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We present calculations of the lowest three moments of the spectral function of the one-particle Green’s
function of the unpolarized three-dimensional homogeneous electron gas, which are related to the exact
ground-state properties via commutation relations. The moments are, in turn, related to the coefficients in the
expansion of the self-energy in inverse powers of the frequency. The zeroth-order term in this expansion can
be written in terms of the momentum distribution function, while the first-order term consists of a local term
which can be written in terms of the pair correlation function or static structure factor, and a nonlocal term. We
use data from diffusion quantum Monte Carlo calculations to evaluate the zeroth-order term and the local part
of the first-order term. We have also examined local-field approximations to the self-energy, finding that they
do not affect the zeroth-order term in the high-energy expansion, but they substantially alter the first-order
term. The nonlocal part of the second-order term has been evaluated using a wave function consisting of a
single determinant of plane waves. Our results provide additional benchmarks for self-energy theories of the
homogeneous electron gas.
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[. INTRODUCTION real-space description. In our paper these terms are derived
in k space for the special case of the HEG.

One of the most important systems for investigating elec- The zeroth-order term in the expansion of the self-energy
trons in condensed matter is the homogeneous electron gasdetermined by the momentum distribution function and is
(HEG) or jellium model' This widely studied model has equivalent to an expression already used by von Barth and
yielded many insights into electronic many-body phenom-Holm.2 We show how this term changes when we replace the
ena. However, our knowledge of important dynamical prop-noninteracting Hartree-FodkiF) momentum distribution by
erties of the HEG, such as the one-particle Green’s functiotthe interacting one, which is obtained from QMC data. The
or equivalently the self-energy, is still far from satisfactory. first-order term is the sum of a local and a nonlocal contri-
For example, recent calculations of the quasiparticle energidsution. We show that the expression for the local contribu-
of the HEG at the density appropriate for sodium predict artion to the first-order term can be written in terms of the
occupied bandwidth of about 3.6 ¥ which is much larger static structure factor. The well-know®,W, approximation
than the values measured in angle-resolved photoemissido the self-energy includes the zeroth-order term at the non-
spectroscopy experiments on sodium of 2.5-2.65 &t interacting level and the local contribution to the first-order
present it is unclear whether this discrepancy is due to aterm within the RPA, but the nonlocal contribution to the
inappropriate interpretation of the experimental data, an infirst-order term is absent. It is shown that the inclusion of
adequacy of present theories of the HEG or shortcomings itocal-field corrections changes the value of the first-order
the HEG as a model of sodium. term significantly but preserves its momentum independent

Our goal is to investigate self-energy theories of the HEGlorm. An approximate calculation of the nonlocal term is
and provide benchmarks against which self-energy approxipresented. The inclusion of nonlocal effects changes the first-
mations may be tested. One approach is to calculate statarder term quantitatively and qualitatively, indicating that
ground-state properties within a given self-energy theory anthese effects are important for calculating the vertex func-
compare them with the most accurate data available. The&on.
most accurate approach for calculating static ground-state This paper is organized as follows. A short introduction to
properties is currently the diffusion quantum Monte Carlothe jellium model is given in Sec. Il. Exact relations for the
(QMC) method’ Results along these lines have been pub-moments of the spectral function and the coefficients of the
lished, for example, for the total ener$jy*®In this paper we  high-energy expansion are given, and the corresponding dia-
develop a closely related strategy using the relationship offrams are given in Sec. Ill. Approximate self-energy theories
the moments of the spectral function of the Green’s functiorused for later comparisons are introduced in Sec. IV. In Sec.
to the coefficients in the expansion of the self-energy in in-V we present our results for the first two coefficients in the
verse powers of the frequendyhe “high-energy” expan- self-energy expansion and the first and second moments of
sion). The corresponding sum rules are valid for the exacthe spectral function and show that the higher moments di-
self-energy, and were used by von Barth and Holo  verge in the HEG. We draw our conclusions in Sec. VI and
check the accuracy of their self-consistéhtV calculation  present an outlook for future investigations. The derivations
for the HEG. Farid* has derived general expressions for theof the exact expressions for the first and second moments are
coefficients in the high-energy expansion starting from agiven in the two appendixes.
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Il. THE JELLIUM MODEL
The Hamiltonian of the HEG is

- 1 N -
H=2 eo(k)agant 5q 2 v(@(per—q=N). ()

Wheref)q is the density operator arid is the number opera-
tor,
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anda, (ay,) are the fermionic creatiofannihilation opera-
tors. The free dispersiory(k) and the Coulomb potential
v(q) are given by
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It is understood that in thg summation of Eq(1) and all
following equations, the=0 term is omitted, which follows

from the cancellation of this term with that from the uniform

positive background. The uniform charge density ng
=N./Q, whereN, electrons occupy a volum@. The prop-

erties of the HEG are usually written in terms of the dimen-

sionless parametetr,, which is related to the electron den-
sity by 1ho=4r3a3/3, wherea, is the Bohr radius. Since
the density is given in terms of the Fermi momentkas
no=k;/37%, we have the relation
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—) ~0.52106.
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All quantities in this paper are given in units Bf andk; .
To convert quantities from units d&; to atomic units one
divides by 2@r)?.

IIl. EXACT RELATIONS FOR THE SPECTRAL
MOMENTS

A. Spectral functions

In a translationally invariant system such as the HEG the

Green’s functionG(k,w) and self-energy. ,(k,w) are re-
lated by

1

Colkiw)= 0 -3, (ko)

©)

In the spectral representation the Green’s function is written

as

As(kw’)
w—w’-i-iﬁsgr(a)’—,u,)'

Gg(k,w)sz do’ (6)

— oo

whereA ,(k,w) is the spectral function and is the chemical
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As(K w)= EIImGU(k,w) , 0
a
or explicitly, using Eq.(5),
1 [ImX,(k,0)|
Aa(k,(z))z ; 2 5"
[w—€p(k) —ReX (K ,w)]*+[Im2 (K, w)]
8

The frequency moments of the spectral function are defined
as

Mﬁfyzf dow"A, (K, ). 9)

The self-energy can also be written in terms of a spectral
function,

Cyk,w")

w—o' +idsgno —u)’
10

where3,, ,(Kk) is the frequency-independent exchange term
whose structure will be discussed below.

Ea<k,w>=2x,u<k>+f do’

B. General relation between the spectral moments and the
high-energy expansion of the self-energy

Expanding the denominator in E(G) one obtains

ni+1 . (n—1)
Gykw)= > —Z—+f,(k o), (11)
n=1 wn

wheref,(k,w) is a quantity decaying faster than ("1*1),
andn, is the order up to which the moments are finite
Sec. V D we show that,; =2 for the HEG)

A similar expression is expected to hold for the self-
energy

ni—1 E(p)
Ea(kiw): E _;T‘i‘fz(k,(,()),

p=0

(12

wheref,(k, ) is a function decaying faster than ("1~ 1),
By inserting Egs(11) and (12) into Eg. (5), expanding the
right-hand side of Eq(5), and equating the coefficients of
powers of 1 we obtain

M@=1, 3@Q=M{D—-eo(k), (13)
and
=M@ - ML)z, (14)

It is a general property of these relations that pile coeffi-

potential. The spectral function is therefore related to the:ientE(k?,) is determined by the spectral moments up to order

imaginary part of the Green'’s function by

p+1.
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C. Derivation of the first and the second moments

1 ..
The nth moment of the spectral function is given by the S(a)=~Nedqot N_e<pqp"1>' (23

nth derivative with respect to timeof the time-dependent
spectral functiort?

A(k,D)=([ag,(1),a,(0)].), (15

evaluated at=0. By calculating these derivative using the
Heisenberg equation of motion we getmfold nested com-  |; t5110ws from Egs.(14), (18), and(22) thatE(k},) consists of

Sinceq=0 has to be omitted in thg summation, we obtain

1 IR n
07 2 V(e = 2 vA@S@). (29

mutator with the Hamilton operatdt, a local, spin-independent contribution and a nonlocal, spin-
dependent contribution,
M =([[..Law . H1- ....H]_,a 10, i 3O=3B+30), (25)
n-times Wlth
where (- - -) denotes the ground-state expectation value of 5 No
the system. E|(0c)=5 % v3(Q)S(a), (26)

The zeroth moment is

(0)_<[aka'!ak0] > l (17) and
which gives the normalization of the spectral function. O _ 2 ,
Appendix A we show that the first moment of the spectralEnl ke ™ T Qz 2 (Do (Q)Ni—g-g/0— & E v(q)v(q’)
function of the HEG is given by o’ a

><<a|:r,qr(7;)qaqufq’(r>_(E(k?r))z- (27)

One can show that the second term in E2}) is real since
the ground-state wave function of the HEG can always be
1 chosen to be real.
Syo(K)== = v(k—q)ng,, (19 Farid* has calculated the first three terms in the high-
' Q79 energy expansion of the self-energy for systems of spin-half
fermions in d-dimensionalr space, interacting through an
arbitrary two-body potentiab(r—r'). For the first-order
=(a, ax,,) (200  term he found a local spin independent and a nonlocal spin-
dependent contribution as well. After Fourier transforming,
e., the exact momentum distribution function. From Egs.our expression§25) and(27) for the HEG are equivalent to

M= €o(k) + 3, 4(K), (18)

whereZ, (k) is the exchange self-energy

andn,, is the expectation value of the number operator

(13) and (18) one obtains special cases of Farid’s.
(0) —
zk" X""(k)' (1) IV. APPROXIMATE THEORIES OF THE SELF-ENERGY
Equation(18) has been derived, for example, by von Barth OF THE HEG

and Holnf directly from the spectral representation of the
Green's function and the self-energy.
For the second moment we find, see Appendix B,

In this section we introduce approximations to the self-
energy which have been widely used in earlier work. We will
discuss some of these approximations later within the frame-
work of the previously derived exact relations. The self-

M(z)—eo(k)+260(k)2(°) ! 2 v2(q) energy can be written as
02
. 1 S (k,w)= gde’'G(k+q,0+w")
><<pqpfq>_ & % U(q)v(q’)nqufq'a
XW(g,0 )T (k0. kK+qot+e’), (29
_ iz Z (q)v(q’)(a;,qlaﬁqaqufq'(r)- whereI' is the vertex function. The dynamically screened
O g’ interaction potentialV is defined as
22
| @ Wy 2@ @ 20
Let us discuss the structure of the second moment in detail. , «q0) 1-0v(qP(q0)’

First we note the existence of a momentum- and spin-
independent term in the second line which can be rewrittenvheree(q, w) is the dielectric function an@ is the irreduc-
in terms of the static structure factbr, ible polarization propagator
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o v(q)Po(q,@)
- 3 ’ ' yw)=1— . 35
Pla0)== | ko Sla kot o) @O f@Pge P
X Gk, )T (Ko qrk o+o’). (30) We call this scheme the local-field approximation. Results

for the HEG give a narrowing of the occupied bandwithh.

Together with Eq(5) and the expression for the vertex func- ~ Various forms of the local-field factor have been sug-
tion these equations form a self-consistent set of equatior@ested over the years. Hubbaltd) derived the formf,(q)
known as Hedin's equatio&” The fundamental problem =0%/2(q*+1).?" An improved theory of the local-field fac-
lies in an appropriate choice of the vertex function. tor was suggested by Singwi, Tosi, Land, andI&jder
Self-consistent calculations of the self-energy using a so(STLS).?” Vashishta and SingwiVsS) modified the STLS
phisticated ansatz for the full vertex function have beertheory so that it almost exactly fulfills the compressibility
presented—* The resulting occupied bandwidth is broader Sum rules® The VS expression can be adequately fitted by
than the free-electron result and much broader than the eshe formfys(q) =A[1—exp(~Bcf)], whereA andB are fit-
perimental data. According to Yasuhaztal? these results ting parameter >
may be made consistent with the experimental observations In some studies in the 198Ys® quasiparticle properties
by considering final state effects, although this idea has beefjere calculated by including the vertex correction in the ex-
sharply criticized® pression for the screened interaction of E8R) but not in
A first approximation is to set the vertex function equal tothe self-energy integral. This approximation leads to a va-
unity. Because of the resulting structure of the self-energyence bandwidth very close to the experimental data. It is,
this scheme is called th& W approximation, and was first however, an inconsistent approach.
proposed by Hedit® Barth and Holm performed self- In their original work on theGW approximation Hedit?
consistentGW calculations for the HEG and found an in- and later LundqvisP solved Egs.(31) and (32) for f(q)
crease in the valence bandwidth compared with the free=0, i.e.,I'(q,w)=1. This is equivalent to using the well-
electron result as well as a broad and featureless satelli¢own Lindhard or random phase approximati®PA) di-
structure. However, both results contradict experiment. Aglectric function,
significant improvement for the satellite structure has been
obtained using a self-consistent cumulant expansion. €o(0hw)=1-v(q)Po(q, ) (36)
Another approximation is to replace the interactingj, e expression for the screened interactith. In this
Green's function by the noninteracting Green’s functieg) paper we refer to this scheme as t@W, approxi-

but to retain the vertex functions in Eq28) and(30) in @ ai0n Within this approximation the valence bandwidths
simplified form, asl'(q,). Such a scheme has been used,re ¢jose to the values calculated within the local-field
for example, to study quasiparticle properttéS.n this ap- approximatior??

proximation the self-energy is written as

V. RESULTS AND DISCUSSION

i
S(k,w)= (ZW)LJ d*qdw’ Go(k+0,w We are specifically interested in the properties of the HEG
at metallic densities (&£r¢<<5). Various QMC calculations
+ o )W(g,0' ) (q0'), (31)  show that in this region the HEG is unpolarizZéd? and we
therefore limit ourselves to this case.
and
A. The zeroth-order term X,
v(0) v () :
W(q,w)= = , (32 The zeroth-order term corresponds to the well-known dia-
(q,0) 1-v(q)I'(q,0)Po(d,w)
€q, v(Q)1(q,0)Folq, @ gram for the exchange self-enerffig. 1(b)]. If the nonin-

teracting Green’s function is used, the diagram represents the
HF approximatioFig. 1(a)].
After inserting Eq.(21) into Eq. (19) and performing the

where the independent-electron polarizabifty is given by

Po(qe) = — (22i)4f d®kdw’ Go(k+q,w+ o) Go(K,®'). angular integration one obtains for the zeroth-order term
o
(33 . 2ar3jw k+q
D . dgqryin —ql (37)

Assuming the simplified form of the vertex functidi{q, )

a summation of ladder diagrams leads to where we made use of the fact timgtis isotropic. By insert-
ing the noninteracting momentum distribution of the HEG,

1
I'g,w)= , 34
(0= T @ (@ Polg ) (39 n(g):{L k<1 a8
Ko, k>1,
wheref(q) is the local-field factor. From Eq$32) and (34)
we obtain for the dielectric function into Eq. (37) we obtain the well-known HF result
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FIG. 1. Self-energy diagrams corresponding to the terms used in B | | | |KN_L | B
this paper. The lines represent the noninteracting Green'’s function 00 05 1 15 >
(single solid ling, the interacting Green’s functiotdouble solid ) k '
line), the bare Coulomb interactididashed ling and the screened
interaction(wiggly line). The diagrams represefd) the exchange FIG. 2. The momentum distribution function of the HEGrat
self-energy in HF theoryb) the exact exchange self-energs)the -5 within HF andG,W, theory, and from the QMC fitting formu-
GW self-energy, andd) the first vertex correction beyon@W in las of Ortiz and Ballon® (OB) and Gori-Giorgi and Ziescfié
the single-Slater-determinant approximati@SDA). (G2).
arg 1 momentum distributions. The inclusion of correlation in-
SO =— — 2+(E_k Inl—1||- (39  creases(?) at smallk and reduces the dispersion Bf” .

The GyW, result is already very close to the QMC data,
Note that whenever the noninteracting Green’s function igpresenting a significant improvement over the HF curve. The
used in obtaining the self-energy, we fi§”=3{"". differences between the various QMC fits at snhkaire al-

We have performed calculations 8" using different ~most as large as between the GZ-QMC dBglV, values.
momentum distributions beyond HF. First, we determingd This shows that an accurate determination of the shape of the
from the equation momentum distribution is needed to exclude any ambiguity

for this benchmark. However, because the differences be-
© tween the results obtained with the different QMC fits are
nk:f doA(k,0), (400 small we believe that our values for the first moment are
o already highly accurate. In Table | we give some numerical
where A(k,w) is the spectral function calculated using the values for> (% obtained at three values &fusing the HF,
GoW, self-energy in Eq(8). GoW, OB-QMC, SMC-QMC, and GZ-QMC momentum

Highly accurate momentum distributions have been deterdistributions.
mined from diffusion QMC calculations. Ortiz and Ballone
(OB) (Ref. 29 performed such calculations for a range of B. The local part of the first-order term ;)

mials, with different forms forq above and below one. A term is the -independentexchange term, represented by
different fitting to the same QMC data was suggested by

Senatore, Moroni, and Ceperl¢$MC).%° In a recent paper 0 T T | |
Gori-Giorgi and ZieschéGZ) proposed another fitting for-
mula which obeys some other constraititd® In Fig. 2 we

plot the HF,GyW,, OB-QMC, and GZ-QMC formulas for
r<=>5, where the finite jum;ikf atk/k;=1 is the weight of

the quasiparticle at the Fermi edge. The SMC-QMC curve
lies very close to the OB-QMC data. One of the distinctive &
features of the GZ fitting is the infinite that the momentum W o
distribution function approaches the Fermi edge with an in-
finite slope. This feature resembles the shape ofGhe&/,
momentum distribution. The QMC data are only calculated
atk vectors commensurate with the simulation cell used and -3
it is not clear whether QMC calculations closer to the Fermi
edge would show such a feature.

The question arises of whether the uncertainties in the
correct momentum distribution have a significant impact on
our values fo% (). Figure 3 show& (?) atr,=5, calculated FIG. 3. 3% for r¢=5 calculated from Eq(37) using the OB-
from Eq.(37) using the HFGyW,, OB-QMC, and GZ-QMC  QMC, GZ-QMC, G,W,, and HF momentum distributions.

-1

NIIlIIIIlIIIIlIIII
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TABLE I. The zeroth-order ternx (%) for r =5 calculated using
the HF,GyW,, OB, SMC, and GZ-QMC momentum distributions
and Eqs(37) and(198).

k HF GoW, OB Ve GZ |
00 —-3317 -3057 -3.131 -3.114 -3.095 .
0.6  —2.885 —2.631 —2673 —2656 —2.669 —
1.0 —-1.686 —1573 —1578 —1561 —1573 s
14  —0.640 —0.654 —0.659 —0.662 —0.658 —

diagram(b) in Fig. 1. The next term goes asdl/and con-
tains the difference of diagranis)—(b). Since the Green’s
function G(k,w)— 1/ in the high-energy limit, it does not
appear in the final expression for the local term.

The relation to the local ter (Y can be seen by writing

the structure factor in terms of the dielectric function FIG. 4. The structure facto(q) as a function ofg atrs=5.
(g, ) 1 Data from the GSB fitting formula to the QMC data, the HF ap-

proximation, and from the RPA and VS dielectric functions are
302 foc 1 shown. Data for the QMC-GSB structure factorrat=1 are also

. dwlme(q,w)' (41 presented.

S(q)=— Bar,
Inserting Eq(41) into Eq.(26) gives exactly the high-energy static structure factor of the HEG, and a fitting formula using
limit of Eq. (31) if the vertex function is set to unity, i.e., the this data has been developed by Gori-Giorgi, Sacchetti, and
GW approximation. Consequently, tig& W, approximation Bachelet(GSB).3*33 Results forr(=5 and QMC-GSB data
corresponds to using the noninteracting Green’s function antbr r =1 are shown in Fig. 4, where we have also included

the RPA screened potential in the diagram of Fig).1 the HF structure factor of Eq44). The HF structure factor is
The local part of the first-order term is evaluated from Eq.linear at smallg while the more advanced approximations
(26). SinceS(q) is isotropic we obtain which include correlation effects are quadratic at snegll
The linear dependenc?()a in HF theory leads to a divergence of
32 = dqg the integral in Eq(42).3*
1) _ 2
El(oc)_ﬁ(‘”s) Jo ?S(Q)' (42) All approximations which go beyond HF theory give fi-

nite values ofs.{X), since the structure factor is proportional
Equations(42) and (41) are equivalent to the expression to 2. We calculate® °® from Eq.(42) using the GSB-QMC
for the second momeri(*) in terms of the spectral func- formula and the RPA and VS local-field approximations for
tion of the self-energy and the screened interaction given byhe structure factofFig. 5. The main contribution to the
Eq. (17) of the paper by von Barth and Holfn. integral in Eq.(42) is from the smallq region. Figure 4
Diffusion QMC calculations give the pair correlation shows that at smalt the values of the structure factors
function g(r) directly>? From these data one can calculate
highly accurate static structure factors using the relation 1

Equations(42) and(41) therefore enable us to calculate the

local term and the second moment within the self-energy
approximations introduced in Sec. IV by using the corre- o5
sponding dielectric function. In addition we study the local CNQ
term in the HF approximation, where the structure factor is
given by

0

) 9

S(q)—1=n0f d3re' 9 g(r)—1]. (43 8
7

6

—g— —qg3 <2
siq={ 49 169" 1 44)

1, q>2. 0 1 2 3 4

4
3
3 1 2
}
0

()]

Structure factors within the RPA using the dielectric func-
tion of Eq.(36) and the VS approximatiofif (q) = fs(q) in FIG. 5. The local tern® (%) as a function of the density param-

Eqg. (35] were calculated from Eq41). Ortiz, Harris, and  eterr, calculated using different approximations for the structure
Ballone&® have performed diffusion QMC calculations of the factor and the GSB-QMC structure factor in E¢2).
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1 T 17 T T T T 1 ing work and will be presented in a forthcoming paper. In the
present paper we will analyze the nonlocal term within the
single-Slater-determinant approximati@SDA). The SSDA
corresponds to the well-known mean-field decoupling proce-
dure. For the expectation value in question we obtain

<alij’¢r;)qak*q*qllf>~ 2 5q’0<a;*q'aak*Q*q/U>
po

x(a;,,apm(,,)

+
— | | | | — _2 5p’k_q_qr50.'a.r<ak_q,o_ap+qo.r>
po
0 | | | | |

r X(ay, 18 q-q'a)- (46)

1), 2 ) ) Dropping again the=0 term we obtain for the second term
FIG. 6. The ratia® (/2 as a function of the density parameter in Eq. (27)
rs calculated using different approximations for the structure factor ' '

and the GSB-QMC structure factor in E@2). In addition we plot

this ratio for the high-density limi(HDL) of the RPA Eq.(45). The — i 2 v(q)v(q’)(a;, , E)qaqufq’0>
symbols indicate the lower limit of the range where the fitting for- Q0? aq’ 4o

mulas for the structure factor in QM@liamond and VS(circle)

are valid.

2
~ & / U(q)U(q,)nk—q/rrnk—q—q/rr (47)
which include correlation effects lie almost on top of each qd
other. It is for this reason that the various approximations tand arrive at the following expression for the nonlocal term
Efolc) in Fig. 5 are rather similar. The RPA result deviateswithin the SSDA,
from the QMC result more than the local-field ones. This
reflects the well-known fact that correlation effects are im- 1y _ ,
portant in the description of the electron gas at metallic den- ko=~ @ / v(Q)v(qd")Nk—g-g/0(1—2Nk_q0)
sities. The inclusion of local-field effects withi&(q) gives a
results surprisingly close to the QMC data even at quite low —(2{9)2, (48)
densities, with the VS result being closest. , ) . ,

In the high-density limitS(q) approaches the HF result, This term corresponds to the high-energy limit of diagram

although the quadratic behavior fgr—0 is preservedsee (d) in Fig. 1, \_NhiCh exhibits crossed in_terac_:tion_lines and
the QMC-GSB curve for,=1 in Fig. 4. This results in a goes substantially beyond ti&W approximation[diagram

S . . . f Fig. 1].
contribution proportional tor?Inr, to 3{ in the high- ©o . .
density limit. In Fig. 6 we plot(X/r2 as a function of . Equation(48) can be rewritten as

The RPA data clearly shows the logarithmic divergence at 2arg (= k—q
r«—0. Itis possible to calculate this leading order term ana- 3 {}=— — f dqgs{(1-2ng)In o — (22,
lytically within the RPA, using the strategy of Gell-Mann 0 q (49)

and Brickner as presented in the review paper by Hedin and
Lundqvist!” and we obtain For the sake of internal consistency, the noninteracting mo-
mentum distribution of Eq(38) should be used in E¢49).1*
However, to gain some understanding of the influence of
correlation we also calculated the SSDA nonlocal term using
the QMC momentum distribution. Within this approach the
correlation reduces the first-order term at smhlland
smooths it arounck=1. This is only a preliminary result
which needs to be tested by performing the full QMC calcu-

. (45)

1
—Elnrs—irb

8
S~ —(ary?

By fitting the numerical values for smatl; we obtainb
~(.706. The dotted curve in Fig. 6 corresponds to @§)
with b=0.706.

The QMC and VS data follow similar curves to the RPA, |5tion of the four-operator expectation value.
but for these cases no data is available at veryrigwHow-

ever, the data in Fig. 6 strongly suggests that the logarithmic In Fig. 7 we showE(kl) calculated as a sum of the QMC
, . (1) (1 i
divergence in the slope is not an artifact of the RPA. value ofXjq; and the SSDA result fd i, using the QMC

and the HF momentum distributions. The full te@® is
reduced compared with its local contributigdot-dashed
line in Fig. 7).

The nonlocal term of Eq(27) is complicated due to the Diagram(d) in Fig. 1 shows the first vertex correction in
four-operator expectation value in the second term. The exaet GWI" scheme for the self-energy of E(1).> Due to the
calculation of this term within QMC is the subject of ongo- simplified form of the vertex function, any local-field ap-

C. The nonlocal part of the first-order term 2}
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FIG. 7. The first-order terrd (1) calculated within the SSDA for FIG. 8. The imaginary part of th&,W, self-energy at;=5.0
r«=5.0 asEl(olc)JrE(nH( using the OB-QMC momentum distribution for two different values ok. In addition we plot the leading term of
(solid line) and the HF momentum distributiofdotted ling. The [Im3, (k, )| in the high-energy limi{HEL), given by Eq.(51).
dashed line indicates the locak-{ndependent correction within

VS. As a reference we have also plotted the QMC valué@f itself, Ime~1— — Ime. With the RPA expression, the integral

(dot-dashed line can be evaluated analytically, which gives the leading term
proximation along the lines discussed in Sec. IV leads to a )

local (i.e., k-independentcorrection asv— . The VS value M (K. o)~ — 16v2 (ary) __C o

(dashed line in Fig. 7comes close to thie=0 result of both m2(k, ) 37 32 2 YT

the QMC-SSDA and the HF-SSDA dispersions, but deviates (51)

increasingly at larger values &f This result shows that the
inclusion of nonlocal effects into the vertex function is im- Consequently, the integrand for théh moment behaves as
portant. " 2732 at large positive frequencies, and the last finite mo-
ment is obtained fon=2. In Fig. 8 we display the imagi-
D. Higher-order terms nary part of theGyW, self-energy and its limiting behavior
After calculating the zeroth- and first-order terms of theglv\?\?ebhya\llzg'ésngl'yzed the other diagrams to second order in
self-epergy expansion for large frequencies of Eip) we the bare Coulomb potential and found that only the vertex
can directly obtain the first and second spectral moments Vlaiagram in Fig. 1d) contributes to the %2 term in the
Egs. (13) and (14). However, the question remains whetherhi h-ener Iim'it as
the higher moments are finite, i.e., we have to determine the 9 oy
indexn, of the last finite moment in the expansions Ed4)
and(12).
Instead of using the commutator expression of Ed) Im"(k,w)~+ > 3
we can check the momeni4{") by a direct evaluation of the @

defining integral of Eq(9) using the spectral function of Eq. _ . . .
(8). If the imaginary part of the self-energy is zero outside avhereC is defined by Eq(51). From general considerations

fixed frequency range, the integral is finite for any powerWe expect that the contributions of all higher-order diagrams

n, and all moments are finite. Otherwise, the convergencd? tgl‘ze high-energy expansion Of_En decay faster t_han

of the integral is determined by the high-frequency limit of 1/@”". Therefore we conclude quite generally that in the

the integrand, i.e., by the behavior a"~2[Im3 (k)| at HEG, n;=2, and therefore the spectral momemg”=1,

w— *+o. When calculating the imaginary part of tieW, Ml(f) andM(kz) are the only finite ones. This surprising result

self-energy in the large-frequency limit, an intermediatecan be understood if one notéd that the electron disper-
sion €p(q) is unlimited at positive energies ard) that the
basic interaction potential(q) has a power-law dependence
at large momentum transfer (hereq™2).

Im3 (k=0,0)~ >, v(q)Ime q,0—ex(q)]. (50 We have also analyzed the high-energy limit of the imagi-

q nary part of the self-energy in the local-field approximation,

defined by Eqgs(31), (32), and(34), and find that

The leading contribution comes from the positive disper-
sion branch in Ine~ ! and restricts the summation in E&0) c
via w~2¢y(q) to large values ofy. Therefore, the inverse Im3(k,w)~—[1—f(g—)]
dielectric function can be replaced by the dielectric function

w— + o, (52

step is

T w— + 0, (53)
w
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whereC is defined by Eq(51). For the Hubbard local-field mutation relations of the fermionic operators and the expres-
factor we havef(q—o)=1/2, thus reproducing exactly the sion for the density operator given in E@),
sum of the terms dfefined by Eq&1) and (52) in the high-
energy limit of I '(k,w). PR +on o+

The general relation between the high-frequency limit of [Ako:Pql-=Ak+qos [k Pql-= — 8 go-  (AD)
ImX and the spectral moments works in both directions. Ifaccording to Eq.(16) the first moment is
the commutation relation of Eq16) produces finite results

up to orderny, the imaginary part of the exact self-energy N
decays faster tham~ (11~ 1), M{E=([[ax, .H1- a.,1:). (A2)

Decomposing the Hamiltonian of E¢l) into the free and
the interacting partd=H,+H,, we calculate

We have derived analytic expressions for the lowest three
moments of the spectral function of the one-particle Green'’s " +9 _
function of the three-dimensional HEG. These moments are B Hal- 8] = o). *3)
related to the zeroth and first coefficients in the expansion Olsting
the self-energy in inverse powers of the frequency.

The zeroth-order term in the high-energy expansion was I R R
calculated using the HR5,W,, and QMC momentum dis- [8kosPaP —q)- = 2PqBk—got Bkos  [Bke N]- =8,
tributions. We established that the use of different parametri- (A4)
zations of the QMC data does not change the numerical re- btai
sults for the zeroth-order term significantly. TRgW, and we obtain
QMC data gives first moments which are significantly larger
than the HF values below the Fermi edge and very close to
them above the Fermi edge. TBgW, result does not differ
significantly from the QMC data.

The first-order term in the high-energy expansion can b& herefore
written as the sum of a local and a nonlocal term. For the
HEG, we have shown that the local term can be rewritten in R 1 R
terms of the static structure factor. We have calculated the  [[ax,.H>]- ,akﬁ,]+=§ > V(A Pok—qo K+
local term within various approximations, including a param- a
etrization of the QMC data for the structure factor. 1

We have performed an approximate calculation of the - a E v(q)akiq(,ak,q(,. (AB)
nonlocal term in the SSDA, which indicates that it is large 4

and has a strongdependence. The local part is positive, but . . .
the nonlocal part is negative and therefore leads to a substaﬁ‘—OIOIIng Egs.(A3) and(A6) and taking the expectation value

tial reduction in the size of the first-order term and the cor-V¢ @MVé at Eq(18).

responding second moment of the spectral function. We have

identified the nonlocal term in the SSDA with the high- APPENDIX B: DERIVATION OF THE SECOND MOMENT
energy limit of the first vertex correction beyor@W. A
QMC calculation of the nonlocal term would be very useful,

and this will be addressed in a forthcoming paper. We have

VI. CONCLUSION AND OUTLOOK

~ 1 ~
[k Hol- =5 2 v(@pg@qr- ()

According to Eq.(16) the second moment is given by

shown for different approximations that higher moments are ij}=<[[[akg,|:|], A ap 1)

divergent and concluded that this is a general property of the . ~

HEG. :<[[[ak(rle]fle]fiaI:r(r]+>
Our results provide additional benchmarks for self-energy A N

theories of the HEG and might help in resolving the current +2([[laks Hil- Hal - e, ]4)

debate concerning the valence bandwidth of alkali metals. B ~
J (&g HalHa)all). (8D
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% % + _ (0)
APPENDIX A: DERIVATION OF THE FIRST MOMENT ([[Maks Hil- Haol- a ] ) = ek . (B3)

For the derivation of the moments we use the followingFor the third term in Eq(B1) we require the following com-
commutation relations which are derived from the anticom-mutator,
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[[as . H2]-  H2]-

- ( )Z ( ,)[A . ]
= v v Ak_qoPg'P—q’l-
12 4% q pr 4 )LPq@k—qo:Pq'P—q

s

202 2 v(q)% v(9")[ Pk go NI .

Using

[Pq@k—qo1Pq' P—q']- = PqBk—qo T 2PqPq'Bk—q—q' o »
and

[;)qaqua-N]fz;anquo- (B4)

one arrives at the following expression,

~ N 1 L~ a
(3 Hol- ol = 5 2 0(@) 2 v(a)papyi-g-ao-
q!

With Eq. (A1) and

PHYSICAL REVIEW B69, 045113 (2004
~ n +
[pqiak—q’o—]—:ak_q_q!o-! (B5)

we finally obtain

[[[akUIQZ] - 1|q2]* 1a|jo’] +

=02 v(9) 2 v(a)[PePqBk—q-q o r@nel+
q q’

1
> v(g)

1 ~ A
— 2
= _ v J—
Q% (Q)pqp q 024

n
XE U(q,)ak_q_qrgaqufq’a
q/

2 .
Y 2 0@ 0(4)3 g oP@k—q-q'o-
a q

(B6)

With the definitions of Egs.(B2) and (B3) we arrive
at Eq.(22.
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