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Many-Body Perturbation Theory (MBPT) and
Time-Dependent Density-Functional Theory
(TD-DFT): MBPT Insights About What is
Missing in, and Corrections to, the TD-DFT
Adiabatic Approximation
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Abstract In their famous paper Kohn and Sham formulated a formallycexa
density-functional theory (DFT) for the ground-state gyesind density of a sys-
tem of N interacting electrons, albeit limited at the time by certabubling rep-
resentability questions. As no practical exact form of tkeheange-correlation (xc)
energy functional was known, the xc-functional had to berapimated, ideally by
a local or semilocal functional. Nowadays however the radilbn that Nature is not
always so nearsighted has driven us up Perdew’s Jacobsrl&aitind increasingly
nonlocal density/wavefunction hybrid functionals. Timependent (TD-) DFT is a
younger development which allows DFT concepts to be use@soribe the tem-
poral evolution of the density in the presence of a pertufield. Linear response
(LR) theory then allows spectra and other information alexuited states to be
extracted from TD-DFT. Once again the exact TD-DFT xc-fioral must be ap-
proximated in practical calculations and this has histdlycbeen done using the
TD-DFT adiabatic approximation (AA) which is to TD-DFT venyuch like what
the local density approximation (LDA) is to conventionabgnd-state DFT. While
some of the recent advances in TD-DFT focus on what can bewlibhi@ the AA,
others explore ways around the AA. After giving an overviehbD&T, TD-DFT,
and LR-TD-DFT, this article will focus on many-body corrects to LR-TD-DFT
as one way to building hybrid density-functional/waveftioie methodology for in-
corporating aspects of nonlocality in time not present aAlA.
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1 Introduction

“I have not included chemistry in my list [of the physical excces] because, though Dy-
namical Science is continually reclaiming large tracts obd ground from one side of
Chemistry, Chemistry is extending with still greater ragyien the other side, into region
where the dynamics of the present day must put her hand ondwehnBut Chemistry is a

Physical Science...”

— James Clerk MaxwelEncyclopaedia Britannicaca. 1873[[1]

Much has changed since when Maxwell first defended cheméstrg physi-
cal science. The physics applied to chemical systems noshies as much, if not
more, quantum mechanics than classical dynamics. Howewee shings have not
changed. Chemistry still seems to extend too rapidly fot firsxciples modeling
to keep up. Fortunately density-functional theory (DFT$ leatablished itself as a
computationally-simple way to exterab initid] accuracy to larger systems than
whereab initio quantum chemical methods can traditionally be applied. rEte
icence to use DFT for describing excited states has evem gig as linear re-
sponse (LR-) time-dependent (TD-) DFT has become an esialliway to cal-
culate excited-state properties of medium- and large+siaéecules. One of the
strengths of TD-DFT is that it is formally-exact theory. Hever, as in traditional
DFT, problems arise in practice because of the need to mgk@xmations. Of
course, from the point of view of a developer of new methodsenvpeople are
given a little then they immediately want more. As soon asTIRDFT was shown
to give reasonably promising results in one context, thenynp@ople in the model-
ing community immediately wanted to apply LR-TD-DFT in a vilncange of more
challenging contexts. It then became urgent to exploreithi¢sl of applicability of
approximateTD-DFT and to improve approximations in order to extend ¢hés-
its. Much work has been done on this problem and there are 1zcgess stories
to tell about LR-TD-DFT. Indeed many of the articles in thisok describe some
of these challenging contexts where conventional LR-TDFRpproximations do
work. In this chapter, however we want to focus on the cuttidge where LR-TD-
DFT finds itself seriously challenged and yet progress iagpaiade. In particular,
what we have in mind are photochemical applications wheterating excited
states of fundamentally different character need to berdestwith similar accu-
racy and where bonds may be in the process of breaking ortigerithe approach
we will take is to introduce a hybrid method where many-bodstyrbation theory
(MBPT) corrections are added on top of LR-TD-DFT. We willalsse the tools we
have developed to gain some insight into what needs to bedadlin the TD-DFT
exchange-correlation (xc) functional in order for it toteetescribe photochemical
problems.

Applications of LR-TD-DFT to photochemistry are no longare. Perhaps the
earliest attempt to apply LR-TD-DFT to photochemistry waesdemonstration that

1 The termab initio is used here as it is typically used in quantum chemistryt Bab initio
refers to first-principles Hartree-Fock-based theoryjuaing DFT. In contrast, the termb initio
used in the solid state physics literature usually encosgsabFT.
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avoided crossings between formaldehyde excited-stateeswould indeed be de-
scribed with this method [2]. Further hope for photochergiftom LR-TD-DFT
was raised again only a few years laler[[B, 4], with an exarapjgication to the
photochemistry of oxirane appearing in another five yeans {E,[6]. Ref.[[T] pro-
vides a recent review of the present state of LR-TD-DFT a&gjio photochemistry
and where some of the difficulties lie.

Fig. 1 Typical curves for the singlet photochemical isomerizatb ethylene.

ENERGY

Let us try to focus on some of key problems. Photophenomenfaegquently di-
vided into photophysics, when the photoprocess ends wétlsame molecules with
which it started, and photochemistry, when the photopmessls with different
molecules. This is illustrated by the cartoon in Eilg. 1. Aamyple of a typical pho-
tophysical process would be beginning at &eminimum, exciting to the singly-
excitedS; state, and reverting to the sai§gminimum. In contrast, an example of
a typical photochemical process would be exciting from Sneninimum to anS;
excited state, followed by moving along tBe surface, through avoided crossings,
conical intersections, and other photochemical funnelnally end up at the other
S minimum. State-of-the-art LR-TD-DFT does a reasonablenauleling photo-
physical processes but has much more difficulty with phatadhbal processes. The
main reason is easily seen in FAig. 1 — namely that photochapiocesses often
require an explicit treatment of doubly excited states &iedé are beyond the scope
of conventional LR-TD-DFT. There are several ways to rentédyproblem which
have been discussed in a previous review artidle [8]. Indttisle, we will concen-
trate on one way to explore and correct the double excit@tioblem using a hybrid
MBPT/LR-TD-DFT approach.

The rest of this chapter is organized as follows. The nexi@e(Sec[2) provides
a small review of the current state of DFT, TD-DFT, and LR-DE&ctiorl B begins
with an introduction to the key notions of MBPT needed to @eiGorrections to
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approximate LR-TD-DFT and derives some basic equatioricd®®4 shows these
corrections can be used in practical applications througéxgloration of dressed
LR-TD-DFT. Ideally it would be nice to be able to use theseecdtions to improve
the xc functional of TD-DFT. However this involves an adalital localization step
which is examined in Sef] 5. Sectigh 6 sums up with some petigps.

2 Some Review

This section reviews a few concepts which in some sense amy dth age: DFT
is about 50 years old, TD-DFT is about 30 years old, and LRBE (in the form
of the Casida equations) is about 20 years old. Thus manydfdkic concepts are
now well known. However this section is both necessary tondefiome notation
and because some aspects of these subjects have contiravet/and so need to
be updated.

2.1 Density-Functional Theory (DFT)

Hohenberg and Kohn[9] and Kohn and Shaml [10] defined DFT imtlte1960s
when they gave formal rigor to earlier work by Thomas, Feibiiac, Slater, and
others. This initial work has been nicely reviewed in wellekvn texts[[11] 112, 13]
and so we shall not dwell on details here but rather conceentrawhat is essential
in the present context. Hartree atomic unfts{me = e= 1) will be used throughout
unless otherwise specified.

Kohn and Sham introduced orthonormal auxiliary functiokehin-Sham or-
bitals) ¢ (1) and corresponding occupation numbersvhich allow the density to
be expressed as,

p(1) =3 nilya(1)?, 1)
|
and the electronic energy to be expressed as,

E = ni(tils+Vith) + Enp] + Exclp] - ()

Here we use a notation wheire= (ri, 0i) stands for the spaag and sping; coor-
dinates of electron s = —(1/2)0? is the noninteracting kinetic energy operator,
is the external potential which represents the attractfdheelectron to the nuclei
as well as any applied electric fields, [p] = [ [ p(1)p(2)/r12d1d2 is the Hartree
(or Coulomb) energy, anlx[p] is the xc-energy which includes everything not
included in the other terms (i.e., exchange, correlatiod, the difference between
the interacting and noninteracting kinetic energies).iMiming the energy [Eq[{2)]
subject to the constraint of orthonormal orbitals giveskban-Sham orbital equa-
tion,
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hslp]¢i = &, (3)

where the Kohn-Sham Hamiltoniamyp] (1), is the sum ofs(1) +v(1), the Hartree
(or Coulomb) potentia[p](1) = | p(2)/r12d2, and the xc-potentiakc[p](1) =
SExc[p]/dp(1).

An important but subtle point is that the Kohn-Sham equasioould be solved
self-consistently with lower energy orbitals filled beftigher energy orbitalsXuf-
bau principle) as befits a system of noninteracting electronthi$ can be done
with integer occupancy, then the system is said to be namictiegv-representable
(NVR). Most programs try to enforce NVR, but it now seemslijikihat NVR fails
for many systems even in exact Kohn-Sham DFT. The altemgito consider frac-
tional occupation within an ensemble formalism. An impottdeorem then states
that only the last occupied degenerate orbitals may beidreadty occupied (see,
e.g., Ref.[[12], pp. 55-56). Suitable algorithms are ranmamtaining this condition
can lead to degenerate orbitals having different occupationbers which, in turn,
may require minimizing the energy with respect to unitagnsformations within
the space spanned by the degenerate occupied orbitals ifféhedt occupation
numbers. These points have been previously discussed ievguah greater detail
in Ref. [8]. Most programs show at least an effective failaféNVR when using
approximate functionals, in particular around regionstairey electron correlation
such as where bonds are being made or broken (e.g., avoidssirgy of theS,
surfaces in Fid.]1) which often shows up as self-consistelut (SCF) convergence
failures.

Table 1 Jacobs ladder for functionals[14]. (An updated versiorsmyin Ref. [15].)
Quantum Chemical Heaven

Double-hybrid p(1), x(1), (1), Wi (1), wa()"
Hybrid p(1),x(1), T(1), ¢x(1)°
MGGA® p(1), x(1), T(1)8, 0%p(1)f
GGAP p(1), x(1)8

LDA? p(1)

Hartree World
4 ocal density approximation.
b Generalized gradient approximation.
¢ Meta generalized gradient approximation.
d The reduced gradient1) = |Jp(1)|/p%3(1).
€ The local kinetic energy (1) = zpnpwp(l)Dzwp(l).
f There is some indication that the local kinetic energy dgrgil) and the Laplacian of the charge
density,[0%p(1), contain comparable information [16].
9 Occupied orbitals.
h Unoccupied orbitals.

As no practical exact form dic is known, it must be approximated in practice.
In the original papers:y: should depend only upon the charge density. However
our notation already reflects the modern tendency to allopi-dependence in
Exc (spin-DFT). This additional degree of freedom makes itera develop im-
proved density-functional approximations (DFAS). In neicgears, this tendency to
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add additional functional dependencies ikjg@ has lead to generalized Kohn-Sham
theories corresponding to different levels of what Perdawrefered to Jacob’s lad-
defd for functionals (Tablgll). The LDA and GGA are pure DFAs. Higlevels are
no longer fall within the pure DFT formalisrh [1L7] and in pattlar are subject to a
different interpretation of orbital energies.

Of particular importance to us is the hybrid level which irmporates some
amount of Hartree-Fock exchange. Inspired by the adiabatioection formalism
in DFT and seeking functionals with thermodynamic accurBecke suggested a
functional of roughly the forni[18],

E)l('lélbl’id _ E)((BGA+ a(E)l('H: _ E)((BGA) + E((:BGA. (4)

Thea parameter was intially determined semi-empirically buhaice ofa = 0.25
was later justified on the basis of MBPT _[19]. This is a globgbifid (GH), to
distinguish it from yet another type of hybrid, namely thenge-separated hy-
brid (RSH). Initially proposed by Savin [20], RSHs separtite 1/r1, interelec-
tronic repulsion into a short-range (SR) part to be treatgdidnsity-functional
theory and a long-range (LR) part to be treated by wavefanatethodology.
A convenient choice uses the complementary error functiontife short-range
part, (1/r12)sr = erfc(yriz)/ri2, and the error function for the long-range part,
(1/r12)Lr = erf(yri2)/r12. In this casey = 0 corresponds to pure DFT whije=
corresponds to Hartree-Fock. See Ref] [21] for a recenéwewf one type of RSH.

2.2 Time-Dependent (TD-) DFT

Conventional Hohenberg-Kohn-Sham DFT is limited to theugibstationary state,
but chemistry is also concerned with linear and nonlineicepnd molecules in ex-
cited states. Time-dependent DFT has been developed tesaditiese issues. This
subsection first reviews formal TD-DFT and then briefly dsges TD-DFAs. There
are now a number of review articles on TD-DFT (some of whiah @ted in this
chapter), two summer school multi-author texts| [22, 23} anw a single-author
textbook [24]. Our review of formal TD-DFT roughly followseR [24] pp. 50-58
which the reader may wish to consult for further details. @amments about the
Frenkel-Dirac variational principle and TD-DFAs comesirour own synthesis of
the subject.

A great deal of effort has been put into making formal TD-DFSTrigorous as
possible and firming up the formal underpinnings of TD-DFmaéns an area of
active research. At the present time, formal TD-DFT is bagauh two theorems,

2 “Jacob set out from Beersheba and went on his way towardsilarde came to a certain place
and stopped there for the night, because the sun had setta&intfy one of the stones there, he
made it a pillow for his head and lay down to sleep. He dreaatthk saw a ladder, which rested
on the ground with its top reaching to heaven, and angles df\@e going up and down it.” —
The Bible, Genesis 28:10-13
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namely the Runge-Gross theorem|[25] and the van Leeuwemelme@6]. They
remind one of us (MEC) of some wise words from his thesis dime@ohn E. Har-
riman) at the time of his (MEC’s) PhD studies: “Mathematisaalways seem to
know more than they can prO\B.The Runge-Gross and van Leeuwen theorems are
true for specific cases where they can be proven, but we ledl@m to hold more
generally and efforts continue to find more general proofs.

Runge-Gross theorem

This theorem states, with two caveats, that the time-dem@nekternal potential
v(1) is determined up to an arbitrary function of time by the alitivavefunction
Y = Y(tp) at some timey and by the time-dependent charge dengity). Here we
have enriched our notation to include tines (i,t) = (ri, 6i,t). The statement that
the external potential is only determined up to an arbitfangction of time simply
means that the phase of the associated wave function is etdyndined up to a
spatially-constant time-dependent constant. This isimzavo external potentials
differing by an additive function of time(I) = v(1) +c(t1) lead to associated wave
functions¥(t) = e " (t) whereda(t)/dt = c(t). A consequence of the Runge-
Gross theorem is that expectation values of observak{lgsare functionals of the
initial wavefunction and of the time-dependent charge igns

Alp, ] (t) = (W[p, 4] ()IA®)|W[p, W] (1)) (%)

The proof of the theorem assumes (caveat 1) that the exfeoteitial is expandable
in a Taylor series in time in order to show that the time-dejeern current density
determines the time-dependent external potential up talditiee function of time.
The proof then goes on to make a second assumption (caveathe external
potential goes to zero at largeat least as fast as/f in order to prove that the
time-dependent charge density determines the time-depéndrrent density.

van Leeuwen theorem

Given a system with an electron-electron interactidh, 2), external potential(1),

and initial wavefunctiort¥y, and another system with the same time-dependent
charge density (1), possibly different electron-electron interactial,2), and
initial wavefunction4, then the external potential of the second systétr) is
uniquely determined up to an additive function of time. Netthat we recover the
Runge-Gross theorem whev{1,2) = W(1,2) and% = $. However the most in-
teresting result is perhaps wheri1;2) = 0 because this corresponds to a Kohn-
Sham-like system of noninteracting electrons, showindnasthe external potential

of such a system is unique and ultimately justifying the tidependent Kohn-Sham

3 This is formalized in mathematical logic theory by Godatisompleteness theorem which basi-
cally says that there are always more things that are truedéa be proven to be true.
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equation,

hlp. 46,9110 (1) =i 244 1), ©

where, . . .
hlp, %, %](1) = s+ V(1) + v [P] (1) + viclp, Y, (1) . @)

The proof of the theorem assumes (caveat 1) that the exfeoteitial is expandable

in a Taylor series in timand (caveat 2) that the charge density is expandable in a
Taylor series in time. Work on removing these caveats is onp27,/28/ 29[ 30]
(Ref. [24] pp. 57-58 provides a brief, but dated, summary).

Frenkel-Dirac action

This is a powerful and wide-spread action principle usedetive time-dependent
equations within approximate formalisms. Making the attio

. 7 BN
A= | (WE)li- —H({)¥(t))dt, (8)
Jto ot
stationary subject to the conditions tha¥/(to) = dW(t1) = O leads to the time-
dependent Schrodinger equatidiit) ¥ (t) = idW(t)/dt. Runge and Gross initially
suggested thak = A[p, 4] and used this to derive a more explicit formula for the
TD-DFT xc-potential as a functional derivative of an xciant however this led
to causality problems. A simple explanation and way arolvede contradictions
was presented by Vignale [31] who noted that, as the timewuiggnt Schrodinger
equation is a first-order partial differential equation ime, ¥(t;) is determined
by W(tp) so that, whiled¥(tg) may be imposed¥(t;) may not be imposed. The
proper Frenkel-Dirac-Vignale action principle is then,

SA=i(W(t1)|0¥(t1)). (9)

In many cases, the original Frenkel-Dirac action princgiles the same results as
the more sophisticated Frenkel-Dirac-Vignale action gigle. Ref. [32] gives one
example of where this action principle has been used toelariwc-potential within
a TD-DFA. Other solutions to the Dirac-Frenkel causalitylgem in TD-DFT may
also be found in the literature [33,134, 35] B6| 37].

Time-dependent density-functional approximations (TBAB)

As the exact TD-DFT xc-functional is unknown, it must be apgmated. In most
cases, we can ignore the initial state dependences because\treating a system
initially in its ground stationary state exposed to a tinegendent perturbation. This
is because, if the initial state is the ground stationarngsthen according to the first
Hohenberg-Kohn theorem of conventional D#f = $4[p] and¥h = $4[p].
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The simplest and most successful TD-DFA is the TD-DFT adialspproxi-
mation (AA) which states that the xc-potential reacts instaeously and without
memory to any temporal change in the time-dependent density

Vidlpl(1) = %p&()l)]

The notation is a bit subtle hergg (1) is p(1) = p(1,t1) at a fixed value of time,
meaning thapy, (1) is uniquely a function of the space and spin coordinatestaibe
fixed timet;. The AA approximation has been remarkably successful d&adtefely
defines conventional TD-DFT.

(10)

Table 2 Jacobs ladder for memory functiondls][14].
Quantum Chemical Heaven

TD-RDMTH y(1,2,1)9, 6. (t)"

TD-OEP (1)

L-TD-DFTP fluid position and deformation tensor
TD-CDFT® p(1),j(1)°

TD-DFT p(1)

Hartree World
aTD current-density-functional theory.
b Lagrangian TD-DFT.
¢ TD optimized effective potential.

d TD reduced-density-matrix theory.
€ The current density.

f TD occupied orbitals.

9 TD reduced-density matrix.

N Natural orbital phases.

Going beyond the TD-DFT AA is subject of ongoing work. Defipimew Jacob’s
ladders for TD-DFT may be helpful here. The first attempt tesdavas the defini-
tion by one of us (MEC) of a “Jacob’s jungle gym” consistingpafrallel Jacob’s
ladders forEyc, Vxe(1), fxe(1,2) = dvxe(1)/0p(2), etc. [3]. This permitted the use
of simultaneous use of different functionals on the diffédadders on the grounds
that accurate lower derivatives did not necessarily meanrate higher derivatives.
Of course, being able to use a consistent level of approiemaicross all ladders
could be important for some types of applications (e.g.sé¢hiavolving analytical
derivatives). With this in mind, the authors recently susigd a new Jacob’s ladder
for TD-DFT (Table2).

2.3 Linear Response (LR-) TD-DFT

As originally formulated TD-DFT seems ideal for the caldida of nonlinear opti-
cal (NLO) properties from the dynamical response of the cwdbe dipole moment
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p(t) to an applied electric field(t) = ecog wt),
Auay:/aa-4anMV+H0T, (11)

using real-time numerical integration of the TD Kohn-Shaguagion, but it may
also be used to calculate electronic absorption spectrastibsection explains how.

In Eq. (I2) “HOT” stands for “higher-order terms” and the qtity o is the
dynamic dipole polarizability. After Fourier transformgEI2) becomes,

Ap(w) = a(w)e(w) +HOT, (12)

If the applied field is suffiently small then we are in the LRineg where we may
neglectthe HOT and calculate the dipole polarizabilitgag w) = A i (w) /&) (w).
Electrical absorption spectra may be calculated from thsabse of the sum-over-
states theorem in optical physics,

fi
“@:%aiﬁv (13)

wherea = (1/3)(0xx+ ayy+ 0z7). Here
w = E| — Eo, (14)

is the excitation energﬂ/and

fi = 2@l (15)

is the corresponding oscillator strength. This sum-ovates theorem makes good
physical sense because we expect the response of the clergjigydand dipole
moment to become infinite (i.e., to jump suddenly) when thet@h frequency cor-
responds to an electronic excitation energy. Usually ifvtiege TD-DFT programs,
the spectral function is calculated as,

S(w) = 2—;:Da(oo+in), (16)

which generates a Lorentzian broadened spectrum with broagl controlled by
then parameter. The connection with the experimentally obsknvelar extinction
coefficient as a function of = w/(2n) is,

iNae?

in Sl units.

4 Remember thdl = 1 in the atomic units used here.
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So far this is fine for calculating spectra, but not for assigrand studying indi-
vidual states. For that, it is better to take another apgroaig the susceptibility,

~ 8p(1)
X(1,2) = m ) (18)

which describes the response of the density to the appliediionvapp,

5p(1) = [ X(1.2)0vappi(2)d2. (19)

The response of the density of the Kohn-Sham fictitious sysiEnoninteracting
electrons is identical but the potential is now the Kohn+i8lsingle-particle poten-
tial,

5p(1) = [ xs(1.2)5v(2)d2. (20)

In contrast to the interacting susceptibility of Elg.](18) honinteracting suscepti-
bility,

Xe(1,2) = gf—(é)) (21)

is known exactly from MBPT. Of course the effective potehigathe sum of the
applied potential and the potential due to the responseeoédif-consistent field,
VHxc

BVs(1) = SVappi(1) + / fuxc(1,2)3p(2) d2, 22)

where fuxc(1,2) = dvihxe(1)/0p(2) is the functional derivative of the Hartree plus
exchange-correlation self-consistent field. Maniputatihese equations is facili-
tated by a matrix representation in which the integratiantsrpreted as a sum over
a continuous index. Thus,

5p = XOVappl = Xs (OVappi + frxcOP) . (23)
is easily manipulated to give a Bethe-Salpeter-like equatsec[ B),
X =Xst XsFrxeX (24)
or, written out more explicitly,

X(14) = xS(L.4)+ [ XS(L.2) fc(2,3)X (3.4 0208, 25)

Equation[[2B) may be solved iteratively fdp. Alternativelydp may be obtained
by solving,
(Xs '~ Frixc) 0P = SVappi, (26)



12 Mark E. Casida and Miquel Huix-Rotllant

which typically involves iterative Krylov space technigugecause of the large size
of the matrices involved.

This last equation may be manipulated to make the most confaronof LR-
TD-DFT used in quantum chemistliﬂﬁ]This is a pseudoeigenvalue problem,

A(w) B(w) | (X 10]/X
o] ()20 %] (7). @0
where,
Aa,ib(w) = & jOaptai + (ia| fuxc(w)|jb)
Bia,pj (@) = (i@ frxc(w)[bj) - (28)
Here, o
(palflrs) = [ [ WpLva(DT (1,247 (24s(2) d12. 29)

is a two electron integral in Mulliken “charge-cloud” natat over the kerneff
which may either be the Hartree kernéh[1,2) = J4,.0,/r12] or the xc-kernel or
the sum of the two (Hxc). The index notationiig, ... for occupied spin-orbitals,
a,b, ... for virtual spin-orbitals angb, g, ... for unspecified spin-orbitals (either occu-
pied or unoccupietﬂ. Also we have introduced the compact notation,

grs’uvz(gr+£s+)_(£u+£v+) (30)

Equation[(ZB) has paired excitation and de-excitationtsmnis. Its eigenvalues are
(de-)excitation energies the vectofsandY provide information about transition
moments. In particular the oscillator strength, of the sidon with excitation en-
ergy @y may be calculated frorX, andY,. [38] When the adiabatic approxima-
tion (AA) to the xc-kernel is made, th& andB matrices become independent of
frequency. As a consequence, the number of solutions id &gtlee number of 1-
electron excitations, albeit dressed to include electmretation effects. Allowing
the A andB matrices to have a frequency dependence allows the explititsion
of 2-electron (and higher) excited states.

The easiest way to understand what is missing in the AA isiwitine so-called
Tamm-Dancoff approximation (TDA). The usual AA TDA equatjo

AX = wX, (31)
is restricted to single excitations. The configurationiatgion (Cl) equatior [39],

(H—Epl)C = wC, (32)

5 This equation is not infrequently called the “Casida eaquitin the TD-DFT literature (e.g., as
in Ref. [24] pp. 145-153.)

6 Sometimes we call this the FORTRAN index convention in egfee to the default variable
names for integers in that computer language
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which includes all excitations of the system, can be puttinecform of Eq.[(31L), but
with a frequency-dependeAt w) matrix. This can be simply done by partitioning
the full Cl Hamiltonian into a singles excitations pait (1) and multiple-excitations

part A2 24) as,
AL AShL. T G o
’ i =W , 33
{A%LJA%LJ(CH) <cz+> (33)

provided we can ignore any coupling between the ground atadeexcited states.
Applying the standard Lowdin-Feshbach partitioning téghe to Eq.[(3B)[40], we
obtain
-1
(A AT, (@lorar —AS o) TAS ) Ci=wCy,  (39)

in which it is clearly seen that multiple-excitation statesse from a frequency-
dependent term missing in the AA xc-kerrell[39].

In the remainder of this chapter, we will first show how MBPTyniee used to
derive expressions for th&f",, , AS! |, andA§! ,, blocks and show how this may
be used in the form of dressed TD-DFT to correct the AA. Thenwilediscuss
localization of the terms beyond the AA in order to obtain soimsight into the
analytic behavior of the xc-kernel.

3 Many-Body Perturbation Theory (MBPT)

This section elaborates on the polarization propagatoy épproach. As the PP
was originally inspired by the Bethe-Salpeter equationEB&nd as the BSE often
crops up in articles from the solid-state physics commuwitych are concerned
with both TD-DFT and MBPTI[41, 42, 48, 44,145,146, 47], we wilf to make the
connection between the PP and BSE approaches as clear édepasthough the
two MBPT approaches are formally equivalent, differencesm@e because the BSE
approach emphasizes the time representation while the ftBaagh emphasizes the
frequency representation. This can and typically does teatifferent approxima-
tions. In particular it seems to be easier to derive poleciire-conserving approx-
imations needed for treating 2-electron and higher exeitatin the frequency rep-
resentation than in the time representation. This and gsiperience with the PP
approach in the quantum chemistry commurityl [48/49] 5053153] have lead us
to favor the PP approach. We shall make extensive use ofaiegin order to give
an overview of our manipulations. Whenever possible, miateczate mathematical
manipulations will be relegated to the appendix.
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3.1 Green’s Functions

Perhaps the most common and arguably the most basic quemtBPT is the
1-electron Green'’s function defined by,

iG(1,2) = (0|7 { @ ()P, (2)}]0). (35)

Here, the subscrigtl indicates that the field operators are understood to be in the
Heisenberg representation. AlsB is the usual time-ordering operator, which in-
cludes anticommutation in our case (i.e., for fermions),

TP (2)} = 0(ts— ) Pu (V) P, (2)

— 0t —t) B (2)Pu (). (36)
The 2-electron Green'’s function is (see p. 116 of Refl [54]),
G(1,2:3,4) = (—)2(0].7 {(n (1) Pn (2) B (4) B (3) }0) . (37)

The usual MBPT approach to evaluating the susceptibjityses the fact that it
is the retarded form,

iX(1,2) = 0(t1 —t2)(0][pn (1), P (2)][0) , (38)
of the time-ordered correlation function,
iX(1,2) = (0].7{pPn(1)Pn(2)}(0). (39)
where,
Pr(1) = B (1) P (1) — (0B (1) B (2)/0), (40)
is the density fluctuation operator. (See for example Rel] ffp. 172-175 and p.
151.)

We will also need several generalizations of the suscdipilaind the density
fluctuation operator. The first is the particle-hole (ph)pagator[[52], which we
chose to write as,

iL(1,2;3,4) = (0].7{(1,2){(4.3)}/0), (41)
where,
7(1.2) = ¢l (2P (1) — (0|7 { P, (2) B (1) }0), (42)

is a sort of density matrix fluctuation operator (or would bwe constrained) =t
andts = t4). Notice that the ph-propagator is a four-time quantity.

[It may be useful to try to plack in the context of other 2-electron propagators:
The particle-hole response function,[52]

R(1,2;3,4) = G(1,2;3,4) — G(1,3)G(2,4). (43)
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ThenL is related taR by the relation,
L(1,2;3,4) =iR(1,4;2,3) ] (44)

We will also need the polarization propagator (PP) whiclhéstivo-time quan-
tity,
M(1,2;3,4;t—t') = L(1t,2t; 3", 4t"). (45)

Written out explicitly,

ir(1,2;34;t—t’
= (OL7 {2 P (1) B (3) B (41')}[0)
— (017 {B (2")fr (1)} 0) (O] 7 { B (3 ) P (4)}10).  (46)
[The second term is often dropped in the definition of the PB.there to remove
w = 0 excitations in the Lehmann representation. (See for elamp 559-560

of Ref. [64].)] The retarded version of the PP is the susbdjtyi describing the
response of the 1-electron density matrix,

V(L,2:t) = (0| ¢"(2)p(11)[0), (47)
to a general (not necessarily local) applied perturbation,

oy(1,2;t
M(1,2;34:t—t) = W, (48)

which is a convolution. After Fourier transform,
oy(1,2;w) :/I'I(l,2;3,4;w)6wapp|(3,4;w)d3d4, (49)

or,
5V(w) = n(w)éwappl(w)a (50)

in matrix form.

3.2 Diagram Rules

The representation of MBPT expansions in terms of diagramn&iy convenient
for bookkeeping purposes. Indeed certain ideas such amitesicluster theorem
[55] or the concept of a ladder approximation (see e.g., |8dl.p. 136) are most
naturally expressed in terms of diagrams. Also diagramsmleeccording to system-
atic rules allow an easy way to check algebraic expressibms.is how we have
used diagrams in our research. However we introduce diaghane for a different
reason, namely because they provide a concise way to explaimork.
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Several types of MBPT diagrams exist in the literature. &higide into four
main classes which we call Feynman, Abrikosov, Goldstoné Hugenholtz. Such
diagrams can be distinguished by whether they are timereddgoldstone and
Hugenholtz) or not (Feynman and Abrikosov) and by whethey tineat the elec-
tron repulsion interaction as a wavy or dotted line with azoiming and an outgoing
arrow at each end (Feynman and Goldstone) or in a symmetsiagds a point with
two incoming and two outgoing arrows (Abrikosov and Hugdt#)oThese differ-
ences affect how they are to be translated into algebraiesgns as does the na-
ture of the quantity being expanded (wave function, oneteda Green’s function,
self-energy, polarization propagator, etc.) Given thethbra of types of diagrams
and the difficulty of finding a clear explanation of how to readarization propaga-
tor diagrams, we have chosen to present rules for how ouratizgshould be trans-
lated into algebraic expressions. This is perhaps eshenmtessary because while
the usual practice in the solid-state literature is to usetunordered diagrams with
electron repulsions represented as wavy or dotted lines Beynman diagrams),
while the usual practice in the quantum chemistry liteminfr using time-ordered
diagrams with electron repulsions represented as poietskiugenholtz diagrams).

Mgy gp(t, ') =0t — 1) +0(t'—t)

Fig. 2 Basic time-ordered finite basis set representation PPatiagr

We will limit ourselves to giving precise rules for the paiation propagator
(PP) since these rules are difficult to find in the literatdnee PP expressed in an
orbital basis is,

M(1,234t—t) =% Msigp(t —t) ¢ (1)U (24 (3)¢p(4) (51)
pars

where,

Merqp(t —t') = —i6(t —t') (0[P} (1)84 ()G, (t)) B (t')[0)

(52)

This makes it clear that the PP is a two time particle-holeagator which either
propagates forward in time or backward in time. To repregene introduce the
following rules:

(1)Time increases vertically from bottom to top. This is ntrast to a common
convention in the solid-state literature where time insesahorizontally from
right to left.
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(2)A PP is a two time quantity. Each of these two times is iathd by a horizontal
dotted line. This is one type of “event” (representing theation/destruction of
an excitation).

(3)Time-ordered diagrams use directed lines (arrows). IDgaing arrows corre-
spond to holes running backward in time, that is, to occupidtals. Up-going
arrows correspond to particles running forward in timet tkaunoccupied or-
bitals.

At this point, the PP diagrams look something like Eig. 2. @ntransforming leads
us to the representation shown in Fib. 3. An additional rale heen introduced:

(4)A downwardw arrow on the left indicates forward ph-propagation. An upiva
w arrow on the right indicates backward ph-propagation.

Diagrams for the corresponding position space representate shown in Fid.14.
Usually the labelsy, g, r, andsor 1, 2, 3, and 4) are suppressed. If thearrows

are also suppressed then there is no information aboutdiaering and both dia-
grams may be then written as a single time-unordered diagsam Fig[5. Typical
Feynman diagrams are unordered in time.

Fig. 5 Time-unordered representation PP diagram.
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Perturbation theory introduces certain denominatorserathebraic expressions
corresponding to the diagrams. These may be representetsasetween events.

(5)Each horizontal cut between events contributes a fégtar+y ,ep— Ynen) %,
wherey , (¥1) stands for the sum over all particle (hole) lines that arte The
omega line only appears in the sum if it is also cut. It entetls w+ sign if it is
directed upwards and with-a sign if it is directed downwards.

(6)There is also an overall sign given by the formld )™, whereh is the number
of hole lines and is the number of closed loops, including the horizontalelbtt
event lines but ignoring the lines.

Diagrams are shown for the independent particle approximat Fig.[8. The first

diagram reads,
1

Maigi(w) = ——. 53
aiai( @) = o (53)
The second diagram reads,
1 -1
M, = = . 54
(@) = e e T wras (54)
These two equations are often condensed in the literature as
Ng—n
Mpgrs(w) = 5p,r5q,s# (55)

W+Eg—Ep

Let us now introduce one-electron perturbations in the fofid circles.

Hsr,qp(w) = i wY a + i iw a

Fig. 6 Zero-order PP diagrams.

(7)Each M circle in a diagram contributes a factor(pfMyc|q), wherep is an in-
coming arrow andj is an outgoing arrow anhfl,. is “xc-mass operator” which
is the difference between the Hartree-Fock exchange selfgg and the xc-
potential [Eq.[(6F)]. (Thusin|My out).) For example, the term corresponding to
Fig.[@ (b) contains a factor qf|My|c), while the term corresponding to F[g. 7
(f) contains a factor ofk|Myc|i). This is a second type of “event” (representing
“collision” with the quantityMyc).

For example, the term corresponding to Eig. 7 (j) is,

(k|Myc|b)

Mk cb(w) = (w—e&c+&)(ec—&p)

(56)
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€
[y N

Fig. 7 First-order time-ordered diagrams Hugenholtz fbfw) — Ms(w) (vide infra). Diagrams
(a)—(i) involve coupling between the particle-hole spatiagrams (g), (h), (m), and (n) involve
coupling between particle-hole space and particle-partamd diagrams (i)—(l) couple the particle-
hole space with the hole-hole space.

r s r S r s
X: >\I\N\/‘<+>\AAN‘<
p q P a q p

Fig. 8 Electron repulsion integral diagrams.
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This brings us to the slightly more difficult treatment ofetten repulsions.

(6)When electron repulsion integrals are represented bgdlnes (Feynman and
Goldstone diagrams), each end of the line corresponds taltleés correspond-
ing to the same spatial point. The dotted line represemtatiay be condensed
into points (Abrikosov and Hugenholtz diagrams) as in EigA $oint with two
incoming arrows, labeledands, and two outgoing arrows, labelgdandq con-
tributes a factor ofrs||pqg) = (rp|fu|sg) — (rq| fu|sp). (Thus(in, in||out,ou} =
(leftin, right in|left in, right in) — (left in, right in|left in, right in). The minus sign
is not part of the diagram as it is taken into account by othkssr) The integral
notation is established in E._(29) and the integral,

(pailrs) = [ W00 - (1~ Py Dy 2. (57)

(7)To determine the number of loops and hence the overall afga diagram in
which electron repulsion integrals are expanded as das,white each dot as a
dotted line (it does not matter which one of the two in Eig. 8hissen) and apply
rule (6). The order of indices in each integ(ed|| pg) should correspond to the
expanded diagrams. (When Goldstone diagrams are intetpirethis way, we
call them Brandow diagrams.)

(8)An additional factor of 12 must be added for each pair of equivalentlines. These

are directed lines whose interchange, in the absence bEfuetbeling, leaves the
Hugenholtz diagram unchanged.

For example, the term corresponding to Eig. 7 (a) is,

(kalic)
(—0+ & &) (— Wt & — €a)
(ak|Jic)

T Cota—e)(—ota—g) (58)

Mekai(@) = —

Additional information about Hugenholtz and other diagsamay be found, for
example, in Ref[[56].

3.3 Dyson’s equation and the Bethe-Sal peter equation (BSE)

Two of the most basic equations of diagrammatic MBPT are Digsequation for
the 1-electron Green’s function and the BSE for the ph-pgapa. Both require
the choice of a zero-order picture which we take here to besxiaet or approxi-
mate Kohn-Sham system of noninteracting electrons. Wedeillote the zero-order
quantities by the subscript(for single particle).

Dyson'’s equation relates the true 1-electron Green’s fan& to the zero-order
Green’s functiorGs via the (proper) self-energ¥,
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(@ (b)

Fig. 9 Time-unordered (Feynman and Abrikosov) 1-electron Geednhction diagrams: (a)
Dyson’s equation, (b) second-order self-energy quantuemestry approximation, (cBW self-
energy solid-state physics approximation.

G(1,2) = Gs(1,2) + / Gs(1,3)5(3,4)G(4,2)d3d4, (59)

or more concisely,
G=Gs+Gs2G. (60)

This is shown diagrammatically in Figl. 9. It is to be emphadithat these diagrams
areunordered in time as it is not possible to write a Dyson equétiotime-ordered
diagrams. Also shown in Fifl] 9 are typical low-order selé&gy approximations.
Typical quantum chemistry approximations (b) involve é&iphntisymmetrization
of electron-repulsion integrals while solid-state phg@pproximations (¢) empha-
size dynamical screening. Each approach has its strendtitsaneaknesses and so
far the two approaches have defied any rigorous attemptsrgeme
The BSE is “Dyson’s equation” for the ph-propagator,

L(1,2,7,8) = Ls(1,2,7,8)
+ /Ls(l,2;3,4)5ch(3,4;5,6)L(5,6;7,8)d3d4d5d6, 61)

or
L= Ls+ LSEHXCLa (62)

in matrix notation. Here

iLs(1,2;3,4) = Gs(1,4)G4(2,3), (63)
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(@) (b)

fi&f&

i
£

Fig. 10 Time-unordered (Feynman and Abrikosov) ph-propagatayrdias: (a) BSE, (b) second-
order self-energy quantum chemistry approximation,G&Y self-energy solid-state physics ap-
proximation. Note in part (c) that the solid-state physitsrature will often turn thev and w
wiggly lines at right angles to each other to indicate theesiimg that we have indicated here by
adding tab lines.

is the ph-propagator for the zero-order picture (in our chmeexact or approximate
Kohn-Sham fictitious system of noninteracting electroary] the 4-point quantity,
Zhxe: May be deduced from a Feynman diagram expansion as ther gragpeof
the ph-response function “self-energy”. This is shown thagmatically in Fig[ZID.
Again the quantum chemical approximations emphasize yanégization of the
electron repulsion integrals which is needed for propelusion of double exci-
tations while solid-state physics emphasizes use of a isedemteraction. While
no rigorous way is yet known for combining screening andsyntimetrization, an
interesting pragmatic suggestion may be found in Ref. [57].

3.4 Superoperator equation-of-motion (EOM) polarization
propagator (PP) approach

We will now specialize to the PP and show how to obtain a “Catike” equation
for excitation energies and transition moments. This woll yet give us correction
terms to AA LR-TD-DFT but it will give us some important todis help us build
correction terms. The basic idea in this section is to takeettact or approximate
Kohn-Sham system of independent electrons as the zero{uicdere,

H© = fs, (64)
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to add the perturbation, A o
H® =V + Myc. (65)

and to do MBPT. Her¥ is the fluctuation operator,

51 ~totan A
V—Zmzrs(pansm f SQ—%r(lorlllrcmo 4, (66)
Mo = (pIZKT — Oxcla) B4, (67)
pPq

andf)'(*F is the HF exchange operator defined in terms of the occupied+&ham
orbitals and the integral of Elq. bRAeuristicallythis will give us a series of diagrams
which we must resum to have the proper analytic structurb®fkact PP so we
can take advantage of this analytic structure to produceléis@ed “Casida-like”
equationRigorouslywe actually first begin with some exact equations in the super
operator equation-of-motion (EOM) formalism to deduce dhalytic structure of
the PP. This exact structure is then developed in a periorba@xpansion so that we
can perform an order analysis of each of the terms entertogisic “Casida-like”
equation. As we shall see, not every diagram is generatedi®yptocedure, either
because they are not needed or because of approximatiocis waihave chosen to
make.

Our MBPT expansions are in terms of the bare electron regulgr more
exactly the “fluctuation potential” EqL(66)], rather thametscreened interaction
used in solid-state physics [41,147]. The main advantage arkiwg with the
bare interaction is a balanced treatment of direct and exgdhaliagrams, which
is especially important for treating two- and higher-elentexcitations. While we
will automatically include what the solid state communigfars to as vertex ef-
fects, the disadvantage of our approach is that it is likelfarieak down in solids
when screening becomes important. The specific approachitake is the now
well-established second-order polarization propaggppr@imation (SOPPA) of
Nielsen, Jorgensen, and Oddershedeé [[48] 49| 50, 51]. The peesentation of
the SOPPA approach is based upon the superoperator eqoé&tiootion (EOM)
approach previously used by one of s][58]. However the SO&b#roach is
very similar in many ways to the second-order algebraicrdiagnatic construction
[ADC(2)] approach of Schirmer [52, 53] and we will not hesitéo refer to this ap-
proach as needed (particularly with regard to the inclusforarious diagrammatic
contributions.) The only thing really new here is the chafrgen a Hartree-Fock
to a Kohn-Sham zero-order picture and the concomitant s@tuof (many) addi-
tional terms. Nevertheless it will be seen that the final waglexpressions are fairly
compact.

Before going into the details of the superoperator EOM aagholet us antic-
ipate some of the results by looking at some of the diagramshadmerge from
this analysis. We have seen [EQ.](45)] that the PP is justahtiction of the ph-
propagator to two, rather than four, times. Thus heuriljicgasuffices to take the
ph-propagator diagrams, fix two times, and then take alliptes§ime orderings.
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Fig. 11 Topologically different first-order time-unordered Abwdgov diagrams for the PP.

Defining order as the order in the number of tinvesind/orM,. appear, then all
of the time-unordered first-order terms are shown in [Eiy FiXing two times and
restricting ourselves to an exchange-only theory gived thime-ordered diagrams
shown in Fig[¥. As we shall see below in a very precise mathieedavay, dangling
parts below or above the horizontal dotted lines correspespectively to Hugen-
holtz diagrams for initial-time and final-time perturbedwsfunctions. (Two other
first-order Goldstone diagrams are found in REef] [52] with #lectron repulsion
dot above or below the two dotted lines, however a more @etahalysis shows
that these terms neatly cancel out in the final analysis.)aféa between the dotted
lines corresponds to time propagation. In this case, thexeoaly one-hole/one-
particle excitations between the two horizontal dotte@dinOur final results are
in perfect agreement with diagrams appearing in the exattamnge (EXX) theory
as obtained by Hiratat al. [59] which are equivalent to the more condensed form

given by Gorling[60].

@  ® (c)(g ©
(9) M 00

Fig. 12 Second-order time-unordered Abrikosov PP diagrams. Nlof #te time-ordered Hugen-
holtz diagrams are generated by our procedure—only abduHigjenholtz diagrams.
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Figure[12 shows all 13 second-order time-unordered diagiriivimile this may
not seem like very many, our procedure generates about dddirdered Hugen-
holtz diagrams (and even more Feynman diagrams). A typioalordered Hugen-
holtz diagram is shown in Fig._13. The corresponding equatio

i ba)(kl||rs
”sdr:g%(w) _ . (DQH _)( || ) 7 (68)
abCikl €|k,bc(w €|k,ca)€|I ,ac

shows that this diagrams has poles at the double excitadjors Thus we see that
the polarization propagator does have poles at doubleatiaris, but we are not
really ready to do calculations yet. There are two main nesis@ we need a more
sophisticated formalism which will allow the single and Btaiexcitations to mix
with each other and (ii) we would like a (pseudo)eigenvatyesion to solve. Thus
we still have to do quite a bit more work to arrive at a “Cadlite* equation with
explicit double excitations, but the basic idea is alreatBspnt in what we have
done so far.

- -

Fig. 13 An example of a second-order time-ordered Hugenholtz Pgtalias.

To do so, it is first convenient to express the PP in a moleculstal basis as,

n(1,2,3,4t—t) =
> Msiap(t =) (1)WY (2) Y5 (3)Wp(4) (69)
pars
where
— Msrgp(t —t') = 10(t —t')(Off; (1)8n ()G (') pr (1) [0)

+iBE —t) (016 () B (t)F], (1)54(1)]0). (70)
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As explained in Ref[[54], this change of convention withpesst to that of EqL(46)
turns out to be more convenient. Also note that, since thedplrttis only upon the
time differencet —t’, we can shift the origin of the time-scale so tHat 0 without
lose of generality.

Equation [[ZD) can be more easily manipulated by making useso$uperoper-
ator formalism. A (Liouville-space) superoperais defined by its action on an
(Hilbert-space) operatdk as

XA=[X,A = XA—AX. (71)

When X is the Hamiltonian operatolgi, one often speaks of the Liouvillian. An
exception is the identity superoperatbrwhose action is simply given by,

IA=A. (72)

The Heisenberg form of orbital creation and annihilatiorergpors is easily ex-
pressed in terms of the Liouvillian superoperator,

P (t) = &t pe 1t = Mt p, (73)
Then
~Mseqp(t) = 16(t)(0 [é”t (F'9)] &'plo)
+i0(—t)(0l§ [e‘”t (7t )] (74)

Taking the Fourier transform [with appropriate convergefactors (not shown)]
gives, L
— Msigp(w) = (P76l (w1 +H)YFTs), (75)

where we have introduced the superoperator nifbtric
(AIX|B) = (0[[A",[X, B]]|0). (76)
[It may be useful to note that,

— Msrqp(w) = Mrs pg(w), (77)

follows as an easy consequence of the above definitions.dvereince we typi-
cally use real orbitals and a finite basis set, the PP is a yeah&tric matrix. This
allows us to simply identify7 as the superoperator resolvant,

Mogrs(@) = (PTGl(wl+H) Y 7'9).] (78)

7 Technically this is not a metric, because the overlap masrisymplectic rather than positive
definite. Howevever we will call it a metric as it can be usedrioch the same way as a true
metric.
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Since matrix elements of a resolvant superoperator areeh&rdnanipulate than
resolvants of a superoperator matrix, we will transform &) into the later form
by introducing a complete set of excitation operators. Téragete set

(T ={t; 1l; .} =(&"T, i"a; a'b'j, i"aj'b; ...}, (79)
leads to the resolution of the identity (RI),
T=[Th(TThH (T (80)

We have defined the operator space differently from the puesvivork of one of
us [38] to be more consistent with the literature on the fiélB® calculations. The
difference is actually the commutation of two operatorsalitintroduces one sign
change. Insertion into EJ.(I75) and use of the relation,

(T (l+H) " YTH = (TN (T i+ ATH LTI TH (81)
then gives,
— Msigp(@) = (P'QITT)(TT|wl+H[TT)1(TTF's). (82)

This shows us the analytical form of the exact polarizatimppgator.
The corresponding “Casida-like” pseudoeigenvalue eqoas;,

(THATHZ = (THThHZ, (83)

with normalization,
Z/(TThZ,=48.. (84)

Let us also seek a sum-over-states expression for the patiarn propagator.
Spectral expansion tells us that,

M =wTTH+(TIHITH = Z(TT|TT)Z| (w+w)Z/(THTT), (85)
and,
rw) = [oTTh+ (TT|H|TT)}*1 = ZZ' (w+w) 'zl (86)
So Eq.[(8R) reads,

—Msrgp(w) = Z(ﬁquTT)L (@+a) 1Z[(T"FTs). 87)

This means that the PP has poles given at the pseudoeiges@ltg.[(8B) and that
the eigenvectors may be used to calculate oscillator stenia Eq. [(87).
As the “Casida-like” equation [E.(83)] is so important,lis rewrite it as,

SRIG)-eBE) e
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eal(v)=2l0%(¥) )

The A andB matrices, as well as thé andY partition according to whether they
refer to one-electron excitations or two-electron eximta. In the Tamm-Dancoff
approximation thd8 matrices are neglected so we can write,

AL AL (e (S
1) =w (90)
Ayl Az Ca Ca
Here X has been replaced ¥y as is traditional and to reflect the normalization
clc=1.

The superscripts in EJ._(P1) reflect a somewhat difficult pedelysis which is
carried out in the Appendix. This analysis consists of exiyanthe polarization
propagator algebraically and then matching each term td afs#iagrams to see
what order of each EOM matrix is needed to get a given ordeolafrjzation prop-

agator.
The result in the case of tematrices is,

(ASH?), = GRS = &R R+ aillko)

(A1), = ~Oixblai) + 3 (bcai)
— Bc(aillki) + &, (bil i)

which is roughly,

(0) _ N
(Az,z)lqujbia = & kGadybanij (o)
WhereF = & s& + MJ§ is the matrix of the Hartree-Fock operator constructed
with Kohn Sham orbltals and
M, .M
Fég+1+2) _ Fé%q)"'z lL,alVlic
& a
1 ¢ (Id|jmc)(di]jam)
2 I,;md €lm,ad
(0+1+2) (0+1) My dM,i
Fik =Fx F g_ e
i,d
(le||kd)(dl][ei)
, 92
2 ; &imde ®2)

include second-order corrections. (Note that extra faavdérl/2 will occur in these
expressions when spin is taken explicitly into account.ptactice a zero-order
approximation toA; » is insufficient and we must use an expression correct through
first order,
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( (?2+1) = G k9 (5a,ch(%+l) + 5o,dFa$,%+l)) —acdd (5j,| Fifgﬂ) - Q,de(?H))
— Bacfijki(b,d) = dpafijki(ac)+dadfijki(b,C)+dcfijki(ad)

— Gaca(Kijl|li) — &1 di(ad|[bc), (93)

)aib j.ckdl

where,

fijki (P, d) = dk(1jl[pa) + & (Kil| pa) — & j(li|[pa) — &1 (Kij[|pQ) - (94)

We will refer to the resultant method as extended SOPPA/ADA{is immedi-
ately seen that truncating to first order recovers the usu#iguration interaction
singles (CIS) equations in a noncanonical basis set. We agw the essential tools
to proceed with the rest of this chapter.

4 Dressed LR-TD-DFT

We now give one answer to the problem raised in the introdoaif how to include
explicit double excitations in LR-TD-DFT. This answer gdssthe name dressed
LR-TD-DFT and consists of a hybrid MBPT/AA LR-TD-DFT methdfle will first
give the basic idea and comment on some of the early develugmae will then
go into the practical details which are needed to make a Lsefilementation of
dressed LR-TD-DFT. Finally we will introduce the notion ofil®uin corrections
which are undoubtedly important for photochemistry.

4.1 Basic ldea

As emphasized in Selcl 2, simple counting arguments shoviitbadA limits LR-
TD-DFT to single excitations, albeit dressed to include satectron correlation.
However explicit double excitations are sometimes needednwdescribing ex-
cited states. This was discussed in the introduction in eiméext of photochemistry
(Fig.[). 1t is well-known inab initio quantum chemistry that double excitations can
be important when describing vertical excitations and tast lknown example is
briefly discussed in the caption of Fig.]14.

At first this may seem a little perplexing because the fact tha oscillator
strength is the transition matrix element of a one-elecberator [Eq.[(T5)] means
that the oscillator strength of a double excitation relativ a single-determinantal
ground-state wavefunction should be zero—that is, the lycexrited state should
be spectroscopically dark. What happens is easily expldigehe two-level model
shown in Fig[Ib which is sufficient to give a first explanatadrthe butadiene case
for example. (In the butadiene case, the singly-excitet stabe used is already
a mixture of two different one-hole/one-particle statésgure[I% shows a bright
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2bg
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Fig. 14 Doubles contribution to th&A, excited state of butadiene. Since the obvious two lowest
singly-excited singleté(lbg,Zbg) and?*(1lay, 2a,) are quasidegenerate in energy, they mix to form

new singly-excited singletél//(2))[(1b, 2b il (1ay,2a,)]. One of these is quasidegenerate
with the doubly-excited singlet dark sta% ). The resultant mixing modifies the energy

and intensity of the observedy excited state.

—

Wa

Fig. 15 Two-level model used by Maitret al. in theirheuristicderivation of dressed TDDFT. See
explanation in text.

singly-excited state with excitation energy; and oscillator strengtlis = 1 inter-
acting with a dark doubly-excited state with excitation rglyecop and oscillator
strengthfp = 0 via a coupling matrix element The CI problem is simply,

[afa);](gso):w(c?i) (95)

which can be formally solved obtaining

Ws = WaCOF 6 + ,Si O
Wp = WsSIN? 6+ w,cos 0, (96)
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for some value ob. Notice that the average excitation energy is conservelddn t
coupled problemdx + wy, = ws+ wp) and that something similar occurs with the
oscillator strengths. This leads to the common interpiatdhat the coupling “shat-
ters the singly-excited peaks into two satellite peaks.”

Now let us see how this wavefunction theory compares withTIRDFT and
how Maitraet al. [61] decided to combine the two into a hybrid method. Of seur
the proper comparison with Cl is LR-TD-DFT within the TDA. plying the parti-
tioning technique to EqL{95), we obtain

2

<@+w_%>%_ug (97)

Comparing with the diagonal TDA LR-TD-DFT within the twokital model,

W = & + (ia| fuxc(w)|ia), (98)
shows that,
. . X2
(] ol ) i) = (65~ £ai) + 5= (99)
Maitra et al. [61] interpreted the first term as the adiabatic part,
fife = Ws— aj (100)
and second term as the nonadiabatic correction,
NA X2
(@) = o (101)
Additionally, it is easy to show that
X = (Wstb — Waly - (102)

which is the form of the numerator used by Maigtal [61]. The suggestion of
Maitra et al.,, which defines dressed LR-TD-DFT, is to calculate the n@izdic
correction terms [Eq[{101)] from MBPT[61]. Thusandap in Eq. (95) are to be
calculated using MBPT rather than using DFT.

4.2 Practical Details and Applications

Applications of dressed LR-TD-DFT to the butadiene andteelgproblems have
proven to be very encouraging [61,162) 63| 64]. Neverthedessral things were
missing in these seminal papers. In the first place, they didikvays use exactly
the same formalism for dressed LR-TD-DFT and not alwaysaingesDFAs. More-
over, while the formalism showed encouraging results favarholecules for those
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excitations which were thought to be most affected expliitusion of double ex-
citations, the same references failed to show that predamiiinsingle excitations
were left largely unaffected by the dressing of AA LR-TD-DHIhese questions
were carefully addressed in Ref. [65], with some surprisingwers.

The implementation of dressed LR-TD-DFT considered in [&4] was to add
just a few double excitations to AA LR-TD-DFT and solve theA Bquation,

AA 1
A(lé)) "(\(:1,31) <Cl> —w < Cl> (103)
+ .
Al Ay Ca C2

Thus the calculation of thA; 1 block which is one of the most difficult to calculate
in the extended SOPPA/ADC(2) theory is very much simplifigdubing AA LR-
TD-DFT. TheA; > block must however be calculated through first order in pract
It was confirmed that adding only a few (e.g., 100) doubletaticins led to little
difference in calculated eigenvalues unless the doubliatixn were quasidegen-
erate with a single excitation. There is thus no significaobfem in practice of
double counting electron correlation effects when usiighilybrid MBPT/LR-TD-
DFT method. Tests were carried out on the test set of Schretbal. consisting
of 28 organic chromophores with 116 well-characterizedlsirexcitation energies
[66].

Note that the form of Eq[{I03) was chosen instead of the form,
(A(lAlA) + K?ﬁ(a))) Ci1 = wCq
-1
KM (@) = A (01— A%Y) AL, (104)

for computational simplicity. However Ed._(1l04) is the gjraforward extension
of the dressed kernel given at the end of the previous subseahd is easy to
generalize to the full response theory case (i.e., withaking the TDA).

We confirm the previous report that using the LDA for the AA IR-DFT part
of the calculation often gives good agreement with vertsaitation energies hav-
ing significant double excitation contributioris [67]. Horee most excitations are
dominated by a singles and these are significantly underatgd by the AA LDA.
Inclusion of double excitations tended to decrease the&jipialready too low AA
LDA excitation energy. The AA LR-TD-DFT block was then modilito behave
like a global hybrid functional with 20% Hartree-Fock exolga. The excitations
with significant doubles character were then found to beestanated but the addi-
tion of the doubles MBPT contribution again gave good agesgiwith benchmark
ab initio results. This was consistent with previous experienceariéssed LR-TD-
DFT [61,[62,63[ 64]The real surprise was the discovery that adding the MBPT
to the hybrid functional made very little difference for timajority of excitations
which are dominated by single excitation charactethus seems that a dressed
LR-TD-DFT requires the use of hybrid functional.
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4.3 Brillouin Corrections

So far dressed LR-TD-DFT allows us to include explicit daubkcitations and so
to describe photochemical funnels between excited stetewever a worrisome
point remains, namely how to include doubles contributitonthe ground state in
the same way that we include doubles contributions to exdtates so that we
may describe, for example, the photochemical funnel benv&gand S, in Fig.[l.

It is not clear how to do this in LR-TD-DFT where the excitddte potential en-
ergy surfaces are just obtained by adding the excitatiorgégeseat each geometry to
the ground-state DFT energies. Not only does such a proeéead to the excited
states inheriting the convergence difficulties of the gbstate surface coming from
places with noninteractingrepresentability difficulties, but there is no coupling be
tween the ground state and singly excited states. This itasito what happens with
Brillouin’s theorem in CIS calculations and leads to profedescribing conical in-
tersections. However adding in the missing nonzero ternhécfwwe call Brillouin
corrections) to dressed LR-TD-DFT is easy in the TDA.

It is good to emphasize at this point that we are makin@aroccorrection,
albeit one which is eminently reasonable from a wavefungtioint of view. For-
mally correct approaches might include: (i) acknowleddheg part of the problem
may lie in the fact that non-interactingrepresentability in Kohn-Sham DFT often
breaks down at key places on ground-state potential enarépces when bonds are
formed or broken, so that conventional Kohn-Sham DFT mayongér be a good
starting point; (ii) examining nonadiabatic xc-kernelsigfthseem to include some
degree of multideterminantal ground-state charactereir tiesponse such as that
of Maitra and Tempel [68]; (iii) introducing explicit mutteterminantal character
into the description of the Kohn-Sham DFT ground state. Weomime back to this
again in our final section, but for now we will just try thd hocapproach of adding
Brillouin corrections to TDA dressed LR-TD-DFT. Note thhtg will also have an
indirect effect on interactions between excited statesjgh the primary effect will
be between excited states and the ground state.

(a) Adiabatic (b) Dressed (c) Brillouin dressed

0.5: 1yt Iyt aiy+ 0.5
—X Zg —1 Eg _2 Eg 3

0.0 0.01 \x,

-0.5

-0.5

-1.0 -1.0

1.00 2.00 3.00 4.00 5.00 6.00 7.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

Fig. 16 Potential energy surfaces of the ground- and two-lowesteskstates oﬁg symmetry.
Comparison of CISD (solid lines) with adiabatic, dressed agbrid LR-TD-BH&HLYP/TDA
(dashed lines). All calculations have been performed witlt-pVTZ basis set. All axes are in
Hartree atomic units (bohr for theaxis and hartree for thgaxis). Unlike the ethylene potential
energy curvesvide infra), no shift has been made in the potential energy curves.
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It suffices to add an extra column and row to the TDA problematcetinto
account the ground-state determinant in hybrid DFT. Thiegi

0 Aop1 Ao

Ao AR AL S _ S

1,0 1.1 1,2 C1 =W Cl . (105)
Asp A(zli A(zc,)z+ Y Ca C2

where the extra matrix elements are calculated as,

(Ao,l)jb = <J |ch|b> s (106)

and,
(Ro2)yeig = 2[(kg[Id) — (kd|[Ic)] . (107)

Of course, we can also derive a corresponding nonadiabatieation to the
xc-coupling matrix,

(AR + KR (@) €1 = wCy

wl —Ao,z

NA( o (1)
Kii(w) = (Al,o Al,z) oo l— ALY

1
Ao
(A(zli )(108)

The extension beyond the TDA is not obvious in this case.

Dissociation of molecular hydrogen

Molecular hydrogen dissociation is a prototypical case neftmubly-excited con-
figurations are essential for describing the potential gnsurfaces of the lowest-
lying excited states. The three lowest singlet stateE&oSymmetry can be essen-
tially described by three CI configurations, namélyz10.20), (10410020;)
and(10910%20y), referred as ground, single, and double configuration wisedy.

Obviously, the double configuration plays an essential vaien a restricted
single-determinant is used as reference. On the one handi#ing of ground and
double configurations is necessary for describing the corliehartree dissociation
energy of H. On the other hand, the single and double configurations takcaind
2.3 Bohr, thus producing an avoided crossing. These feaaireeshown in Fid._16,
where we compare different flavors of TD-DFT with the CISD tlemark (shown
as solid lines in all graphs).

Adiabatic TD-DFT (shown in Figure_16 (a)) misses completbky double con-
figuration, and so neither the avoided crossing nor the diagon limit are de-
scribed correctly. It is noteworthy, however, that CISD adébatic TD-DFT curves
are superimposed for stateééfg and fZg+ at distances lower than 2.3 bohr, where
the KS assumption is fully satisfied. At distances largentBa bohr, the JiZJ

state corresponds to the CISB% state. This is because thézg in TD-DFT is
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diabatic, as it does not contain the doubly-excited conéiion. The dissociation
limit is also overestimated as it is usual from RKS with conmo functionals.

Dressed TD-DFT (shown in panel b) includes the double cordiipn. On the
one hand, the avoided crossing is represented correctlyetrr, the gap between
the 1129+ and the QZg* is smaller than the CISD crossing. The dissociation limit,
however, is not correctly represented, as dressed TD-DFEE dot include the
ground- to excited-state interaction. Therefore, the ¢uabnfiguration dissociates
at the same limit as the ground configuration.

Brioullin dressed TD-DFT (shown in panel b) includes als®ginound- and dou-
ble configuration mixture additional to the single- and deutmixing of dressed
TD-DFT. On the one hand, the avoided crossing is represembed precisely, with
a gap closer to that of CISD. Now, the dissociation limit isrencorrectly described.
Still, there is a slight error in the dissociation energyitijprobably due to the dou-
ble counting of correlation. This could be alleviated by aapaeterization of the
Brillouin-corrected dressed TD-DFT functional.

Ethylene torsion

(a) Adiabatic (b) Dressed (c) Brillouin dressed

Fig. 17 Potential energy cuts of thg S5; and $ states of ethylene along the twisting coordinate:
x-axis in degreesy-axis in eV. All the curves have been shifted so that the gilestate curve at
0° corresponds to 0 eV. The solid lines correspond to a CASSZ2CQDPT?2 calculation, and
the dashed lines to the different models using the BH&HLYRcfional and the Tamm-Dancoff
approximation. The 6-31++G(d,p) basis set have been emaglay all calculations. (Note that
these curves are in good agreement with similar calculstfeviously reported in Fig. 7.3 of
Chapter 7 of Ref[[69], albeit with a different functional.)

In Figure[1T, we show the potential energy surfacesf$ and S of ethy-
lene along the torsional coordinate. The static corratatibthese three states can
be essentially represented by three configurations, natihelground-state config-
uration (r2mr*9), the singly-excited configuratiofrt 7r1) and the doubly-excited
configuration( 707r*2).

From the CASSCF(2,2)/MCQDPT2, we observe that the ground-doubly-
excited configurations are heavily mixed at’9fbrming an avoided crossing. At
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this angle, the Sand $ states are degenerate. These features are not captured by
adiabatic TD-DFT (see panel a). Indeed the doubly-excitediguration is miss-
ing, and so the ground-state features a cusp at the perpdgrdionformation. The
S;, which is essentially represented by a single excitat®wairtually superimposed
with the CASSCF(2,2)/MCQDPT2 result. The dressed TD-DFele (panel b) in-
cludes the double excitation, but the surfacespdi®d $ appear as diabatic states,
due to the fact that the ground- to excited-state coupling e missing. This is
largely fixed by introducing the Brillouin corrections (spanel c). The ground-
state is now in very good agreement with the CASSCF(2,2)/eT2 S state,
although the degeneracy of 8nd $ at 9@ is still not fully captured. Thus the pic-
ture given by Brillouin-corrected LR-TD-DFT is qualitagily correct with respect
to the multi-reference results.

5 Effective Exchange-Correlation (xc) Kernel

We now have the tools to deduce a MBPT expression for the TD-xa-kernel. It
should be emphasized that this is not a new exercise but ghaéam to be the only
ones to do so within the PP formalism. We think this may haeeativantage of
making a rather complicated subject more accessible to Qma@hemists already
familiar with the PP formalism.

The problem of constructing xc-correlation objects suckhasxc-potential/c
and the xc-kernefyc(w) from MBPT for use in DFT was been termedl' initio
DFT” by Bartlet [70]71]. At the exchange-only level, thertex optimized effective
potential (OEP)[[72, 73] or exact exchangel[74, 75] are atsmliand OEP is also
used to include the correlated case [76, 77]. At first glanothing much is gained.
For example, the calculated excitation energies and atmi# strengths iab initio
TD-DFT must be, by construction, exactly the same as thase MBPT. Nor does
this approach give explicit functionals of the density (tgb it may be thought of as
giving implicit functionals). However it does allow us torfoulate expressions for
and to calculate purely (TD-) DFT objects and hence can gewisight into, and
computational checks of, the behavior of such illusive otgj@svy: and fxc(w).

Here we will concentrate on the latter, namely the xc-kePidvious work along
these lines has been carried out for the kernel by direckiyngathe derivative of
the OEP energy expression with the constraint that theashiiome from a local
potential. This was first done by Gorling in 19987[60] for thdl time-dependent
exchange-only problem. In 2002, Hiragtal. redid the derivation for the static case
[78]. Later, in 2006, a diagrammatic derivation of the staBsult was given by
Bokhan and Bartlet{ [71], and the functional derivative loé tkernelgy has been
treated by Bokhan and Bartlett in the static exchange-casg £79].

In this section, we will take a somewhat different and ardyiatore direct ap-
proach than that used in the aforementionned articles,anwie will make direct
use of the fundamental relation,
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X(L2)=L(1,1,2,2") = M(1,1,2,2, ~ ty) (109)

wherei™ is infinitessimally later tham. This approach has been used by Totkatly,
Stubner, and Pankaratov to develop a diagrammatic exprefsifyc(w) [80,[81]. It
also leads to the “Nanoquanta approximation,” so named lojalReining because
it was simultaneiously derived by several different pedBlt (42,43 45, 46, 44]
involved in the so-called Nanoquanta group. (See also 32D of Ref.[[24].)

The work presented here differs from previous work in twapesss, namely
(i) we make a direct connection with the PP formalism whiciizre common in
quantum chemistry than is the full BSE approach (they ama&tly equivalent but
differ in practice through the approximations used) andw(@ introduce a matrix
formulation based upon Harriman'’s contractidand expansion operato‘@ This
allows us to introduce the concept of the localidéto) which shows explicitly how
localization in space results requires the introductioaddfitional frequency depen-
dence. Finally we recover the formulae of Gorling and Hirttal. and produce a
rather trivial proof of the Gonze and Scheffler result| [84ttthis additional fre-
quency dependence “undoes” the spatial localization phaeein particular cases.

We first seek a compact notation for Hg. (1L09). Harriman ctesid the relation
between the space of kernels of operators and the space aifdfius [83,84]. In
order to main consistency with the rest of this paper, wegélieralize Harriman'’s
notion from space-only to space and spin coordinates. Thendllapse operator is
defined by,

YA(1,2) = A(1,1), (110)

for an arbitrary operator kernel. The adjoint of the colapperator is the so-called
expansion operator, A
Y1) = f(1)6(1-2), (111)

for an arbitrary functiorf (1). Clearly YTYA(1,2) = A(1,1)8(1—2) £ A(1,2). The
ability to express these operators as matridésaitd YT) facilitates finite basis set
applications.

We may now rewrite Eq[(109) as,

X(ti—t2) = YL(t.,tf o, tH YT = Y (t, —to) YT (112)
Comparing,
X(ti—t2) = Xs(ti—t2) + / Xs(ti—ta) Frxc(ts —ta) X (ta —t2) dtgdts,  (113)
with the BSE,

L(t1,t2,t3,t2) = Ls(t1,t2,t3,1a)
+ /Ls(t1,t27t57t6)5ch(t5,t6,t7,t8)|-(t7,t8,t3,t4)dtsdtedbdts,
(114)
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or, more precisely with,

X(ti—t2) = YLty t; t,t1) YT
= YLS(tlatfat27t;)YT

+ /YLs(tlat1+7t57t6)Ech(t57t67t7at8)|-(t7at8at2at2+)dtSdtGdt7dt8

= Xs(tl _t2)
+ /YLs(tLtf,ts,te)Ech(t5,t6,t7,t8)|-(t7,t8,t2,t2+)dtsdtedt7dt8,
(115)
then shows that,
/YL(tl,tf,tg,t;)YTfoc(tg—t4)YL(t4,t},t2,t2+)YTdt3dt4 =
/YLs(tl,tf,ts,te)Ech(tS,te,t7,t8)|-(t7,t8,t2,t£r)dt5dt6dt7dt8-
(116)

If we take advantage of the Kohn-Sham reference giving ugthet density, then
the Hartree part cancels out so that we actually get,

/YL(tl,tf,tg,t;)Yfoc(tg —ta) YL(ts, 1], to,t) YT dltadlty =

/Y'Ls(t1,tf,ts,te)Exc(ts,t6,t7,t8)|-(t7,t8,t2,t§r)dtsdtsdt7dt8-
(117)

While this is certainly a beautiful result, it is nevertredglagued with four-time
quantities which may be eliminated by using the PP.

Mt —tp) = MNs(t1—t2) + / MMs(t1 —t3)Khxe(ts — ta) M (ts — t2) dtgdts,  (118)
where we have introduced the coupling matrix defined by,
Khxe=M3t—n1 (119)
The price we have to pay is that the coupling matrix can notds#yeexpanded

in Feynman diagrams, but that in no way prevents us from ohéténg appropriate
algebraic expressions for it. We may then write,

/ Yty —t3) YT £ (ts —tg) YX (ta — t2) Y dtsdty

= / Y s(ts —t3) Y Kye(ts — ta) YT (ts — tp) dtgdlty, (120)
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which Fourier transforms to remove all the integrations,

Y)Y (0)YX(0)Y = YN(w) Y Ky(w) YN (w). (121)

Localizer

Evidently,
fo(@) = As(@)Kxe(w)A (w), (122)

where we have introduced the notion of noninteracting) (and interacting Q)
localizers,

As(w) = (Yl‘ls(w)YT)ilYns(w)YT
~1
Aw) = (Yn(m)v’f) Yn(w)Y'. (123)

The localizer arises quite naturally in the context of tmestidependent OEP prob-
lem. According to the Runge-Gross theoly[25], the exacttitependent xc-
potentialvyc(t), is not only a functional of the densify(t), but also of an initial
condition which can be taken as the wavefunct#fiy) at some prior timép. On
the other hand, linear response theory begins with the gfaiiind state case where
the first Hohenberg-Kohn theorm tells us that the wavefoncis a functional of
the denisty(tp) = W|[py,]. Gorling has pointed out that this greatly simplifies the
problem [60] because we can then show that,

/I'Is(l, 1:2,2;0)vy(2;0) d2 = /l'ls(l, 1:23;0)5(2,3)d2d3,  (124)

whereZ, is the Hartree-Fock exchange operator. Equivalently tray bre written
as,
YMs(w)Y'v = Ys(w)Ey, (125)

or, 2y,
V(@) = As(w) Zy. (126)

Equations[[122) and (1k6) are telling us something of furetaal importance,
namely that the very act of spatially localizing the xc-cling matrix involves in-
troducing additional frequency dependence.

For the special case of the non-interacting susceptipilieycan easily derive an
expression for the dynamic localizer. Since,
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Ms(1,2:3,4:) Zi YY) Y (3)¢a(4)

4 W— &

TN (DY a3 w4
-3 (23 (4)

3

T a W+ &
(127)
we can express the kernel ¥T1s(w) as
(YT1e) (1;2.3;00) ZZ BT >u;< )Wa(3)
S Ya(HY (VP w(3)
Z Z W+ Eaj '
(128)
Also, the kernel oY Ms(w)Y" is just,
(YI'ISYT) (1;2,w) = %C\g () w;é)lillf;(iZ) val2)
L Ya(HW (VY32 (2)
B IZ Z W+ &aj '
(129)

Like the susceptibility, The two operators have poles atititependent particle
excitation energiee®) = £&,; = +(&a — §).

In order to construct the dynamic localizer, the kerfhel [jli?4s to be inverted.
This is not generally possible to do this analytically, thbut can be done in a
finite-basis representation with great care. However GanzeScheffler have noted
that exact inversion is possible in the special case of aifrecy,w = &, j, of a pole
well separated from the other pol€s.][82] Near this pole kédr@els,YTTs(w) and
YT s(w)Y', are each dominated by single terms,

(DYDY (23

(YTs) ~
w—eb,j
() (1250 ~ OB 22 (130)
s o - w—eb’j '
Thus Eq.[(12b) becomes,
Yi(Hyg(2) Yi(Myp(2)
ﬁw b|Vx(€b.j) |W)) ~ %@U |2 w), (131)

with the approximation becoming increasingly exactwapproaches, ;. Hence,
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(Wolv(en,j) W) = (Wl 2/sy) (132)
More generally for an arbitrary dynamic kernkl(1, 2; w),
(Wi 1A (0.)K (&0)) = (WK (&b j) | ), (133)
and we can do the same fet, j, obtaining
(4 U A (—&0,j)K(—en,j)) = (Wi [K(—&n,j) [ Uh) (134)

We refer to these last two equations as Gonze-Scheffler (@&)ans, since they
were first derived by these authdrs[[82] and because we wiilt teeuse them again.
These GS relations show that the dynamic localiAg(w), is pole free if the exci-
tation energiess,j, are discrete and nondegenerate and suggests that theidynam
localizer maybe a smoother function @fthan might at first be suspected. Equa-
tion (I32) is also very significant because we see that, atteplar frequency, the
matrix element of a local operator is the same as the magixeht of a nonlocal
operator. Generalization to the xc-kernel will require ppraximation.

First approximation

Equation [(I2P) is difficult to solve because of the need teiihan expression in-
volving the correlated PP. However it may be removed by atstesing the approx-
imate expression,

fro(@) = As(@)Kxc(W)A1)2(w), (135)

where a localizer is used which is half-way between the rtenacting and fully
interacting form,

Aqp(w) = (Yns(w)YT)len(w)YT. (136)
Equation[[13b) then becomes,
@) = (YAs@Y) " (@) - Asw) (Ys@Y') . @s7)

Such an approximation is expected to work well in the offeremt regime. As we
shall see, it does give Gorling’s exact exchange (EXX) &efor TD-DFT [60]. On
the other hand, the poles of the kernel in this approximadiea priori the poles
of the exact and independent particle PPs — that is, the imdesmgle-particle
excitation energies — unless well-balanced approximatiead to fortuitous can-
cellations.

We can now return to a particular aspect of Casida’s origialapproach [58]
which was failure to take proper account of the localizeiisTaroblem is rectified
here. The importance of the localizer is made particulddgrcby the GS relations
in the case of charge transfer excitations. The single-ggmbeoximation to the— a
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excitation energy is,

W = & + (ia|A (€4 )Kxc(&ai)A T (£ai) |ai)
= &ai + (@8 Mg Heai) — M Y(ea)ii) . (138)

Thus once again we see that the frequency dependence ofcdiedés has trans-

formed the matrix element of a spatially-local frequenependent operator into the
matrix element of a spatially-nonlocal operator. Had thealzer been neglected,
then we would have found incorrectly that,

W= &+ (ia]Mg (&) — M Y(a)ai). (139)

While the latter reduces to jusg; for charge transfer excitations at a distance (be-
causap; ; = 0), the former does nof, [85] However, for most excitatidresaverlap

is non-zero. In such cases and around a pole well-separatedhe localizer can
be completely neglected.

Exchange-only case

In order to apply Eq[{I137), we need only the previously detiterms represented
by the diagrams in Fid.l7. The resultant expressions agrdeqgbly with the ex-
panded expressions of the TD-EXX kernel obtained by Hieata. [59], which are
equivalent to the more condensed form given by Gorling.[60]

Use of the GS relation then leads to,

W = XS+ fyc(eh?)
= gn+ (aMiyc|a) — (i|Myli) + (ailfia)
= g5 + (aillia), (140)

which is exactly the configuration interaction singles (Ci®., TDHF Tamm-
Dancoff approximation) expression evaluated using Koharorbitals. This agrees
with a previous exact result obtained using Gorling-Leeytprbation theory [82,

186,87].
Second approximation
A second approximation, equivalent to the PP Born approtiama
M(w) = Ms(w) + Ms(w)Knxc(w) Ms(w) . (141)
is useful because of its potential for preserving as muchoasiple of the basic

algebraic structure of the exact equation [[Eq. {122)] wiilk remaining computa-
tionally tractable. This is our second approximation,
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Frixe(@) = As(@) (Mg (@) — 1~ H(w) Ad(w). (142)

Equation[(I4R) simply reads thé,.(w) is a spatially localized form df jxc(w).
This is nothing but the PP analogue of the basic approximdfid?) used in the
BSE approach on the way to the Nanoquanta approximatio A3 45, 46, 44].

6 Conclusion and Perspectives

Time-dependent DFT has become part of the photochemicaélmedtoolbox, at
leastin the FC region. However extensions of TD-DFT aredpgiade to answer the
photochemical challenge of describing photochemical &inegions where double
and possibly higher excitations often need to be taken intmant. This article
has presented the dressed TD-DFT approach of using MBPE&atmms to LR-
TD-DFT in order to help address problems which are partitylaard for con-
ventional TD-DFT. lllustrations have been given for thesdisiation of B and for
cigtrans isomerisation of ethylene. We have also included a sect@ividg the
form of the TD-DFT xc-kernel from MBPT. This derivation maki clear that lo-
calization in space is compensated in the exact kernel Bydig additional fre-
guency dependences. In the short run, it may be that suctiaddifrequency de-
pendences will be easier to model with hybrid MBPT/LR-TDIDépproaches. Let
us mention in closing the very similar “configuration intetian-corrected Tamm-
Dancoff approximation” of Truhlar and coworkers[88]. Yetodher approach, sim-
ilar in spirit, but different in details is multiconfigurath TD-DFT based upon
range separation [89]. In the future, if progress continioelse made at the cur-
rent rate, we may very well be using some combination of thessuding el-
ements of dressed LR-TD-DFT, as well as other tricks such Elaigra-Tempel
form of the xc-kernel[[68], constricted variational DFT fdouble excitationg [90],
DFT multi-reference configuration interaction (DFT-MRQ®1], spin-flip theory
[92,[93,[94/ 9596, 97.98. 90, 100, 101, 102], and restrioeh-shell or spin-
restricted ensemble-referenced Kohn-Sham théory [108/90) 100/ 101, 105] to
attack difficult photochemical problems on a routine basey elements to make
this happen will be the right balance between rigor and praldtly, ease of automa-
tion, and last but not least ease of use if many users are twingthese techniques
and if they can be routinely applied at every time step of a@tttemical dynamics
simulation.
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Appendix: Order Analysis

We have presented the superoperator PP procedure as if ady simnipulated
Feynman diagrams. In reality we expanded the matrices W¥iokj's theorem with
the help of a home-madedRTRAN program. The result was a series of algebraic
expressions which were subsequently analyzed by drawengairesponding Feyn-
man diagrams. This leads to about 200 diagrams which weaikiimresum to give
a more compact expression. It is the generation of this espye that we now wish
to discuss.

Let us analyze this expression for the PP according to therafiexcitation
operator. Following Casidd, [58] we partition the space as,

tota
~agleo) = ((81am) 0L ) o ((HR5). s
+

WhéereTg+ corresponds to the operator space of two-electron and héle@ations
an

B Fii(w) i o
r-t _ 11 2+ 144
(w) {I—zJ_l r2+,2+(w)] ' ( )
has been blocked, ..
Fij(@) = (T i+ HT]). (145)

Using the well-known expression for the inverse of a twotlvg-block matrix al-
lows us to transform Eq[_(1#3) into,

— Msiqp(@) = [(BTAT]) — (BTG T )M 51 5, (@) 24 1]
P Y(@)[(TIIFT) —F12:7 52, (w)(TS, |FT8)]

24,24
+ (PNAT M 51, (0)(T, [F79), (146)
where,
P(w) :rl,l(w)—r1,2+r£+1,2+(00)r2+,1. (147)

Although Eq. [14b) is somewhat complicated, it turns out Bav) plays much the
same role in the smalléf{ space thaf (w) plays in the fullTT space. To see how
this comes about, it is necessary to introduce the concegrtef in the fluctuation
operator [Eq.[(6]7)] and iMyc [Eq. (69)]. We can now perform an order-by-order
expansion of Eq[(146). Through second order only'ltéqnart oleerr contributes,
so we need not consider higher than double excitation oprestatiowever we shall
make some additional approximations. In particular, wé feilow the usual prac-
tice and drop the last term in E@.(146) because it contribatdy at second order
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and appears to be small when calculating excitation eneggie transitions mo-
ments using the Hartree-Fock approximation as zero-did 107 52, 108, 109].
For response functions such as dynamic polarizabilitiesy tnclusion is more crit-
ical, improving the agreement with experiments|[49]. W wliso have no need to
consider the second term in

(PTG — (PTaITE )M 5t o (@) 241 (148)

This means that for the purposes of this paper we can tred®Phim the present
work as given by,

— Msrqp(w) = (PTG TP (w)(T]|FTS). (149)

Comparing with Eq.[(82) substantiates our earlier claint Ba) plays the same
role in theTI space thal (w) plays over the fulll™ space.

First-Order Exchange-Correlation Kernel

We now turn to the first-order exchange-correlation ker@alr main motivation
here is to verify that we obtain the same terms as in exactamgd (EXX) cal-
culations when we evaluaf@ — I [60,59]. Since our approach is in some ways
more general than previous approaches to the EXX kernslstliisection may also
provide some new insight into the meaning of the EXX equation

Since we are limited to first order, only zero- and first-ondavefunction terms
need be considered. This implies that all the contributthresto theTer+ space (the
space of double- and higher-excitations) are zero and autiestes our claim that
Eq. (149) is exact to first-order. An order-by-order expangjives,

— e (@) = (BTG THIPOY(w)(TIF9© + (ptaITHOPO () (T Tg®
+ (PTG THOPD(w)(TIIF9)@ — 115 4 (), (150)
where,
— M qp(w) = (PTG TH O (T wl+hes|T]H O (T]|7T9)©. (151)

The evaluation of each of first-order blocks is straightfamvusing the basic defi-
nitions and Wick’s theorem.
Let us first consider thP parts. The zeroth-order contribution is,

P (@) = (@~ &) Gidac (152)
Pla(@) =0, (153)

and the first-order contribution gives
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RLY), = (@il IKC) + Macdik — Migac (154)
Ploa = (cillak). (155)

(Note thatR4 is part of theA block, whilePy 5 is part of theB block.) The sum

of P(9 + P gives the exact pole structure up to first-order in the SORRAaach.
The zero-order contribution,

(p'aITH© = (i), (156)

and the first-order contributions are given by,

(B'aTDIe; = _%dk (157)
[(BTEITDIR, = %dq (158)
(BT 6T epa = I:.ATfaoc (159)
[(B"6ITD)] pa = _?leéca- (160)

The PPl (w) is now easily constructed by simple matrix multiplicatioor a
cording to Eq.[(150). Applying the 1st approximation froncS$g and expanding
Ms(w) — M (w) through first order allows us to recover Gorling’s TD-EXXrke
nel. [60] The most convenient way to do this is to exp®id 1 using,

(T {|wi+H|TT)*1~ (THl+HOITH?
+ (Tl + HOTH) HTIHOT) (T]ol+HOITH . (161)

The result is represented diagrammatically in Eilg. 7. Theesponding expres-
sions agree perfectly with the expanded expressions offREXX kernel obtained
by Hirataet al, [59] which are equivalent to the more condensed form giwen b
Gorling. [60] The diagrammatic treatment makes clear thection with the BSE
approach. There are in fact just three time-unordered diagrshown in Fig_11
whose various time orderings generate the diagrams il FldoWever the “hang-
ing parts” above and below the horizontal dotted lines nowetiae physical inter-
pretation of initial and final state wave function corredatiHad we applied the 2nd
approximation of se€l]5, then only diagrams (a-f) of Elg. Tilddhave survived.

Use of the Gonze-Scheffler relation (see further Bec. 5) s to,

W = Sal + fXC(gal )
= ga,i (alMxc|a) — (i[Mydli) + (ail|ia)
= g5t + (aillia), (162)
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which is exactly the configuration interaction singles (Ci®., TDHF Tamm-
Dancoff approximation) expression evaluated using Koharorbitals. This agrees
with a previous exact result obtained using Gorling-Leeytprbation theory[[82,

86,[87]

Second-Order Exchange-Correlation Kernel

Having verified some known results, let us go on to do the MBReTessary to
obtain the pole structure of the xc-kernel through seconémin the 2nd approx-
imation. That is, we need to evaluafl *(w) — 1 *(w) through second order in
such a way that its pole structure is evident. The SOPPA/ADA&Lexyy for this is to
make a diagrammatild s(w) — I1(w) expansion of this quantity and then resum the
expansion in an order-consistent way to have the form

n k k—i

[Ms(w) — M (w) rggﬁf 4 = ;Z}% (w)(TUng)(k—ifi)’

when the Born approximation is applied to tRéw), in the same fashion as in
Sec.[b. The number of diagrams contributing to this expanisidarge and, for

the sake of simplicity, we will only give the resumed expiess for each block.

Evidently, after the calculation of each block there willdreadditional step matrix
inversion in order to apply the 2nd approximation to the rcrel.

It should be emphasized that although the treatment beloywseam simple,
application of Wick’s theorem is complicated and has beemieza out using an
in-house BRTRAN program written specifically for the purpose. The resulbbef
resummation is roughly 200 diagrams which have been indadesupplementary
material.

It can be shown that the operator space may be truncatedwiites of gener-
ality in a second-order treatment to only 1- and 2-electsanitation operators[[52]
The wavefunction may also be truncated at second-ordes titmcation breaks the
orthonormality of theTI space:

10
D~ £ (5. 5) - (163)

This complication is dealt with by orthonormalizing our opr space. The new
operator set expressed in terms of the original set contailyssecond-order cor-
rections,

(kd||Ib)(dK|[al)

M TS
n kbMka Bt
&kl ,bd€kl,da Ebék,a

-

g1

(md|jc)(ci||dm) MigMgi ~
el o Walls) g7 (1
mcd Emjcd€imcd &jd€id

Dl Dl
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(Note that we have used the linked-cluster theorem to eéiteicontributions from
disconnected diagrams. For a proof for the EOM of the one-tandparticle the
Green’s function see Ref, [55])

We may now proceed to calculate,

— Néap(w) = (PTHHPDL(e)(T] [P
+ (PTG T OPD () (T][fT) Y
+ (p'aTH PP (w) (T Tg)
+ (PTG T OPP (o) (T[T (165)

The only new contributions that arise at this level are duedblockP(, which is
given by
2 1) (0),—1 1
P =2 - Mm@, (166)

(We are anticipating the>-dependence of the variolis-blocks which will be de-

rived below.) Since the block ﬁ is affected by the orthonormalization procedure,
it may be useful to provide a few more details. Expanding vlgeorder,

r% = oW1}, [wi+H©, 7))

+ (0T [wl+H©, T1]]j0?)

+ (O[T, [l + A, T]0C)

+ (0T}, [wi+H©, T]])j0?),

+ (0[], [wi+H O, 1) 0%),

+ (O[T, AW, T1]0)

+ (0T, [A®, T1]0%), (167)
whereTI(z) is the vector of second-order operators defined in[Eq] (16i4)easily

shown that the first term cancels with the contributions capfrom the second-
order operators, and that the contributions from secodefrowave function are
exactly zero. Hence, that block is simply

r? = (WL AW, T]0)
+ (0O TL AW, T]j0W), (168)

which makes it frequency-independent. Its calculatiorgiv
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) Mdem MiaMc
M kcia = +
[1,1]kc,|a 5ac§_ 5Z £
(169)
4 e lelka)@lle) _ & o (d[mo(@ima .o
2 &imde 2 & Eim,ad
(2) B Maled MciMka
| l]c'@ia_ &id * &a
Mgk(ad||ci) Mic(IK]|ai)

+2§7£k’d +2Z =

(cel|ad)(di[lem) (cef|mi)(akime)

- Z Eim,de

d

& Ekmae

m e
(cellad)(dKe)) 1  (ik|[ml)(ac||ml)
2; €ik,de 2 Em,ac .

The blockl™ 1> and its adjoint is of at least first-order, due to the fact that
space is orthonormal. For that reason, it is not affectedibytthonormalization at
this level of approximation. Its calculation gives

52 e jia = — Ak(belfaj) + Gix(bel ai)
— Snc(@il[kj) + dac(bil[k])

Finally, the blockl™ 2 2(w) gives

[r2g>(w)]lqujbia = (W— &j ab) Oji Gk Ocaddb
[rzg)(w)]ckdl,jbia =0 (172)

Notice that double excitations are treated only to zerattenin a second-order
approach. To obtain a consistent theory with first-orderemiions to double excita-
tions, one should go at least to third order. This howeveobess computationally
quite heavy.

Itis interesting to speculate what would happen if we wermétude the first-
order doubles correction within the present second-otdsary. There are, in fact,
indications that this can lead to improved agreement betwatkeulated and exper-
imental double excitations, though the quality of the séngtcitations is simultane-
ously decreased due to an imbalanced treatrhent [110, 111].

We can now construct the PP necessary to construct the 2mdxéapjation of
the xc-kernel Eq.[{142) according to Ef.(149). Since theltitalizers of both
left- and right-side are constructed from the non-intengcKS PP, we are only
concerned with ph and hp contributions. This means thatltiekb involving pp or
hh indices, corresponding to density shift operators, @igbored at this level of
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approximation. This simplifies the constructionR(fw) in Eq. (149), which up to
second-order gives

N2 () = (T[T PO 2 (@) (T]T) (173)
Separating ph and hp contributions, the PP takes the fornRof & block-matrix
in the same spirit as the LR-TD-DFT formulation of Casida,
n(0+1+2),71(w) _
10 P(O+l+2)(w) 0+1+2 (w)
(0 _1) (P(0+1+2)(w) (0+1+2) (w)> (0 1)
( P(0+1+2)(w) _P(0+1+2 (w)>

_ P(0+ 1+2) (w) P(0+ 1+2) (w) (174)

It follows that,
ngl(w) i n(0+1+2),7l(w) _

142) _r(1+2)
P (l(fg M) (175)
-r 11 P(HZ)(OJ)

Note that the off-diagonal (ph,hp)- and (hp,ph)-blocks fagguency-independent
and that the diagonal blocks are given by Eq. {166). Ignoldeglization for the
moment, we may now cast the present Kohn-Sham based secdeidsolarization
propagator approximation (SOPPA/KS) into the familianfiasf Eq. [2T) with,

Aia,jp(@) = &,j8apEai + Py ()

Sanf) - - (157),, o

Localization [Eq.[I2R)] will complicate these formulaetmjxing theP**2) ()
andr i/ terms,
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Alajb(w) = &j%n(&a— &)

+ [ASnanp(@)PH 2 (@) ADnpnp(@)|
+ [(Anppn(@)PH2 (@) (A D phnp()|

— [ASppn( @ F A npnp(w)|
= [(Adnpnp(@)F 2 (A pnnp()|
Bia;(©) = [(As)npngP™ 2 (@)(Adnppn]
+ (Ao ™2 (@) A ]
— [ASpen(@)F 2 (ADnppr()|

B :(AS)hp,hp(w)r(HZ)(A;r)Phxph(w)]

ia, jb

ia, jb

ia, b

iabj

ia,bj

ia,bj
a77)

Of course this extra complication is unnecessary if all watta do is to calculate
improved excitation energies and transition amplitudedding DFT-based many-
body perturbation theory. It is only needed when our goabistudy the effect
of localization on purely TDDFT quantities such as the xcAe¢and the TDDFT
vectorsX andY.
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