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Range-separated time-dependent density-functional theory
with a frequency-dependent second-order Bethe-Salpeter
correlation kernel
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We present a range-separated linear-response time-dependent density-functional theory (TDDFT)
which combines a density-functional approximation for the short-range response kernel and a
frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel.
This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT
and aims at improving the accuracy of calculations of electronic excitation energies of molecular
systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation
kernel is given using many-body Green-function theory. Preliminary tests of this range-separated
TDDFT method are presented for the calculation of excitation energies of the He and Be atoms
and small molecules (H2, N2, CO2, H2CO, and C2H4). The results suggest that the addition of the
long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation
energies. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4943003]

I. INTRODUCTION

Linear-response time-dependent density-functional the-
ory (TDDFT)1,2 is nowadays one of the most popular
approaches for calculating excitation energies and other
response properties of electronic systems. Within the
usual adiabatic semilocal density-functional approximations
(DFAs), linear-response TDDFT usually provides reasonably
accurate low-lying valence electronic excitation energies of
molecular systems at a low computational cost. However,
these usual adiabatic semilocal DFAs have serious failures.
In particular, they give largely underestimated Rydberg3 and
charge-transfer4 excitation energies and they do not account
for double (or multiple) excitations.5

The problem with Rydberg and charge-transfer excitation
energies is alleviated with the use of hybrid approximations in
linear-response TDDFT,6 which combine a Hartree-Fock (HF)
exchange response kernel with a DFA exchange-correlation
response kernel. This problem is essentially solved with range-
separated hybrid (RSH) approximations,7–10 introducing a
long-range HF exchange kernel. Research in linear-response
TDDFT now aims at an increasingly higher accuracy and
reliability, and, in particular, the inclusion of the effects of
the double excitations. Examples of recent developments
are the dressed TDDFT approach (combining TDDFT
and the polarization-propagator approach),11–13 double-hybrid
TDDFT methods (combining TDDFT and configuration-
interaction singles with doubles correction [CIS(D)]),14 and
range-separated TDDFT approaches in which the long-range
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response is treated with density-matrix functional theory
(DMFT),15 multiconfiguration self-consistent-field (MCSCF)
theory,16 or the second-order polarization-propagator approx-
imation (SOPPA).17

In condensed-matter physics, the Bethe-Salpeter equa-
tion (BSE) applied within the GW approximation (see,
e.g., Refs. 18–20) is often considered as the most successful
approach to overcome the limitations of TDDFT. Although
it has been often used to describe excitons (bound electron-
hole pair) in periodic systems, it is also increasingly applied
to calculations of electronic excitation energies in finite
molecular systems.21–49 In particular, the BSE approach was
shown to give accurate charge-transfer excitation energies
in molecules,30,32,34–36,38,39 and when used with a frequency-
dependent kernel it is, in principle, capable of describing
double excitations.33,50,51 The drawbacks of the standard BSE
approach with the usual approximations are the need to
first perform a computationally demanding GW quasiparticle
calculation, and an observed loss of accuracy for small
molecules44 which is probably due to self-screening.

In this work, we explore the combination of TDDFT
and BSE approaches based on a range separation of the
electron-electron interaction. More specifically, we propose
a range-separated TDDFT approach in which the long-range
response is treated with a frequency-dependent second-order
Bethe-Salpeter-equation (BSE2) correlation kernel. The BSE2
approximation was recently introduced by Zhang et al.52

within the Tamm-Dancoff approximation (TDA).53 Compared
to the standard BSE approach with the GW approximation,
the BSE2 approximation keeps only second-order terms with
respect to the electron-electron interaction, including second-
order exchange terms which makes it free from self-screening.
It is an appropriate approximation for finite molecular systems
with relatively large gaps. Building on the work of Sangalli
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et al.,51 we provide an alternative and more general derivation
of the BSE2 approximation and we apply it to the range-
separated case. We present preliminary tests of this range-
separated TDDFT method for the calculation of excitation
energies of the He and Be atoms and some small molecules
(H2, N2, CO2, H2CO, and C2H4).

In this range-separated TDDFT approach, an adiabatic
semilocal DFA is used only for the short-range part of the
exchange-correlation kernel, while a frequency dependence is
introduced in the long-range part of the correlation kernel. This
is motivated by the fact that the exact exchange kernel becomes
spatially local and frequency independent in the limit of a very
short-range interaction,10,54 so that the adiabatic local-density
approximation (LDA) becomes exact in this limit. Similarly,
the short-range part of the exact correlation kernel is expected
to be more spatially local and less frequency dependent than
its long-range counterpart, so that an adiabatic semilocal DFA
is expected to be accurate when restricted to the short-range
part of the correlation kernel, as it happens for the ground-state
correlation density functional.55

Similarly to the ground-state case where second-order
perturbation theory is appropriate for describing the long-
range part of the correlation energy of systems with large
enough gaps,56 the BSE2 approximation is expected to
be appropriate for describing the long-range part of the
response of such systems. Moreover, in comparison to
the original full-range BSE2 scheme, the restriction of the
BSE2 approximation to the long-range part leads to potential
practical and computational advantages: (1) eliminating the
need to do a first GW quasiparticle calculation since range-
separated hybrid approximations provide orbital energies
that are already close to quasiparticle energies57,58 and (2)
speeding up the computation of the BSE2 correlation kernel
by using multipole expansions for the long-range two-electron
integrals.59

This paper is organized as follows. In Section II, we
summarize the main equations of linear-response TDDFT with
range separation. In Section III, we provide a full derivation
of the frequency-dependent BSE2 correlation kernel without
using the TDA, giving expressions in terms of space-spin
coordinates and in a spin-orbital basis. Section IV explains
how we practically perform the calculations and gives
computational details for the systems tested. The results are
given and discussed in Section V. Finally, Section VI contains
our conclusions.

II. RANGE-SEPARATED TIME-DEPENDENT
DENSITY-FUNCTIONAL THEORY

As a relatively straightforward extension of linear-
response TDDFT,1 in range-separated TDDFT,10,16 the
inverse of the frequency-dependent linear-response function
is expressed as

χ−1(x1,x2; x′1,x
′
2;ω) = (χlr)−1(x1,x2; x′1,x

′
2;ω)

− f sr
Hxc(x1,x2; x′1,x

′
2;ω), (1)

where x = (r,σ) stands for space-spin coordinates. In
this expression, χlr(x1,x2; x′1,x

′
2;ω) is the linear-response

function associated with the long-range (lr) interacting
Hamiltonian

Ĥ lr = T̂ + V̂ne + Ŵ lr
ee + V̂ sr

Hxc, (2)

where T̂ is the kinetic-energy operator, V̂ne is the
nuclei-electron interaction operator, Ŵ lr

ee is a long-range
electron-electron interaction operator, and V̂ sr

Hxc is a
corresponding short-range (sr) Hartree–exchange–correlation
(Hxc) potential operator. Additionally, f sr

Hxc(x1,x2; x′1,x
′
2;ω)

= f sr
Hxc(x1,x2;ω)δ(x1,x′1)δ(x2,x′2) is the short-range Hxc kernel

related to the functional derivative of the short-range
Hxc potential with respect to the density (and δ is
the delta function). In practice, the long-range electron-
electron interaction is defined with the error function as
w lr

ee(r1,r2) = erf(µ|r1 − r2|)/|r1 − r2|, where the parameter µ
controls the range of the interaction. Even though Eq. (1)
is written with functions depending on four space-spin
coordinates for generality, range-separated TDDFT only gives
exactly the diagonal part of the linear-response function
χ(x1,x2;ω) = χ(x1,x2; x1,x2;ω), just as in usual TDDFT.

In the time-dependent range-separated hybrid (TDRSH)
scheme,10 the long-range linear-response function χlr(ω) is
calculated at the HF level. More precisely, the inverse of the
long-range linear-response function is approximated as

(χlr)−1(x1,x2; x′1,x
′
2;ω) ≈ (χ0)−1(x1,x2; x′1,x

′
2;ω)

− f lr
Hx,HF(x1,x2; x′1,x

′
2), (3)

where χ0(ω) is the non-interacting linear-response function
associated with the RSH reference Hamiltonian56

Ĥ0 = T̂ + V̂ne + V̂ lr
Hx,HF + V̂ sr

Hxc, (4)

with the long-range HF potential operator V̂ lr
Hx,HF, and

f lr
Hx(x1,x2; x′1,x

′
2) is the corresponding long-range HF kernel.

The latter is the sum of a long-range Hartree kernel,

f lr
H(x1,x2; x′1,x

′
2) = w lr

ee(r1,r2)δ(x1,x′1)δ(x2,x′2), (5)

and a long-range HF exchange kernel,

f lr
x,HF(x1,x2; x′1,x

′
2) = −w lr

ee(r1,r2)δ(x1,x′2)δ(x2,x′1). (6)

To go beyond the HF level, it was proposed to calculate
χlr(ω) at the linear-response MCSCF level16 or at the SOPPA
level.17 In the present work, we explore the recently proposed
BSE2 approximation.52 We thus propose to approximate the
inverse of the long-range linear-response function as

(χlr)−1(x1,x2; x′1,x
′
2;ω) ≈ (χ0)−1(x1,x2; x′1,x

′
2;ω)

− f lr
Hx,HF(x1,x2; x′1,x

′
2) − f lr

c,BSE2(x1,x2; x′1,x
′
2;ω), (7)

with the long-range BSE2 frequency-dependent correlation
kernel f lr

c,BSE2(ω) for which we offer an alternative and more
general derivation compared to Ref. 52.

III. SECOND-ORDER BETHE-SALPETER
CORRELATION KERNEL

In this section, we provide a derivation of the BSE2
correlation kernel. For more details, see Ref. 60. We consider
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an arbitrary electron-electron interaction wee in the derivation
instead of the long-range one.

A. Second-order correlation self-energy

The starting point is the second-order correlation self-
energy as a functional of the one-electron Green function
G(1,2) where 1 = (x1, t1) and 2 = (x2, t2) stand for space-spin-
time coordinates (see, e.g., Ref. 37),

Σ
(2)
c (1,2) = i


d3d3′d4d4′d5d5′ G(3,3′)

× w̄ee(3′,4; 2,4′)χIP(4′,5; 4,5′)wee(5′,1; 5,3), (8)

where wee(1,2; 1′,2′) = wee(1,2)δ(1,1′)δ(2,2′) is an arbitrary
electron-electron interaction, w̄ee(1,2; 1′,2′) = wee(1,2; 1′,2′)
− wee(2,1; 1′,2′) is the corresponding antisymmetrized
interaction, and χIP(1,2; 1′,2′) = −iG(1,2′)G(2,1′) is the
independent-particle (IP) four-point linear-response function.
The presence of the antisymmetrized interaction w̄ee in Eq. (8)
means that the second-order correlation self-energy can
be decomposed as Σ(2)c = Σ

(2d)
c + Σ

(2x)
c with a direct contri-

bution

Σ
(2d)
c (1,2) = i G(1,2)


d3d4 wee(2,3)

× χIP(3,4; 3,4)wee(4,1), (9)

and an exchange contribution

Σ
(2x)
c (1,2) = −i


d3d4 G(1,3)wee(2,3)

× χIP(3,4; 2,4)wee(4,1). (10)

The Feynman diagrams of these terms are represented in
Figure 1.

B. Second-order Bethe-Salpeter correlation kernel
in the time domain

The second-order Bethe-Salpeter correlation kernel is
defined as the functional derivative of the second-order
correlation self-energy with respect to the Green function

Ξ
(2)
c (1,4; 2,3) = i

δΣ
(2)
c (1,2)

δG(3,4) . (11)

Taking the derivative of Eq. (8) generates three terms

Ξ
(2)
c (1,4; 2,3) = −


d5d5′d6d6′w̄ee(4,5; 2,5′)χIP(5′,6; 5,6′)wee(6′,1; 6,3)

−


d5d5′d6d6′w̄ee(5,4; 2,6)χIP(5′,6; 6′,5)wee(6′,1; 3,5′)

−


d5d5′d6d6′w̄ee(5,6; 2,3)χIP(6′,5′; 6,5)wee(4,1; 5′,6′), (12)

which, as done for the correlation self-energy, can be decomposed as Ξ(2)c = Ξ
(2d)
c + Ξ

(2x)
c , with a direct contribution

Ξ
(2d)
c (1,4; 2,3) = −δ(1,3)δ(2,4)


d5d6 wee(2,5)χIP(5,6; 5,6)wee(6,1)

− wee(2,4)χIP(1,4; 3,2)wee(3,1) − wee(2,3)χIP(1,4; 3,2)wee(4,1), (13)

and an exchange contribution

Ξ
(2x)
c (1,4; 2,3) = δ(1,3)


d5wee(2,4)χIP(4,5; 2,5)wee(5,1)

+ δ(2,4)


d5wee(2,5)χIP(1,5; 3,5)wee(3,1) + wee(2,3)χIP(1,4; 2,3)wee(4,1). (14)

The Feynman diagrams of these six terms are represented in Figure 2. Similar kernel diagrams are shown in Ref. 61.
Introducing explicitly the time variables, using an instantaneous spin-independent electron-electron interaction

wee(1,2) = wee(r1,r2)δ(t1, t2) and time-translation invariance, we found that the second-order Bethe-Salpeter correlation kernel is
composed of a particle-hole/hole-particle (ph/hp) part and a particle-particle/hole-hole (pp/hh) part, which non-trivially depend
on only one time difference t1 − t2,

Ξ
(2)
c (x1t1,x4t4; x2t2,x3t3) = δ(t1, t3)δ(t2, t4)Ξ(2,ph/hp)

c (x1,x4; x2,x3; t1 − t2)
+ δ(t1, t4)δ(t2, t3)Ξ(2,pp/hh)

c (x1,x4; x2,x3; t1 − t2), (15)

with the ph/hp kernel
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Ξ
(2,ph/hp)
c (x1,x4; x2,x3; τ) = −δ(x1,x3)δ(x2,x4)


dx5dx6 wee(r2,r5)

× χIP(x5,x6; x5,x6;−τ)wee(r6,r1) − wee(r2,r4)χIP(x1,x4; x3,x2; τ)wee(r3,r1)
+ δ(x1,x3)


dx5wee(r2,r4) χIP(x4,x5; x2,x5;−τ)wee(r5,r1)

+ δ(x2,x4)


dx5wee(r2,r5) χIP(x1,x5; x3,x5; τ)wee(r3,r1), (16)

and the pp/hh kernel

Ξ
(2,pp/hh)
c (x1,x4; x2,x3; τ) = −wee(r2,r3)χpp/hh

IP (x1,x4; x3,x2; τ)wee(r4,r1)
+ wee(r2,r3)χpp/hh

IP (x1,x4; x2,x3; τ)wee(r4,r1), (17)

where χIP(x1,x2; x′1,x
′
2; τ = t1 − t2) = χIP(x1t1,x2t2; x′1t1,x′2t2)

is the IP (ph/hp) linear-response function and χ
pp/hh
IP (x1,x2;

x′1,x
′
2; τ = t1 − t2) = χIP(x1t1,x2t1; x′1t2,x′2t2) is the IP pp/hh

linear-response function. As the names suggest, the former
describes the independent propagation of one particle and one
hole, and the latter describes the independent propagation of
either two particles or two holes, depending on the sign of
t1 − t2. Because of the different delta functions on the time
variables in Eq. (15), the ph/hp and pp/hh contributions need
to be treated separately.

C. Effective second-order Bethe-Salpeter correlation
kernel in the frequency domain

The Bethe-Salpeter kernel that we derived must be used
in the general Bethe-Salpeter equation in the time domain
which is62,63

χ(1,2; 1′,2′) = χIP(1,2; 1′,2′) +


d3d4d5d6

× χIP(1,4; 1′,3)ΞHxc(3,6; 4,5)χ(5,2; 6,2′),
(18)

where χ(1,2; 1′,2′) is the interacting four-point linear-
response function and ΞHxc is the Bethe-Salpeter Hxc
kernel. Written explicitly with time variables, and sett-
ing t ′1 = t+1 and t ′2 = t+2 (where t+ = t + 0+ refers to a
time variable with an infinitesimal positive shift) to
extract the (ph/hp) linear-response function, the equation
becomes

FIG. 1. Feynman diagrams of the second-order correlation self-energy
Σ
(2)
c (1,2). The time axis is vertical. The dots represent the outer variables

1 and 2. Horizontal dashed lines represent electron-electron interactions wee.
Arrowed lines represent one-particle Green functions G. The first diagram
is the direct contribution of Eq. (9) and the second diagram is the exchange
contribution of Eq. (10).

χ(x1t1,x2t2; x′1t
+
1 ,x
′
2t
+
2 ) = χIP(x1t1,x2t2; x′1t

+
1 ,x
′
2t
+
2 )

+


dx3dt3dx4dt4dx5dt5dx6dt6χIP(x1t1,x4t4; x′1t

+
1 ,x3t3)

×ΞHxc(x3t3,x6t6; x4t4,x5t5)χ(x5t5,x2t2; x6t6,x′2t
+
2 ), (19)

where ΞHxc(x3t3,x6t6; x4t4,x5t5) = fHx,HF(x3,x6; x4,x5) + Ξ(2)c
(x3t3,x6t6; x4t4,x5t5) is taken as the sum of time-independent
HF kernel fHx,HF and the second-order correlation kernel Ξ(2)c .
Because of the time dependence in Ξ(2)c , in Eq. (19), the time
variables t3 and t4 cannot be equated, and neither can be
the time variables t5 and t6. Consequently, Eq. (19) is not
a closed equation for the (ph/hp) linear-response function
χ(x1t1,x2t2; x′1t

+
1 ,x
′
2t
+
2 ).

To close the equation, Zhang et al.52 followed Strinati18

and used an explicit time-dependent form in the TDA for
the ph/hp amplitudes18,64 with which χ in Eq. (19) can be
expressed. Here, instead, following Sangalli et al.51 (see also
Ref. 50), we work in Fourier space and define an effective
kernel depending on only one frequency without using the
TDA. Introducing the decomposition ofΞ(2)c in ph/hp and pp/hh
terms given in Eq. (15) and Fourier transforming Eq. (19) gives

χ(ω)
= χIP(ω) + χIP (ω) fHx χ(ω)
+


dω′

2π
dω′′

2π
χIP (ω′,ω)Ξ(2,ph/hp)

c (ω′ − ω′′)χ(ω′′,ω)

+


dω′

2π
dω′′

2π
χIP(ω′,ω)Ξ(2,pp/hh)

c (ω′ + ω′′)χ(ω′′,ω),
(20)

where the space-spin variables have been dropped for
conciseness (all the quantities depend on four space-spin
variables), and the integrations over ω′ and ω′′ are from −∞
to +∞. In this expression, χ(ω′,ω) is the double Fourier
transform

χ(ω′,ω) =


dτ1dτ eiω
′τ1eiωτ χ(τ1, τ2 = 0−, τ), (21)

where χ(τ1, τ2, τ) corresponds to the response function
χ(x1t1,x2t2; x′1t

′
1,x
′
2t
′
2) expressed with the time variables

τ1 = t1 − t ′1, τ2 = t2 − t ′2, and τ = (t1 + t ′1)/2 − (t2 + t ′2)/2, and
similarly for χIP(ω′,ω). As a special case, χ(ω) is just the
Fourier transform of the (ph/hp) linear-response function
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FIG. 2. Feynman diagrams of the second-order Bethe-Salpeter correlation kernel Ξ(2)c (1,4;2,3). The three upper diagrams are the direct contributions of Eq. (13)
and the three lower diagrams are the exchange contributions of Eq. (14). The four diagrams on the left correspond to ph/hp terms and the two diagrams on the
right correspond to pp/hh diagrams. Since the kernel is the functional derivative of the self-energy with respect to the Green function, these diagrams can be
obtained from the ones of Figure 1 by removing one of the arrowed lines.

χ(τ1 = 0, τ2 = 0, τ), and similarly for χIP(ω). Obviously,
Ξ
(2,ph/hp)
c (ω) and Ξ(2,pp/hh)

c (ω) are the Fourier transforms of
Ξ
(2,ph/hp)
c (τ) and Ξ(2,pp/hh)

c (τ) given in Eqs. (16) and (17),
respectively. Eq. (20) can be rewritten as an effective Bethe-
Salpeter equation involving only one frequency51

χ(ω) = χIP(ω) + χIP(ω) fHx χ(ω) + χIP(ω)Ξ̃(2)c (ω)χ(ω),
(22)

or, equivalently,

χ−1(ω) = χ−1
IP (ω) − fHx − Ξ̃(2)c (ω), (23)

with an effective correlation kernel defined as

Ξ̃
(2)
c (ω) = χ−1

IP (ω)


dω′

2π
dω′′

2π
χIP(ω′,ω)

×Ξ(2,ph/hp)
c (ω′ − ω′′)χ(ω′′,ω)χ−1(ω)

+ χ−1
IP (ω)


dω′

2π
dω′′

2π
χIP(ω′,ω)

×Ξ(2,pp/hh)
c (ω′ + ω′′)χ(ω′′,ω)χ−1(ω). (24)

To keep only second-order terms in Eq. (24), we must replace
both the IP linear-response function χIP and interacting linear-
response function χ by the non-interacting linear-response
function χ0, and we finally arrive at the BSE2 correlation
kernel

fc,BSE2(ω) = χ−1
0 (ω)


dω′

2π
dω′′

2π
χ0(ω′,ω)

×Ξ(2,ph/hp)
c (ω′ − ω′′)χ0(ω′′,ω)χ−1

0 (ω)
+ χ−1

0 (ω)


dω′

2π
dω′′

2π
χ0(ω′,ω)

×Ξ(2,pp/hh)
c (ω′ + ω′′)χ0(ω′′,ω)χ−1

0 (ω), (25)

where Ξ(2,ph/hp)
c and Ξ(2,pp/hh)

c are obtained from Eqs. (16) and
(17) with the replacement of χIP by χ0 as well.

We note that, in Eq. (23), χ−1
IP (ω) could also be expanded

to second order, leading to self-energy (or quasiparticle) contri-
butions to the effective kernel.51 However, in this work, we do
not consider such self-energy contributions to the kernel.

D. Expressions in a spin-orbital basis

We now give expressions in the orthonormal canonical
spin-orbital basis {ϕp} of the reference non-interacting

Hamiltonian. Any function F(x1,x2; x′1,x
′
2) depending on four

space-spin coordinates can be expanded in the basis of
products of two spin orbitals, and its matrix elements are
defined as

Fpq,r s =


dx1dx′1dx2dx′2ϕp(x′1)ϕ∗q(x1)

× F(x1,x2; x′1,x
′
2)ϕ∗r(x2)ϕs(x′2), (26)

where p,q,r, s refer to any (occupied or virtual) spin orbital.
In the following, the indices i, j, k, l will refer to occupied spin
orbitals and the indices a,b,c,d to virtual spin orbitals.

Using the expression of the Fourier transform of the
non-interacting (ph/ph) linear-response function,

χ0(x1,x2; x′1,x
′
2;ω) =


kc

ϕ∗
k
(x′1)ϕc(x1)ϕ∗c(x′2)ϕk(x2)
ω − (εc − εk) + i0+

−

kc

ϕ∗
k
(x′2)ϕc(x2)ϕ∗c(x′1)ϕk(x1)
ω + (εc − εk) − i0+

, (27)

and of the non-interacting pp/hh linear-response function,

χ
pp/hh
0 (x1,x2; x′1,x

′
2;ω) =


kl

ϕ∗
k
(x′1)ϕl(x1)ϕ∗l (x′2)ϕk(x2)
ω − (εk + εl) − i0+

−

cd

ϕ∗c(x′1)ϕd(x1)ϕ∗d(x′2)ϕc(x2)
ω + (εc + εd) + i0+

,

(28)

where εp are the spin-orbital energies, we find the matrix
elements of the Fourier transform of the ph/hp second-order
correlation kernel,

Ξ
(2,ph/hp)
c,pq,r s (ω) = −


kc

⟨rc∥pk⟩⟨kq∥cs⟩
ω − (εc − εk) + i0+

+

kc

⟨rk∥pc⟩⟨cq∥ks⟩
ω + (εc − εk) − i0+

, (29)

and of the pp/hh second-order correlation kernel,

Ξ
(2,pp/hh)
c,pq,r s (ω) = −1

2


kl

⟨qr∥kl⟩⟨lk∥sp⟩
ω − (εk + εl) − i0+

+
1
2


cd

⟨qr∥cd⟩⟨dc∥sp⟩
ω − (εc + εd) + i0+

, (30)

where ⟨pq∥rs⟩ = ⟨pq|rs⟩ − ⟨pq|sr⟩ are the antisymmetrized
two-electron integrals associated with the interaction wee.
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The matrices of χ0(ω) and χ0(ω′,ω) are both diagonal
with elements in the occupied-virtual/occupied-virtual spin-
orbital product block given by

χ0, ia, ia(ω) = 1
ω − (εa − εi) + i0+

, (31)

and (see the Appendix)

χ0, ia, ia(ω′,ω) = i eiω
′0+ χ0, ia, ia(ω)

×
(

1
ω′ + ω/2 − εa + i0+

− 1
ω′ − ω/2 − εi − i0+

)
, (32)

and, for the virtual-occupied/virtual-occupied block,
χ0,ai,ai(ω′,ω) = χ0, ia, ia(ω′,−ω) and χ0,ai,ai(ω)
= χ0, ia, ia(−ω). The matrix elements of the BSE2 correlation
kernel are then found straightforwardly by doing the matrix
multiplications and contour-integrating over the frequencies
in the upper-half complex plane in Eq. (25). For the matrix
elements in the occupied-virtual/occupied-virtual (ov/ov)
block (contributing to the linear-response matrix usually
denoted by A), we find

fc,BSE2, ia, jb(ω) = −

kc

⟨ jc∥ik⟩⟨ka∥cb⟩
ω − (εb + εc − εi − εk)

−

kc

⟨ j k∥ic⟩⟨ca∥kb⟩
ω − (εa + εc − ε j − εk)

+
1
2


kl

⟨a j∥kl⟩⟨lk∥bi⟩
ω − (εa + εb − εk − εl)

+
1
2


cd

⟨a j∥cd⟩⟨dc∥bi⟩
ω − (εc + εd − εi − ε j) . (33)

Note that the denominators of Eq. (33) contain the sum
of two virtual spin-orbital energies minus the sum of two
occupied spin-orbital energies, i.e., a non-interacting double-
excitation energy. Thus, the denominators are small (and
therefore the kernel can be large) whenever ω is close to a
non-interacting double-excitation energy. The matrix elements
in Eq. (33) are identical (at least for real-valued spin orbitals)
to the kernel matrix elements recently derived by Zhang
et al.52 in the TDA.65 The matrix elements in Eq. (33) also
show some similitude with the SOPPA kernel12,66–68 and the
second RPA kernel.51 Similarly, for the matrix elements of
the BSE2 correlation kernel in the occupied-virtual/virtual-
occupied (ov/vo) block (contributing to the linear-response
matrix usually denoted by B), we find

fc,BSE2, ia,b j = −

kc

⟨bc∥ik⟩⟨ka∥c j⟩
−(εb + εc − εi − εk)

−

kc

⟨bk∥ic⟩⟨ca∥k j⟩
−(εa + εc − ε j − εk)

+
1
2


kl

⟨ab∥kl⟩⟨lk∥ ji⟩
−(εa + εb − εk − εl)

+
1
2


cd

⟨ab∥cd⟩⟨dc∥ ji⟩
−(εc + εd − εi − ε j) , (34)

which turn out to be independent of the frequency.
To the best of our knowledge, the matrix elements in
Eq. (34) had never been given in the literature before.
It is easy to check that the ov/ov block is Hermitian,

fc,BSE2, ia, jb(ω) = fc,BSE2, jb, ia(ω)∗, and that the ov/vo block
is symmetric, fc,BSE2, ia,b j = fc,BSE2, jb,ai.

The matrix elements of the BSE2 correlation kernel
display sums over either one occupied and one virtual
orbital (for the ph/hp terms) or over two occupied or two
virtual orbitals (for the pp/hh terms). In a straightforward
implementation, the computational cost of the latter scales as
N2

o N4
v , where No is the number of occupied orbitals and Nv the

number of virtual ones. However, in the case of the long-range
interaction, the computational cost of the BSE2 correlation
kernel could be made low, e.g., by approximating the long-
range two-electron integrals by multipole expansions.59

IV. PRACTICAL RESOLUTION
AND COMPUTATIONAL DETAILS

A. Perturbative resolution

In the range-separated scheme that we propose, we
approximate the inverse of the linear-response function as
[combining Eqs. (1) and (7)]

χ−1(ω) ≈ χ−1
0 (ω) − f lr

Hx,HF − f sr
Hxc − f lr

c,BSE2(ω), (35)

where χ0(ω) is the RSH non-interacting linear-response
function and f lr

c,BSE2(ω) is the BSE2 correlation kernel
for the long-range electron-electron interaction. We note
that, according to Eq. (23), instead of χ−1

0 (ω), we should
use in Eq. (35) the inverse of the long-range IP linear-
response function (χlr

IP)−1(ω) constructed with the long-range
interacting Green function. This could be accounted for by
either adding quasiparticle corrections to the orbital energies,
as done in Ref. 52, or adding self-energy contributions
to the long-range correlation kernel.51 These contributions
can generally be important when using HF orbitals or DFT
orbitals with semilocal DFAs. However, in the case of range
separation, the orbital energies obtained with long-range HF
exchange are already good approximations to quasiparticle
energies.57,58 It is thus reasonable to use the approximation
(χlr

IP)−1(ω) ≈ χ−1
0 (ω). We come back to the possibility of

adding quasiparticle corrections in Section IV B and discuss
their effects on He, Be, and H2 in Section V A.

When projected in the basis of the RSH spin orbitals,
Eq. (35) leads to the self-consistent pseudo-Hermitian
eigenvalue equation

*
,

A(ωn) B
B∗ A(−ωn)∗

+
-
*
,

Xn

Yn

+
-
= ωn

*
,

1 0
0 −1

+
-
*
,

Xn

Yn

+
-
, (36)

whereωn are the excitation (or diexcitation) energies, (Xn,Yn)
are the associated linear-response eigenvectors, and the matrix
elements of A and B are given by

Aia, jb(ω) = (εa − εi)δi jδab + ⟨a j |wee|ib⟩ − ⟨a j |w lr
ee|bi⟩

+ f sr
xc, ia, jb + f lr

c,BSE2, ia, jb(ω) (37)

and

Bia, jb = ⟨ab|wee|i j⟩ − ⟨ab|w lr
ee| ji⟩

+ f sr
xc, ia,b j + f lr

c,BSE2, ia,b j, (38)
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where εp are the RSH spin-orbital energies, ⟨pq|wee|rs⟩ and
⟨pq|w lr

ee|rs⟩ are two-electron integrals in the RSH spin-orbital
basis associated with the Coulomb interaction wee and the
long-range interaction w lr

ee, respectively, and f sr
xc,pq,r s are

the matrix elements of the short-range exchange-correlation
kernel. The matrix elements of the long-range BSE2
correlation kernel f lr

c,BSE2,pq,r s are given in Eqs. (33) and (34)
using in these expressions long-range two-electron integrals
⟨pq∥rs⟩ → ⟨pq|w lr

ee|rs⟩ − ⟨pq|w lr
ee|sr⟩ and RSH spin-orbital

energies εp.
The resolution of the self-consistent eigenvalue Equa-

tion (36) is more complicated than in the standard case of
a frequency-independent matrix A. Following Zhang et al.,52

for a first exploration of the method, we work within the TDA
(i.e., we set B = 0) and use a non-self-consistent perturbative
resolution. We thus decompose the matrix A in Eq. (37) as
the sum of the frequency-independent RSH contribution10 and
the long-range frequency-dependent BSE2 correlation kernel
contribution

A(ω) = ARSH + flr
c,BSE2(ω). (39)

The TDRSH linear-response equation is first solved in the
TDA,

ARSHX0,n = ω0,nX0,n, (40)

where ω0,n and X0,n are the corresponding excitation energies
and linear-response eigenvectors, respectively. The effect
of the long-range BSE2 correlation kernel is then added
perturbatively to obtain the excitation energies

ωn = ω0,n + Zn X†0,n flr
c,BSE2(ω0,n)X0,n, (41)

where Zn is the normalization factor

Zn =
*.
,
1 − X†0,n

∂flr
c,BSE2(ω)
∂ω

������ω=ω0,n

X0,n
+/
-

−1

. (42)

FIG. 3. Long-range excitation energies to the first triplet and singlet excited
states of the He atom as a function of the range-separation parameter µ,
obtained by long-range TDHF, long-range TDHF+BSE2, and long-range
GW2+TDHF+BSE2 calculations in the TDA using RSH (with the short-
range LDA functional) orbitals and an uncontracted t-aug-cc-pV5Z basis set.
The reference FCI long-range excitation energies are from Ref. 72.

FIG. 4. Long-range excitation energies to the first triplet and singlet excited
states of the Be atom as a function of the range-separation parameter µ,
obtained by long-range TDHF, long-range TDHF+BSE2, and long-range
GW2+TDHF+BSE2 calculations in the TDA using RSH (with the short-
range LDA functional) orbitals and an uncontracted d-aug-cc-pVDZ basis
set. The reference FCI long-range excitation energies are from Ref. 72.

As pointed out by Zhang et al.,52 the effect of the normalization
factor Zn turns out to be very small (Zn is always very close
to 1, especially in the range-separated case), but we keep
it in our calculations. We note that the expression of the
correction X†0,n flr

c,BSE2(ω0,n)X0,n in Eq. (41) is very similar
(but not identical) to the so-called “direct” contribution of the
CIS(D) correction.69,70 As for CIS(D), it is easy to check that
X†0,n flr

c,BSE2(ω0,n)X0,n contains only connected terms and thus
provides a size-consistent correction to the excitation energies.
Using this non-self-consistent perturbative resolution has the
consequence that the total number of calculated excitation
energies is equal to the number of single excitations, so
we cannot obtain excitations with primarily double-excitation
character. However, the BSE2 correlation kernel brings the
effects of non-interacting double excitations on excited states
with dominant single-excitation character.

FIG. 5. Long-range excitation energies to the first triplet and singlet excited
states of the H2 molecule at the equilibrium internuclear distance as a func-
tion of the range-separation parameter µ, obtained by long-range TDHF,
long-range TDHF+BSE2, and long-range GW2+TDHF+BSE2 calculations
in the TDA using RSH (with the short-range LDA functional) orbitals and
an uncontracted d-aug-cc-pVTZ basis set. The reference FCI long-range
excitation energies are from Ref. 72.
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The method defined by Eqs. (40) and (41) will be
referred to as TDRSH+BSE2. When the range-separation
parameter µ is set to zero, all long-range contributions vanish,
and it reduces to the standard time-dependent Kohn-Sham
(TDKS) method in the TDA. When µ goes to +∞, all short-
range contributions vanish, and it reduces to time-dependent
Hartree-Fock (TDHF) within the TDA [i.e., configuration-
interaction singles (CIS)] with a BSE2 correction, which
will be referred to as TDHF+BSE2. As regards the density-
functional approximation, in this work, we use the short-range
LDA exchange-correlation functional of Ref. 71 in the ground-
state RSH calculations (i.e., for determining the RSH orbitals
and orbital energies) and the corresponding short-range LDA
exchange-correlation kernel10 in the linear-response TDRSH
calculations.

B. Long-range excitation energies

For He, Be, and H2, we also perform calculations
of long-range excitation energies as a function of µ
(i.e., along the range-separated adiabatic connection, similarly
to Refs. 72–74) obtained by removing the contribution from
the short-range Hxc kernel f sr

Hxc in the matrix elements Aia, jb

of Eq. (37), i.e.,

Alr
ia, jb(ω) = (εa − εi)δi jδab + ⟨a j |w lr

ee|ib⟩ − ⟨a j |w lr
ee|bi⟩

+ f lr
c,BSE2, ia, jb(ω), (43)

within the perturbative resolution of Eqs. (40) and (41) in the
TDA. The orbitals and orbital energies used in Eq. (43) are
still the RSH ones (i.e., with the short-range LDA exchange-
correlation functional), as for the other calculations. The
obtained long-range excitation energies are approximations
to the excitation energies of the long-range interacting
Hamiltonian of Eq. (2), which reduces to the LDA orbital
energy differences at µ = 0 and to the TDHF+BSE2 excitation
energies for µ → ∞. These long-range excitation energies
allow us to test the effect of the BSE2 correlation kernel
independently of the approximation used for the short-range
exchange-correlation kernel, since we have accurate reference
values for these quantities from Ref. 72.

For these systems, we also test the addition of the
perturbative quasiparticle correction using the long-range
second-order correlation self-energy, similar to Ref. 52,
i.e., replacing the RSH orbital energies εp in Eq. (43),
including in the long-range BSE2 correlation kernel
f lr

c,BSE2, ia, jb(ω), by the quasiparticle energies

ε̃p = εp + zp Σlr
c,pp(εp), (44)

TABLE I. Excitation energies of N2 calculated by linear-response TDKS (with the LDA functional), TDRSH
and TDRSH+BSE2 (with the short-range LDA functional and µ = 0.35 bohr−1), TDHF, and TDHF+BSE2, all
within the TDA. The EOM-CCSD excitation energies are taken as reference. The Sadlej+ basis set is used.

State Transition TDKS TDRSH TDRSH+BSE2 TDHF TDHF+BSE2 EOM-CCSD

Valence excitation energies (eV)

3Σ+u 1πu→ 1πg 8.08 7.74 7.93 6.23 8.88 7.72
3Πg 3σg→ 1πg 7.58 7.85 8.05 7.99 10.97 8.16
3∆u 1πu→ 1πg 8.88 8.54 8.74 7.32 9.96 9.07
1Πg 3σg→ 1πg 9.17 9.50 9.68 10.02 12.43 9.55
3Σ−u 1πu→ 1πg 9.65 9.34 9.53 8.50 10.77 10.00
1Σ−u 1πu→ 1πg 9.65 9.34 9.53 8.50 10.84 10.24
1∆u 1πu→ 1πg 10.25 9.98 10.18 9.06 11.30 10.66
3Πu 2σu→ 1πg 10.42 10.77 10.97 11.74 14.82 11.36

Rydberg excitation energies (eV)

3Σ+g 3σg→ 4σg 10.28 11.47 11.56 13.12 13.94 11.74
1Σ+g 3σg→ 4σg 10.40 11.94 11.98 14.01 14.22 12.15
3Σ+u 3σg→ 3σu 10.63 12.30 12.40 14.21 15.07 12.70
3Πu 3σg→ 2πu 10.99 12.30 12.36 13.04 13.43 12.71
1Πu 3σg→ 2πu 10.98 12.39 12.44 13.23 13.45 12.77
1Σ+u 3σg→ 3σu 10.62 12.43 12.51 14.31 15.04 12.82

Ionization threshold: −ϵHOMO (eV)

6.30 14.94 16.74

MAD of excitation energies with respect to EOM-CCSD (eV)

Valence 0.48 0.47 0.35 1.14 1.65 . . .
Rydberg 1.83 0.34 0.27 1.17 1.71 . . .
Total 1.06 0.41 0.32 1.15 1.68 . . .

Maximum absolute deviation of excitation energies with respect to EOM-CCSD (eV)

2.19 0.90 0.71 1.86 3.47 . . .
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with the renormalization factor zp = [1 − (∂Σlr
c,pp(ω)/

∂ω)ω=εp]−1. In Eq. (44), Σlr
c,pp(εp) is the diagonal matrix

element of the frequency-dependent long-range second-order
correlation self-energy Σlr

c (ω) over the RSH spin orbital ϕp(x)
evaluated at ω = εp, whose expression is

Σ
lr
c,pp(ω) = 1

2


iab

|⟨ab|w lr
ee|pi⟩ − ⟨ab|w lr

ee|ip⟩|2
ω + εi − εa − εb

+
1
2


i ja

|⟨i j |w lr
ee|pa⟩ − ⟨i j |w lr

ee|ap⟩|2
ω + εa − εi − ε j

, (45)

where i, j and a,b refer to occupied and virtual RSH
spin orbitals, respectively. This quasiparticle correction will
be denoted by GW2 since it is a second-order GW -type
correction. The resulting method will thus be referred to as
GW2+TDHF+BSE2.

C. Computational details

We calculate vertical excitation energies of four small
molecules, N2, CO, H2CO, and C2H4, at their experimental
geometries,75–78 using the Sadlej+ basis sets.3,79 Our reference
values are obtained by equation-of-motion coupled-cluster
singles doubles (EOM-CCSD) calculations performed with
GAUSSIAN 09.80 For each molecule, we report the first
14 excited states found with the EOM-CCSD method.
For each molecule, we perform a self-consistent ground-

state RSH calculation using the short-range LDA exchange-
correlation functional of Ref. 71, followed by a spin-
adapted closed-shell TDRSH linear-response calculation in
the TDA using the short-range LDA exchange-correlation
kernel,10 as implemented in a development version of
MOLPRO.81 The TDRSH+BSE2 excitation energies are
then calculated by a spin-adapted closed-shell version of
Eq. (41) implemented in a homemade software interfaced
with MOLPRO (see Ref. 60 for details). The range-separation
parameter µ is set to 0.35 bohr−1 which yields a minimal
mean absolute deviation (MAD) over the four molecules of
the TDRSH+BSE2 excitation energies with respect to the
EOM-CCSD references. We note that it has been proposed
to adjust the value of µ for each system by imposing a self-
consistent Koopmans’ theorem condition82,83 or, equivalently,
minimizing the deviation from the piecewise linearity behavior
of the total energy as a function of the electron number.84,85

This approach is appealing but it has the disadvantage of being
non-size consistent,86 so we prefer to use a fixed value of µ,
independent of the system. For comparison, we also perform
standard, linear-response TDKS calculations with the LDA
functional,87 as well as TDHF and TDHF+BSE2 calculations,
all in the TDA. In the TDA, X0,n, ia can be considered as the
coefficient of the (spin-orbital) single excitation i → a in the
wave function of the excited state n. Each excited state was
thus assigned by looking at its symmetry and at the leading
orbital contributions to the excitation.

TABLE II. Same as Table I for CO.

State Transition TDKS TDRSH TDRSH+BSE2 TDHF TDHF+BSE2 EOM-CCSD

Valence excitation energies (eV)

3Π 5a1(σ)→ 2e1(π∗) 6.04 6.10 6.32 5.85 8.27 6.45
3Σ+ 1e1(π)→ 2e1(π∗) 8.54 8.45 8.63 7.79 10.38 8.42
1Π 5a1(σ)→ 2e1(π∗) 8.42 8.68 8.88 9.08 10.94 8.76
3∆ 1e1(π)→ 2e1(π∗) 9.20 9.13 9.31 8.74 11.19 9.39
3Σ− 1e1(π)→ 2e1(π∗) 9.84 9.80 9.98 9.73 11.76 9.97
1Σ− 1e1(π)→ 2e1(π∗) 9.84 9.80 9.98 9.73 11.82 10.19
1∆ 1e1(π)→ 2e1(π∗) 10.33 10.32 10.50 10.15 12.05 10.31
3Π 4a1(σ)→ 2e1(π∗) 11.43 11.96 12.12 13.31 15.70 12.49

Rydberg excitation energies (eV)

3Σ+ 5a1(σ)→ 6a1(σ) 9.56 10.34 10.46 11.18 12.09 10.60
1Σ+ 5a1(σ)→ 6a1(σ) 9.95 11.12 11.20 12.27 12.61 11.15
3Σ+ 5a1(σ)→ 7a1(σ) 10.26 11.08 11.17 12.42 12.83 11.42
1Σ+ 5a1(σ)→ 7a1(σ) 10.50 11.30 11.38 12.79 12.91 11.64
3Π 5a1(σ)→ 3e1(π) 10.39 11.26 11.34 12.60 13.20 11.66
1Π 5a1(σ)→ 3e1(π) 10.50 11.45 11.52 12.88 13.21 11.84

Ionization threshold: −ϵHOMO (eV)

9.12 13.49 15.11

MAD of excitation energies with respect to the EOM-CCSD calculation (eV)

Valence 0.33 0.23 0.16 0.49 2.02 . . .
Rydberg 1.19 0.29 0.22 0.97 1.42 . . .
Total 0.70 0.26 0.19 0.69 1.76 . . .

Maximum absolute deviation of excitation energies with respect to EOM-CCSD (eV)

1.34 0.53 0.36 1.16 3.22 . . .
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The calculations of the long-range excitation energies for
He, Be, and H2 are done similarly except that the short-range
LDA exchange-correlation kernel is removed in the TDRSH
linear-response calculation. The GW2 quasiparticle correction
is calculated using a spin-adapted closed-shell version of
Eq. (44). We use an uncontracted t-aug-cc-pV5Z basis set for
He, an uncontracted d-aug-cc-pVDZ basis set for Be, and an
uncontracted d-aug-cc-pVTZ basis set for H2, for which we
have reference long-range excitation energies obtained at the
full configuration-interaction (FCI) level using an accurate
Lieb-optimized short-range potential.72

V. RESULTS AND DISCUSSION

A. Long-range excitation energies of the He and Be
atoms and of the H2 molecule

The long-range excitation energies to the first triplet and
singlet excited states of the He atom are plotted as a function
of the range-separation parameter µ in Figure 3. The triplet
and singlet excitation energies are identical at µ = 0, where
they reduce to the non-interacting Kohn-Sham excitation
energies. When increasing µ, i.e., when adding the long-range
interaction, this degeneracy is lifted and the excitation energies
tend to the physical excitation energies in the limit µ → ∞.
At µ = 0, for all the approximate methods tested here, the

long-range excitation energies reduce to LDA orbital energy
differences, which, as well known for Rydberg states, strongly
underestimate the exact Kohn-Sham orbital energy differences
(by about 5 eV in the present case). This underestimation of
the long-range excitation energies is progressively eliminated
by increasing the value of µ until µ ≈ 1 bohr−1. For
µ & 1.5 bohr−1, with all the approximate methods, the long-
range excitation energies vary much less and are a bit too
high compared to the reference FCI long-range excitation
energies. The BSE2 correlation kernel has almost no effect
for the singlet excited state, while it increases the excitation
energy for the triplet excited state which leads to a larger error
at large µ. The GW2 quasiparticle correction systematically
decreases the excitation energies, leading to smaller errors at
large µ for both singlet and triplet excitation energies. The
GW2 correction on the excitation energies is relatively large
(0.5 eV) for large µ, but decreases when µ is decreased, being
less than 0.2 eV for µ ≤ 1 bohr−1 and about 0.01 eV for
µ = 0.35 bohr−1 (the value of µ used for the other systems in
Section V B).

Figure 4 shows the long-range excitation energies to
the first triplet and singlet excited states of the Be atom.
For these low-lying valence states, the TDHF long-range
excitation energies are relatively accurate close to µ = 0, but
they deteriorate somewhat as µ is increased. For µ & 1 bohr−1,
TDHF underestimates the triplet long-range excitation energy

TABLE III. Same as Table I for H2CO.

State Transition TDKS TDRSH TDRSH+BSE2 TDHF TDHF+BSE2 EOM-CCSD

Valence excitation energies (eV)

3A2 2b2(n)→ 2b1(π∗) 3.08 3.17 3.45 3.76 6.86 3.56
1A2 2b2(n)→ 2b1(π∗) 3.70 3.82 4.11 4.58 7.37 4.03
3A1 1b1(π)→ 2b1(π∗) 6.35 6.08 6.39 4.96 8.30 6.06
3B1 5a1(σ)→ 2b1(π∗) 7.77 8.09 8.40 8.60 12.28 8.54

Rydberg excitation energies (eV)

3B2 2b2(n)→ 6a1(σ) 5.85 6.83 6.92 8.17 8.63 6.83
1B2 2b2(n)→ 6a1(σ) 5.93 7.01 7.08 8.56 8.72 7.00
3B2 2b2(n)→ 7a1(σ) 6.96 7.69 7.81 9.04 9.85 7.73
3A1 2b2(n)→ 3b2(σ) 6.73 7.77 7.83 9.24 9.58 7.87
1B2 2b2(n)→ 7a1(σ) 7.04 7.91 8.00 9.41 9.78 7.93
1A1 2b2(n)→ 3b2(σ) 6.78 7.93 7.97 9.53 10.01 7.99
1A2 2b2(n)→ 3b1(π) 7.55 8.32 8.39 10.04 10.26 8.45
3A2 2b2(n)→ 3b1(π) 7.58 8.31 8.38 9.93 11.07 8.47
3B2 2b2(n)→ 8a1(σ) 7.97 8.90 8.98 10.21 11.96 8.97
1B2 2b2(n)→ 8a1(σ) 8.19 9.17 9.25 10.86 11.05 9.27

Ionization threshold: −ϵHOMO (eV)

6.30 10.33 12.04

MAD of excitation energies with respect to the EOM-CCSD calculation (eV)

Valence 0.47 0.27 0.17 0.48 3.15 . . .
Rydberg 0.99 0.07 0.06 1.45 2.04 . . .
Total 0.84 0.13 0.09 1.17 2.36 . . .

Maximum absolute deviation of excitation energies with respect to EOM-CCSD (eV)

1.21 0.45 0.33 1.59 3.74 . . .
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by about 1 eV and the singlet long-range excitation energy
by about 0.25 eV, in comparison to the reference FCI long-
range excitation energies. Adding the BSE2 correlation kernel
correctly increases the TDHF long-range excitation energies,
leading to a relatively accurate singlet excitation energy for all
µ and reducing the error in the TDHF triplet excitation energy
by a factor of 3 for large µ. The GW2 quasiparticle correction
does not change much the excitation energies, at most about
0.1 eV.

Finally, the long-range excitation energies to the first
triplet and singlet excited states of the H2 molecule at the
equilibrium internuclear distance are reported in Figure 5.
For these molecular valence states, the LDA orbital energy
differences at µ = 0 are too low by more than 1 eV. Again,
this underestimation is corrected by increasing the value of
µ. For µ & 1 bohr−1, TDHF always underestimates the triplet
long-range excitation energy, while it is more accurate for
the singlet long-range excitation energy. The addition of the
BSE2 correlation kernel changes little the excitation energy
for the singlet state and significantly reduces the error on
the excitation energy for the triplet excited state. The GW2
quasiparticle correction tends to improve a bit the accuracy of
the excitation energies for intermediate values of µ but remains
very small for small and large values of µ (in particular, it is
about 0.05 eV for µ = 0.35 bohr−1).

Overall, these results are encouraging and support the
relevance of the TDHF+BSE2 approximation for the long-

range response kernel, as well as the neglect of the GW2
quasiparticle correction for a small enough value of µ.

B. Excitation energies of the N2, CO2, H2CO,
and C2H4 molecules

We now test the calculation of excitation energies with
the complete proposed TDHF+BSE2 method, i.e., including
now the short-range Hxc kernel in the linear-response part and
neglecting the GW2 quasiparticle correction. The excitation
energies for each method and each molecule are given in
Tables I–IV. MAD and maximum absolute deviations with
respect to the EOM-CCSD reference are also given for
valence, Rydberg, and all excitation energies.

As already well known, TDKS with the LDA functional
gives very underestimated Rydberg excitation energies.
TDRSH greatly improves the excitation energies for the
Rydberg states and, to a lesser extent, for the valence states,
resulting in total MADs of 0.41, 0.26, 0.13, and 0.14 eV for
N2, CO2, H2CO, and C2H4, respectively. TDRSH also offers a
more accurate description of valence and Rydberg excitation
energies than TDHF. For a more intensive discussion of the
performance of TDRSH, see Ref. 10.

Both when starting from TDHF and TDRSH, the addition
of the BSE2 correlation correction always leads to larger
excitation energies. In the case of TDHF, the BSE2 correction
increases the valence excitation energies by about 2 or 3 eV,

TABLE IV. Same as Table I for C2H4.

State Transition TDKS TDRSH TDRSH+BSE2 TDHF TDHF+BSE2 EOM-CCSD

Valence excitation energies (eV)

3B1u 1b3u(π)→ 1b2g(π∗) 4.74 4.35 4.73 3.54 6.06 4.41
1B1u 1b3u(π)→ 1b2g(π∗) 7.91 8.07 8.38 7.70 9.11 8.00
3B1g 1b3g(σ)→ 1b2g(π∗) 7.18 7.92 8.04 8.48 10.43 8.21
1B1g 1b3g(σ)→ 1b2g(π∗) 7.48 8.04 8.24 9.23 10.81 8.58

Rydberg excitation energies (eV)

3B3u 1b3u(π)→ 4a1g(σ) 6.59 7.21 7.35 6.91 7.37 7.16
1B3u 1b3u(π)→ 4a1g(σ) 6.65 7.36 7.48 7.14 7.43 7.30
3B1g 1b3u(π)→ 2b2u(σ) 6.98 7.42 7.78 7.66 8.10 7.91
3B2g 1b3u(π)→ 3b1u(σ) 7.10 8.03 8.11 7.79 8.07 7.93
1B1g 1b3u(π)→ 2b2u(σ) 7.19 7.92 8.17 7.75 8.09 7.97
1B2g 1b3u(π)→ 3b1u(σ) 7.15 8.13 8.20 7.92 8.07 8.01
3Ag 1b3u(π)→ 2b3u(π) 8.03 8.46 8.60 8.02 8.64 8.48
1Ag 1b3u(π)→ 2b3u(π) 8.30 8.87 8.99 8.61 8.88 8.78
3B3u 1b3u(π)→ 5a1g(σ) 8.26 8.97 9.12 8.74 9.26 9.00
1B3u 1b3u(π)→ 5a1g(σ) 8.28 9.09 9.20 8.92 9.13 9.07

Ionization threshold: −ϵHOMO (eV)

6.89 10.45 10.23

MAD of excitation energies with respect to the EOM-CCSD calculation (eV)

Valence 0.64 0.24 0.30 0.52 1.80 . . .
Rydberg 0.71 0.10 0.17 0.21 0.14 . . .
Total 0.69 0.14 0.21 0.30 0.62 . . .

Maximum absolute deviation of excitation energies with respect to EOM-CCSD (eV)

1.10 0.54 0.38 0.87 2.23 . . .
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FIG. 6. Mean error versus standard deviation for the valence and Rydberg
excitation energies of the N2, CO2, H2CO, and C2H4 molecules calcu-
lated with linear-response TDKS (with the LDA functional), TDRSH, and
TDRSH+BSE2 (with the short-range LDA functional and µ = 0.35 bohr−1),
all within the TDA. The errors are calculated with respect to the EOM-CCSD
excitation energies. The Sadlej+ basis set is used.

leading to largely overestimated valence excitation energies.
For Rydberg states, the BSE2 correction on top of TDHF is
smaller (less than 1 eV) but also leads to systematically
overestimated excitation energies. Overall, TDHF+BSE2
considerably worsens the TDHF excitation energies. We thus
conclude that, for these molecules, the relatively accurate
results reported by Zhang et al.52 crucially depend on
using the GW2 quasiparticle correction to the HF orbital
energies.

In the range-separated case, the long-range BSE2
correction induces only a moderate increase of the valence
excitation energies by about 0.2–0.4 eV, leading for these
states to MADs of 0.35, 0.16, 0.17, and 0.30 eV for N2, CO2,
H2CO, and C2H4, respectively. The TDRSH+BSE2 excitation
energies of the Rydberg states are also systematically larger
than the TDRSH ones by usually less than 0.1 eV, giving
for these states MADs of 0.27, 0.22, 0.06, and 0.17 eV
for N2, CO2, H2CO, and C2H4, respectively. Of course, the
difference in magnitude of the BSE2 correction in the range-
separated case compared to the full-range case is to be mostly
attributed to the substitution of the full-range two-electron
integrals by the long-range ones. Since for the chosen value
of the range-separation parameter µ of 0.35 bohr−1 TDRSH
mostly gives slightly underestimated excitation energies of the
considered systems, the long-range BSE2 correction overall
slightly improves the excitation energies. More specifically,
in comparison with TDRSH, TDRSH+BSE2 gives slightly
smaller total MADs of 0.32, 0.19, and 0.09 eV for N2,
CO2, and H2CO, and a slightly larger MAD of 0.21 eV
for C2H4. Also, for all the four molecules, TDRSH+BSE2
always gives the smallest maximum absolution deviation
among all the methods, suggesting that TDRSH+BSE2
describes more reliably the excitation energies than the other
methods.

Finally, as a global summary of the results, Figure 6
reports the mean error versus the standard deviation for the
valence and Rydberg excitation energies of the four molecules

for the different methods. For the valence excitation energies,
going from TDKS to TDRSH mainly decreases the standard
deviation, while going from TDRSH to TDRSH+BSE2
decreases the mean error. For the Rydberg excitation energies,
TDRSH provides a large improvement over TDKS both
in terms of mean error and standard deviation, while
TDRSH+BSE2 gives a slightly smaller mean error than
TDRSH.

VI. CONCLUSION

We have developed a range-separated linear-response
TDDFT approach using a long-range frequency-dependent
second-order Bethe-Salpeter correlation kernel. We have
tested our approach using a perturbative resolution of the
linear-response equations within the TDA for valence and
Rydberg excitation energies of small atoms and molecules.
The results show that the addition of the long-range
correlation kernel overall slightly improves the excitation
energies.

More intensive tests should now be carried out with
this long-range correlation kernel to better assess its
performance. In particular, this long-range correlation kernel
is expected to be appropriate for (1) calculating excitation
energies of excited states with significant double-excitation
contributions, (2) calculating charge-transfer excitation
energies, and (3) calculating dispersion interactions in excited
states.

A number of further developments should also be
explored: adding the self-energy (or quasiparticle) contri-
bution directly to the kernel, going beyond the TDA and the
perturbative resolution of the linear-response equations, and
going beyond the second-order approximation. Finally, we
note that the present work could be repeated using a linear
decomposition of electron-electron interaction,88 instead of
a range separation, in order to construct a new TDDFT
double-hybrid method which would be an alternative to the
one commonly used based on CIS(D).14

ACKNOWLEDGMENTS

We thank J. A. Berger, E. Luppi, D. Mukherjee, L.
Reining, P. Romaniello, and A. Savin for discussions.

APPENDIX: NON-INTERACTING FOUR-POINT LINEAR
RESPONSE FUNCTION

In this appendix, we derive the expression of the non-
interacting linear-response function χ0(ω′,ω) depending on
two frequencies which is used in Eq. (32).

The non-interacting four-point linear-response function
is defined in the time domain by

χ0(x1t1,x2t2; x′1t
′
1,x
′
2t
′
2) = −i G0(x1t1,x′2t

′
2)G0(x2t2,x′1t

′
1), (A1)

where G0 is the non-interacting one-electron Green function.
Using time-translation invariance and introducing the
time variables τ1 = t1 − t ′1, τ2 = t2 − t ′2, and τ = (t1 + t ′1)/2
− (t2 + t ′2)/2, Eq. (A1) becomes
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χ0(x1,x2; x′1,x
′
2; τ1, τ2, τ) = −i G0

(
x1,x′2, τ +

τ1 + τ2

2

)
G0

(
x2,x′1,

τ1 + τ2

2
− τ

)
, (A2)

with G0(x1,x′1, t1 − t ′1) = G0(x1t1,x′1t
′
1). The triple Fourier transform of χ0(x1,x2; x′1,x

′
2; τ1, τ2, τ) is easily found to be

χ0(x1,x2; x′1,x
′
2;ω

′,ω′′,ω) =


dτ1dτ2dτ eiω
′τ1eiω

′′τ2eiωτ χ0(x1,x2; x′1,x
′
2; τ1, τ2, τ)

= −2πiδ(ω′ − ω′′)G0

(
x′1,x

′
2,ω

′ +
ω

2

)
G0

(
x2,x′1,ω

′ − ω

2

)
, (A3)

where G0(x1,x′1,ω) =


dτ1eiωτ1G0(x1,x′1, τ1) is the Fourier transform of the Green function. The linear-response function
χ0(x1,x2; x′1,x

′
2;ω

′,ω) depending on two frequencies is then given by

χ0(x1,x2; x′1,x
′
2;ω

′,ω) = χ0(x1,x2; x′1,x
′
2; τ1 = 0−,ω′,ω)

= χ0(x1,x2; x′1,x
′
2;ω

′, τ2 = 0−,ω)
=


dω′′

2π
eiω

′′0+χ0(x1,x2; x′1,x
′
2;ω

′,ω′′,ω)

= −i eiω
′0+G0

(
x′1,x

′
2,ω

′ +
ω

2

)
G0

(
x2,x′1,ω

′ − ω

2

)
. (A4)

Inserting in Eq. (A4) the Lehmann representation of the Green function,

G0(x1,x′1,ω) =

a

ϕa(x1)ϕ∗a(x′1)
ω − εa + i0+

+

i

ϕi(x1)ϕ∗i(x′1)
ω − εi − i0+

, (A5)

where i and a refer to occupied and virtual spin orbitals, respectively, and using the identity 1/[(ω′ − A)(ω′ − B)]
= [1/(ω′ − A) − 1/(ω′ − B)]/(A − B) give

χ0(x1,x2; x′1,x
′
2;ω

′,ω) = i eiω
′0+


ia

ϕ∗i(x′1)ϕa(x1)ϕ∗a(x′2)ϕi(x2)
ω − (εa − εi) + i0+

(
1

ω′ + ω/2 − εa + i0+
− 1
ω′ − ω/2 − εi − i0+

)
+


ia

ϕ∗a(x′1)ϕi(x1)ϕ∗i(x′2)ϕa(x2)
−ω − (εa − εi) + i0+

(
1

ω′ − ω/2 − εa + i0+
− 1
ω′ + ω/2 − εi − i0+

)
+


ab

ϕ∗a(x′1)ϕb(x1)ϕ∗b(x′2)ϕa(x2)
ω − (εb − εa)

(
1

ω′ + ω/2 − εb + i0+
− 1
ω′ − ω/2 − εa + i0+

)

+

i j

ϕ∗i(x′1)ϕ j(x1)ϕ∗j(x′2)ϕi(x2)
ω − (ε j − εi)

(
1

ω′ + ω/2 − ε j − i0+
− 1
ω′ − ω/2 − εi − i0+

) 
. (A6)

In Eq. (A6), the first sum corresponds to the matrix
element χ0, ia, ia(ω′,ω) written in Eq. (32), while the
second sum corresponds to the matrix element χ0,ai,ai(ω′,ω)
= χ0, ia, ia(ω′,−ω).
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