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Based on the Bethe-Salpeter equation and the Ward identity derived from it, we provide a scheme for
constructing the vertex function in the self-consistent iteration loop to determine the electron self-energy.
The scheme is implemented in the homogeneous electron gas at the sodium density.
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Angle-resolved photoemission spectroscopy (ARPES)
experiments provide invaluable information on the elec-
tronic structure of a material. Conventionally ARPES is
analyzed on the assumption that the final state is well de-
scribed by the free-electron model [1]. In their recent Let-
ter [2], Yasuhara et al. threw doubt on the validity of this
assumption; they claimed that the interacting electron-gas
model should be used instead. Since it touched upon one of
the fundamental issues in condensed-matter physics, their
claim invited much debate. For example, Ku et al. [3]
raised a problem of the lack of self-consistency in deter-
mining the self-energy S in Ref. [2]. In this Letter we
report substantial progress on this problem.

A canonical self-consistent calculation scheme for S

in solids has been formulated by Hedin [4] who advo-
cates the so-called GW approximation (GWA) [5]. In the
early stage of actual calculations, S was evaluated with-
out self-consistency in the electron Green’s function G,
namely, with G � G�0�, and the dynamically screened in-
teraction W was approximated to W �0� the effective inter-
action in the random-phase approximation (RPA). This
simplest G�0�W �0� treatment yielded the results in appar-
ently good agreement with experiments such as the band-
width narrowing in alkali metals [6]. In recent years, a
faithful implementation of GWA has become feasible at
least in the electron gas [7–9], as well as in simple metals
and semiconductors [10]. This elaboration, however, has
made the results deviate from experiments, indicating the
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complicated situation in which the self-consistency should
be sought in conjunction with the vertex corrections.

Since a lack of the vertex function G is well recog-
nized as a major drawback of GWA, there have been
many attempts to include G in the calculation of S, usu-
ally abbreviated to GWG. There are three avenues to G:
(a) term-by-term calculation of low-order corrections in W
[11], (b) estimation of G using the local-field factor [7,12],
and (c) systematic construction of G by an iterative proce-
dure [13]. In this Letter, we propose a hybrid scheme for
G combining merits of these approaches without increas-
ing computational cost much from that for GWA.

Using this scheme, we have performed the self-
consistent calculation of S in GWG for the electron gas,
from which we can derive the quasiparticle energy disper-
sion. Assuming the interacting electron-gas model for the
final state in analyzing ARPES as in Ref. [2], we obtain a
very good agreement between theory and experiment.

The Dyson equation relates G�p� the one-electron ther-
mal Green’s function with G�0��p� the bare one through

G�p�21 � Gs�p, ivn�21 � G�0��p�21 2 S�p� , (1)

where p is used as a combined notation of momentum p �
�p1, p2, p3�, spin s, and fermion Matsubara frequency
ivn � ipT�2n 1 1� at temperature T with an integer n
[14]. The Bethe-Salpeter equation determines the three-
point vertex function Ga,n�p, p 1 q� in both charge �a �
1� and spin �a � 2� channels as
Ga,n�p, p 1 q� � gn�p, p 1 q� 1 T
X

vn0

X

p 0s 0

Ĩa�p, p 1 q; p 0, p0 1 q�G�p0�G�p0 1 q�Ga,n�p0,p0 1 q� , (2)
where n � 0 indicates the scalar part while n � 1, 2, and
3 the vector part, q denotes the combination of momentum
q and boson Matsubara frequency ivl � 2ipTl with an
integer l, gn�p, p 1 q� is the bare three-point vertex, and
Ĩa�p, p 1 q; p0, p0 1 q� is the electron-hole four-point
irreducible interaction in the channel a. From Eq. (2), we
can derive the Ward identity (WI), representing the local
electron-number conservation law, as

ivlGa,0�p, p 1 q� 2 jqjGa,ly�p, p 1 q�
� G�p 1 q�21 2 G�p�21, (3)

with Ga,ly�p, p 1 q� the longitudinal vector vertex part,
defined by Ga,ly�p,p 1 q� �

P3
n�1 qnGa,n�p, p 1 q�

�jqj.
Introducing the function Ra�p, p 1 q�, defined by

Ra�p, p 1 q� �
Ga,0�p, p 1 q�

P3
n�1 qngn�p,p 1 q�

jqjGa,ly�p, p 1 q�
,

(4)

we can rewrite Eq. (3) into

Ga,0�p, p 1 q� �
G�p 1 q�21 2 G�p�21

ivl 2 �ep1q 2 ep��Ra�p, p 1 q�
,

(5)

where use is made of the fact that
P3

n�1 qngn�p, p 1 q�
� ep1q 2 ep with ep the bare one-electron dispersion.
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Similarly, Ga,ly�p, p 1 q� is given in terms of Ra�p, p 1 q� as

Ga,ly�p, p 1 q� �
G�p 1 q�21 2 G�p�21

jqj �21 1 Ra�p, p 1 q�ivl��ep1q 2 ep��
. (6)
According to the Fermi-liquid theory [15], appropriate
sum rules or conservation laws determine the exact values
for Ra�p, p 1 q� at the Fermi surface (jpj � pF) in both
the v limit (q � 0 and then vl ! 0) and the q limit
(vl � 0 and then q ! 0). In fact, Ra�p, p 1 q� tends
to unity in the v limit, while in the q limit we obtain

R1�p, p 1 q� ! k�k�0�,

and R2�p, p 1 q� ! x�x�0�,
(7)

where k and x are, respectively, the compressibility and
the spin susceptibility with k�0� and x�0� the respective
noninteracting values.

So far everything is formal and exact. Now we resort to
an approximation. If we replace Ĩa�p, p 1 q; p 0, p0 1 q�
in Eq. (2) by some suitably averaged quantity �Ĩa�p,p1q

over the variables p0, we obtain

Ga,0�p, p 1 q� � G
�a�
a,0�p, p 1 q�

� 1 2 �Ĩa�p,p1qPa�q� , (8)

Ga,ly�p, p 1 q� � G
�a�
a,ly�p, p 1 q�

� �ep1q 2 ep

2 �Ĩa�p,p1qPa�q�ivl��jqj , (9)

where Pa�q� the polarization function in the channel a is
defined in a conventional way as

Pa�q� � 2T
X

vn

X

ps

G�p�G�p 1 q�Ga ,0�p 1 q, p� .

(10)

In deriving Eq. (9), we have used Eq. (3) to relate Pa�q�
with the “longitudinal vector” polarization function, de-
fined by Eq. (10) with Ga,ly in place of Ga,0. Physically,
�Ĩa�p,p1q can be understood by the concept of G6�q�,
the exchange-correlation local-field factor [16], or equiva-
lently f6,xc�q�, the exchange-correlation kernel appearing
in the time-dependent density functional theory (TDDFT)
[17], indicating that a simple choice for �Ĩa�p,p1q is
fa,xc�q� or 2Ga�q�V �q� with V �q� � 4pe2�q2. Then,
approximating P�0���1 1 fa,xcP

�0�� to Pa with P�0� the
polarization function in RPA, we see that Eq. (8) for Ga,0

is reduced to Ga,0 � �1 1 fa,xcP
�0��21, an expression

very frequently adopted in the literature [7,12,16].
In spite of its popularity, Eq. (8) combined with Eq. (9)

is unsatisfactory in the sense that WI is not fulfilled, no
matter how �Ĩa�p,p1q is chosen. However, we find that
WI is made satisfied, if we determine the vertex parts by
Eqs. (5) and (6) through Ra�p, p 1 q� which is approxi-
mated to the ratio of Eqs. (8) and (9) as

Ra�p, p 1 q� �
G

�a�
a,0�p, p 1 q� �ep1q 2 ep�

jqjG
�a�
a,ly�p, p 1 q�

. (11)

In fact, substitution of Eq. (11) into Eqs. (5) and (6) pro-
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vides the vertex parts as [18]

Ga,0�p, p 1 q� � G
�a�
a,0�p, p 1 q�G�b��p,p 1 q� ,

(12)

Ga,ly�p, p 1 q� � G
�a�
a,ly�p, p 1 q�G�b��p, p 1 q� ,

(13)
with G�b��p, p 1 q� a functional of G, defined by

G�b��p, p 1 q� �
G�p 1 q�21 2 G�p�21

G�0��p 1 q�21 2 G�0��p�21 . (14)

Because of the factor G�b�, we easily see that Eq. (12) in
conjunction with Eq. (13) fulfills WI, irrespective of the
form of �Ĩa�p,p1q. The importance of WI in determin-
ing quasiparticle energies has already been illustrated in a
toy model [19]. The presence of G�b� is also physically
reasonable, because it “measures the distance” of each
electron specified by either p or p 1 q from the Fermi
surface. This feature cannot be described by such a factor
as f6,xc�q� which depends only on “the relative distance”
between these electrons.

Let us apply the above scheme to the interacting homo-
geneous electron gas in which only the charge channel is
relevant in calculating S�p�, given by

S�p� � 2T
X

vl

X

q
W �q�G�p 1 q�G1,0�p, p 1 q� ,

(15)
with the effective interaction W�q�, defined by

W�q� � V �q���1 1 V �q�P1�q�� . (16)

As schematically shown in Fig. 1, the self-consistent itera-
tion loop to determine S�p� is now completed. Once we
specify �Ĩ1�p,p1q, we can actually implement this loop,
starting from the noninteracting solution and ending the
loop when the relative difference in S�p� between input
and output at each p becomes sufficiently small. We con-
sider the difference small if it is less than 1025.

A conceptually simple method of making a systematic
determination of �Ĩ1�p,p1q is to employ perturbation the-
ory, expanding the vertex corrections in terms of W �0�

[11,20]. Computationally a difficulty arises in calculat-
ing higher-order terms. A practical way to remedy this
difficulty is to rescale the total magnitude of �Ĩ1�p,p1q

in the lowest-order calculation in order to satisfy Eq. (7)
with Ra�p,p 1 q� in Eq. (11), using the accurate val-
ues of k as a function of the electronic density parame-
ter rs obtained by Monte Carlo simulations [21]. Another

G WΣ ΠΓEq. (1) Eq. (12) Eq. (10) Eq. (16)

Eq. (15)

FIG. 1. Iteration loop to determine the self-energy.
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method of determining �Ĩ1�p,p1q is to use the local-field
factor f1,xc�q�, in which Eq. (7) is made satisfied by hand
in constructing f1,xc�q�. We have made many trials in
both methods and found that the best choice for �Ĩ1�p,p1q

is fhom
xc �q, ivl� employed in TDDFT, although the final

results for S�p� and concomitant P1�q� are not very
sensitive to the details of �Ĩ1�p,p1q, as long as Eq. (7)
is fulfilled. The actual form for fhom

xc �q, v� is given ex-
plicitly in Sec. 6.1 in Ref. [22]. One of its characteristic
features is that fhom

xc �q, 0� is made equal to 2V �q�G1�q�
with the rather accurate local-field factor G1�q� obtained
by Monte Carlo simulations [23]. As for the v depen-
dence, an interpolation scheme using the Kramers-Kronig
relation and the asymptotic behavior of Imfhom

xc �q, v� !
223p�15v3�2 is adopted [17]. Some ambiguity exists in
defining fhom

xc �q, v� at finite q and intermediate values of
v, but a minor modification to fhom

xc �q, v� as explained in
Ref. [18] is enough to reproduce the accurate value of the
self-energy at the Fermi surface S�pF, 0�.

With this choice of �Ĩ1�p,p1q, we have calculated
S�p, ivn� as well as P1�q, ivl� self-consistently on the
imaginary axis in the v plane for the electron gas with
rs # 5 at the temperature T � 0.01EF with EF the Fermi
energy. The obtained values for all static properties are
found to agree very well with the respective known ac-
curate ones. To some extent, this is self-evident, because
�Ĩ1�p,p1q is so constructed as to reproduce most of them.
A nontrivial check on the overall accuracy of S�p, ivn�
can be made by examining the momentum distribution
function n�p� �� limh!10T

P
vn

G�p�eivnh�. Our result
for n�p� is in fairly good agreement with the one in
the effective-potential expansion (EPX) method, a result
considered to be most accurate among various data [24].
(The comparison is made at rs � 1 in Ref. [18].) In the
inset (a1) of Fig. 2, our values for zF, the renormalization
factor at the Fermi level or the magnitude of the jump
in n�p� at jpj � pF, are compared with those in EPX,
GWA, and the Fermi hypernetted chain method [25].

Analytic continuation onto the real v axis is needed
to obtain A�p, v� �� 2ImG�p, v��p�, the one-electron
spectral function. This is done with the use of the Padé ap-
proximant [26], paying full attention to ensuring analytic-
ity in the upper-v plane. In actual calculations of A�p, v�,
instead of genuinely along the real axis, we consider the
values at v 1 ig with g � 0.1pT so as to make d-
function peaks visible in numerical calculations. In the fol-
lowing we give our results at the sodium density, rs � 4.

In Fig. 2(a), we plot A�p, v� at the Fermi surface. The
result in the noninteracting system (the dot-dashed curves)
indicates the effect of the artificial width g on the spec-
tral shape. We see that the quasiparticle represented by the
central peak has a vanishingly small width, because the
calculated width of the peak is the same as g. The weight
of this d-function contribution is just zF. Compared to
the partially self-consistent GW �0� calculation (the dashed
curve), our result is much closer to that in RPA (the dotted
curve). This supports the well-known argument that the
226402-3
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FIG. 2. One-electron spectral function (a) at the Fermi level
and (b) at the band bottom. In the inset (a1), our results for zF
as a function of rs are compared with those in other methods.
The inset (a2) gives the magnified A�p, v� at jpj � pF to show
the detail of plasma sidebands.

self-energy insertion is mostly canceled by the vertex cor-
rection, a fact attributable eventually to the Pauli principle
[27].

Such a cancellation does not work for jpj very far away
from the Fermi surface, as exemplified in Fig. 2(b) which
shows that our result differs very much from that in either
RPA or GW �0� at the band bottom. More specifically, our
main peak describing the quasiparticle is associated with
the width as large as a few tenths of EF, indicating that the
quasiparticle is suffering from a strong damping effect due
to the multiple electron-hole pair excitations that are fully
included in our treatment. These pair excitations contribute
to the long tail in A�p, v� extending to the vague peak cor-
responding to the plasmaron or the real plasmon coupled to
the quasiparticle [4]. Note that the strong damping effect
of the plasmaron can be well described even by GW �0�, but
the correct peak position (namely, Ep , the quasiparticle po-
sition minus vp , the plasmon energy) can be obtained only
through the proper inclusion of vertex corrections [19].

In spite of the strong damping effect, we can identify
the quasiparticle peak position Ep at each p in A�p,v�.
In the Fig. 3 inset, we plot the quasiparticle self-energy
correction, S�p, Ep�, as a function of jpj. We see that our
result for the real part (the solid curve) is very close to
that obtained in Ref. [2] (the dot-dashed curve), but it is
definitely different from that in RPA (the dotted curve). In
226402-3
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FIG. 3. Comparison between the experimental energy band
and the calculated virtual energy band defined in Eq. (17). Inset:
Quasiparticle self-energy correction in both real and imaginary
parts as a function of jpj at rs � 4.

particular, our method provides a monotonically increas-
ing ReS�p, Ep� with the increase of jpj, leading to the
widening of the occupied bandwidth by about 2%.

An interesting feature is that ReS�p, Ep� is quite flat in
the region 0.5pF , jpj , 1.5pF, implying hindsight that
the Slater’s Xa method or the local-density approxima-
tion to DFT works so successfully. Outside of that re-
gion, ReS�p, Ep� changes gradually with the concomitant
rather rapid increase in jImS�p, Ep �j. For jpj larger than
about 2pF, the opening of the plasmon-damping channel
makes ReS�p, Ep� change in proportion to jpj21 [2] and
jImS�p, Ep�j increase further, though no sudden change is
seen in our result in contrast to that in RPA.

Since ReS�p, Ep� cannot be neglected even for jpj as
large as 4.5pF (corresponding to Ep 	 66 eV, the maxi-
mum energy used in ARPES), we cannot validate the
free-electron assumption for the final state for sodium.
Thus the energy band obtained from the ARPES data ana-
lyzed on the free-electron assumption [28] should not be
compared with our Ep directly but with “the virtual energy
band” Evir

p , defined by [2]

Evir
p � Ep 2 ReS�p 1 K�110�, Ep1K�110� � , (17)

with K�110� the reciprocal-lattice vector in the direction
[110]. As is seen in Fig. 3, though the result in Ref. [2]
(the dot-dashed curve) is fairly good, our result is in perfect
agreement with experiment. Implications of this result will
be discussed in detail elsewhere, together with a similar
analysis on aluminum.

To sum up, we have proposed a useful functional form
for the vertex function incorporating the Ward identity and
the accurate information on static quantities provided by
226402-4
quantum Monte Carlo simulations. By implementing the
self-consistent calculation of the self-energy with the ver-
tex function, we conclude that the occupied bandwidth of
sodium is slightly widened.
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