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Propagator methods provide a direct approach to energies and transition moméges évalized
electronic excitations from the ground state, but they do not usually allow one to determine excited
state wave functions and properties. Using a specific intermediate state represefi&fpn
concept, we here show how this restriction can be overcome in the case of the algebraic—
diagrammatic constructiofADC) propagator approach. In the ISR reformulation of the theory the
basic ADC secular matrix is written as a representation of the Hamiltofdanthe shifted
Hamiltonian in terms of explicitly constructable states, referred to as interme(a#&DC) states.

Similar intermediate state representations can be derived for operators other than the Hamiltonian.
Together with the ADC eigenvectors, the intermediate states give rise to an explicit formulation of
the excited wave functions and allow one to calculate physical properties of excited states as well
as transition moments for transitions between different excited states. As for the ground-state
excitation energies and transition moments, the ADC excited state properties are size consistent so
that the theory is suitable for applications to large systems. The established hierarchy of higher-order
[ADC(n)] approximations, corresponding to systematic truncations of the IS configuration space
and the perturbation—theoretical expansions of the ISR matrix elements, can readily be extended to
the excited state properties. Explicit ISR matrix elements for arbitrary one-particle operators have
been derived and coded at the second-ofd&C(2)] level of theory. As a first computational test

of the method we have carried out A calculations for singlet and triplet excited state dipole
moments in HO and HF, where comparison to full Cl results can be made. The potential of the
ADC(2) method is further demonstrated in an exploratory study of the excitation energies and dipole
moments of the low-lying excited states of paranitroaniline. We find that four triplet states, T1-T4,
and two singlet states, S1 and S2, (mertically below the prominent charge transfécT)
excitation, S3. The dipole moment of the S3 state (DJ.@s distinctly larger than that of the
corresponding T3 triplet state (1DJ. © 2004 American Institute of Physics.

[DOI: 10.1063/1.1752875

I. INTRODUCTION tion energies. It is for these limitations that the Cl method
has given way to alternative, size-consistent wave function

For a detailed understanding of the processes fOIIOWing“nethods such as the coupled-clus@€) methods and the

electronic excitation of molecules in the gas phase or in | ) d-ord bati h
solvent, it is important to characterize the excited states petomplete active space second-order perturbation  theory

yond the pure energetics also with respect to certain ke{CASPT2 approacit:® N
physical properties, e.g., their dipole moments. Such excited 11€ CC methods, comprising three related develaergents
state(ES) properties and, more general, transition momentd€érred to as coupled-cluster linear respon(@é;L;?),
for transitions between different excited statE§ moments ~ €duation-of-motion - coupled cluste(EOM-CQ,™™ and
can readily be deduced from the excited state wave functiosymmetry-adapted  cluster  configuration  interaction
In practice, however, the computation of ES properties andSAC—C),'*"*?lead to a twofold wave function representa-
moments is always a demanding task. To illustrate that poinion of the excited states, corresponding to the right and left
it may be instructive to go briefly through the various Wayseigenvectors of the non-Hermitian CC secular matrix. In
of how ES properties and moments are treated in the majdPrming meanigful matrix elements for ES property, one has
contemporary quantum chemical methods. to use both the right and left ES representations. As was
In the standard configuration interactié@l) treatment, demonstrated by Koclet al’® in the case of ground state
the computation of ES properties and moments is straightfortransition moments, the most obvious form of such matrix
ward. However, the applicability of the CI method to larger elements is not size consistent. A size consistent, though
molecules is restricted due to the inherent size-consistenopuch more complicated expression was derived within the
error (for example, see Helgaket all), which is expected CCLR theory by Christianseet al'*!°Presently, the proper
to be even more pronounced for properties than for excitaES property and moments are available only for a part of the
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CC approximation hierarchyCCSD and CCR and here, come in both an elegant and practical way, as will be de-
moreover, restricted to singlet excitations. scribed in this contribution. The development is based on the
Another widely used wave function method for elec- finding that the ADC secular matrix can be formulated as the
tronic excitation in molecules is the CASPT2 method estabfepresentation of the Hamiltonian in terms of a basis set of
lished by Roos and collaboratdr§ As a specific feature of explicitely constructable intermediate statéd! Together
the CASPT2 method, one uses individually optimized sets ofvith the ADC eigenvectors, the intermediate states lead to an
molecular orbitals(MO) for different states. This has the explicit representation of the excited state wave functions,
consequence that the evaluation of transition moments fawhich can be used to compute arbitrary ES properties and
such states can become quite cumbersome. An indication efioments provided a reliable and practical approximation for
this and other difficulties may be seen in the instance that ithe intermediate state representatit®R) of the respective
most if not all of the previous CASPT2 studies the resultsproperty operator is available. In the following we report on
reported for transition moments and excited state propertiede derivation and computer implementation of the ISR for
have been obtained at the lower CASSCF level of theory. an arbitrary one-particle operator at the level of the second-
Methods not being based on a wave functigF) ap-  order ADC approximation. This ISR/AD@) method allows
proach have proved to be a viable alternative in the treatmeri@r a consistent treatment of ES properties and moments for
of electronic excitation in molecules. An increasingly popu-singly excited states through second order of perturbation
lar method of the latter type is the time-dependent densityheory. For a first numerical test of the method, small model
functional theory(TDDFT).1%1” The TDDFT equations, de- computations were carried out for the HF andGHmol-
scribing the linear response of the ground-state density to @cules both at the AD@) and full(F) Cl level of theory. The
time-dependent perturbation, allow one to compute directhgomparison of the AD@) and FCI dipole moments is very
excitation energies an¢ground-to-excited statetransition ~encouraging, especially when the AXE dipole moment
moments, but do not give access to the excited state waySR matrix is used together with the eigenvectors of the
functions. As far as ES properties are concerned, an obviol8DC(3) secular problem. To explore the potential of the
way out is to determine these quantities as analytical derivaPresent approach in the case of a realistic system, a large-
tives of the (excitation energies with respect to the Scale ADG2) study was conducted for the lowest singlet and
“strength” of an additional(“external”) potential associated triplet excitations in the paranitroanilin€’NA) molecule.
with the property operator under consideration. AnalyticalPNA is an interesting testing ground for any ES property
TDDFT derivatives have been worked out, for example, bymethod, because, as is well known, some of its excited states
Van Caillie and Amo¥*°and used by Buroét al?° to com- have strongly polar charge-transf€T) character and, thus,
pute ES dipole moments for the furan and pyrrole moleculedarge dipolg moments. . _
As the latter authors find, the dipole moments computed that An outline of the paper is as follows: The ensuing Sec. Il
way are very sensitive to the form of the chosen DFT func-9iVes a pnef review of the concept of m'Ferr'nedlate state rep-
tional. Apparently, much more testing and comparing withresentations in the case of electron exuta’upn. In Sec. II] the
other theoretical results, preferably FCI data, will be neededSR concept is extended to the representation of an arbitrary

before one can confidently rate the quality of the TDDFT gsone-particle operator, which allows us to determine excited
properties. state properties and transition moments at well-defined levels

Other non-WF methods, deriving from the theory of the Of approximation. Some general aspects of the development,

polarization propagat&rl, such as the second-order polariza- in particular, the truncation error and the size consistency of
tion propagator approactSOPP. 22-24 304 the algebraic— the ISR formulation, are discussed in Sec. IV. First numerical

diagrammatic constructiobADC) scheme£®-28 have been tests and an exemplary a}pplication.to PNA are presented in
used in the computation of molecular electronic excitation>€cS: V and VI, respectively. A brief summary and some
spectra for a long time. As is well known, the propagatorconclusions are given in the final Sec. VII.
methods allow for the direct computation of excitation ener-
gies and transition mloments for transitions .from the grqunql_ REVIEW OF INTERMEDIATE STATE
state, but the underlying concept does not aim at determiniNnGEpRESENTATIONS
ES wave functions and properties. The latter is a real con-
straint for approximation strategies based on the characteris- The concept of intermediate state representati¢BR)
tic diagrammatic perturbation theory for the polarizationhas been presented at length elsewlisee Refs. 27, 34, and
propagator, such as the ADC methods. The SOPPA metho@d), S0 that we may confine us here to a brief review.
by Contrast, being based on the so-called Superoperator In the ISR approach to electronic excitation the exact
formalisn?® or the essentially equivalent equation-of-motion €xcited states¥,) are expanded according to
(EOM) approachi®3leads to explicit representations of the _
excited states that can be used to compute ES properties. It |‘1’n>=2 Xanl ¥ 3) (1)
seems, though, that attempts to exploit this potential of the J
superoperator based methods have been rather sGs®ee in terms of a complete set of intermediate stdts). The
for example, the computations of Weiner antr@? for ES  intermediate states derive from the so-called correlated ex-
dipole moment curves of the LiH molecile cited states

As for the ADC approach, the unsatisfactory present sta- o A
tus with respect to ES properties and moments can be over- |¥3)=Cs|¥o) @
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obtained by applying the “physical” excitation operat(flg Here
to the exact ground stat&d’,). The manifold

R : - drs:<¢r|d|¢s> (12
{Cah={eati; cacoeicr a<b.k<l; ...} © denote the one-particle matrix elements associated With
of the excitation operators comprises particle—hgie-f), In the ISR formulation the transition moments can be written

two-particle—two-hole (B—2h), etc., excitations. Here the as

second-quantized 0peratom§(cp) are associated with one-

particle states(spin—orbitaly [¢,), usually ground-state T.=> X% Fy, (13
Hartree—FoclHF) orbitals. Following a widely used nota- J

tion, the subscriptg,b,c, ... andi,j,k, ... refer to unoc- |\ here

cupied(virtual) and occupied orbitals, respectively, while the

lettersp,q,r, . .. will be used in the general case. Fy=(T,|D| W) (14)

The intermediate stat¢¥ ) are constructed by applying ;e referred to as ISR transition momeffisr the operator
a specific orthonormalization procedure to the correlated exf)

cited states. The essential step here is Gram—Schmidt o ). The latter quantities can be further expanded according
thogonalization of the successipe-h, 2p—2h, ... excita-

tion classesu=1,2,..., including the ground state as a

zeroth excitation class. For illustration let us consider the FJ:% farslrs (15
construction of the intermediate—h states. Orthogonaliza- '

tion with respect to the ground state leads to the “precursor’'where

states ~
M + + fJ,rs:<\I,J|C;rCS|\PO> (16)
vi )= Vo) — | TP Vo). 4 . .
Va0 = Cacil o) = [V o)(Wolcaei Wo) @ are referred to as ISR transition amplitudes.
In a second step the intermediate states can be formed ac- Approximations based on the ISR formulation can be
cording to obtained by truncating the configuration space and using per-
turbation expansions for the ISR secular matrix elements and
1T =2 [PEN(S YD) ax (5) transition amplitudes,
=M©® (1) @) 4...
by symmetrical orthonormalization of the precursor states. M=MT+ M M 17
Here S is the overlap matrix of the precursor states, f=fO) D) 4§ 4... (18)
Sakbi=(Wolcicacici| W) Here the familiar Mgller—Plesset partitioning
—(Wolckea Wo)(Wolcic | Wo). (6) A=Ao+A, (19

The intermediate states establish a matrix representation @f the Hamiltonian is supposed. The truncation of the con-
the HamiltonianH or likewise of the “subtracted” Hamil- figuration space and the truncation of the perturbation series

tonianH —E,, whereE, is the (exac) ground state energy, in the sub-blocks oM andf can be done in a systematical
and consistent way, leading to a hierarchy of higher-order

M= (W [H—Eo|V,). (7)  approximation schemes.
The Schidinger equation for the excited statel leads to A practical way of deriving such ISR approximations is
the following Hermitian eigenvalue problem: based on the so-called algebraic—diagrammatic construction
: (ADC) procedure for the polarization propagatbiThe es-
MX=XQ, X'X=1 (8) sential idea here is to compare the IS representatipADC

for the ISR secular matriM. Here © denotes the diagonal form) of the propagator with its original diagrammatic per-
matrix of eigenvalues),, andX is the matrix of eigenvec- turbation seriés*?” through a given orden of perturbation

tors. Obviously, the eigenvalues can be identified as the exheory. This leads in a natural way to explicit perturbation—
citation energies, theoretical expressions for the matrix elementdvbfand f

establishing the nth order [ADC(n)] approximation

Q=Er—Eo ©) schemes. While the AD@) approximation has been avail-
while the eigenvector components are the expansion coeffable for a long timé? the ADC procedure could recently be
cients in the IS expansiofi) of the excited states. extended to the third-order levél.

For the evaluation of spectral intensities one must con-  In principle, the perturbation expansions fdrandf can
sider transition moments of the form also be deduced from the closed-form expressions for the

. sub-blocks ofM andf deriving from the ISR construction
To=(W,[D[Wo) (10 procedure(see Ref. 38 These expressions depend on the
for a pertinent(one-particlg operator exact ground statgV,) and the ground state energy, so
that the familiar Rayleigh—Schdinger perturbation theory
522 drsC:Cs- (11) can be used to derive the desired expans(dﬁfs and (18).
rs However, the latter procedure becomes quite cumbersome
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p-h 2h-2p p-h 2p-2h
p—h M11(0—2) Mlg(l) f1(0—2) p—h p—h D11(0—2) D12(0,1)
2p-2h h. c. M,(0) (1) 2p-2h 2p-2h h. c. D3(0)
(@) (b}

FIG. 1. Block structure of the second-order ARLCsecular matrixV and FIG. 2. Block structure of the second-order I&R ADC(2)] matrix D for a
transition amplitude matrik The numbers in brackets indicate the orders of single-particle operatod. The numbers in brackets indicate the orders of

terms to be considered in the perturbation expansions of the matrix eleprms to be considered in the perturbation expansions of the matrix ele-
ments. ments.

beyond second order and has so far only been used to red-

erive the ADG2) equations for the electron propagator. Tom=(¥,|D|¥ ) =XDXy, n#m. (24)
Figure 1 shows schematically the block structure of the

ISR secular matriv and the matrix of transition amplitudes |t is useful to writeD in the form

f at the ADGQ2) and ADQ3) level. In both cases the explicit 5

configuration space is spanned by fhveh and 2p—2h ex- D,;=Dy6,;+ D3, (25

citations. As indicated in Fig. 1, the perturbation expansions h

of the ADQ2) secular matrix elements extend through sec-"Nere

ond, first, and zeroth order in thp—h diagonal block, Do=(V¥o|D|¥,) (26)

p—h/2p—2h coupling block, and B—2h diagonal block, re- A

spectively. At the AD@3) level, these perturbation expan- is the ground-state expectation value®fandD is the IS

sions are extended to third, second, and first order, respegepresentation of the “subtracted” operat&r— Do. This

tively. form of the ISR matrix elements will be retrieved in a natural
It should be noted that the ADC—~ISR method can also b&vay in the perturbation—theoretical developments discussed

used to compute absolute energies. For this purpose ongelow. It allows one to write the total excited state expecta-

needs the IS representationtéf which according to tion value,D,,, as the sum of a ground state contribution,

Dy, and a transition contributiomAD,,=D,—Dy. In the

Hig=(W\[H[¥ ) =M;+Eod) (20 expression for the transition moments, E24), D can obvi-
differs from M by the constant diagonal matrig1. ously be replaced bip.
In analogy to Eq(18) there is a perturbation expansion
I1l. PHYSICAL PROPERTIES OF EXCITED STATES D=D®+ DV 4+ D@ +... (27)

AND EXCITED STATE TRANSITION MOMENTS
for the matrixD. Our aim is to deduce the explicit perturba-

To characterize an excited stgi¥,) with respect to a  ion expansions for the matrix elementsbfrequired at the
physical quantity other than the energy, e.g., the dipole MOgecond-ordefADC(2)] level of approximation. Together
ment, one has to evaluate the expectation value with the ADG(2) eigenvectors this will yield consistent ex-

D, = (W, |5|‘1’n> (21) cited stgte expectation values and transition moments for sin-

R gly excited states through second order. In contrast to the
for the corresponding operatdr. Here and in the following case of the secular matrix, one cannot make use of the ADC
we will confine us to the case of a one-particle operator aprocedure and its diagrammatic techniques here but rather
given by Eq.(11). In the ISR formulationD,, is obtained must resort to the more tedious approach via the explicit
according to construction of the intermediate states. Obviously, the fol-
lowing contributions have to be considered in the subblocks

D,=X/DX, 22 4p (see Fig. 2
from thenth eigenvectoiX,, of the ADC secular problem and D;;=DQ+ D+ DR,
the matrixD, (0) L (1)
- I D;,=D37'+ D37,
D|J:<‘I'||D|‘I’J> (23

A - Dy,=DY.
referred to as IS representation Df In a similar way, one 2z m2
may express the transition moments between (distinct Here the subscripts 1,2 label collectivgly-h and 2p—2h

excited states according to entries, respectively.



J. Chem. Phys., Vol. 120, No. 24, 22 June 2004 Electronically excited molecules 11453

The zeroth-order contributions can readily be evaluated, p-h 2p-2h  3p-3h  4p-4h  5p-5h .-
as here the intermediate states are given by the HF configu-
; p-h 0 1 2 3 4
rations,
(W) =Cy|dg)=|D,) (28 2pom |1 0 1 2 3
yielding
(0) A 2N 3p-3h 2 1 0 1 2
Diy’=(®[D[® ;)= 6,5(Po|D[Py). (29
Here |®,) denotes the HF ground state. Inspection of the 4p-4h 3 2 1 0 1
first-order contributions shows that})=0, and it remains
to determine the second-order contributions in pheh di- 5p-5h 4 3 9 1 0
agonal block,D{?), and the first-order contributions in the

p—h/2p—2h coupling block, D{}). Clearly the most de-
manding task is posed bp{?). Here the the intermediate _ _

~ FIG. 3. Order relations for the blocks of the ADC secular matrix. The
stateg W ) must be expanded through second order. To g€fumbers in the blocks indicate the lowest nonvanishing order of perturba-
an idea of how to proceed let us consider the following resultion theory.
obtained from Eqs(4), (5), and(6) by omitting third- and
higher order contributions:

|;1‘, >:(CTC _P(Z))|‘I’ ) tent through third order of perturbation theory and considers
ak avk Plall =0 higher-order contributions in the form of infinite partiah-
complete¢ summations.
— > ¢l o o) 1P

aark T O(3). (30)

a'k’
Here we have used that the precursor overlap m&ifias @ |y ASPECTS OF THE EXCITED STATE
perturbation expansion of the for=1+S?+0(3), SO  |SR FORMULATION
that S ¥2=1—15?+0(3); p® is the second-order one- o . _
particle density matrix. Now the explicit Rayleigh— The ADC approximation schemes combine the eigen-
Schralinger expansion¥y)=|w )+ | WMy +|w{?)) can value problem(diagonalization of a Hermitian secular ma-
be used on the rhs of Eq30), discarding terms beyond trix and perturbation theory for the secular matrix elements.
second order. The resulting expression may finally be inTwo properties referred to as compactness and separability
serted in the desired matrix elemdi || T ), where ~€stablish the usefulness of these methidd&.The former
again third- and higher order contributions are omitted. AProperty means that the truncation error associated with re-

brief sketch of the somewhat lengthy, though straightforwardtficting the configuration space to thelowest excitation

algebra required in these derivations and the final results af@@sses is of the orderu2(for singly excited statgs The
given in the Appendix. separability property, on the other hand, ensures size-

Let us briefly comment on the evaluation of the ground_consisten(size-intensiv¢ results for excitation energies and

state expectation valuB, entering the diagonal of the ISR {ransition moments. In Secs. IVA and IV B the correspond-
matrix according to Eq(25). As is well known, this quantity "9 properties for the excited states are discussed. A brief

may be written as analysis of the d.ipole sum rule and th(_a equivalence.of the
length and velocity forms of the transition moments in the
Do=Tr(dp), (31)  excited state ISR formulation is given in Sec. IV C. Finally,
wherep is the ground-state one-particle matrix, in Sec. IV D three more aspects of the present development
are addressed.

_ t
psr={(W¥olcicd Vo), (32 A. Truncation error

andd is the matrix of one-particle integrath [Eq. (12)]. A To analyze the perturbation—theoretical consistency of
strictly consistent treatment &f, at the ADQ2) level would oy stematicalclasswisg truncation of the explicit configura-
require to evaluate the density matrix through second ordefon space, one has to inspect the so-called order relations for

. _ 0 2 .
of perturbation theoryp(Z)—p( '+ p? (note that the first-  he quantities of interest. For example, the order relations for
order contribution vanishgsin general, however, it is advis- e ADC secular matrix are given ¥y

able to resort to an improved treatment of the ground-state

density and corresponding ground-state propertse, for My =0(p—w'l), pp'=12,... (33
example, the discussion given in Sec. Il B of Ref). 28 the  \hich means that in the matrix elements of the bldtk,,:
method of choice we here use the so-called Dyson expansiqfe lowest nonvanishing contributions are of the order
method(DEM) based on the third-order ADC approximation |, —,,’|. These “canonical’ order relatiof$ are shown
[ADC(3)] for the one-particle Green's functiofelectron  gchematically in Fig. 3. The canonical order relations for the

propagatoy. For a detailed description the reader is referredsecylar matrix lead to the order relations
to Ref. 36 and to Sec. VA of Ref. 37. The DEM/ADZ}

approximation for the ground-state density matrix is consis- X,=0(p=1), p=12,... (34
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p-h 2p-2h  3p-3h 4p4h  5p-bh .- TABLE I. Analysis of the ADC truncation error for excited state moments
involving singly (p—h) and doubly (p—2h) excited states. Given is the
p-h 0 0 1 2 3 perturbation—theoretical order of the error resulting from truncating the ex-

pansion manifold after excitation clags first and second line corresponds
to one- and two-particle property operators, respectively.

2p-2h 0 0 0 1 2
Operator type p—h/p-h p—h/2p-2h 2p—2h/2p-2h

3p-3h 1 0 0 0 1 1p 2p—1 2(u—1)* 2(p—1)—1°

2p 2(p—1) 2(p—-1)-1° 2(u-2)°

4p4h | 2 1 0 0 0 JFor u=2.
PFor u=3.

5p-5h 3 2 1 0 0

FIG. 4. Order relations for the blocks of the ISBr ADC) matrix for a . . . oA
) _ A _ S _ )_ Note that for the following consideratiori3 needs not be
single-particle operatod. The numbers in the blocks indicate the lowest

nonvanishing order of perturbation theory. restricted to be a one-particle operator. One can further as-
sume a localized one-particle basis set, that is, the one-
particle statesgorbitalg are either localized oA or onB. As

for the eigenvectors of singly excited states. Following thea consequence, one can distinguish three classes of

proof given in Appendix A of Ref. 34 one can easily estab-N-electron configurations)=J,,Jg, and Jag, whereJ,

lish the order relations and Jg denote configurations local o or B, respectively,
B , " while J,g refers to a nonlocalor mixed configuration in-
Dupr=0(u=p'[=1), |u—p'|=1 (39 Volving both fragmentsA andB. To proceed let us briefly

for the ISR of an arbitrary one-particle operatbr,(see Fig. feview the essential localization properties of the intermedi-
. ’ ; 3
4); the diagonal blocks 4= ') are, of course, of zeroth ate states

order. Let us note that the order relatic(3$) are less strin-  For alocal configuratiod, on A the intermediate state
gent than those of the secular matrix as there is zeroth-ordés given by the product
coupling between adjacent excitation classes. To determine |z =

ping : W5,)=1T5) ) (39

the truncation errors for an excited state expectation value,

Dy, or transition momentl,,, one has to consider the ex- of the ground state of fragmes, |¥§), and the intermedi-

pression ate state| T’ ) of fragmentA. (Note that the antisymmetri-
Ton= )_(TmD>_(n (36) zation of the total wave function is of no importance hgre.

An analogous expressiofi¥ ; )=|¥5 )| W) applies to a

local excitation orB. While seemingly plausible, it is a non-

trivial resulf® that the product form

obtained by multiplying the ISR matri® with the respective
eigenvectors. Using the order relatio(®), the truncation
error for matrix element3 ,, of singly excited states is seen
to be 2u—1, Whe'l"e,u, is th'e highest explicit configuration |q,JAB>:|q,§ >|q,JB> (40)
class. More specifically, this means that at the AR)Gevel A B
of theory (u=2) the(singly) excited state are treated con- holds for the nonlocal excitationd,g=JxJg. It should be
sistently through second order. However, third-order consisnoted that this result comprises the case, whigreand Jg
tency cannot be reached at the ABLClevel, the explicit refer to general non-neutral excitations on the respective
configuration space being here the same as in the @DPC fragments, such as ionization @nand electron attachement
case. onB. An immediate consequence of the product f¢d®) of
The analysis can readily be generalized to excited statthe intermediate states is the separability property of the
transition moments involving one or two doubly excited ADC secular matriXsee Fig. 5. Besides the fact that there is
states. In a similar way one can analyze the case of a twaio coupling between the local configurations, iM,z=0,
particle operator. The results are summarized in Table I. also the coupling between local and nonlocal configurations
vanishes, that isM s \g=Mpg Ag=0. Moreover, the diagonal
A andB subblocks oMM are identical to the fragment secular
matricesMaa=M*, Mgg=ME. Obviously the resulting ex-
For the analysis of the separability property we considercitation energies are size intensive, that is, the result for a
as usual, a systef@ consisting of two noninteractin@sepa-  local excitation, say orA, is independent of whether the
rate) parts (fragmentg A and B. The Hamiltonian ofSis  method is applied to the entire system or to fragment
given by the sum A similar result is found for théground-to-excited-state
A=0 .40 37 transition. mgment of a local excitation. 'I_'he_ eigenvector of a
ATTB local excitationn, say onA, has nonvanishing components
of the fragment Hamiltonian$i, and Hg, and the same only for configurationsX; ,, being local onA. Thus, the
partitioning applies to any other physical operator, i.e., transition moment becomes

B. Separability and size consistency
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A B AB 3 OIRIT
Dy,0,=(¥,ID|¥;,)—6,5,D0 (44)

A M4 - - can be evaluated further using the product fofiags. (39),
and (40)] of the intermediate states to yield

B ) My ) DIAJA:<{I‘NIAA| I5A|‘T’§A> - 5IAJADA’ (45)
whereDéz(\IfA§|DA|\If’3) denotes the ground state expecta-
tion value of D for fragmentA. Note thatDo=Dy+D§.

AB - - Map 45 This result, which may be written more compactly as

DAA: DA (46)

F'Gt:t_5- _B'Oc'f‘;”“t“;? of :_he ADC 5‘,3°tu"|’“ mlat“"(‘j W“hl 'eSIPGthFO thft?_ means that the local block of the “global” ISR matrix is
partitioning o € configuration space Into local and noniocal contigurations . . .
in a two-fragment systenS—A-+B. identical to the fragment ISR matrix. For the ISR matrix of

the original (unshifted operatorf) one must consider also
the diagonaD contribution,

To=2 X5,0F s, (41) Daa=DA+1D8. (47)
A

An excited state expectation valub,,, computed for the

where entire systens is the sum of the corresponding fragmea
F, =<‘1’3 ||5|‘1,0>:<q,§ ||5A|‘1'/3> (42) expectation value and the ground stqte expectation value of
A A A the other(unaffactedl fragment 8), as is to be expected. In
is equal to the fragment ISR transition momdﬁfA. the case of excited state transition moments#(n), the

Now let us consider excited state matrix elements of gglobal moments are equal to the fragment moments as the
general physical operat®. As a consequence of the prod- latter term on the right-hand side of E4.6) does not lead to
uct forms(39) and (40) the ISR matrixD of the subtracted & contribution due to the orthogonality of the excited states.

operatorD — D, has the block structure shown in Fig. 6; here To conclude, the ISR formulation of excited state prop-

] . ~ . erties and transition moments is size consistent. Moreover, as
Do is the ground-state expectation valuelbf Obviously,D 4, he easily seen, that property not only applies to the for-
is not of the separable form as the secular matixwhile

) : X mally exact formulation but also to the ADG)Y approxima-
there is no direct coupling of the two local block® Az

i - . s tion schemes.
=0), there may arise nonvanishing coupling matrix elements

for local and nonlocal configurations. But this is not detri-
mental to matrix elements of two excited statesand n,
being both local excitations on, say, fragméntbecause the
multiplication with the corresponding eigenvectors projects ~ 1he well-known Thomas—Reiche—KuhiiRK) or di-

C. Dipole sum rule and the equivalence
of length and velocity forms

out any nonlocal matrix elements: pole sum rule is usually applied to transitions from the
. ground state. But it may as well be formulated for the more
Tmn=XamDaaXan- (43 general case where the initial state is an excited state, reading
here

Here Xa, denotes the nonvanishingpcal) part of the full
eigenvectoiX,, . It remains to inspect the relation of tig 5
block to the fragment ISR matri™. A general matrix
element of two localon A) intermediate states,

A 1
$i(2)=2 (En~ E)|(Wr|Z|¥y)[?=5N. (48)

HereZ denotes the component of the dipole operator aNd
is the number of electrons. The summation over states on the

A B AB right-hand side includes the ground state=0). The sum
rule (48) may serve as a test for the quality of the method
A Daa - Dyap used to compute the excited state energies and transition mo-

ments. For this purpose it is convenient to replace the sum-
over-states expressiqd8) by the following compact form:

B - D55 D5 a5 S{z)=X(ZMZ — (E,—E¢)Z?)X,, n#O0. (49)

Here X, is thenth eigenvector of the ISR matrid; Z and
AB| Dupa D s Disas Z2 denote the ISR matrices @ andZ?, respectively.

In a similar way, the relation between the dipole length
(L) and dipole velocity V) forms of the transition moments
FIG. 6. Block structure of the ISRor ADC) matrix D for a single-particle f:an be formulated for tr_ans_'t'ons between excited states. As
operatorD with respect to the partitioning of the configuration space into S We_" known, that relation is a consequence of the operator
local and nonlocal configurations in a two-fragment syst8mA + B. identity,
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N ST B couple to the ground state, the IS configuration space must
[A,2]=—iP,, (50) le to th d he IS configuration spa
be enlarged by¥ ). The additional ISR secular matrix ele-
whereP, is thez component of the momentum operator. For ments read
the transition between the excited statesandn one obtains ~
0w0=Uo, Mig=(¥|U[We)=F(U), 1#0, (57

the explicit relations
where the subscript 0 refers to the ground state Ry{tl))

(En=Em{(WnlZ|W )= —i(W|P| V), (51)  are the ISR ground-to-excited-state transition moments for
which in turn can be transformed into the following global the operatorU. The matrix elements in the excited state
identity: block are obtained by adding the ISR matrix Of to the

o _ original secular matrixM:
MZ —ZM=—iP, (52
MY=M;+U0,;, 1,J#0. (58
It should be noted that for a parameter dependent operator,
U=U()\), the Hellmann—Feynman relation is valid in the

which is independent of the individual transitions. HExds
the ISR matrix ofP, .

D. Other features form
A useful test of the explicit ISR expressions is provided d vion D’

by the special case of the particle-number operator, ax En(M)=Ya(MU (M) Ya(N), (59
N ZZ c:c,. (53) where U’ is the extended ISR matrix ofa(&)\)O andY,

denotes thenth eigenvector of the extended secular matrix,

MX. In the special casd)(A\)—\U, the energy derivatives
at =0 simply become

d

(WINJT5)=N3,;. (54) Bl =Xi0X,, nzo0 (60)
A=0

Since the intermediate states are eigenfunction&p}the
ISR matrix elements are of the form

These relations must be fulfilledin each order by the that is, excited state expectation valuesJofThe latter equa-

gerturbatlgpt;\??)zreem:rlligzpr;?[ﬁfZISe:r?;r;[tr:l;e g?ig:ilsghgfﬁfon provides the starting point for analytical ES energy de-
rs= Ors P rlvat|ves in the case of fixe@'unrelaxed”) HF orbitals.

test pertains only to those terms involving diagonal one
particle elementsd,, .

Let us next consider the ISR of the operator prodkigt V. COMPUTATIONS

of two physical operatoré, B, A. Coding of the properties ISR
(AB),;=(¥|AB|¥,) An excited state properties code at the ARClevel of
approximation was written as an extension of the existing
=<‘T’||A|‘I’o><\1’o|é|‘1’a>+2 <{I“,I|A|{I‘,K> ADC(3) progr_an"f8 for glectron excitation. _The major new
K parts are routines required for the evaluation of the property

S ISR matrix elements, that is, zeroth- and second-order terms
X(Wy|B[W ). (55 in thep—h diagonal blockD,;, zeroth- and first-order terms
fn the p—h/2p—2h coupling blocks,D;,, and zeroth-order
terms in the »—2h diagonal blockD,,. In addition to or-
bital energies and Coulomb integrals, the one-particle inte-
grals, d,s, of the considered property operat@, are re-

(AB),;=F,(A)F;(B)* +(AB),;, (56) quired as input data for these matrix elements.

R Before coding, the explicit spin—orbital expressions for
whereF|(A)=(¥|A|¥) is the (ground stateISR transi-  the ISR property matrix elementas given in the Appendjx
tion moment for the operatok andA, B denote the corre- had to be written in a form exploiting the underlying spin
sponding ISR matrices. & andB are one-particle operators, (and spatial symmetry properties of the matrix elements.
the ISR of the producAB can readily be evaluated at the Assu_mmg a s_,pln-lndepend_ent property operator, spin-free
ADC(2) level using the AD@) expressions for ground-state working equations were derived using standard angular mo-
transition moment$Eqgs. (B1)—(B13) in Ref. 25 and the menFurT_l algebra techniques. In aflr.st.step, the property ISR
second-order ISR expressions given in the Appendix. matrix is transformed from the original spin—orbitedr

The present ISR development allows one to extend thePrimitive ) form to a representation associated with spin-

adapted singlet $=0) and triplet 6=1) intermediate
ongmal_ HamiltonianH (undgrlylng the gengratlon of th? N states. In this spin-adapted form the ISR matrix is decoupled
termediate statesy an arbitrary one-particle operatady,

_ ~T i with respect toS=0 and 1; moreover, the triplet block de-
representing, for example, an external potentidk-H"  composes into three equdg subblocks,Ms=1, 0, —1.
=H+U. Because th¢excited intermediate states now may Subsequently, the spin summations in the perturbation—

Here the last line is obtained by inserting the ISR resolutio

of identity, | W o) (Wo|+ =« | ¥ )(Wi|=1. This result can be
written in the form
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TABLE II. Full Cl and Hartree—FockHF) results for the ground-state energies and dipole moments of ibe H
and HF molecules using the 3-21G basis set; dipole moments have been computed also at the levels of second
order of perturbation theorjPT(2)] and the Dyson expansion methdEM) (see texk

Ground-state energga.u) Dipole moment D)
Molecule FCI HF FCI HF PT2) DEM
H,O —75.714 959 —75.585 378 —2.30 —2.44 —2.36 -2.32
HF —99.584 768 —99.459 752 2.03 2.16 2.08 2.04

theoretical expressions can be performed, yielding the de- The present ADC code is interfaced to thevess® ab
sired spin-free expressions for the ISR matrix elements. Thaitio program package generating the HF input datbital
generation of the spin-free expressions was done in a semenergies, one and two-electron molecular orbikdD) inte-
automatic way using a specially devised computer prograngrals| for the ensuing ADC calculations.
Spatial symmetry reductions are considered in the present
code only to the extent of Abelian groups or subgroups, hav- . .
ing only one-dimensional irreducible representations. B. Comparison with full Cl results

In devising the present prototypical ISR property code,  For a first test and validation of the present development
emphasis was laid on an utmost secure and error-free realve have performed both ADC and full configuration—
ization rather than on efficiency. The development of ainteraction (FCI) computations for the 50 and HF mol-
follow-up program aiming at higher efficiency is the logical ecules at the small 3-27& A0 basis set level. The FCI
next step. computations were done with the determinantal FCI ¢bde

An obvious example for the need of improvement is theof the GAMESS program packag& The following geometri-
strategy used to perform the matrixector (MV) product, cal parameters were usedRoy=0.957 A, ~HOH
DX, , in the evaluation of Eqg22) and(24). In the present =104.5°,Ry=0.917 A. In both the FCI and ADC compu-
program version, th® matrix elements are evaluated oncetations the ¥ core orbitals were kept frozen. The largest
and then the MV product is formed. The computationaldimension of the FCI space was 245 02&r the H,O exci-
bottleneck here is the—h diagonal blockD,;, having~N* tations at G symmetry.
nonvanishing matrix elements, whexedenotes the number Table Il collects the computed ground-state energies and
of orbitals. As the evaluation of each of its matrix elementsdipole moments £ component Dy(z). For the dipole mo-
scales a®\® the overall cost for computinB,; scales a\’. ments, the HF and FCI results can be compared to the values
A more advantagous technique would be to break the M\bbtained by evaluating E@31) using the strict second-order
product into intermediate quantities obtained by multiplying[PT(2)] expansion for the ground-state one-particle matrix,
the eigenvector components with suitable parts of thep, and the DEM/ADQ3) treatment, respectively. For both
second-order expressions for tbe; matrix elementgfor a  molecules the P(R) and DEM results differ only slightly, the
similar procedure see Sec. Il A of Ref. 2&sing such tech- latter being in excellent agreement with the FCI values. It
niques the scaling behavior of the property part at theshould be emphasized, however, that, in general, th@)PT
ADC(2) level reduces tiN®. approximation forD, will be less satisfactory than in the

TABLE lll. FCI and ADC results for(vertical excitation energiegeV) and excited state dipole moments of®and HF. The ADC excitation energies are
given relative to the FCI values.

Excitation energiegeV) Excited state dipole moment®]

State/transition FCl ADC(1) ADC(2) ADC(3) FCl ADC(1) ADC(2) ADC(3/2)
H,0 1A, —
1B, 1b,—a,; 8.75 0.90 0.07 0.02 0.17 0.76 0.35 0.24
1 lA2 1b;—b, 10.95 0.61 0.12 —-0.01 —0.19 0.27 0.01 —0.15
21A, 3a;—a; 11.44 0.80 0.02 -0.01 0.50 1.15 0.72 0.60
1 lBZ 3a;-b, 13.77 0.50 0.11 -0.11 0.24 0.64 0.45 0.26
21B, lb,—a,; 16.02 —0.02 0.08 -0.15 -0.54 —0.24 —0.44 -0.52
13B, 1lb,—a, 7.90 0.67 0.02 0.01 0.15 0.69 0.32 0.22
137, 3a;—a; 10.20 0.22 —-0.02 —0.05 0.59 0.80 0.68 0.61
13A, 1b,—b, 10.37 0.45 0.09 -0.01 -0.12 0.22 0.03 —0.08
1 382 3a;-b, 12.29 —-0.13 0.00 —-0.04 0.37 0.32 0.42 0.39
HF 113" —
11 1lm—o 10.94 0.88 0.03 0.02 —1.80 —2.42 —-2.07 —1.84
1137 30-0 16.69 0.67 0.03 —0.05 —1.28 —2.13 —1.66 -1.31
1810 lm—o 10.21 0.63 —0.03 0.01 —-1.82 —2.34 —2.06 —-1.87

1357 30-0 13.46 —0.44 —0.06 —0.03 —1.65 —1.54 —1.68 —1.65
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present case. An example, where the(BTapproximation NH,
fails, is the CO molecule. At the FCI level using a minimal
basis set(STO-3G% the ground-state dipole moment is
found to be—0.63D. Here the DEM result{ 0.67D) gives
a very good approximation, whereas the (BTvalue of
— 1.3 is grossly off the mark. In the ensuing calculations
of the excited state dipole moments the DEM/ABLresults
for the Dy(z) contributions are used throughout.
In Table Il the excitation energies and dipole moments
are listed of some low-lying excited singlet and triplet states

of H,O and HF as computed at the FCI and different ADC NO,
levels. As for the excitation energies, the reader is referred to _ N
a recent more comprehensive sttftlgf the performance of FIG. 7. The structure of paranitroanilif@NA).

the ADC methods, where—at a distinctly better AO basis set

level—also the HO and HF molecules have been addressed. ) )
In the present small basis set computations the AD@nd excitation, for example, the dipole moment of PNA increases
ADC(3) results are rather similar and the deviations from théfom the 3I2r4e§1dy large ground state value-06D to about
FCI excitation energies are well below the average ABC 14—-15D.7" Clearly, the latter property renders PNA an
error of 0.2 eV found in the larger study. interesting test case for the present ISR property method.
For the excited state dipole moments, the FCI results in N the present computations, the ground-state geometri-
Table 11l are compared to the results of three distinct ADCC@l parameters of PNA were 505pt|m|zed using DFT at the
treatments. At the lowest level, referred to as ADC the Iev%I of the B3LYP functionar "and the cc-pVDZ basis
ADC eigenvectorghaving onlyp—h componentsare com- Sef (s_lx-component_ represente}tlon affunctions. The op-
bined with the zeroth-order ISR property matrix, that§® tlmlzatlor; was carried out using theAUSSIAN program
(note that the first-order contributions to tpe-h diagonal package” ADC calculations were performed both at the

block vanish. The ADQ(1) results in Table Il are seen to ADC(1) and ADQ2) level using the 6-31G basis é%a”d
differ quite substantially from the FCI values, which indi- the DFT nuclear conformations. A characterization of the

cates that the AD() scheme is hardly a useful approxima- highest occupied and lowest un_occupied MOs is given in
tion. A distinctly improved description is obtained at the 1able IV. In the ADQ2) calculations theK-shell orbitals

ADC(2) level, where the full ADC2) property matrix as de- Were kept frozen. The dimension of the ADC secular matri-
rived here is used together with the ALE eigenvectors of CeS ranged from 3327004;) to 592445 A;). Comple-
the electronic excitation problem. The role of the eigenvecMenting calculations were performed at the ARCevel to

tors in the computation of excited state properties can p&heck for basis set limitations and conformational effects
seen by comparing the AO@) dipole moments to the results (S€€ below. Moreover, the singlet excitations were com-
obtained by combining the AD@) property matrix with the ~Puted also at the extended AQT level (see Ref. 28in
eigenvectors of the AD@) secular matrix. These ADG/2) order to have a further check of the admixtures of doubly
results(last column of Table Il agree indeed extremely well excited configurations. The extended _ACZO’: calculations
with the FCI standard. the mean absolute and the maxima&V€re carried out in a direct mode avoiding the storage of the
deviation being 0.08 and 0.D, respectively, for the mani- |arge first-order partVl,,, of the secular matrix. _

fold of states listed in Table Ill. The good accuracy record of ~ AS our ground-state calculatiorisee Table V predict,

the ADQ(3/2) results suggests that the quality of the ARC the symmetricC,, conformation of PNA is not a stable sta-

property matrix itself is very satisfactory and the errors in thelionary point, but rather a transition state separating two
excited state properties at the AIZE level will be mainly equivalentC, structures associated with a nonplanar configu-
due to insufficiencies of the AD@) eigenvectors. ration of the amino group. In view of the rather small stabi-

VI. APPLICATION TO PARANITROANILINE TABLE IV. Orbital energies(eV) and MO assignment for the 6-31G HF
results.

As a test of greater practical importance, we have per=
formed ADQ2) calculations for the lowest excited singlet
and triplet states of the paranitroanilitfNA) molecule(see  Occupied

—€[eV] Notation  Charactefatomic localization

Fig. 7). PNA is a prototypical “push—pull” chromophore, 4bP: 8.78 ms  C(nitro)/C—~Claming/N(aming
having a donor (NK) and an acceptor (N group con- izz 12% n’(f;) &ﬁﬁ;ﬁ”é

nected by the conjugated system of the phenyl ring. Char- 3bi 13.04 ™ N(aming/C—C(aming
acteristic for such a system is the occurrence of strong ini1a, 13.05 o O/C—N(nitro)

tramolecular charge transfer upon electronic excitationgb, 13.08 n(e)  O(lone paip
giving rise to extraordinary linear and nonlinear optical re-Virtual

sponse properti€®~3The excitation induced charge trans- >t i g'”g’bgnzg("beenzene antibondipg
. , : , oo ‘
fer will also be reflected in a substantial change of the exg,’ - nitro/benzene/amino

cited state dipole moments. In the prominent'A3
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TABLE V. Ground state energ§ (a.u), ZPVE correctiona.u), and dipole  From these results we may conclude that the 6-31G #asis

moment D) for the C,, andC, stationary points of PNA as obtained at the  gyq)|q essentially be adequate to treat the lowest four excited
B3LYP and HF level of theory using the cc-pVDZ, 6-31G, and 6-31G

basis sets. singlet states and their triplet counterparts. .

The AD(Q(2) results for the excitation energies, oscillator
Structure E |uf? ZPVE E+ZPVE strengths, and dipole moments of the four lowest excited
B3LYP/cc-pVDZ/optimized geometry singlgt states(Sl_—SA} are presented in Table VII. The in-
Cy, —492.154617 7.4 0.118 772 —492.035 845 spection of the eigenvectors shows that these states are char-
C° —492.155206 6.9 0.119545 —492.035661 acterized as single excitatiofithe admixture of doubly ex-
HF/6-31G/B3LYP geometry cited configurations at the extended ARC level is in the
Ca, —488.990308 84 p . 1
c 488986764 76 range of 16—18% The lowest two singlet states,"2,(n

S . . 1 * . .

HF/6-31G+/B3LYP geometry —a*) and 1'B,(oc—=*), are dipole forbidden or have an
Ca —488.008056 8.1 extremely small oscillator strength, respectively, so that it
Cs —488.004779 7.6 will be difficult to observe them in an ordinary photon ab-
“Expt. value 6.8 (Ref. 48. s_orp_t|on sp(_—:-ctru_m. The dominant rqle in the Iow-energy ex-
bAngle between C—N and the bisector of hH34.5°. citation regime is played by the third excited singlet state,
°Result of DEM/ADQ3) method: 7.D. 21A;, corresponding tor—=* excitation and associated

with a large charge transfé€T). The oscillator strength for
the transition to the S3 CT state is 0.392 as computed at the
lization energy, being only 3.7 kcal/mol, the out-of-plane dis-ADC(2) level. Due to its paramount spectral strength, the
tortion, predicted to be 34.5°, is remarkably large. In fact,2 1A, state has oftefincorrectly been referred to as S1. The
the C, minima are very shallow and not stable if zero-point computed vertical excitation energ$.55 e\j for the 2'A,
vibrations are taken into account. In the latter case, our calstate is in good agreement with the maximn25 e\j of
culations find that theC,, structure of PNA is by 1.2 kcal/ the broad absorption band in the gas phase spectrum of
mol below the nonplanaE configurations. In any case, the Farztdinovet al*® The calculated transition dipole moment
nonplanarity of the PNA ground state hardly affects thefor the 21A; state is 5.B, which should be compared to the
ground and excited state energies, and it should be legitimatxperimental value of 418 Slightly above the S3 state our
to set out from the more symmetric@l,, conformation in  computations predict a furthetr—=* excitation, 1'B,,
the present vertical electronic computations. The AD@e-  however, having a much smaller oscillator strength than the
sults given in Table VI show that th@,, andCg excitation = S3 state.
energies are almost identical. Obviously, the dipole moments The results for the four lowest triplet excitatioif1—
are more sensitive to the nuclear conformation. Here both th&4) are given in Table VIII. Obviously, their energetical or-
ground and excited state dipole moments at@econfor-  der deviates from that of the corresponding singlet states.
mation are somewhat below the correspond@yy values, While S1,T1 and S3,T3 are related singlet—triplet pairs, and
the differences being in the range of 0.4—-D.71t should be T4 corresponds to S2, there is no match for T2 and S4
noted that theC,, structure was the preferred choice in pre- among the four lowest singlet and triplet states, respectively.
vious theoretical work on PNA!46:47:5153,59 Most remarkable is the appearance of ti{er)—=* triplet
To check the adequacy of the relative small 6-31G basigxcitation, 1°B,, at the second positiofir2) in the triplet
set (basisA) for the description of the lowest valence-type spectrum. At the ADCL) level (basisA) a corresponding
excitations in PNA we compare in Table VI the AR  singlet state is found as the fifth root at 7.00 eV. The com-
results using basi& with those obtained using the somewhat parison to the ADCL) energy of the T2 statéTable VIII)
larger 6-31G- basis sef®® (basisB) containing a set of reveals a very largéfirst-ordey singlet—triplet splitting of
diffuse s and p functions. Concerning the excitation ener- about 4.5 eV.
gies, a noticeable basis set effect is seen only for the third Whereas various theoretical studies have been devoted
and fourth state in Table VI, for which the diffuse functionsto the linear and nonlinear optical properties of
lead to an energy lowering of about 0.2 eV. As seen in Table®@NA*~47:50535%ealing, in particular, with the strong sol-
VI, also the dipole moments are little affected by enlargingvent dependence of these properfied°0535%he theoreti-
the basis, the maximal change being fr the 21A, state.  cal work on the electronic excitations in PNA appears to be

TABLE VI. ADC (1) results for the vertical excitation energi€s (eV) and dipole moment§u| (D) of the
lowest excited singlet states of PNA in tk®, and C4 conformations using the 6-31&) and 6-31G- (B)

basis sets.

State/transition Q(Cy,) | 1(Cy)l Q(Cy) |n(Cg)l
Co,p C, A B A B A A
11A, 11A” n(o)—m* 4.82 4.79 5.7 5.7 4.80 53
1B, 2 o—a* 5.03 5.01 6.3 6.4 5.02 5.9
21A, 31 Te—1T 5.44 5.23 14.3 14.5 5.49 13.6

* X

11B, 21A" Te—1T 5.91 5.75 10.6 10.6 5.92 10.2
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TABLE VII. Vertical excitation energies$) (eV), dipole momentsu| (D), and oscillator strengths of the lowest
excited singlet states of PNA as obtained at the AD@nd ADQ1) level of theory using the 6-31G basis set.

ADC(1) ADC(2)
State/Transition S/D Q i Q || f
1A, (S1) n(o)—m* 84/16 4.82 5.7 3.84 4.9
1B, (S2 o—m* 84/16 5.03 6.3 4.35 5.1 <0.001
21A, (S3 Te—T* 82/18 5.44 14.3 485 17.¢ 0.392
1B, (S4 g 6= 83/17 5.91 10.6 4.88 9.0 0.011

#Percentage of singleS) and double(D) excitations in the eigenvectors of the extended AR @ersion.
bExpt. value(absorption maximum in vappr4.25 eV(Ref. 50.

‘CASPT2 result: 3.80 eVRef. 59.

dCASPT2 result: 178 (Ref. 59.

rather scarce. Serrano-Andret al>® have performed large- B; symmetry species. As far as the triplet states are con-

scale CASPT2 calculations on PNA excitations, but they recerned, we are not aware of any previ@lsinitio calcula-
port only results for the CT statésee Table VIIJ. The tions.
CASPT2 result for the excitation energy of the CT state is  Let us finally take a look at the excited state dipole mo-
0.75 eV below the present AY@) value. Discrepancies of ments listed in Tables VII and VIII, respectively. Most con-
that magnitude between CASPT2 and other results, includingpicuous is, of course, the large dipole moment of the S3
ADC(2), have been found previously far—=* excitation state reflecting clearly a large intramolecular charge transfer
energies in several molecul®s®* and there is an ongoing accompanying therg—m* excitation. As is well known, the
debate on that issue. Compared to the experimeigas excited S3 state corresponds to a zwitterionic, quinoid struc-
phase result of Farztdinovet al,*° the CASPT2 value is ture of the molecule, the amino and nitro groups bearing
0.45 eV too low, whereas the present A@QLCresult over- formal charges ofte and —e, respectively. Théclassical
shoots by 0.3 eV. The random phase approximatiRRA) dipole moment of such a structure is easily estimated to be in
and multiconfiguration self-consistent fielICSCH was the order of 30. The computedvertical) dipole moment of
used in a series of PNA response properties stfdiéédis-  17.0D, being in good agreement with the corresponding
closing again only the results for the CT state. The RPA an€CASPT2 valué® of 17.2D, may be somewhat too large. As
MCSCF values of 5.04 eV and 5.18 eV, respectively, recan be seen at the AGOD level (Table VI), a reduction in the
ported heregsee Mikkelseret al*%) appear much too large. order of 0.D may result if the dipole moment is computed
More recently, Salelet al>* and Moranet al®® have carried  at theC, conformation rather than &,, . As was discussed
out time-dependent density functional the¢f{DDFT) com-  in Sec. V, the computed dipole moments depend quite sensi-
putations of the lowest singlet excitations in PNA, apparentlytively on the quality of the ADC eigenvectors. Replacing the
yielding very satisfactory results for the excitation energyADC(2) eigenvector by that of the extended AT level
(4.13 eV and 4.07 eV, respectivglyand the oscillator gives a somewhat smaller value (1B)) and an even fur-
strength(0.332 and 0.313, respectivelgf the CT state. Un- ther reduction of the S3 dipole moment might result if the
fortunately, for other states the comparison to the TDDFTADC(3) eigenvector could be used.
results is impeded by the instance that neither symmetry nor Interestingly, the T3 triplet counterpart to the CT singlet
orbital specifications have been given. One may also consusitate, S3, has a distinctly smaller dipole moment, @1.7
recent semiempirical results obtained by Farztdieval®™  according to the present results. This indicates that apart
using the SAM1(semi ab initio model® In spite of an  from the spin multiplicities these states differ also to some
incidental coincidence of the excitation energies for the Slextent with respect to their charge distributions.
and the CT states and the corresponding A®)Gralues, Experimental dipole moments for the singlet excited CT
little consistency is seen between the SAM1 and our resultstate of PNA in different solutions, lying in the range of
For example, the SAML1 calculation places the CT state eni4—15D, have been reported, among others, by Liptayd
ergetically at the fourth positioS4) and assigns it to the Wortmannet al*® An experimental value of Il was esti-

mated by Schuddebooat al*° for the “pure” 37—7* state.

It should be clear, however, that one must be very cautious
TABLE VIII. Low-lying triplet states of PNA: ADG2) and ADQ1) results  when comparing the theoretical results with experimental
(6-31G basis sgfor vertical excitation energieQ (eV) and dipole moments data. Besides the solvent effects not accounted for in the

D). i . ;
lul (©) present theory, the theoretical dipole moments are static
ADC(1) ADC(2) quantities computed for the ground-state conformation of the
State/Transition Q 1l Q Il molecule, WhICh means that any effec_ts associated with Fhe
nuclear motion of the electronically excited molecule are dis-
12A2 (T n(cr)—vr’: 421 5.7 3.55 4.9 regarded. For PNA it is known that a complex nuclear dy-
1322 gg ”ST”)_;’I g'gg g'g 232 141'57 namics is triggered upon excitation of the CT stétee, for
1%, (T4) Jl o 6.4 411 5o example, Schuddeboonet al*®), involving intersystem

crossing (ISC) and possibly also internal conversigiC)
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processes. In view of the present results, predicting four tripstate properties and transition moments. This means, for ex-
let states, T1-T4and two singlet states, S1 and)SBelow  ample, that in a system consisting of noninteracting frag-
the CT singlet state populated in photoabsorption, it is by nanents the total dipole moment of a locally excited state is
means clear how the experimental signal can be attributed tobtained as the sum of the dipole moment of the excited
a distinct excited state so that previous experimental assesagment and the ground-state dipole moments of the other

ments have to be reconsidered. fragments. The compactness, on the other hand, means that
the truncation error arising from restricting the IS expansion
VII. CONCLUSIONS manifold to the lowest, say, excitation classes is minimal.

The ISR reformulation of the ADC propagator method In the case of the ES properties and moments the truncation

allows for a direct approach to excited state wave function€'"or (for singly excited statess of the order 2.—1, which

and properties, thereby overcoming certain constraints of thi$ {0 be compared with the,2truncation error for the exci-
original propagator formalism. The concept is based on &2tion energies and the GS transition moments. _
well-defined construction procedurébasically Gram— Another option offered by the present development is the
Schmidt orthogonalization of successive excitation classed?0SSiPility to augment the ADC secular matrix by the ISR of
transforming the so-called “correlated” excited states, i.e.2n arbitrary one-particle operator, say, an “external” poten-
states obtained by applying HF excitation operators to théial U. This allows one to treat the secular problem of the
exact(correlated ground state, into a complete set of inter- extended HamiltoniarH + U, in a very simple and appeal-
mediate states. These intermediate states define a Hermitizmg way. An important aspect here is that the IS manifold
matrix representation of the Hamiltonian, referred to as ADCitself, being based entirely on the ground state, can be kept as

secular matrix, which is amenable to perturbation—constructed for the original Hamiltoniahi. This is reflected
theoretical expansions at successively higher levels of conyy the form of the additional part of the secular matrix, be-
sistency[ ADC(n) apprOX|mat|on$.SoI'vmg the eigenvalue ing, of course, linear in the external potential More gen-
p_rob_lem of thEﬁ‘ ADC secular matrix gIves access to (me_ erally speaking, the ISR approach introduces a clear distinc-
cfcatlon) energies In the fqrm of the elge_nvalues; Comblnedtion between the treatment of the ground state and the
wiih the intermediate basis states, the eigenvectors form at’?orresponding construction of the intermediate states, on the

explicit representation of the excited states. In this work theone-hand side, and the final state problem, on the other hand
ISR concept has been extended to the representation of N principle o’ne could use completely diﬁerent Hamilto-

arbitrary ope—particle{prop.erty operator, which is required nians for either part of the problem. In the usual propagator
for evaluating ES properties and moments from the IS baSIisormalism by contrast, ground and final state aspects are
expansion of excited states. More specifically, the explicit ntangle d, in a hardly ’separable way, as can be seen, for
ISR property matrix has been constructed and Irnplementegxample, in their diagrammatic perturbation expansions. In-

at the second order or AO@) level of theory. In combina- . - - T
tion with ADC(2) or ADC(3) eigenvectors, this leads to a troducing an additional external potentldlleads inevitably

consistent second order treatment of ES properties and mé diagrams corresponding to higher order§Jinand there is
ments for singly excited states. First test calculations pref© & priori procedure for distinguishing ground and final
sented here indicate that especially the ABK2) scheme State contributions.

using the ADG3) eigenvectors gives very satisfactory It should be noted that the present development also lays
results. the foundation for an ADC formulation of higher response

From a methodological point of view, the ADC approxi- properties of molecules in the ground state. Using the ISR
mations combine diagonalizatidiof a secular matrixand ~ Property matrices, one can easily recast the exact response
perturbation theoryfor the elements of the secular and prop- functions into closed-form ADC expressions, which so far
erty matrices The ISR formulation makes apparent that— was possible for the linear response only.
apart from the possible subtraction of the ground state en- Of course, the property ISR concept, developed here for
ergy, E,, in the diagonal of the secular matrix—perturbation (neutra) electronic excitations, can readily be generalized to
theory comes into play only in the construction of the inter-other cases, such dsingle-electronionization or electron
mediate states, being completely determined by the exa@ttachment. In the former case, for example, the IS states are
ground state and the underlying basis of one-particle stategpnstructed from “correlated” ionic states formed by the ac-
(HF orbitals. This means that the perturbation expansiongion of HF ionization operators on the exdneutra) ground
for the various ADC matrices are entirely based on the perstate. For more details of the ISR formulation of the ioniza-
turbation theory for the ground state. As a consequence, tH&on part of the electron propagator, also referred to as non-
convergence behavior of the ADC expansions is similar tdyson ADC method, the reader is refered to Ref. 35; explicit
that of the the ground state perturbation theory. This has beegxpressions for the ionic property ISR at the AQClevel
termed the regularity of the ADC perturbation expansions. will be presented in a forthcoming publicati&h.

The usefulness of the ADC method is based on two basic To summarize, the ISR property extension of the ADC
features, refered to as separability and compactness. Thmopagator method is a conceptually simple approach to
separability(of the secular matrixguarantees size-consistent properties of molecules in excited states. Maintaining the
(more precisely, size intensiveesults for excitation energies advantages of propagator theory, one gains the full flexibility
and GS transition moments. As the present analysis hasf a wave function description. The approximative AQLC
shown, the size consistency pertains as well to the excitetevel worked out here should prove a practical and suffi-
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ciently accurate means of computation of ES properties and 23) 1 .

transition moments, being of particular interest for the treat-  Dgyarw=— §5kk' E Uafcijvadijdcd
ment of larger molecules, as the present exploratory study of ean]

the PNA excitations may have demonstrated. Based on a

*
more efficient program version, we hope to be able to present + 5kk'di2j | VargijVadidii » (A7)
further tests of the method in the near future.
(2,4) 1 *
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D;ka)’k’ 5aar Z ‘ v:dk’jUC’dkijC’

APPENDIX: SECOND-ORDER INTERMEDIATE e.chd]
STATE REPRESENTATION OF A GENERAL 1 .
ONE-PARTICLE OPERATOR + Eﬁaa'C;j Uedi U cdkidij - (A9)

In the following we collect the explicit expressions for
the matrix elements of a general one-particle operator:

N (2,6) * ]

D=E d,scfcS (A1) Dakark = 2 C%j Ucdk’jvadk]dca’
with respect to the second-order ISR. Some remarks on the 1 . q h AL0
derivation procedure are given at the end of this section. 28 VardijVadkdiri T N-C., (A10)

The general form of the ISR matrix elementsfis

Dyy=(¥|D|¥;)=5,;Do+Dyy, (A2)

a . . ) 27 _ * *

where Dy=(W¥,|D|W¥,) in the diagonal term is the ground Dakark = ;,- Ua’dk’jvadkidij—’_czdj VarcrjVadkided-
state expectation value &f [see Eqs(31) and(32)] andD,; (A11)

denote the ISR matrix elements of the shifted operator

D-— Dy. At the second- and third-order level the explicit ISR

configuration space comprises the-h and 20—2h states. In Eqg. (A5), p(z) denotes second-order contributions to the
The matrix elements in thep—h diagonal block, the one-particle density matrix elemert&q. (32)]. It is advis-
p—h/2p—2h block, and the p—2h diagonal block are able to evaluate these contributions using the DEM/ABC
needed through second, first, and zeroth order, respectivelgpproximation as discussed in Sec. Il rather than the strict

For notational convenience the abbreviation second-order expression. Note that there is no first-order
Vv contribution to the diagongd—h block.
D pgrs= palrs] (A3) (b) p—h/2p—2h coupling block

€pteg—€— €

is used in the following, wher&/ 5= Vpqrs— Vpgsr de-
notes the antisymmetrized Coulomb integréis “1212”

form) and €, are HF orbital energies. As before, the sub- aka'b'k'1 = ~ Gaar k| dirpr — Z Vhrar ddl)
scriptsa,b,c, ... andi,j,k, ... refer to unoccupiedvirtual)
and occupied orbitals, respectively, while the letters
p,q.r, ... will be used in the general case. * Oaar S| diwr E Ui
(@) p—h diagonal block
7 2 + 5ab’ 6kk’( d|/a/ ; ardl’i ddj)
Dak,a'k’zékk’daa’_5aa’dk’k+i2 daka’k’ f (A4) I
where the seven second-order contributidhgk’f;,k, are _5ab’5kl'(dk’a’ N ’dk’ )
given by

2.1) 2 2 _5 /Ev*r//dk+5blzv*//rdk
D(ak a'k’: - 6kk/2| pl(a?da|_5aa/2b p(k’z)dbk—i_ hC, aa C cokl ¢ a C ca’k’l ¢

(A5)
_5kk/; U;/b/“/daj_" 6k|/; U;’b'jk’da]"

(A12)

1
2,2
nga)'k’ Z‘Skk’cg;j vedijvadijdear +h.C., (A6)
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(c) 2p—2h diagonal block
Dabkia’brk1= Spbr Okkr 11 ' daar — Spar Skkr 11 dapy
+ Saar Okk 111 Apby — Saby Skkr it par
— Oaar pby 011 ik T Paar Sbbr Sk di vk
— Oaar b Okkr i1+ Saar Spb Skir Ay -
(A13)

Electronically excited molecules 11463

DiR = (¥ |cle.Dele| o) +h.c.
+(WM|cleDele| ¥ E) — pPdak— pldy
— 3(SPD{V+ DES?) 4y

one has to deal with four different contributiofis—(iv): The
first (i) and secondii) contribution arise from the PT expan-
sion of the first term on the right-hand side of E&23);
contribution(iii) comprises the twe?d terms arising from

(A23)

The PT expressions given here can be derived in ahe orthogonalization of the intermediate states with respect
straightforward, though somewhat tedious way usingo |V ), while the twoS?D*(® terms associated with the IS

Rayleigh—Schrdinger PT for the ground stafe¥',) in the

normalization are collected in contributidiv). For treating

general ISR terms. A few remarks on the procedure may bé) and (ii) it is helpful to use the commutator relation

appropriate.
Let us consider the—h diagonal blockD, ;, of the ISR
matrix, reading in matrix notation

D;,;=S YD s 2 (A14)
Here S is the overlap matrixEg. (6)],

Sakbi=(WolCiCaCiCi| W o)~ parpin (A15)
of the precursor statd&q. (4)],

[Who=(cick—pra) | Yo (A16)

and D%, is the precursor state representatiorDof
Dzk,m:<‘I’0|CECaDCgcl|‘1’o>_ p|b(\1’0|cﬁcaf)|\lfo>
—pa(Wo|DCici| Wo) + paipin(Wol D Wo).
(A17)
Let us note that th¢—h components,

pra={(Wolcici Wo)~0O(2) (A18)

[Clcavb]:zs dasclcs_Er drkc;rca (A24)
and replaces/c,D in (i) and (i) according to
clc.D=Dclcy+ >, dacics— >, dyclc,. (A25)
S r

Thereby one avoids having to evaluate matrix elemenf3 of
with respect to triple excitations on the HF ground state.
Moreover, several distinct contributions split off in a quite
natural way:

© Sap0(Wo|D|W)? [from (i) and (ii)],
e part of (i) cancels exactlyiii),
* (8dap— Sapdi)(Wo| W)@

=0 [from (i) and (ii)],

« the contribution(iv) is canceled completely by
terms arising fromntii).

The evaluation ofi) is simple; note that only thp—h part
of |¥{?)) comes into play. The resulafter cancellationsis

of the one-particle density matrix are of second order of PTgiven by Eq.(A5). The (ii) part is more intricate. The parti-

so that the last term on the rhs of E&17) does not come

tioning according to Eq(A25) leads to three distinct parts,

into play before fourth order. As can readily be seen, thgA)—(C). Here part(A) contributes to all six Eqs(A6)—

perturbation expansion @& is of the form

S=1+52+0(3). (A19)
Using
S 2=1- 1524 0(3) (A20)
we find
D1,=D{{"+ DM+ DI?)
_ 1(SPDHO 4 pHOSD) 1+ 0(3) (A21)

for the expansion oD,; through second order. Here the
zeroth-order contribution is simply given by

Dﬁ(k?&=(<I>0|c;£calﬁcgc||d>0), (A22)

where|®,) denotes the HF ground state. As can readily be

seen, the first-order contribution vanish%(k‘lgﬁo. In the

second-order part,

(Al11), (B) to (A6) and (A10), and(C) to (A8) and (A10).
Note that in(A) one has to deal with matrix elements of the
type (2p—2h|D|2p-2h).

For the p—h/2p—2h matrix elements{¥ ,|D| V¥ 1),
the intermediate states are needed through first order only,

|V a0 =cle| o) +cle MY +0(2), (A26)
1T api) = clete | o) — | @) (WY clefee | o) + OEZ)- :
A27

The ensuing evaluation of the matrix elemefitsough first
ordey is straightforward.
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