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Inclusion of Vertex Corrections in the Self-Consistent Calculation of Quasiparticles in Metals
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Based on the Bethe-Salpeter equation and the Ward identity derived from it, we provide a scheme for
constructing the vertex function in the self-consistent iteration loop to determine the electron self-energy.
The scheme is implemented in the homogeneous electron gas at the sodium density.
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Angle-resolved photoemission spectroscopy (ARPES)
experiments provide invaluable information on the elec-
tronic structure of a material. Conventionally ARPES is
analyzed on the assumption that the final state is well de-
scribed by the free-electron model [1]. In their recent Let-
ter [2], Yasuhara et al. threw doubt on the validity of this
assumption; they claimed that the interacting electron-gas
model should be used instead. Since it touched upon one of
the fundamental issues in condensed-matter physics, their
claim invited much debate. For example, Ku et al. [3]
raised a problem of the lack of self-consistency in deter-
mining the self-energy 3 in Ref. [2]. In this Letter we
report substantial progress on this problem.

A canonical self-consistent calculation scheme for 3
in solids has been formulated by Hedin [4] who advo-
cates the so-called GW approximation (GWA) [5]. In the
early stage of actual calculations, 3 was evaluated with-
out self-consistency in the electron Green’s function G,
namely, with G = G'©, and the dynamically screened in-
teraction W was approximated to W(© the effective inter-
action in the random-phase approximation (RPA). This
simplest GOW© treatment yielded the results in appar-
ently good agreement with experiments such as the band-
width narrowing in alkali metals [6]. In recent years, a
faithful implementation of GWA has become feasible at
least in the electron gas [7-9], as well as in simple metals
and semiconductors [10]. This elaboration, however, has
made the results deviate from experiments, indicating the

PACS numbers: 71.10.Ca, 71.15.-m, 71.20.Dg, 71.45.Gm

complicated situation in which the self-consistency should
be sought in conjunction with the vertex corrections.

Since a lack of the vertex function I' is well recog-
nized as a major drawback of GWA, there have been
many attempts to include I in the calculation of 3, usu-
ally abbreviated to GWI'. There are three avenues to I':
(a) term-by-term calculation of low-order corrections in W
[11], (b) estimation of I" using the local-field factor [7,12],
and (c) systematic construction of I' by an iterative proce-
dure [13]. In this Letter, we propose a hybrid scheme for
I combining merits of these approaches without increas-
ing computational cost much from that for GWA.

Using this scheme, we have performed the self-
consistent calculation of X in GWT for the electron gas,
from which we can derive the quasiparticle energy disper-
sion. Assuming the interacting electron-gas model for the
final state in analyzing ARPES as in Ref. [2], we obtain a
very good agreement between theory and experiment.

The Dyson equation relates G( p) the one-electron ther-
mal Green’s function with G”( p) the bare one through

G(p) ' =Gu(piw,) ' =G2p) !t = S(p), (1)

where p is used as a combined notation of momentum p =
(p1, p2, p3), spin o, and fermion Matsubara frequency
iw, = i7wT(2n + 1) at temperature T with an integer n
[14]. The Bethe-Salpeter equation determines the three-
point vertex function I'y, ,(p, p + ¢) in both charge (o =

| +) and spin (@ = —) channels as

Tawpop + @) =7(pop + @) +TD. D Lp,p + ¢:p'p' + QG(p)G(p' + QTar(p'.p' + @), ()

w, p'o’
where » = 0 indicates the scalar part while v = 1, 2, and
3 the vector part, g denotes the combination of momentum
q and boson Matsubara frequency iw; = 2i7T! with an
integer [, v, (p, p + q) is the bare three-point vertex, and
I.(p.p + q:p'.p' + q) is the electron-hole four-point
irreducible interaction in the channel «. From Eq. (2), we
can derive the Ward identity (WI), representing the local
electron-number conservation law, as

ioLao(p,p +q) — alTasn(p.p + )
=Glp+q ' —G(p~', B
with Ty ;,(p, p + ¢) the longitudinal vector vertex part,

dTﬁIIled by Tasw(pp + ) =30 1 @Tan(p,p + q)
/lql.
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Introducing the function R,(p, p + ¢q), defined by

Too(p.p +9) Y01 4,7(p.p +q)
lqITe 1u(p,p + q)

R.(p,p+gq) =

B

“4)

we can rewrite Eq. (3) into

Gp +q) ' —G(p)!
€)/Ralp,p + q)°
&)
where use is made of the fact that Zizl q,v.,(p,p + q)
€p with €, the bare one-electron dispersion.

Laolp,p +q) = ——— —
lw) (6p+q

= €p+q —
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Similarly, 'y ;,(p, p + ¢q) is given in terms of R,(p, p + q) as

Glp+q9 ' -G(p!

ra,lv(pvp + Q) =

According to the Fermi-liquid theory [15], appropriate |

sum rules or conservation laws determine the exact values
for R,(p, p + g) at the Fermi surface (|p| = pg) in both
the w limit (q = 0 and then w; — 0) and the q limit
(w; = 0 and then q — 0). In fact, R,(p,p + ¢) tends
to unity in the w limit, while in the q limit we obtain

Ri(p,p + q) — x/x9,

and R-(p,p + q)— x/x"7,

where « and y are, respectively, the compressibility and
the spin susceptibility with «© and @ the respective
noninteracting values.

So far everything is formal and exact. Now we resort to
an approximation. If we replace I,(p,p + ¢;p'.p' + q)
in Eq. (2) by some suitably averaged quantity (I,), »+4
over the variables p’, we obtain

(N

Foolp.p + q) = Fff})(p,p + q)
=1- <7a>p,p+qHa(Q), )

(@)
Cosw(pop + @) = Tor(p,p + 9

= [ep1q — &
- <7a>p,p+qHa(Q)iwl]/|q|, (9)

where I1,(g) the polarization function in the channel « is
defined in a conventional way as

Ma(g) = —T> D G(p)G(p + @Tan(p + ¢, p).
w, Ppo
(10)

In deriving Eq. (9), we have used Eq. (3) to relate I1,(g)
with the “longitudinal vector” polarization function, de-
fined by Eq. (10) with T'y ,, in place of I'y o. Physically,
(Ia)p p+q can be understood by the concept of G=(q),
the exchange-correlation local-field factor [16], or equiva-
lently f+ xc(g), the exchange-correlation kernel appearing
in the time-dependent density functional theory (TDDFT)
[17], indicating that a simple choice for (I, Yp.ptq 18
faxc(@) or =Go(q)V(q) with V(q) = 4me?/q*. Then,
approximating I1© /(1 + f,.I1©) to 1T, with IT® the
polarization function in RPA, we see that Eq. (8) for I', o
is reduced to T'yp = (1 + fa,XCH(O))_l, an expression
very frequently adopted in the literature [7,12,16].

In spite of its popularity, Eq. (8) combined with Eq. (9)
is unsatisfactory in the sense that WI is not fulfilled, no
matter how (14 ), p+4 is chosen. However, we find that
WI is made satisfied, if we determine the vertex parts by
Egs. (5) and (6) through R,(p, p + g) which is approxi-
mated to the ratio of Egs. (8) and (9) as

(a)
Loo(p,p + q)(€p+q — €) (11
(a) )
|(I|Fa,lu(P,P + Q)

In fact, substitution of Eq. (11) into Egs. (5) and (6) pro-
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Ru.(p,p + q) =

|Q|[_1 + Ra(P,P + Q)iwl/(6p+q -

Gp)] . (6)

vides the vertex parts as [18]

(@)
Tao(p,p + q) = Tao(p.p + T (p.p + ),

(12)
(a)
Cann(p.p + @) = Tarn(p,p + )T (p,p + q),
(13)
with T®(p, p + ¢) a functional of G, defined by
T — -1
T (p.p + q) = G(p +q) G(p) (14)

GO(p + ¢)7' = GO(p)~1~

Because of the factor I'®), we easily see that Eq. (12) in
conjunction with Eq. (13) fulfills WI, irrespective of the
form of (I4)p p+4- The importance of WI in determin-
ing quasiparticle energies has already been illustrated in a
toy model [19]. The presence of I'® is also physically
reasonable, because it “measures the distance” of each
electron specified by either p or p + ¢ from the Fermi
surface. This feature cannot be described by such a factor
as f+ xc(g) which depends only on “the relative distance”
between these electrons.

Let us apply the above scheme to the interacting homo-
geneous electron gas in which only the charge channel is
relevant in calculating 3(p), given by

S(p)=-T> D W@G(p + @T+o(p,p + q),

0w q
(15)
with the effective interaction W(g), defined by

W(g) = V(Q)/[1 + V(@)L (g)]. (16)

As schematically shown in Fig. 1, the self-consistent itera-
tion loop to determine %(p) is now completed. Once we
specify (I+), »+q4, We can actually implement this loop,
starting from the noninteracting solution and ending the
loop when the relative difference in 2( p) between input
and output at each p becomes sufficiently small. We con-
sider the difference small if it is less than 107>,

A conceptually simple method of making a systematic
determination of (), ,+, is to employ perturbation the-
ory, expanding the vertex corrections in terms of W(©
[11,20]. Computationally a difficulty arises in calculat-
ing higher-order terms. A practical way to remedy this
difficulty is to rescale the total magnitude of (I1), ,+,
in the lowest-order calculation in order to satisfy Eq. (7)
with R,(p,p + g) in Eq. (11), using the accurate val-
ues of k as a function of the electronic density parame-
ter r, obtained by Monte Carlo simulations [21]. Another

C?Eq. (1) @ Eq. (12;@(\1155)(1. (10) @ Eq. (16) @
q.

FIG. 1. Iteration loop to determine the self-energy.
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method of determining (I, )p.p+q 18 to use the local-field
factor f+ xc(g), in which Eq. (7) is made satisfied by hand
in constructing f xc(¢). We have made many trials in
both methods and found that the best choice for (I+), ,+4
is fiom(q,iw;) employed in TDDFT, although the final
results for X (p) and concomitant IT,(g) are not very
sensitive to the details of (7+)p,,,+q, as long as Eq. (7)
is fulfilled. The actual form for f™(q, w) is given ex-
plicitly in Sec. 6.1 in Ref. [22]. One of its characteristic
features is that £1°™(q, 0) is made equal to —V(q)G+(q)
with the rather accurate local-field factor G+(q) obtained
by Monte Carlo simulations [23]. As for the @ depen-
dence, an interpolation scheme using the Kramers-Kronig
relation and the asymptotic behavior of Imf™(q, w) —
—237/15w>/? is adopted [17]. Some ambiguity exists in
defining f1°™(q, @) at finite q and intermediate values of
, but a minor modification to £1°™(q, ) as explained in
Ref. [18] is enough to reproduce the accurate value of the
self-energy at the Fermi surface 2 ( pf,0).

With this choice of (I +)p.p+q. We have calculated
S(p,iw,) as well as I14(q,iw;) self-consistently on the
imaginary axis in the @ plane for the electron gas with
ry = 5 at the temperature 7 = 0.01Eg with Ep the Fermi
energy. The obtained values for all static properties are
found to agree very well with the respective known ac-
curate ones. To some extent, this is self-evident, because
(I )p.p+q 18 so constructed as to reproduce most of them.
A nontrivial check on the overall accuracy of 2(p,iw,)
can be made by examining the momentum distribution
function n(p)[= limy—+oT >, G(p)e'"]. Our result
for n(p) is in fairly good agreement with the one in
the effective-potential expansion (EPX) method, a result
considered to be most accurate among various data [24].
(The comparison is made at r;, = 1 in Ref. [18].) In the
inset (al) of Fig. 2, our values for zg, the renormalization
factor at the Fermi level or the magnitude of the jump
in n(p) at |p| = pg, are compared with those in EPX,
GWA, and the Fermi hypernetted chain method [25].

Analytic continuation onto the real @ axis is needed
to obtain A(p, w)[= —ImG(p, w)/7], the one-electron
spectral function. This is done with the use of the Padé ap-
proximant [26], paying full attention to ensuring analytic-
ity in the upper-w plane. In actual calculations of A(p, ),
instead of genuinely along the real axis, we consider the
values at w + iy with v = 0.17T so as to make &-
function peaks visible in numerical calculations. In the fol-
lowing we give our results at the sodium density, r; = 4.

In Fig. 2(a), we plot A(p, w) at the Fermi surface. The
result in the noninteracting system (the dot-dashed curves)
indicates the effect of the artificial width y on the spec-
tral shape. We see that the quasiparticle represented by the
central peak has a vanishingly small width, because the
calculated width of the peak is the same as y. The weight
of this &-function contribution is just zg. Compared to
the partially self-consistent GW'® calculation (the dashed
curve), our result is much closer to that in RPA (the dotted
curve). This supports the well-known argument that the
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FIG. 2. One-electron spectral function (a) at the Fermi level
and (b) at the band bottom. In the inset (al), our results for zg
as a function of r; are compared with those in other methods.
The inset (a2) gives the magnified A(p, w) at |p| = pg to show
the detail of plasma sidebands.

self-energy insertion is mostly canceled by the vertex cor-
rection, a fact attributable eventually to the Pauli principle
[27].

Such a cancellation does not work for |p| very far away
from the Fermi surface, as exemplified in Fig. 2(b) which
shows that our result differs very much from that in either
RPA or GW© at the band bottom. More specifically, our
main peak describing the quasiparticle is associated with
the width as large as a few tenths of EF, indicating that the
quasiparticle is suffering from a strong damping effect due
to the multiple electron-hole pair excitations that are fully
included in our treatment. These pair excitations contribute
to the long tail in A(p, w) extending to the vague peak cor-
responding to the plasmaron or the real plasmon coupled to
the quasiparticle [4]. Note that the strong damping effect
of the plasmaron can be well described even by GW©, but
the correct peak position (namely, E,, the quasiparticle po-
sition minus  p,, the plasmon energy) can be obtained only
through the proper inclusion of vertex corrections [19].

In spite of the strong damping effect, we can identify
the quasiparticle peak position Ep, at each p in A(p, w).
In the Fig. 3 inset, we plot the quasiparticle self-energy
correction, 2(p, Ep), as a function of |p|. We see that our
result for the real part (the solid curve) is very close to
that obtained in Ref. [2] (the dot-dashed curve), but it is
definitely different from that in RPA (the dotted curve). In
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FIG. 3. Comparison between the experimental energy band

and the calculated virtual energy band defined in Eq. (17). Inset:
Quasiparticle self-energy correction in both real and imaginary
parts as a function of |p| at ry = 4.

particular, our method provides a monotonically increas-
ing ReX(p, E,) with the increase of |p|, leading to the
widening of the occupied bandwidth by about 2%.

An interesting feature is that ReX(p, Ep) is quite flat in
the region 0.5pF < |p| < 1.5pF, implying hindsight that
the Slater’s Xa method or the local-density approxima-
tion to DFT works so successfully. Outside of that re-
gion, Re3(p, Ep,) changes gradually with the concomitant
rather rapid increase in |[Im3(p, Ep)|. For |p| larger than
about 2pF, the opening of the plasmon-damping channel
makes Re(p, Ep) change in proportion to |p|~! [2] and
|Im2(p, Ep)l increase further, though no sudden change is
seen in our result in contrast to that in RPA.

Since ReX(p, E,) cannot be neglected even for [p| as
large as 4.5pg (corresponding to E, =~ 66 eV, the maxi-
mum energy used in ARPES), we cannot validate the
free-electron assumption for the final state for sodium.
Thus the energy band obtained from the ARPES data ana-
lyzed on the free-electron assumption [28] should not be
compared with our E}, directly but with “the virtual energy
band” E‘V,H, defined by [2]

E‘V,ir = Ep, — ReX(p + K0}, Ep+Ku) » (I7)

with Kfi10] the reciprocal-lattice vector in the direction
[110]. As is seen in Fig. 3, though the result in Ref. [2]
(the dot-dashed curve) is fairly good, our result is in perfect
agreement with experiment. Implications of this result will
be discussed in detail elsewhere, together with a similar
analysis on aluminum.

To sum up, we have proposed a useful functional form
for the vertex function incorporating the Ward identity and
the accurate information on static quantities provided by
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quantum Monte Carlo simulations. By implementing the
self-consistent calculation of the self-energy with the ver-
tex function, we conclude that the occupied bandwidth of
sodium is slightly widened.
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