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We present an exact equation for the exchange-correlation potential of time-dependent de
functional theory. This relation is derived using a many-particle Green’s function formalism du
Keldysh. We furthermore show how this equation can be derived from an action principle.
method presented provides a systematic way to derive correlation contributions to the time-depe
exchange-correlation potential. [S0031-9007(96)00144-5]
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In recent years a wealth of new physical phenome
has been observed in the study of atoms and molec
in strong laser fields [1–3]. These phenomena can
be explained theoretically using traditional perturbati
theory, due to the high strengths of the electric fie
involved. In order to be able to calculate the properties
atomic and molecular systems in strong external field
completely nonperturbative treatment of the external fi
is therefore called for.

Time-dependent density-functional theory (TDDFT
[4–6] is a method of this type. The rigorous foundatio
of TDDFT were first established by Runge and Gro
[7]. In the TDDFT formalism one can transform th
interacting many-particle problem into an equivale
problem of noninteracting particles with the same tim
dependent densitynsrtd. The effective potentialys for
this noninteracting system is known as the Kohn-Sh
potential. By subtracting fromys both the Hartree
potential and the external potential of the interacti
system one obtains the exchange-correlation potentialyxc

incorporating all the exchange and correlation effects
the system. The formalism has been successfully app
to the case of atoms in strong laser fields [8,9] and in
calculation of atomic excitation energies [10] using t
exchange-only (x-only) time-dependent optimized pote
tial method (TDOPM) [11]. The TDOPM has importan
advantages over other common approaches, such as
adiabatic local density approximation (ALDA) [10]. In
contrast to ALDA the TDOPM is self-interaction free an
incorporates memory effects. In this Letter we devel
a theoretical approach in which we make a connect
between the many-particle Green’s function theory a
TDDFT. This enables one to extend the above-mentio
x-only TDOPM calculations and include correlatio
effects.

Conventional methods treat the external time-depend
field perturbatively. However, the perturbation seri
breaks down when the expansion parameter (the exte
field) becomes large. Our approach will be to find
exact solution for the time evolution of the noninteractin
(zeroth-order) system in the presences of the exte
field. The external field is thereby treated complete
nonperturbatively. The two-particle interactions, o
0031-9007y96y76(19)y3610(4)$10.00
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the other hand, are treated perturbatively using Gree
function techniques. This requires the use of a Gree
function formalism in which the zeroth-order system
already a nonstationary time-dependent system. Su
formalism has been developed by Keldysh and elabora
on by others [12–17]. In this Letter we will demonstra
its usefulness in connection with the TDDFT of atom
and molecules in strong fields.

We discuss an interacting system ofN electrons with
the Hamiltonian

Ĥstd ­ T̂ 1 V̂ std 1 Ŵ , (1)

where T̂ represents the kinetic energy operator,V̂ the
time-dependent external field, and̂W the Coulombic
interparticle repulsion. The external field is assumed
be constant in time for timest , t0 when the system is
assumed to be in its ground state. We are therefore
describing switch-on processes. The time evolution
the system under influence of the time-dependent exte
field is described by the time-evolution operator

V̂ st2, t1d ­ T exp

"
2i

Z t2

t1

Ĥstd dt

#
, (2)

whereT is the usual time-ordering operator. In TDDF
the system is also described by the time-dependent Ko
Sham Hamiltonian

Ĥsstd ­ T̂ 1 V̂sstd , (3)

where V̂s is the one-particle operator representing t
Kohn-Sham potential. The Kohn-Sham noninteract
state can be represented by a Slater determinant w
function whose orbitals satisfy the time-dependent Ko
Sham equations [5,6]

f2 1
2 =2 1 yssrtdgfisrtd ­ i≠tfisrtd ,

nsrtd ­
NX

i­1

jfisrtdj2, (4)

yssrtd ­ ysrtd 1 yH srtd 1 yxcsrtd ,

whereyH srtd ­
R

d3r 0 nsr0tdyjr 2 r0j denotes the time-
dependent Hartree potential andysrtd represents the time
dependent external field. The quantityyxcsrtd denotes
the time-dependent exchange-correlation potential,
determination of which is a central problem in TDDF
© 1996 The American Physical Society
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The time evolution of the Kohn-Sham noninteracting sta
is determined by the evolution operator

Ûsst2, t1d ­ T exp

"
2i

Z t2

t1

Ĥsstd dt

#
. (5)

We can now express the expectation value of any oper
Â at timet0 in terms of Kohn-Sham quantities by

kÂst0dl ­ kF0jŜs2`, t0dÂI st0dŜst0, 2`djF0l . (6)

Here ÂI and Ŝ are, respectively, the operatorÂ and the
time-evolution operator in the interaction picture defin
by

ÂI std ­ Ûsst0, tdÂstdÛsst, t0d , (7)

Ŝst2, t1d ­ Ûsst0, t2dV̂ st2, t1dÛsst1, t0d

­ T exp

"
2i

Z t2

t1

sĤ 2 ĤsdIstd dt

#
. (8)

Equation (6) also includes an adiabatic switching on
the interaction (for timest , t0) of the form expfest 2

t0dg sĤ 2 Ĥsd. This relates the interacting stationary sta
jC0l at t0 to a noninteracting statejF0l at t ! 2`. We
must also introduce a static external potentialye defined
by the requirement that fort , t0 the density of the
system with the adiabatically switched on two-partic
interaction remains equal to the density of the Koh
Sham system for all values ofe. For timest , t0 this
density is constant in time. The use of such an adiab
connection formula is common practice in DFT fo
stationary systems. It follows thatjF0l can be identified
with the Kohn-Sham state of the interacting system
t ! 2`. The limit e # 0 is taken after evaluation of the
expectation value Eq. (6).

At this point an important difference with respect
the case of stationary systems becomes apparent.
these systems we turn off the interaction adiabatically a
return to the noninteracting ground state. If we use t
property, we can make the time variable in Eq. (6) r
from 2` to 1` and expand in time-ordered produc
with the help of Wick’s theorem. This is, however, n
possible for the case of time-dependent systems. Bec
of the external field being switched on att ­ t0 the
system will always end up in a nonstationary state, eve
we turn off the interaction adiabatically. In order to st
be able to apply the usual many-body techniques we
a method due to Keldysh [12,14,17]. We parametrize
physical timetstd by a pseudotimet in such a way that
or
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if t runs from2` to 0 thent runs from2` to t0 and if t

runs from 0 to1` then t runs back fromt0 to 2`. The
actual form of the parametrizationtstd is not important
since our final results will be independent of it. We no
define a time orderingTC (whereC stands for contour) in
the pseudotime variablet. Then Eq. (6) becomes

kÂst0dl ­ kF0jTCfŜCs1`, 2`dÂst0dg jF0l , (9)

where

SCst2, t1d ­ TC exp

"
2i

Z t2

t1

dt t0std sĤ 2 ĤsdIftstdg

#
,

(10)

wheret0std ­ dtydt. If we further defineti ­ tstid then
the one-particle Green’s function is defined by

iGsr1t1, r2t2d ­ ust1 2 t2d kC0jcHsr1t1dcy
Hsr2t2d jC0l

2 ust2 2 t1d kC0jc
y
Hsr2t2dcHsr1t1d jC0l , (11)

where c
y
H and cH are the creation and annihilatio

operators in the Heisenberg picture. With the definitio
(9) and (11) we can carry out the usual diagramma
perturbation theory. The only difference is that tim
integrations in the diagrams must be replaced by con
integrations in the pseudotimet. The Green’s function
satisfies the equation of motion

fi≠t1 2 hssr1t1dgGsr1t1, r2t2d ­ dCst1 2 t2d

1
Z 1`

2`
dt3 t0st3d

Z
d3r3fSxcsr1t1, r3t3d

2dCst1 2 t3ddsr1 2 r3dyxcsr1t1dgGsr3t3, r2t2d , (12)

where hs is the Kohn-Sham Hamiltonian andyxc is
the exchange-correlation (xc) potential of time-depend
Kohn-Sham theory [5,6]. We further defined a conto
delta function [14] bydCst1 2 t2d ­ dst1 2 t2dyt0st1d.
The termSxc represents the xc parts of the self-energyS

(that is, all diagrams except those involving the exter
potential differencey 2 ys and the Hartree potential)
When we use the Dyson equation and the fact that
electron density is given by

nsrt1d ­ 2i lim
t2#t1

Gsrt1, rt2d ­ 2i lim
t2#t1

Gssrt1, rt2d

(13)

for both the interacting system and the Kohn-Sham sys
we obtain the required integral equation foryxcsrtd
Z 1`

2`

dt2

Z
d3r2 t0st2dGsr1t1, r2t2dGssr2t2, r1t1dyxcsr2t2d

­
Z 1`

2`
dt3

Z 1`

2`
dt4

Z
d3r3

Z
d3r4 t0st3dt0st4dGssr1t1, r3t3dSxcsr3t3, r4t4dGsr4t4, r1t1d , (14)
3611
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whereGs is the Green’s function of the time-depende
Kohn-Sham system, explicitly given in terms of the Koh
Sham orbitalsfi of Eq. (4) by

iGssr1t1, r2t2d ­ ust1 2 t2d
X
i.N

fisr1t1dfp
i sr2t2d

2 ust2 2 t1d
NX

i­1

fisr1t1dfp
i sr2t2d . (15)

Equation (14) is the main result of this Letter. It repr
sents the generalization to time-dependent systems of
integral equation derived by Sham and Schlüter [18,
for the case of stationary systems.

Equation (14) is a convenient starting point for makin
successive approximations within time-dependent dens
functional theory. In the x-only case for instance, whe
we replaceSxc by Sx andG by Gs, this equation reduces
to the x-only equations of the TDOPM [11]. In thi
approximation we have

Sxsr3t3, r4t4d ­ 2
dst3 2 t4d

t0st4d

NX
i­1

fisr3t3dfp
i sr4t4d

jr3 2 r4j
.

(16)

Insertion of Eqs. (16) and (15) into Eq. (14) then yields t
x-only TDOPM equations [11] for the exchange potent
yx
NX

i­1

Z 1`

2`
dt2

Z
d3r2fyxsr2t2d 2 ux,isr2t2dgfisr1t1dfp

i sr2t2d

3 GRsr1t1, r2t2d 1 c.c. ­ 0 , (17)

where

ux,isrtd ­ 2
1

f
p
i srtd

NX
k­1

Z
d3r0 f

p
i sr0tdfksr0tdfp

ksrtd
jr 2 r0j

(18)

and

iGRsr1t1, r2t2d ­ ust1 2 t2d
1X̀
i­1

fisr1t1dfp
i sr2t2d . (19)

The Green’s functionGR is the retarded Kohn-Sham
Green’s function. This Green’s function appears in t
above expression as a result of the fact that thet2 . t1
integration leads to a relative minus sign as compared
the integration overt2 , t1 when the integration in the
pseudotimet2 is replaced by integration in the physica
time t2. The occurrence of retarded Green’s functio
is a typical feature of the Keldysh formalism. It implie
that physical quantities, such as response functions, h
the correct physical causality properties. In the case
the x-only TDOPM equations the presence of the retard
Green’s function implies that the determination ofyxsrt1d
at time t1 requires knowledge of the system for all time
t2 , t1. We can proceed further and systematically
beyond the x-only TDOPM approximation by makin
successively better approximations for the self-energySxc
and Green’s functionG in the central equation [Eq. (14)]
Electron correlation may have a large influence on
3612
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physically interesting memory effects inyxc. Therefore
our Keldysh diagrammatic method, which in princip
allows an exact treatment of electron correlations, provi
a direct means for a systematic study of these mem
effects.

As a final remark we mention that Eq. (14) can also
obtained from a variational principle in the same spirit as
the work by Sham and Schlüter [18,19]. For reasons
soon will become evident we define an action functio
of G andGs as

AfG, Gsg ­ A0fGsg 1 FfGg 2
Z 1`

2`

dt t0std

3
Z

d3r krtjlns1 2 SGsdjrtl , (20)

where the mathematical meaning of the last term is defi
by its Taylor series and insertion of complete setsjrtl krtj.
The functionalA0 is defined by

A0fGsg ­
Z 1`

2`

dt1t0st1d

3 lim
t2#t1

"
i≠t1 2

√
2

1
2

=2
1 1 ysrt1d

!#
Gssr1t1, r2t2d ,

(21)

wherey is the external potential of the interacting syste
For this functional it follows from the equation of motio
for Gs that

dA0

dGssr1t1, r2t2d
­ dCst1 2 t2ddsr1 2 r2d

3 fysr1t1d 2 yssr1t1dg . (22)

The functionalF is defined by [20]

FfGg ­
X
n

1
2n

Z 1`

2`
dt1

Z 1`

2`
dt2

Z
d3r1

3
Z

d3r2t0st1dt0st2dSsndsr1t1, r2t2dGsr2t2, r1t1d ,

(23)

whereSsnd represents the diagrams inS with n interaction
lines and in which Green’s function lines are given by t
full Green’s functionG. The functionalF has the property
[20]

dF

dGsr2t2, r1t1d
­ Ssr1t1, r2t2d 2 dCst1 2 t2ddsr1 2 r2d

3 fysr1t1d 2 yssr1t1dg (24)

at the solution point whereG satisfies the Dyson equation
From the Runge-Gross theorem [7] we see that bothG and
Gs are functionals of the electron density or, equivalen
of the Kohn-Sham potentialys. Therefore the functiona
(20) can be viewed as a functional ofys. Requiring
stationarity of this functional with respect to variations
ys then yields

0 ­
dA
dys

­
dA

dGs

dGs

dys
1

dA
dG

dG
dys

. (25)
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By working out the derivatives in this equation explicit
and using the fact that bothG andGs yield the same density
one finds [19] the required Eq. (14). Our results can
summarized as follows: We have shown that one
derive an exact integral equation foryxc within TDDFT
using the Green’s function formalism of Keldysh. W
have further shown that one can derive this equation fr
an action principle.
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