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ABSTRACT: The GW self-energy, especially G0W0 based on the particle−hole random
phase approximation (phRPA), is widely used to study quasiparticle (QP) energies.
Motivated by the desirable features of the particle−particle (pp) RPA compared to the
conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy,
formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the
accuracy of the T-matrix method for molecular QP energies, highlighting the importance of
the pp channel for calculating QP spectra.

Kohn−Sham (KS) density functional theory (DFT)1,2

calculations have been routinely performed in both
materials and molecular applications. Its success is made
possible by the development of accurate density functional
approximations (DFAs)3−9 to the exact exchange−correlation
(xc) energy functional. Despite the popularity of DFT, most
DFAs yield underestimated band gaps,10−13 which originate
from the delocalization error,14,15 namely, their deviation from
the linearity condition of fractional charges in finite
systems.16−18 Also, for systems with strong static correlation,
common DFAs tend to greatly overestimate the total energies,
deviating from the energy constancy condition of fractional
spins.18−20 Combining these two exact conditions, the total
energy flat-plane condition has been formulated21 and has
guided recent development such as the local scaling
correction22 and the particle−particle random phase approx-
imation (ppRPA).23,24 In particular, the ppRPA is the first DFA
that satisfies the flat-plane condition. In contrast, the conven-
tional particle−hole (ph) RPA has major deviations.
(Generalized) KS orbital energies obtained from common

DFAs are not good approximations in general to quasiparticle
(QP) energies because of the delocalization error.14,15 One
popular approach of obtaining QP energies is the GW
approximation,25 performed as a post-DFT procedure and
often with the phRPA screened interaction. It has been
extensively applied to calculating the QP band structure for
solids11,26 and more recently to obtaining molecular ionization
potentials (IPs).27−30 GW QP energies show significant
improvement over DFA orbital energies as compared to
experimental data. Efforts of incorporating vertex effects have
been made by adding the contribution of the exchange

correlation kernel f xc (the second functional derivative of the
xc energy functional approximation).11,31−33 Another route is
the summation of ladder diagrams from the pp channel rather
than the direct ring diagrams from the ph channel, yielding the
Bethe−Goldstone approximation or the T-matrix approxima-
tion,34−38 first introduced for the nuclear many-body problem.
It has also been applied to calculating the electronic structure of
the Hubbard model.39−42 For the electron gas, the T-matrix
approximation is justified in the low-density limit,37,43 while the
phRPA is correct for the high-density limit.44 The combination
of correlation channels has also been achieved and applied to
electronic structure calculations for the Hubbard model45 and
strongly correlated metals.43,46−48

Motivated by the desirable behavior of the ppRPA as
compared to the phRPA in terms of thermochemistry as well as
the satisfaction of the flat-plane condition,23,24 we now extend
the application of the post-ppRPA T-matrix self-energy to
molecular electronic structure for the first time, computing IPs
and electron affinities (EAs) of atoms and molecules. This is
achieved by formulating the working equation of the T-matrix
self-energy in terms of the eigenvalues and eigenvectors of the
ppRPA matrix. The self-energy correction to orbital energies is
then performed as a post-ppRPA step. Comparison is made
with existing methods including the GW approximation.
The key quantity is the many-body self-energy. At the first

order, the direct contribution Σd
(1) and exchange contribution

Σx
(1) correspond to the local Hartree potential and the nonlocal
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Fock exchange potential. The second-order self-energy also
contains a direct contribution Σd

(2) and an exchange
contribution Σx

(2), but unlike the first-order contributions, it is
nonlocal in time.
In the ph channel, the G0W0 approximation is the infinite

summation of direct ring diagrams. Its time-domain real-space
analytical expression is given by49

Σ = iG W(1, 2) (1, 2) (1, 2)G W
xc 0 0

0 0 (1)

The variables 1, 2, etc., stand for the combined space−time−
spin variables. Fourier transform into the frequency domain and
projection onto MO space yield the expression for the
correlation part of the G0W0 self-energy in terms of the
eigenvectors and eigenvalues of the phRPA matrix.29 An
alternative expression that bypasses the diagonalization of the
phRPA matrix involves imaginary frequency integration. It can
be combined with the resolution-of-identity technique for
computational speed-up, as was performed in calculating
molecular IPs and EAs by Ke.28

In the pp channel, the infinite summation of ladder diagrams
plus their corresponding exchange terms leads to the T-matrix
approximation. The RHS of the equality shows the infinite sum
as the one-particle Green’s function G0 multiplied by a four-
point interaction obtained from solving the ppRPA equation,
and the corresponding time-domain real-space expression is
given by50

∫Σ = i d d G T(1, 2) 3 4 (4, 3) (1, 3; 2, 4)Hxc
T

0 0 (2)

where, unlike the two-point screened interaction W0 from the
phRPA, the T0 matrix from the ppRPA is a generalized four-
point effective interaction. In contrast to the G0W0 approx-
imation, the T-matrix approximation is exact up to second
order because of its proper treatment of the exchange terms
describing the Fermionic nature of electrons. Fourier transform
into the frequency domain and projection onto MO space yield
the following expression for the correlation part of the T-matrix
self-energy (see the Supporting Information (SI))
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The above equations use the antisymmetrized two-electron
integral in the physicist’s notation (see the SI). Xcd

N±2,m and
Ykl
N±2,m are the double-electron addition/removal eigenvector

components for the ppRPA matrix51
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where the matrix elements are given in SI. Equation 3 is the key
development in this work. We point out that in order to bypass
the O(N6) formal scaling in our current working equation, the
equivalent imaginary frequency integration formulation is
preferred, just as in the G0W0 case. For the pp-RPA correlation
energy calculations in particular, the tensor hypercontraction
technique can be applied to bring down the complexity to a
formal O(N4).52 The corresponding development for the T-
matrix self-energy is under active investigation.
With the self-energy approximations, IPs, EAs, and other QP

energies can be calculated with the diagonal QP energy
correction formula

ε ν= ϵ + Σ ϵ − ⟨ | | ⟩Z p p p p[ ( , ; ) ]p p p p
QP SCF SCF

xc (7)

where = − ω
ω ω

∂Σ
∂ =ϵ

−⎛
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p p( , ; )
1

p
SCF

. The self-energy Σ

contains the exchange and correlation terms, and ⟨p|vxc|p⟩
stands for the diagonal exchange−correlation potential matrix
element from a DFA.
The HF, PBE, second-order self-energy, and post-ppRPA T-

matrix calculations are performed with QM4D.53 The HF and
PBE references are used for the T-matrix and second-order self-
energy calculations. The cc-pVTZ basis set54,55 is used for all IP
calculations except the case of furan, for which the aug-cc-
pVDZ basis set56 is used; the cc-pVTZ + Dunning−Hay (DH)
double Rydberg basis set (for elements other than H, Li, and
Na), the cc-pVTZ + DH diffuse basis set (for H and Li),57 and
the cc-pVTZ basis set (for Na) are used for the LUMO EA
calculations. For further details about the basis set convergence
behavior refer to Table 1 of the SI and discussions therein.
First we present the HOMO IPs of 26 small systems (Table

1 and Figure 1a,b; Table 2 of the SI for numerical values of each
system). The PBE eigenvalues hugely underestimate the
HOMO IPs, with a mean signed error (MSE) of −4.90 eV
(Table 1). This should not be surprising given the large
delocalization errors of common DFAs under the generalized
gradient approximation (GGA). Moreover, the QP correction
results with the PBE reference for the second-order and T-
matrix self-energies also give MSEs of −2.90 and −1.29 eV,
respectively. We ascribe this to the poor PBE reference orbitals
and their energies. When the reference is inferior, the validity of
the QP correction formula, essentially a first-order perturbative
formula with an extra normalization factor Zp, becomes less
reliable. Zp partially accounts for the higher-order effects. The

Table 1. MSEs and MAEs of Computed HOMO IPs of 26 Small Systems from Experimental Data29,30,60a

second-order @ T-matrix @ G0W0@

HF PBE HF PBE HF PBE HF PBE GW

MSE 0.81 −4.90 −0.48 −2.90 −0.15 −1.29 −0.19 −0.19 −0.43
MAE 0.91 4.90 0.56 2.90 0.31 1.29 0.36 0.41 0.52

aMolecular structures are from the G3 set61,62 and ref 29; reported results of self-consistent GW (GW) and G0W0 with the HF (G0W0@HF) and
PBE (G0W0@PBE) references are from refs 27 and 30 (units: eV).
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closer Zp is to 1, the less important the higher-order
contributions are, and thus, the better converged is the
perturbative QP correction. Compared to PBE, although the
HF eigenvalues systematically overestimate the HOMO IPs
because of localization error,14,15 the MSE is only 0.81 eV.
Particularly, for F2, the PBE HOMO IP (9.24 eV) deviates
significantly from the experimental value (15.70 eV), while the
HF HOMO IP (18.14 eV) deviates less. The Zp’s in the QP
correction for the T-matrix HOMO IPs are 0.927 (HF
reference) and 0.859 (PBE reference). Accordingly, the T-
matrix HOMO IP with the HF reference (15.40 eV)

reproduces the experimental value much better than does the
PBE reference result (13.08 eV).
Notably, the T-matrix results appear more dependent on the

SCF reference than do the G0W0 results. The T-matrix results
with the PBE reference display a much larger MSE and MAE
than those with the HF reference (Table 1). A similar situation
is observed at the second order (Table 1). The better
performance of the HF reference is likely a result of the
more desirable properties of the HF orbitals and orbital
energies than their DFT counterparts.58,59 Overall, the T-matrix
results with the HF reference show the least dispersion from
the experimental data (Figure 1) among all of the methods
studied, yielding the smallest MAE (0.31 eV) and MSE (−0.15
eV). In comparison, the G0W0 results with the HF reference,
the most robust of the considered GW schemes for our tested
systems, have a larger mean absolute error (MAE) (0.36 eV)
and MSE (−0.19 eV).
Then we examine the LUMO EAs for eight small molecules

(Table 2). As recommended in ref 66, the DH double Rydberg
or diffuse basis functions are added to achieve better converged
EAs. For IPs, however, the effect of the DH basis functions is
insignificant66 (also see the SI). The results are compared with
both literature benchmark30,60 and CCSD(T) total energy
differences calculated with the same basis set. The discrepancy
between the CCSD(T) results (Table 3 of the SI) and the
reference benchmark data is most likely associated with the
basis set effect, which stands out for F2 in particular. The two
sets of G0W0@PBE results are not very consistent, also
indicating the basis set dependence.30 In terms of accuracy, the
second-order self-energy with the HF reference yields the
smallest MAE, while the T-matrix data with the HF reference
and the two sets of G0W0@PBE results are similar but worse
than the HF orbital energies. As in the case of HOMO IPs, the
second-order and T-matrix results with the PBE reference show
significantly greater MAEs due to the poor PBE starting point.
Overall, the LUMO EA predictions are less satisfactory than
HOMO IPs, for both the T-matrix and G0W0 approximations.
Also, unlike the IPs, the EAs are strongly dependent on the
basis set. However, because the G0W0 method is in general
successful in solid-state applications despite the apparent
challenge in predicting accurate molecular EAs here, we remain
cautiously optimistic about the expected performance of our

Figure 1. Computed IPs (y-axis) plotted against experimental values
(x-axis) (unit: eV): HOMO IPs of 26 small molecules estimated from
(a) HF-reference and (b) PBE-reference; valence and core IPs of 7
small molecules estimated from (c) HF-reference and (d) PBE-
reference. Numerical values are listed in Tables 1 and 3 and in Tables
2 and 4 of the SI.

Table 2. Experimental and Computed LUMO Energies of Small Moleculesa

second-order @ T-matrix @ G0W0@PBE

sys. ref HF PBE HF PBE HF PBE TM BGW

LiH 0.34 0.20 1.64 0.28 0.12 0.26 −0.08 0.07 0.37
BH3

b 0.04 −0.08 3.06 −0.08 1.01 −0.08 −0.14 −0.12 0.06
NaCl 0.73 0.57 2.30 0.66 0.44 0.64 0.26 0.39 1.38
BNc 3.16 2.96 7.27 3.84 5.08 3.94 3.96 3.95 3.99
CS2 0.01 −0.06 2.85 −0.05 1.01 −0.05 0.64 0.20 0.43
O3 1.93 1.62 6.38 1.93 1.91 2.80 3.25 2.30 2.59
SO2 0.81 0.21 4.74 1.03 1.02 1.28 1.76 1.00 1.24
F2 0.42 −0.08 5.89 −0.08 2.04 −0.08 2.01 0.70 0.41
MSE −0.26 3.34 0.02 0.65 0.16 0.53 0.13 0.38
MAE 0.26 3.34 0.21 0.78 0.37 0.79 0.32 0.38

aReference vertical EAs are taken from ref 30 for LiH, BH3, NaCl, and BN and from ref 60 for CS2, O3, SO2, and F2; molecular structures are from
the G3 set61,62 unless otherwise specified; two sets of reference G0W0@PBE results30 are presented, one obtained with TURBOMOLE (TM) and
the other with BerkeleyGW (BGW). The last two rows show the MSEs and MAEs with respect to the reference data (units: eV). bThe bond length
of the D3h BH3 was taken as 1.19 Å.63 cThe bond length of BN was taken as 1.281 Å.64
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post-ppRPA T-matrix method in solid band structure
calculations.

Finally, consider the valence and core IPs for seven small
systems (Table 3, Figure 1c,d; Table 4 of the SI for numerical
values of each system). As in the case of the HOMO IPs, the
HF eigenvalues systematically overestimate the core IPs as well
(Figure 1c), while the PBE IPs are too low (Figure 1d). Under
the diagonal QP correction approximation, the second-order
self-energy with the HF reference slightly overcorrects the HF
eigenvalues, with an MSE of −0.46 eV. The T-matrix method
with the HF reference presents the smallest MSE of 0.01 eV. In
terms of the MAE, the performance of the T-matrix
approximation with the HF reference is the most robust
(Table 3), closely followed by the second-order self-energy
with the HF reference. With the PBE reference, the T-matrix
results offer significant improvement over the PBE eigenvalues
although still underestimating the experimental IPs, while the
second-order self-energy offers only a modest improvement
(Figure 1d).
In summary, we have developed the working equations for

computing the QP spectra of atoms and molecules with the T-
matrix self-energy. This has been achieved using a QP energy
correction procedure followed by a ppRPA calculation, similar
to the G0W0 calculation based on the phRPA. The G0W0 and T-
matrix approximations correspond to the diagrammatic
summation of self-energy terms in the ph and pp channels,
respectively. Compared with the G0W0 approximation, the
performance of the T-matrix approximation with the HF
reference is superior for HOMO IPs and similar for LUMO
EAs. For core IPs, the T-matrix approximation also delivers
significant improvement over the HF and PBE orbital energies
as well as the second-order self-energy results on top of them.
Regarding future applications to extended systems, the greater
importance of the ph screening channel may make it
insufficient to account for the pp pairing correlation channel
alone. Nevertheless, on the basis of the robust behavior of the
post-ppRPA T-matrix method in molecular systems, we expect
that the explicit consideration of pp channel correlation
contributions beyond the conventional ph channel may also
benefit solid-state applications.
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