (61)
2fS gr —p

The right side is exactly —P times the kinetic energy
evaluated from G. (This is another exact relation pre-
served by C-derivable approximations. )

We now notice that the entire P, m, y, and XV de-
pendence of lnZ in Eq. (57) enters through the combi-
nations Pm ', Py, and PP, V. This is obvious for the exact
partition function from its definition. It must only be
seen that the approximation maintains this structure.

I.et us write the exact G equation in terms of the time
variable r=t/P which ranges from 0 to i A—lso,. we
include ylV in the Hamiltonian. I et g(r, r') =G(pr, pr').
Then the boundary condition obeyed by g(r, r') con-
tains no reference to P or y, and it obeys the exact
equation of motion

(B V'

+P +P—y i3(r, r')
( Br 2m )

The 6rst term is the kinetic energy and the second, as
we have seen, is the potential energy. Once again, when
Z =bC/bG, these two approximate evaluations of
((H—yE)) agree.

To show this equality, we must differentiate Eq. (57)
with respect to P. This is complicated by the fact that
the inverse temperature occurs explicitly in the limits of
the time integrations (0 to —iP). We shall therefore
proceed in a somewhat roundabout fashion.

We first differentiate Eq. (57) with respect to m ', the
inverse of the particle mass. The calculation is identical
to the p differentiation that we just carried out, only
Ilow

(B/Bm
—')Go—'(rt, r't') =-', Vb(r —r')b(t —t').

Hence

Green's function. Thus the two methods of evaluating
((H—yS)) lead to the same result.

Consequently the partition function determined by
integrating ((H—yÃ)), as found from G, with respect to
P is identical to that which appears in Eq. (57).

Another important quantity obtained from the grand
partition function is the pressure. This is determined by

I' = (1/P) (a lnZ/aQ), (63)

where Q is the volume of the system. (We assume now
that U=O, and employ the translational invariance of
the system. ) The pressure is alternatively evaluated as
one third the trace of the stress tensor. In the limit of
large volume, this formula is"

P= wit (P/3m)G(rt, r't+) 1, =,

dr'(r —r') Vv(r —r')
6

Xg«(rt)kt(r't)k(r' t)f(rt)). (64)

We shall now show that evaluating I' from (63) using
the lnZ in Eq. (57) leads to the same result as does
Eq. (64), where (ftPtPP) is evaluated in terms of the G2
approximation in the G equation. A change in the
volume of the system can be simulated by a change in
the scale of lengths in the system. Besides the volume
(or the density), the only lengths in the system are the
pote@"ial range and the thermal wavelength of the
particles, A(P/2m)'". Thus, if we let m —+o'm and
v(r) ~ v(or), we effectively change the volume of the
system by a factor a'. Hence,

181nZ 1 8—1nzt o'm, v(o r)j
P BQ 3PQ Bo.

=b(r T )&'t pXVQ2(rpr j T pr ) ~
2m 8 lnZ 1 8

+ —lnz)m, v(ar))
3PQ Bm 3PQ Bo

(65)

Here g2(r, r', T",r'")=G2(PT,PT'; Pr",Pr"'). The m and

y dependence is in the combinations Py and Pm '. The
remaining p dependence is in the PXVg2 term. When
VG2 is approximated by ZG, and Z depends on G and V,
it is clear that P) V/2 will be approximated by the
corresponding functional of g and P) V. Thus the re-
maining P dependence as well as the entire ) V depend-
ence is in the combination PKV. It follows then that the
lnZ, constructed by Eq. (57) in terms of g, will depend
only on Py, Pm ', and P) V. We may therefore evaluate
B lnZ/BP as

lnZ r(a@ BG B BG '
+trZ ———trZG —tr G .

&a~ g a~ ao 80'

But BG—'/Bo =—BZ/Bo, so that

We have already shown in Eq. (61) that the first term on
the right is +Li(i'/3m)G(rt, r't+)], , To evaluate the
second term, let v(r) ~ v(or) in Eq. (57). Then C de-
pends on cr through both its explicit V dependence and
its dependence on G. Thus

8 lnZ m 'BlnZ A, BlnZ p BlnZ
(62)

P Bm ' P BX P By

(BC)
kao) 0

But we have already established that the three terms on
the right are, respectively, the kinetic energy, the po-
tential energy, and minus p, times the number of
particles, each calculated in terms of the one-particle

d1d2 (ri—rg) .Vi V(1—2)
b V(1—2)

"See, for example, P. C. Martin @nd J. Schwinger, Phys. Rev.
115, 1342 (1959), Eq. (2.34).
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lnZ 1
drs(ri rs)

3PQ Ba 6

Vs(ri —r2)G2(li1i Isf1' rifi++, r2/1+). (67)

This is precisely the final term in Eq. (64) for the pres-
sure. Therefore we see that Eqs. (63) and (64) both lead
to the same approximate evaluation of the pressure.

Thus, we have shown that the common methods for
obtaining the partition function from the equilibrium
one-particle Green's function all lead to the same re-
sults when the self-energy is derivable from a C. These
methods consist in integrating the potential energy,
expressed in terms of ZG, with respect to a coupling
constant ), integrating the number with respect to p, ,
integrating ((H—iiiV)) with respect to P, and finding the
pressure directly in terms of the stress tensor. Because
of this self-consistency, all thermodynamic relations
derived from the partition function must remain true in
the approximation.

One can expect the results of the above methods to
agree exactly only when the approximate equation
(Gs '—Z)a= 1 has been solved exactly. This is possible
only in a few special cases. But the various evaluations
of the partition function should agree more and more
precisely as the approximate Green's function equation
is solved with increasing accuracy.

Equation (57), because it is true in the exact theory,
presents yet another method of calculating lnZ in the
approximate theory. If one interprets the self-energy P
in this formula to be Go '—G ', then, as initially shown

by Luttinger and Ward, ' this evaluation of the partition
function is stationary under variations of G arising from
variations in the self-energy, at the point

2=as '—G '=N/5G. (68)

This variational principle is true for 8" in the presence
of any external disturbance U(1,1'). The evaluation of
lnZ from (57) agrees with the other methods when (68)
holds. But none of the other means of calculating lnZ
have this stationary property, unless the variations
preserve the relation (68); for we had to use this relation
in order to introduce Z into Eq. (47) relating 4 and W'.

The variations of Z that preserve (68) are those arising
from a variation of an explicit parameter in the theory,
such as P, X, p, etc. (This does not mean that Z is
stationary under variations of these parameters; only

"From this equation and the symmetry of V in 1 and 2, one may
show that condition 8 of l, the symmetry of Gq(12, 1+2+) in 1 and
2, must hold if Z can be derived from a C.

Here the variation of 4 with respect to V is understood
to be the variation with respect to the explicit occur-
rences of U in C. But from Eqs. (50) and (54) it is clear
that"

B@/&V(1—2)= + (t'/2)as(rifi, rs&t ', rift++, rs&t+), (66)

so that

that it is stationary under the variation of Z due to
variation of these parameters. )

The second variation of lnZ, defined by Eq. (57)
(where Z means Gs '—G '), with respect to changes in

G arising from changes in 2 has an interesting relation
to the two-particle correlation function I.. The first
variation of (57) is

B lnZ= Wtr(N/BG —Z)BG, (69)

which vanishes when we enforce (68). The second
variation yields

B»m= ~ tr P'C/Ba' —BZ/Ba]~GAG~ trLbe/BG —Z]PG

But BZ =G '(BG)G ', so that on setting BC/BG equal to Z,
we find

P lnZ

BG(1',1)BG(2',2)

84 —G—'(1,2')G '(2, 1'), (70)
BG (1',1)BG(2',2)

which, from Eq. (34), is just J. '. Thus—

Bs II1Z= — BG(1' 1)L '(12,1'2')BG(2',2). (71)

This equation is possibly a point from which to investi-
gate, for a given approximation, the relation between
the collective behavior described by I., and the ex-
tremum properties of the partition function calculated
from (57) with 2=as ' —G '."

V. ZERO-TEMPERATURE NORMAL
FERMION SYSTEMS

There are several exact theorems, proven by per-
turbation theory for zero-temperature many-fermion
systems, which remain true in C-derivable approxima-
tions. The Hugenholtz-Van Hove" theorem is one. This
theorem may be regarded as having two parts, the erst
part, the simple one in this formalism, says that

BE/BE=IJ,, (72)

"One example of such a connection, that between the stability
of the zero-temperature random phase approximation and the
minimization of the expectation value of the Hamiltonian in the
Hartree-Fock approximation, has been shown by D. J. Thouless,
Nuclear Phys. 21, 225 (1960).

"N. M. Hugenholtz and L. Van Hove, Physica 24, 363 (1958).

where E is the ground-state energy. If E is calculated
from

E—iilV = —lim& P
—' lnZ,

where
N=lims „P—'B 1nZ/Bp,

then (72) is a trivial statement, since

B lnZ B 1nZ) B
lim — —

~

=0=1V (E i'd%). ———
~ "Bp P BP ) Bii
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What is not trivial is that for C-derivable approxima-
tions, r)E/BX equals p regardless of whether E or X is
calculated from lnZ or from the one-particle Green's
function. This is seen from the fact that

so that in the zero-temperature limit, —P-' lnZ equals
the right side of (60).

The second part of the Hugenholtz-Van Hove theo-
rem, in its weaker form, states that the volume of the
Fermi sea of the interacting system is equal to the
volume of the Fermi sea of a non-interacting system
with the same expectation value of the number of
particles as the interacting system.

t.uttinger" has given a proof of this theorem for the
exact theory, which works for 4-derivable approxima-
tions with no trouble. His proof makes use of the
structure of the perturbation expansion in two ways.
First, the proof depends on the fact that, for all k, the
single-particle lifetime function F(k,te), which is the
discontinuity in the self-energy Z(k, s) as s crosses the
real axis at te, is proportional to (a&—p)', for ce very close
to p,. This behavior of I' follows from phase-space argu-
ments, " and must therefore survive in a C-derivable
approximation. The remainder of the structure of the
exact theory in the proof is embodied in the existence of
the exact 4, which is expressed in terms of the Fourier
series for G. As long as the approximate Z can be
derived from a 4, this structure is fully maintained, and
the proof goes through without modification.

The Brueckner theory of nuclear matter, carried out
using the self-consistent T-matrix approximation LEqs,
(I, 53—56) with U=Oj is a 4-derivable approximation.

' J. M. Luttinger, Phys. Rev. 119, 1153 (1960}."J.M. Luttinger, Phys. Rev. 121, 942 (1961).

and hence it must obey the Hugenholtz-Van Hove
theorem. The failure of present nuclear matter calcula-
tions to obey this theorem must lie ultimately in their
lack of self-consistency in determining the one-particle
Green's function (or the equivalent).

In addition, the other results that t,uttinger" has
shown for zero-temperature normal fermions, such as
the fact that the specific heat is linear in T, continue to
hold for 4-derivable approximations. This is because the
proofs of those results rely only on the structure of C,
expressed in terms of Fourier series for G, and the rela-
tion (57) of C to the partition function.

In conclusion, we remark that the requirement that
an approximation be C-derivable is a useful criterion to
apply in terminating the infinite hierarchy of coupled
Green's function equations. Such an approximation
leads to a completely self-consistent description of the
equilibrium statistical mechanics, and furthermore it
leads to a nonequilibrium theory in which the over-all
conservation laws are included and which takes into
account the same correlations as are considered in the
equilibrium theory. One reason underlying the fact that
these approximations have such a remarkable structure
has been discovered by Kraichnan, " who has shown
that in a certain sense they are exact solutions to model
Hamiltonians containing an infinite number of stochastic
parameters.
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