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Abstract 

We present a detailed account of the GW space-time method. The method increases the size of systems whose electronic 
structure can be studied with a computational implementation of Hedin"s GW approximation. At the heart of the method 
is a representation of the Green function G and the screened Coulomb interaction W in the real-space and imaginary-time 
domain, which allows a more efficient computation of the self-energy approximation -Y = iGW. For intermediate steps we 
freely change between representations in real and reciprocal space on the one hand, and imaginary time and imaginary 
energy on the other, using fast Fourier transforms. The power of the method is demonstrated using the example of Si with 
artificially increased unit cell sizes. @ 1999 Elsevier Science B.V. 
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1. Introduct ion 

Computational  electronic structure theory for real 
materials depends on the use of simplifying approxi- 
mations for the many-elecu'on problem. Two success- 
ful approaches have been the use of density functional 
theory and many-body perturbation theory. The den- 
sity functional approach is overwhelmingly dominated 
by the local-density approximation (LDA)  of  Kohn 
and Sham [1] ,  and extensions thereof, such as gra- 
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dient corrections or sell-interaction corrections. The 
many-electron problem is mapped onto an effective 
non-interacting electron problem and solved for the 
ground-state density and energy. The limitation of  this 
approach lies in the fact that in principle it gives no 
access to the excitation spectrum of the system tinder 
study, even if approximations for the exchange and 
correlation pc,tential are further refined. This limitation 
is felt particularly severely in semiconductor physics, 
where many of  the phenomena of  interest are cen- 
tered on properties of the excited states. For this class 
of materials Hybertsen and Louie [2,3] showed that 
the G W  approximation, first proposed by Hedin [4] 
in 1965, allows computation of  band gaps in remark- 
ably good agreement with experiment for a series of 
semiconducting and insulating materials. 

The G W  approximation gives a comparatively sim- 
ple expression for the sell-energy operator, which al- 
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lows the one-particle Green function of an interact- 
ing many-electron system to be described in terms of 
the Green function of a hypothetical non-interacting 
system with an effeclive potential. The Green func- 
tion contains information not only about the ground 
state density and energy but also about the quasi- 
particle spectrum. The GW approximation has still 
proved computationally very expensive and has mainly 
been used to determine the quasiparticle spectrum of 
bulk semiconductors and insulators [3,5,6], although 
progress has also been made in the treatment of sys- 
tems such as surfaces [7], clusters [8] and simple 
polymers [9]. The issue of sell-consistency has only 
begun to be addressed fairly recently [10-13]. The 
situation is similar for total energy calculations, where 
thorough investigations so far have been made only 
for the homogeneous electron gas [ 14]. First GW cal- 
culations of the charge density of Si and Ge have been 
performed recently [ 15]. 

The method we describe in this paper substantially 
reduces the computational effort needed to study larger 
systems. The core idea was outlined in a Letter by Ro- 
jas, Godby, and Needs [ 16]. Here we give a full ac- 
count of the method and detailed aspects of our imple- 
lnentation. The improvements in efficiency over tra- 
ditional implementations of the GW approximation in 
a reciprocal-space formalism result from choosing the 
representation most suitable to the computational step 
being undertaken, either reciprocal space or real space 
on the one hand and imaginary time or imaginary en- 
ergy on the other, and switching between representa- 
tions easily with the help of fast Fourier translorms 
(FFTs). The choice of representing the time/energy 
dependence on the imaginary instead of on the real 
axis allows us to deal with smooth, decaying quan- 
tities which give faster convergence. To obtain the 
self-energy eventually on the real energy axis, we fit 
a model function to the computed self-energy on the 
imaginary axis, and continue it analytically to the real 
axis. 

The paper is organised as follows: The second sec- 
tion reviews briefly the equations needed for imple- 
mentation of the GW approximation. Section 3 de- 
scribes the essential concepts of the GW space-time 
method. In the fourth section we outline detailed as- 
pects of the implementation such as mesh discretisa- 
tion and exploitation of symmetry. In Section 5 we dis- 
cuss the analytic continuation procedure for the self- 

energy, .and subsequent determination of the quasipar- 
ticle energies. In the sixth section we present results 
for bulk silicon and silicon with artificially increased 
unit cell sizes, and discuss scaling behaviour for these 
examples. A summary concludes the paper. Atomic 
units are used throughout. 

2. The GW approximation 

The central idea of Hedin's GW approximation is 
to approximate the self-energy operator X by 

27(r, r ' ;  o9) = ~ dog' W(r ,  r'; o9') 

- -00 

x G ( r ,  rr; o9 + o9') e i°/6 , (2.1) 

where ~ is an infinitesimally small positive time, W is 
the screened Coulomb interaction, 

W(r,  r'; o9) = f d3r" v (r  - r")  E - l ( r  ' ' ,  rt; (1)) 
J 

(2.2) 

where v ( r  - r " )  is the Coulomb interaction 1/]r - 
r'/[ and G is the one-particle Green function. G itself 
depends on 27 through the Dyson equation and should 
arguably be determined self-consistently. In practice, 
however, in almost all calculations for real systems G 
has been approximated by the non-interacting Green 
function at the LDA level, i.e., 

GLDA(r, rt; o9) = ~ ~ - t n k ( r )  . . . . . .  ~brn*k(r ')  , (2.3) 
nk OJ - -  6 n k  - -  i71 

where 77 is a positive (negative) infinitesimal for 
occupied (unoccupied) one-particle states. The wave- 
functions ~Itnk in this equation are eigenfunctions, with 
eigenvalues enk, determined from a self-consistent 
LDA calculation for the system under consideration. 

For the inverse dielectric function in Eq. (2.2) one 
has to rely on suitable approximations. We use the 
random phase approximation (RPA), 

eRPA(r, r'; w) = 6 ( r -  r') 

- / d r "v ( r  - r")  P° ( r" ,  r'; 09)  (2.4) 

with the irreducible polarization propagator p0 at RPA 
level given by 
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/ P ° ( r ' / ; w ) -  2-7r dw' G L D A ( r ' / ; J )  

- - o o  

× GLOA ( r, r'; w' -- w) . (2.5) 

Part of the efficiency of our method derives from the 
fact that the convolutions (2.1) and (2.5) in the fre- 
quency domain become simple multiplications in the 
time domain (real or imaginary): see next section. For 
real times the Green function (2.3) becomes 

GLDA(r, rt; 7") 

OCt  

i qs .k (r )q t .k (r  ) exp(--le~k~'), 7" < O, 
= n k  

unocc 

- z  ~ , ,k (r )q t ,  k ( r  ) exp(--lent,7") , 7" > 0 
L-.-,.¢ 

n k  

(2.6) 

For imaginary times our expression for G LDA (see 
Eq. (3.3) later) corresponds to analytically continuing 
the 7" < 0 form (the retarded Green function) to the 
positive imaginary time axis, and the 7" > 0 form (the 
advanced Green function) to the negative imaginary 
axis. 

Once the self-energy operator is known we can em- 
ploy first-order perturbation theory in (2' - -  vLDA~'*c / to 
compute quasiparticle corrections to the LDA eigenen- 
ergies (see Section 5.2). 

3. The GW space-time method 

3.1. Mathematical formulation 

The traditional way to set up and solve the equa- 
tions for the GW approximation has been to express 
and compute all quantities in the reciprocal-space 
and energy domain, using a plasmon-pole model for 
the energy dependence of W [3]. To compute p0 
(Eq. (2.5)) and X (Eq. (2.1)) this involves sums 
scaling with the fourth power of the number of plane 
waves Nc used to represent the wavefunctions and 
quadratically with the number of energy points N,o 
used to represent the energy dependence, whereas the 
scaling in the real space and time domain is quadratic 
in Na and linear in N<o, since convolutions in the 
reciprocal-space and energy domain become simple 

multiplications in the real-space and time domain. 
The expressions for E and W, on the other hand, 
are more efficiently calculated in a reciprocal-space 
and energy representation. As fast Fourier transforms 
permit us to switch between representations with a 
numerical cost that scales like Nlog N, where N is 
the number of points involved in the FFT, we can 
efficiently exploit the advantages offered by the one 
or other representation. 

The time- or energy-dependence of the quantities in- 
volved shows a structure that is not easily represented 
on an equidistant grid suitable for an FFT. However, 
we can rigorously analytically continue the quantities 
to the imaginary time or energy axes where the struc- 
ture is much smoother and therefore amenable to a 
representation on an equidistant grid. This point is il- 
lustrated by Fig. 1 of Ref. [ 16] which shows the en- 
ergy dependence on the real and imaginary axis of 
the imaginary part of the self-energy 2`(k, w) of jel- 
lium with a density parameter of r,. = 2.0. The rather 
ragged shape on the real energy axis contrasts with 
the smooth shape on the imaginary energy axis. We 
emphasise that, while the same amount of physical in- 
formation is contained for X or similar functions on 
the real or iraaginary time or energy axis, to obtain 
a well-conve:rged final answer for quantities that go 
through several Fourier transformations, the important 
intbrmation is more easily represented in imaginary 
time/energy, in much the same way that the choice of 
basis set can reduce the effort needed to satisfactorily 
represent wavefunctions. This is also shown in plots 
of the self-energy in Section 6, where it can be seen 
that the smooth form of the self-energy on the imagi- 
nary axis still allows stable and accurate reproduction 
of the more complicated behaviour on the real axis. 

Using the imaginary time/energy representation 
allows us to explicitly take the time- or energy- 
dependence into account without having to rely on a 
plasmon-pole or other model for most of the calcula- 
tion. Only after the full imaginary-energy dependence 
of the expectation values of the self-energy operator 
has been established do we use a fitted model function 
(whose sophistication may be increased as necessary 
with negligible expense), which we then analyti- 
cally continue' to the real energy axis to compute the 
quasiparticle energies. 

The Fourie:r transforms between the complex axes 
work like theJ~r counterparts on the real axes, except 
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that additional factors of ± i  have to be included, 

i; 
F( i r )  = ~ d o ~ F ( i w ) e x p ( i w r ) ,  (3.1) 

- - 0 4 3  

0 ( 5  
o 

= - i  / dr  F( i r )  e x p ( - i w r )  . (3.2) F( i~o) 

- -  O C  

Mathematically they can be understood as Laplace 
transforms followed by analytic continuation to the 
imaginary axis. 

The computational steps which are successively un- 
dertaken in the GW space-time method are in detail: 
( 1 ) Construction of tlhe Green function in real space 

and imaginary time 5, 

GLDA (r,  r'; i t )  

t ~ ,k(r)75, ,k(r  ) exp(enk'r), ~- > 0, 
= ~ nk 

• * I - t  ~, ,k(r)q' , ,k(r  ) exp(e,,kr),  r < 0, 
k nk 

(3.3) 

(2) formation of the RPA irreducible polarizability 
in real space and imaginary time, 

P°( r ,  r~; i7") = --iGLDA ( r ,  r ' ;  iT) 

xG!LDA(r', r; --iT) , (3.4) 

(3) Fourier transformation of p0 to reciprocal space 
and imaginary energy and construction of the 
symmetrised dielectric matrix [ 17] in reciprocal 
space, 

~(k, G, G'; iw) = 6GG' 

4~ 
- -  - -  P ° ( k ,  G ,  G ' ;  i w )  , 

Ik + Gl[k + G' I 
(3.5) 

(4) inversion of the symmetrised dielectric matrix 
for each k point and each imaginary energy in 
reciprocal space, 

(5) calculation of the screened Coulomb interaction 
in reciprocal space, 

5 Note that the signs of the exponents and of r were given 
incorrectly in Eq. (3) of Ref. [ 16]. 
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4~r 
W(k,G,G~;i~o)  = 

Ik + GIIk + G'I 
,<~-l (k, G, G'; iw) , (3.6) 

(6) Fourier transformation of W to real space and 
imaginary time, 

(7) computation of the sell-energy operator 

£ ( r , r ' ; i r )  = iG(r , r~; iT)W(r ,  rr;iT) , (3.7) 

(8) ewluation of the expectation values 

(~,,k I ~w(i 7) I%k), (3.8) 

(9) Fourier transformation of the expectation values 
to imaginary energy, 

( 1 0) fitting of a model function to the expectation val- 
ues of the self-energy, allowing analytic contin- 
uation onto the real energy axis, 

( 1 1 ) evaluation of the quasiparticle corrections to the 
LDA eigenvalues by first-order perturbation the- 
ory in ( X -  VxLDA). 

3.2. Discretisation of  the equations 

A practical implementation on a computer requires 
the integrals described in the last section to be discre- 
tised and suitably truncated• Exploitation of' symme- 
try can help to keep the computational cost for real 
materials down. These issues will be addressed in this 
section. 

The quantities we are dealing with in real space, 
such as G, P, W, and 2:, are nonlocal operators that 
decay as their two spatial arguments move apart. With 
the exception of W, which will receive some extra at- 
tention, the nonlocality is short-ranged, i.e., decaying 
faster than ]r - / 1 - 2 .  This suggests that the distance 
the two variables are allowed to move apart can be 
restricted suitably and the functions can be assumed 
zero beyond this range. We call this range the inter- 
action cell (IC). Furthermore, by the symmetry of 
the crystal, one of the arguments of any of these op- 
erators, which shall be symbolically denoted here by 
F ( r , / ) ,  can be restricted to the irreducible wedge of 
one unit cell (IUC). The coarseness of the grid and 
the size of the interaction cell determine the precision. 
A shape of interaction cell which is compatible with 
the fast Fourier transforms and preserves symmetry 
at the same time is the Wigner-Seitz cell of a lattice 
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(a) Real Space tors   ;'iii °n 
Odgin,~' . . . . .  

(b) Reciprocal Space 

Unit celt of 
Origin ~ I , .~.~.~. j~,  _ ~  reciprocal lattice 

k-points.~K~ dh ~ ~ " - " ~ " " - ~  
(conjugate . ~ ~ ~ ~ ~ 1 
,o,c  K o $ 
G_vectors/(~ t 0 L k~) 0 0 , ~  
(conioga,e ~ 7-, w 0 ~ Y. 
to UC) " U tf~ ~ " "  U f~  

Extent of reciprocal-space 
grid (conjugate to RSG) 

Fig. 1. The grids and cells used in the calculation in (a) real and 
(b) reciprocal space. These are shown here schematically in two 
dimensions for the c~se of a 2 × 2 grid of k-points (corresponding 
to an interaction cell of 2 x 2 unit cells), and a 3 x 3 real-space 
grid in the unit cell (corresponding to a 3 x 3 grid of reciprocal 
lattice vectors in reciprocal space). The bare Coulomb interaction 
l / I r -  r t ] is nonperiodic on the interaction cell, and its amplitude 
at a real-space-grid point is taken to be that at the corresponding 
point in the Wigner-Seitz cell around r of the IC lattice. All other 
quantities, in both real and reciprocal space, are periodic. In these 
cases the choice of the primitive (shown) or Wigner-Seitz cell is 
a matter of computational convenience. 

whose defining vectors are multiples of the primitive 
vectors of the crystal lattice. We call this lattice the IC 
lattice (ICL) (see Fig. 1). We choose equal spacing 
for the IUC and IC grids. They could be offset from 
each other which would avoid the singularity of the 
Coulomb potential in real space but requires the han- 
dling of additional phase factors. We therefore nor- 
mally choose the two grids to have no offset between 
them and deal with a single real-space grid (RSG), 
which is defined by vectors which are integer frac- 
tions of the primitive lattice vectors. The treatment of 
the singularity of the Coulomb potential is discussed 
in Sections 4.2 and 4.3 below. 

To summarise: the crystal is defined by the three 
primitive vectors al, a=, a3, the ICL by the three vec- 

l i = N i ~ a i ,  i = I , 2 , 3 ,  (3.9) 

and the RSG by three vectors 

I T 
s i = a i / N i  , i =  1 , 2 , 3 .  ( 3 . 1 0 )  

In the example shown in Fig. 1, the N~ are 2 and the 
N~ are 3. 

The grid vectors x in the IC are integer linear com- 
binations of the si and fulfill the Wigner-Seitz condi- 
tion 

1 2 ( 3 . 1 1 )  x . L <  5L , 

for any vector L that is an integer linear combination 
of the vector:', I. Only one of possibly several vectors 
for which the equality in Eq. (3.11 ) holds and which 
differ only b~ a lattice vector of the ICL must be con- 
rained in the IC, or, expressed differently, only half the 
surface of the Wigner-Seitz cell defined by Eq. (3.11 ) 
is part of the IC. The integers N~ in Eq. (3.9) deter- 
mine the shape and size of the interaction cell in real 
space and the k-point grid in reciprocal space, as ex- 
plained below. If there is no reason to believe that the 
nonlocality of the operators has a very different range 
in one direction than in another, they should be cho- 
sen in such proportion to each other that the shape of 
the IC is as close to a sphere as possible. 

The first argument r of the functions of type F 
(see above) is again an integer linear combination of 
the vectors s and can be restricted to the irreducible 
wedge of one unit cell of the crystal lattice. This unit 
cell can in principle have any shape, but it helps to 
avoid having to deal with phase factors when applying 
symmetry operations if this unit cell is also chosen to 
have Wigner-Seitz shape, i.e., 

r - R  _< ½R 2, (3.12) 

where R is atly crystal lattice vector and of any two r 
which are connected by a symmetry operation in the 
crystal's space group only one is kept. 

The choice of lattices in real space uniquely deter- 
mines conjugate lattices in reciprocal space and vice 
versa, if one lollows the rule that the discrete approx- 
imation to the, Fourier transform must leave the func- 
tions unchanged if applied forwards and backwards in 
succession. In reciprocal space, functions of type F 
(see above) are functions of the two variables G and 
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K, where G is a reciprocal lattice vector and K can be 
written as K = k + G', where G' is again a recipro- 
cal lattice vector and k a reciprocal vector in the first 
Brillouin Zone (BZ). K is restricted to the Wigner- 
Seitz cell of the reciprocal lattice of the RSG, which 
we shall call simply the reciprocal-space cell (RC) 
and G is restricted to its irreducible wedge (IRC). The 
spacing of the k is determined by the primitive vec- 
tors of the reciprocal ICL and we shall call the grid 
that is defined that way the K grid (KG) 6 

The transformation from real-space to reciprocal- 
space representation of F is given by 

1 IUC star(r) I t ( r )  

t )  r t 

x e -ip~a e i '°( /-~)x . (3.13) 

p denotes a point group element (including possibly 
a nonprimitive translation in nonsymmorphic symme- 
try groups) and the sum over p runs over all sym- 
metry operations that generate the full star of r, i.e., 
the set of all RSG points in the Wigner-Seitz cell that 
are obtained by applying symmetry operations of the 
crystal to this particular RSG point r in the IUC. NIc 
is the number of RSG points contained in the IC. The 
reverse transformation is given by 

F ( r , r ' ) =  l ,RCsta~(~) R~ 
- -  Z z__~ F(G, K) 
Nuc G p K 

× eipr.G e - i t , , ( / - r ) . K  ( 3 . 1 4 )  

The sum over p runs here over all symmetry operations 
that generate the full star of G and Nuc is the number 
of RSG points contained in one unit cell. 

Because of the symmetry of the problem and the 
fact that K = k + G p, F can in reciprocal space be al- 
ternatively written as a square matrix Fk (G, G') with 
k restricted to the irreducible wedge of the Brillouin 
Zone and G and G t given everywhere in the RC. k 

6The interaction cell used in the earlier paper, Ref. [16], was 
a sphere which slightly exceeded the Wigner-Seitz cell of the IC 
lattice corresponding to the k-point grid used. Because the use of 
a discrete k-grid imposes an artificial periodicity on the nonlocal 
quantities as a function of I r -  rq,  this is not optimal. The use 
of the WS cell in the present paper utilises maximum information 
while avoiding double-counting arising from the periodicity. 

is here written as an index to emphasise the matrix 
nature of F in this representation. 

It should be briefly mentioned that the 'natural' cell 
form for a three-dimensional FFT is a parallelepiped 
and not a Wigner-Seitz cell such as we are dealing 
with. However, there is a unique mapping between the 
two shapes using translations by vectors of the lattice 
defining the Wigner-Seitz cell in question, because F 
is invariant under such translations by construction. 

Aparl from the real-space and reciprocal-space rep- 
resentations we will occasionally use a mixed-space 
representation. This is defined by 

IC 

Fk(r , r ' )  = Z F R ( r , r ' ) e x p ( - i k . R ) ,  (3.15) 
R 

with the reverse transformation 

1 
F e ( r , r ' )  = -~i-2 ~-~ F k ( r , r ' ) e x p ( i k .  R ) .  (3.16) 

k 

When we use the mixed-space representation, r and 
r '  are always understood to be confined to the UC 
(or its irreducible wedge, see below). The notation 
FR(r, r t) is another way of writing F ( r  + R, r ')  and 
has been chosen to emphasise that any point on the 
RSG in the IC can be written as the sum of a crystal 
lattice w~ctor R and a vector in the UC. The sum in 
Eq. (3.15) runs over all crystal lattice vectors in the 
IC. The k are vectors in the first BZ of the crystal 
and are the conjugate vectors of the R. Symmetry can 
be exploited to reduce the number of points needed 
to represent F in mixed space. For example, r can be 
restricted to the irreducible wedge of the UC while r t 
is given for every point of the RSG in the UC and k 
on every point of the KG within the first BZ, or k can 
be restricted to the irreducible wedge of the first BZ, 
with r then given on every RSG point in the UC. 

A mixed-space (MS) formalism was used by Blase 
et al. [ 18] for calculating the polarizability and di- 
electric function of periodic systems. A mixed-space 
representation was also used and described by Godby, 
Schlfiter and Sham [ 19] for GW calculations, albeit 
without referring to it by that name. Blase el al. [ 18] 
discuss the computational efficiency of the MS scheme 
in comparison with a direct real-space (RS) approach. 
In Fig. 2 of Ref. [ 18] they show how the number of 
(r, r ' )  pairs which have to be computed in order to 
set up the polarizability P°(r ,  r I) for one k in the MS 
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method (using a 4 x 4 x 4 Monkhorst-Pack k grid) de- 
pends on the range of interaction (nonlocality range) 
Rmax. They compare this to the number of (r ,  r ' )  pairs 
obtained by confining Ir-r  tl to a sphere of  radius Rmax 
which is assumed to be the corresponding number of 
pairs to be computed in a RS method. This is some- 
what misleading since - as is discussed above - the 
size of  the IC in real space is determined by the size 
of the k grid of  the conjugate mixed- or reciprocal- 
space quantity. Hence, it does not make sense to in- 
crease the interaction sphere beyond the boundaries 
of this IC which correspond to a nonlocality range 
of Rm~ = 14.5 a.u. for a 4 x 4 x 4 k grid. Further- 
more, the real-space quantity P°(r,r ')  contains in- 
formation on all k points. So for a proper comparison 
between the two methods the number of  pairs given 
in Ref. [ 18] for the MS approach has to be multiplied 
by the number of  special k points which is 10 for a 
.4 × 4 x 4 Monkhorst-Pack grid. The statement made in 
Ref. [ 18] that the calculation of P°(r, r', o)) requires 
.a double BZ summation in the real-space scheme - as 
opposed to a single BZ summation in the MS scheme 
- does not hold any more if the Green funclion is set 
up in mixed space and then Fourier transformed to real 
space, as described in Section 4.1 below. 

So far we have established the nature of  the grids 
in real and reciprocal space that are suitable for use 
,with the discrete Fourier transform. These grids fill a 
Wigner-Seitz-cell shaped volume which in turn can be 
uniquely mapped onto a parallelepiped, the shape that 
is required by the discrete Fourier transforms. How- 
ever, the starting point of  the GW calculation is the out- 
put of  a standard LDA calculation using plane waves 
and pseudopotentials which determines the Fourier co- 
efficients of  the wavefunctions q 'nk(G) for all recip- 
rocal lattice vectors that lie within a sphere defined by 
Ik  + G) 2 less than some cutoff. The RC must there- 
fore be big enough to comprise all of these 'shifted 
spheres'. The volume of  the smallest possible such cell 
will be typically 2 to 4 times larger than the volume 
of  the individual spheres. Furthermore, to strictly pre- 
vent aliasing in the steps where we replace a convo- 
lution in one representation by a multiplication in the 
conjugate representation, we would have to choose the 
grid for the FFTs twice as large as this minimal cell 
in every dimension, increasing the volume by a factor 
of eight. This means that the FFT grid would have to 
comprise between 16 and 32 times more points than 

the initial LDA calculation had reciprocal lattice vec- 
tors. We have found that in practice aliasing effects are 
very small on,ze we choose enough plane waves for 
good overall convergence, and in the limit of  an infi-- 
nite number of plane waves any aliasing effects vanish 
strictly along with any other error caused by trunca- 
tion of the set of reciprocal lattice vectors. Therefore, 
it would not be justified to accept the huge overhead 
imposed by the doubling of  the grid size in all dimen- 
sions, and we usually restrict our FFT grid to the rain-. 
imum Wigner--Seitz cell as defined above, leaving us; 
with an FFT grid with between 2 and 4 times as many 
points as the LDA calculation used reciprocal laltice 
vectors. 

The computational effort can be further reduced by' 
physical considerations. The FFT grid fills a Wigner-  
Seitz cell shaped volume in either space. However, if 
we assume in real space that the range of  nonlocal- 
ity is uniform in all directions we can neglect all the 
points in the interaction cell outside the largest possi- 
ble sphere inscribed into it. Similarly we can usually 
assume that the. Fourier coefficients in reciprocal space 
fall to zero aft,zr an equal length in all directions and 
thus we can cut back in reciprocal space to the largesl 
possible sphere inscribed into the RC lattice. It has to 
be kept in mind that for symmetry reasons it is the 
vectors k + G which must fit into the sphere and not 
merely the vectors G. 

4. Numerical aspects and scaling with system size 

As the GW space-time method is primarily designed 
to enable larger systems to be studied within the frame- 
work of the GW approximation, in this section we 
study the scaling of the computational cost with sys- 
tem size. To gauge the cost of  a calculation, we first 
look at tile real-space, imaginary-time representation. 
What matters here is the number of  points in the irre- 
ducible wedge of  the unit cell, the number of  points 
in the interaction cell and the number of  points on the 
imaginary time axis. We will discuss the time depen- 
dence of the operators in the next section and concen- 
trate here on the spatial dimensions. Since in our setup 
the grid spacing in the unit cell and in the interaction 
cell are chosen equal, the three factors determining the 
cost of the calculation are the size of  the IUC, which 
is a system property, and the size of  the interaction 
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cell and the grid spacing, which are convergence pa- 

rameters. 

4.1. Green's function and polarizabilio; 

The setting up of  the Green function is the starting 
point for the GW calculation. We take the Fourier co- 
efficients of  the lattice-periodic part of  the Bloch func- 
tions, u , ,k(G),  and the eigenvalues e,,k from a previ- 
ous standard LDA calculation. The eigenvalues are ex- 
pressed on an energy scale with zero at the Fermi en- 
ergy, which for semiconductors and insulators is taken 
to be in the middle of  the band gap. The wavefunc- 
tions u,,k are transformed via an FFT to real space and 
the Green function initially computed in mixed space, 

G~ ~DA ( r, rt; i t )  I oct 
i~-~ qr,,k(r)~,,*k(r t) e x p ( e , k r )  , r > 0 ,  

I1 

= u n o c c  

- i  Z ~'~k(r)qF~k(r') exp(e,~kT") , r < 0 .  
]l 

(4.1) 

The number of unoccupied bands included in the 
Green function for r < 0 is a convergence parameter. 
Because of  the rapid decay of the exponentials for 
higher energies it suffices to set a cutoff energy for 
bands included in the sum that is considerably smaller 
than the largest LDA eigenvalue, but this cutoff must 
be several times larger than the highest quasi-particle 
energy to be computed.  We denote the total number of 
bands, occupied and unoccupied, included in the sum 

a s  N b a n d  s . 

The Green function can then be transformed from 
mixed space to real space using an FFT, 

1 
= L~ k t r ,  G~DA(r,r,;ir) ~ ? ~  ~ L D A - r ' ;  i t )  

k 

X e x p ( i k .  R) , (4.2) 

cells contained in the interaction cell (disregarding 
the additional factor of log NR from the F F F ) ,  so that 
the overall scaling is like Nluc z N~c z Nbands. Since 
the nunTber of  bands is determined by a cutoff  energy 
that is constant for a given material, Nband s will grow 
linearly with system size. The computational cost at 
this stage therefore scales quadratically with system 
size assuming a fixed size of  interaction cell (i.e., fixed 
range of nonlocali ty).  Additional care is necessary 
once the, unit cell outgrows the range of nonloeality. In 
this case there is only a single k point necessary and 
the transformation between mixed and real space is 
redundant. To prevent a crossover to cubic scaling the 
interaction cell must be kept constant at its converged 
size and will then not be a multiple of  the unit cell 
s ize ,  bul smaller than it. 

The next stage, where the irreducible polarizabil i ty 
is formed in real space according to Eq. (3 .4) ,  scales 
linearly. 

4.2. Dielectric matrix 

The fimnula for the dielectric function in real space 
and on the imaginary energy axis reads 

E(r, r ' ; tw)  = ~(r  - r') 

/C(/) 

.... 2 ~  v ( r - r " ) P O ( r " ' r 1 " i ° 9 ) "  (4.3) 
r H 

Here r '  is restricted to the IUC, r to within an IC 
around r t, and r t~ in the sum on the right-hand side 
runs over an interaction cell around r ' .  The right-hand 
side comains a convolution that can be more efficiently 
handled in reciprocal space where it becomes a sim- 
ple multiplication. As only one of  the two spatial ar- 
guments of the dielectric function is involved, we can 
wrile 

e( K, r') = v( K) P° ( K, r') , (4.4) 

where the sum goes over the k grid in the Brillouin 
zone corresponding to. the interaction cell (see Sec- 
tion 3.2 earl ier) .  

To set up the function in mixed space (Eq. (4 .1) )  
we need Niuc x Nuc x Nband s multiplications in the 
spatial dimensions.  The transformation to real space 
brings in another factor of Ne, the number of  unit 

where / (  is the conjugate variable of  x = r '  - r in 
reciprocal space. (The imaginary-energy argument is 
suppressed here and until the end of this subsection.) 
Again we can see that for a given interaction cell size 
the computational effort to set up the dielectric func- 
tion scales linearly with the number of  points in the 
IUC. 
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The long-range behaviour of the dielectric function 
requires some special consideration. Eq. (4.3) con- 
tains the convolution of  the long-ranged Coulomb po- 
tential with the short-ranged nonlocality of  p0. In fact, 
for any r '  

f dr P°(r,r') = 0,  (4.5) 

whereas  

dr u(r) = (4.6) 

The analytic convolution of the two functions over all 
space yields a function whose integral over all space 
is finite, meaning that the Fourier coefficient for K = 0 
has a finite, nonzero value. To preserve this behaviour, 
which is important if one is actually interested in com- 
puting the value of  the dielectric constant but also for 
fast convergence with respect to interaction cell size 
of  the quasiparticle energies, one has to use a modi- 
fied Coulomb interaction in Eq. (4.3). By construc- 
tion, the property expressed by Eq. (4.5) is within our 
discrete and strictly finite range approximation com- 
pressed into the interaction cell, 

IC(r') 

~-~ P°(r,r') = 0 .  (4.7) 
F 

To obtain the right dielectric constant, we have to com- 
press the property expressed by Eq. (4.6) into the fi- 
nite interaction cell as well. A natural way to do this 
is to use the reciprocal-space definition of  ~:, 

4 ~  
, ,(x/= ~- .  (4.8) 

t ransforming to real space, through a discrete Fourier 
lransform restricted to one interaction cell, yields an 
,:xpression that contains correction terms to the sim- 
]~le 1 / r  form that will vanish in the limit of infinites- 
imal gricl spacing and infinite IC size. Since, in prac- 
lice, we evaluate the convolution equation (4.3) as a 
multiplication in reciprocal space, there is no need to 
explicitly transform Eq. (4.8) to real space. 

In practice, to deal with the divergence of the 
Coulomb potential at zero wavevectors, we follow 
the procedure described in the literature [20,17], 
i.e., we employ k • p perturbation theory for cal- 
culating the head (k = G = G ~ = 0) and wings 

(k = G = 0; G '  4: 0) of  the symmetrised dielectric 
matrix equation (3.5). The matrix elements of type 
{lPnqle-ik'rlg'n,q_k) appearing in the expression fi~r 
the RPA polarizability in reciprocal-space represen- 
tation (cf. Eq. (18) of  Ref. [20] )  are evaluated by 
expanding the wavevector dependence of  the wave- 
functions and the exponential for small k. This yields 
the lowest-order (in k) terms for head and wings of 
the polarizability. The head of  the polarizability goes 
to zero like k 2 thus cancelling the 1/k 2 divergence of 
the Coulomb potential at k = G = G'  = 0, yielding a 
finite value fl~r the head of  t~P ° whereas the lowest- 
order term for the wings P0°a, (0) is proportional to k, 
cancelling the 1/k divergence of  t.~'o¢;, (0) and yielding 
a finite (t~,P°)0c,,(0). Head, wings and body of  the 
inverse dielectric matrix are then obtained in terms 
of  head, wings and body of the dielectric matrix by 
block-wise inversion as described by Pick, Cohen and 
Martin [21].  

The inversion of  the dielectric matrix can be per- 
formed either in mixed space or in reciprocal space. 
While this is .,;trictly equivalent if the whole FFT grid 
is used in either space, it is important to look at ways 
to reduce the grid size without compromising the ex- 
actness of  the result, as the matrix inversion is in fact 
the one operation in the computational sequence which 
scales worst with system size (unless sparseness is 
exploited, see below) and will therefore be the bot- 
tleneck for large systems. In mixed space we have to 
invert square matrices of  dimension Nuc for every k 
point in the irreducible wedge of the Brillouin zone 
(IBZ).  

First we look at the case where the IC is in no 
dimension smaller than the UC. We are then deal- 
ing with the inversion of  fully occupied square ma-. 
trices, which scales cubicly with the dimension of 
the matrix, so that the inversions together scale like 
Nmz × Nisc. *i~his number is essentially the same as 
NIUC x NIC × ~/tJc, small differences arising possibly 
because of the coarseness of  the grid. This shows that 
the scaling is quadratic with system size for constant 
IC size and constant Nuc/Nlc, c. If  the increase of  the 
unit cell size means also a lowering of  symmetry, an 
additional factor corresponding to the symmetry re- 
duction ~'omes in. Transforming to reciprocal space 
and cutting back to a set of  reciprocal lattice vectors 
G within a sphere as described earlier reduces the di- 
mension of  the matrices by a factor of 2 to 4, which 
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speeds up the inversions by a factor of  8 to 64, be- 
cause of  the cubic scaling. This is the procedure we 
choose routinely in our calculations. 

If  the unit cell size exceeds the interaction cell size 
in one or more dimensions the matrix in mixed space 
becomes sparse, as all those elements for which r '  is 
outside the IC become zero. This sparseness can be 
exploited to the effect that the matrix inversion scales 
only as N~c, so that the overall scaling with system 
size remains the same. However, in the scheme we are 
employing at the moment this sparseness is not yet 
explicitly exploited so that we are in fact dealing with 
a situation where the IC grows with the UC, leading 
for the matrix inversion to an N3c scaling once the 
unit cell outgrows the interaction cell. 

4.3. Screened Coulomb interaction 

The screened Coulomb interaction is defined in real 
space as 

W(r ,  r'; iw) = f dr"  e -1 (r,  r"; i w ) v ( r "  - r ' )  
d 

(4.9) 

W~. has well-defined Fourier coefficients for all re- 
ciprocal vectors. It can thus be computed in reciprocal 
space. The long-range part is set up in real space with 
f ( i w )  determined from the small-wavevector behav- 
ior of the inverse dielectric matrix in reciprocal space, 
i.e., the head of  the inverse dielectric matrix e~-I 

f ( i w )  :: e o l ( i w )  - 1 , (4.13) 

Even though the interaction is truly long-ranged we 
only need to set it up inside the IC because we aim to 
calculate the self-energy whose range is determined by 
that of  the (short-ranged) Green function Go. Hence, 
at this point, it is sufficient to take the contribution of  
the long-range part of  W into account properly within 
the IC. The Coulomb potential at r = r '  is approxi- 
mated by the average over a sphere around r = r '  with 
the same volume as one real-space grid cell. 

4.4. Se(f-energy 

The self-energy operator is set up in the real-space 
and imaginary-time domain, 

The convolution on the right-hand side is again best 
dealt with as a multiplication in reciprocal space, 

_Y(r, r ' ;  i t )  = iGLDA(r, r'; i t )  W(r ,  r'; ir - ifi) . 
(4.14) 

W6c, (k; iw ) = e c,(;, ( k; iw ) V6G' ( k ) . (4.10) 

However, in a semiconductor and in metals for fre- 
quencies other than zero, W is truly long ranged, and 
therefore diverges for zero wavevectors. In order to 
avoid problems (in the G / r  and G l / r  ' FFT) associ- 
ated with the resulting long-range tail and (in the i r / iw  
FFT) with the asymptotic frequency dependence we 
separate W into a long-range part which is immedi- 
ately set up in real space and a short-range part We 
which is first computed in reciprocal space. From the 
long-range behavior of  the dielectric function we find 
the isotropic part of  lhe screened interaction in the 
long-range limit, 

lim W ( r ,  r ' ; iw)  = f ( i ~ o ) v ( r  - r ' )  , (4.11) 

Within lhe discrete-grid and finite-range approxima- 
tion a complete description is given if r is restricted 
to the IUC and r '  to an IC around r. The scaling is 
again linear with Nlvc for fixed Nlc. 

4.5. Expectation values o f  the self-energy 

To compute the expectation values of  X between 
wavefunctions at the special k points, we transform Z 
to mixed space and form the matrix elements 

u c  

r , r  p 

x~,,k ( r ' ) .  (4.15) 

so that we can define a short-ranged part W~ of W, 

w,(r, r'; iw) = / d r "  (e-' (r, r"; iw) 

- f ( i w ) 6 ( r  - r ' ) ) , . : ( r "  - r ' )  . (4.12) 

This operation again scales quadratically with the 
number of points in the UC for any given set of quan- 
tum numbers nk. For a general point q in the first 
Brillouin zone that is not on our discrete grid, we 
generate interpolated values through the formula 
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IC 

,Sq = Z £ r  exp ( - i q .  R ) .  
R 

(4.16) 4 

5. Quasiparticle energies 

5. 1. Analytic continuation 

In order to calculate the quasiparticle corrections to 
the LDA eigenvalues we require the self-energy opera- 
tor as a function of real energy, and thus a key require- 
ment for our imaginary time method is the ability to 
obtain the expectation values of £ on the real energy 
axis accurately from the imaginary energy behaviour. 
From complex analysis we know that if two functions 
are equal over any arc in the complex plane then they 
are equal everywhere in their common region of ana- 
lyticity. We know from the structure of G and W that 
-Y(z) (z denoting complex energy) has poles in the 
second and fourth quadrant of the complex plane. If 
we know the analytic form of the expectation values 
of the self-energy on the imaginary energy axis we 
can analytically continue it from the negative imagi- 
nary energy axis to the negative real energy axis, and 
from the positive imaginary to the positive real axis, 
without crossing any branch cuts. 

To obtain such an analytic form, we fit a multipole 
model function for each pair of quantum numbers nk 
to the values (q'~klZ(i-,)l~.k) -- I .S( iw)) ,  

~7 ai 
o (~ , ,k iS(z ) l~ , ,k~  ~- ~,,k + 3--" " ~  

z.__.~ z - bit k 
t = l  

(5.1) 

where al, k and bi, k are complex fit parameters and z 
is the complex energy. In Fig. 2 the resulting fitted 
form of the correlation (energy-dependent) part of the 
self-energy7 is compared with the calculated matrix 
elements for bands at the F and X points (the fits arc 
plotted with the same line styles as the respective cal- 
culated matrix elements, they are on this scale indistin- 
guishable from the latter). A simple two-pole model 
(n = 2) performs very successfully for Si, with the 
fitted function reproducing the actual values with an 
r.m.s, error of less than 0.2%. Including several further 

7 We define this quantity as the difference between the GW self- 
energy and the energy-independent bare-exchange part of the self- 
energy. 
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Fig. 2. Fitting of the matrix elements of the correlation self-energy 
(2,'¢(io~)) of silicon as a function of imaginary energy. The real 
(top panel) and imaginary (lower panel) parts are both repro- 
duced extremely accurately by the fits (which on this scale are 
indistinguishable from the calculated values). The bands shown 
are band I at the 1" point (solid line for fitted and calculated 
function), bands 2-4 at 1" (dotted line), bands 3-4 at X (d&shed) 
and bands 5-6 at X (dot-dashed), 

poles in the tilted form proves to be stable but unneces- 
sary, although more poles are expected to be required 
for systems with multiple natural energy scales. For 
the analytic continuation to be valid, the fitted pole 
positions bink s h o u l d  lie in the upper half plane when 
fitting the negative imaginary axis and vice versa, a 
condition which in practice is obeyed by the optimal 
parameters. The parameters aOk s h o u l d  in principle be 
zero, as lim ....  ~(27(w)) = 0. Allowing a small finite 

0 has proved helpful in the fits, though, value for ank 
and as we are interested mainly in energies close to 
the Fermi energy and not the long-range limit this is 
perfectly legitimate. Since {X( iw) )  = ( X ( - i w ) ) *  it 
is sufficient to fit only one half-axis. 

Convergence of the quasiparticle energies with re- 
spect to the parameters of the time-energy transform 
grid is discussed in the next section, but it is also ira- 
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Fig. 3. Convergence of a matrix element (degenerate bands 2-4 at 
/') of the correlation self-energy (2'c(i~o)) of silicon with respect 
to Wma~ with a fixed energy grid spacing of zSw= 0.16 Har. The 
top panel shows the calculated self-energy on the imaginary axis 
with the analytically continued dependence on real energy shown 
in the lower panel. The lines, correspond to O~rna× = 5 Hat (dotted), 
10 Har (dashed) and 20 Flar (solid). Changes in (Ec(w)}  are 
directly related to changes in the calculated (~',(i~o)), rather than 
any instabilities in the analytic continuation technique. 
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Fig. 4. Convergence of (2c(iw)) with respect to energy grid 
spacing ~ o  with fixed Wma, = [0 Har. The lines correspond to 
,~w = 0.24 Har (dotted), 0.16 Har (dashed) and 0.08 Har (solid). 
As in the previous figure the analytically continued matrix element 
converges well, indicating the stability of the fitting procedure. 
The matrb: elements on the real-energy axis (which are obtained 
in form ol + fits to a model function, see text) are plotted with a 
fixed grid spacing of 0.04 Har in order to facilitate comparison 
between the three curves. 

portant to consider as a separate question the stability 
of the analytic continuation procedure. In particular 
if we are to achieve smooth convergence it is impor- 
tant that changes in the calculated self-energy on the 
real axis correspond to genuine changes in the calcu- 
lated {X(ioJ)}, and are not simply resulting from in- 
stabilities in the fitting procedure. In Figs. 3 and 4 we 
show the convergence behaviour of a matrix element 
I2+'(iw)) at F with respect to number and spacing of 
the energy points, respectively, and the corresponding 
fi)rm of the analytically continued element. It can be 
seen that the fitting approach is indeed stable, with 
the convergence of (X(,:o) ) being dictated directly by 
changes in the calculmed (E( iw)) .  Thus the task of 
converging the quasiparticle energies is equivalent to 
converging the sell-energy on the imaginary axis, with 

very littl,z comparative loss of  accuracy in the analytic 
continuation procedure itself. 

The parameter O~ma~ (describing the energy range 
used in the calculation) mainly determines the con- 
vergence of the large-energy region of Im(E, ( iw)) .  
The energy grid spacing Am predominantly affects the 
convergence of {X,(iw)) in the region close to o~= 
0. The behavior of {~', (o~) t (on the whole real en- 
ergy axis) is more sensitive to the shape of  (X,(iw)) 
in this region of the imaginary axis than to the large- 
imaginary-energy tail of  the latter (see also next para- 
graph). +['hat is why the convergence with respect to 
z~w shown in Fig. 4 appears to be better on the imag- 
inary axi:+ than on the real axis. 

Our investigations of the convergence of the calcu- 
lated matrix elements of the correlation part of  the self- 
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Fig. 5. Real part of a matrix element (degenerate bands 2 ~  at 
F) of the correlation self-energy (2.'c(aO} on the real energy axis, 
computed with ~max = 5 Har (dot-dashed line), 10 Har (dashed 
line), and 20 Har (long-dashed line) with fitting (2.'c(iw)} on the 
imaginary energy axis using the energy range (-~Omax, q-~Ornax) 
and with Wmax = 10 Hat" (dotted line) and 20 Har (solid line) 
using a fixed energy range of (--5 Hat, +5 Hat') for the fitting. 

energy and the resulting quasiparticle energies with 
respect to o2max have shown that good convergence 
can be achieved by keeping the energy range for the 
fitting procedure fixed rather than fitting the whole 
range of energies ( -Wm~,  +o2m~×) when increasing 
the latter. The energy range for fitting the matrix ele- 
ments (Xc(io2)) was fixed to ( - 5  Har, +5 Har) in the 
present calculation (the results are not sensitive to the 
exact value). The reason for restricting the fit range 
for (X~,(io2)} is that most information is contained in 
the form of this function at imaginary energies rea- 
sonably close to io2 = 0. Thus, fitting a large range, 
beyond a certain point, will mean that this part of the 
shape will be less accurately described due to the loss 
of weight in this region. This effect prevents (Xc(o2)) 
from converging properly unless the fit range is kept 
fixed (at any reasonably sensible value), as is illus- 
trated by Fig. 5. 

5.2. Quasiparticle corrections 

The quasiparticle energies are formally solutions of 
the equations 

( - - I v 2  -}- Vext(r ) Jr- VH(r))!t, q tk'(r ) 

+ f dr',Y(r, r'; eql"~ ql' ¢r'~ = EqPt[ -rqp 
nk j nk ~ ! nk nk (r) . 

J (5.2) 

Because 2; is in general a non-Hermitian operator, 
the eigenenergies E qp ,k are complex, their real part being 
interpreted as quasiparticle energy and their imaginary 
part as lifetime. It has been observed [3,19] that the 
wavefunctions obeying Eq. (5.2) for typical semicon- 
ductors and insulators have an almost complete over- 
lap with the LDA eigenfunctions which solve an equa- 
tion in which the nonlocal self-energy operator is re- 
placed by a local exchange-correlation potential. This 
makes it pos:~ible to find the quasiparticle energies by 
computing corrections to the LDA eigenvalues in first- 
order perturbation theory in most cases. (For some 
systems, however, the quasiparticle wavefunctions are 
expected to be qualitatively different from the LDA 
wavefunctions, such as at a surface. The space-time 
method allows the full quasiparticle wavefunctions 
and energies to be calculated where required [ 22].) 
Usually the LDA Hamiltonian with its eigenfunctions 
and eigenvalues is taken as the starting approximation, 
with .S(o2) V~,. as a perturbation. Following an idea 
used by Hedin [4] for the electron gas, we shift the 
LDA eigeneaergies by a constant e~ that aligns the 
Fermi energies of the quasiparticles before and after 
applying the GW correction. This is intended to simu- 
late to some extent the effect of self-consistency in G 
and has been shown in a model system [23] to be in- 
strumental in keeping charge conservation violations 
negligible. 

Calculation of the full energy dependence of the 
self-energy (via the analytic continuation to real en- 
ergies) allows us to solve the equation 

qp .LDA ,~,, qp 
e , ,~  = e,k + ( q ' , k  z ~ e , ,  k ) - V , .  - e.,.lq',,k) (5.3) 

for the quasiparticle energies self-consistently. This 
approach was employed for the calculation of the 
quasiparticle energies in the present paper. AIIerna- 

ELDA tively, a Taylor expansion of 2.'(0)) at o2 = ,,k can 
be used, 

e q,, t.DA 1 7 (  u >  ,k = e,,~ + v , , k l _ r ( ¢ , k  ) - v ~ , -  E, l~' , ,k)  . 

(5.4) 

z, ,k = I - ~S(q ' , ,k l : ' - ' (o2 ) l~ ' , ,k ) [  . . . .  I: , ,~. (5._';) 

Because of the analytic fit of the expectation values of 
the self-energy the derivative with respect to the en- 
ergy argument is readily found in closed form. For e.~ 
a closed form but rather involved expression can also 
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Table I 
Convergence of quasiparticle energies for bulk Si with respect to 
cutoff and grid parameters in the present method; shown are the 
parameters needed for a convergence of 50 MeV and 20 MeV, 
respectively 
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Parameter 50 MeV 20 MeV 

plane-wave cutoff (in Ry) 13.5 16 
band cutoff (in Ry) 8 10 
size of k grid 4 × 4 × 4 5 × 5  × 5 
spacing At of time grid (i .  a.u.) 0.3 0.15 
range tma× of time grid (in a.u.) 13. 20. 

be given. Comparison of the self-consistent solution 
of  Eq. (5.3) and the result of the Taylor expansion 
Eq. (5.4) shows that the latter is usually a very good 
approximation, yielding quasiparticle energies differ- 
ing by only up to 5 MeV from the solution of  Eq. (5.3) 
for bulk Si. 

6. Results  for bulk sil icon and sil icon supercel ls  

In order to test the: pertbrmance and the scaling 
properties of  the space-time GW method we have per- 
formed calculations of  self-energy and quasiparticle 
energies for bulk silicon and silicon with artificially 
increased unit cell sizes. The latter were slab-like su- 
percells containing four and eight atoms, respectively, 
with tetragonal symmetry, i.e., the unit cells were ar- 
tificially enlarged in one direction. Supercells of  this 
geometry can be used ~!o model semiconductor super- 
lattices and surfaces. 

6.1. Convergence parameters 

Before discussing the performance and scaling is- 
sues we briefly summarize the results of  convergence 
tests for bulk Si. In Table 1 the parameters needed to 
converge quasiparticle energy differences to an accu- 
racy of 50 MeV and 20 MeV, respectively, with the 
present method are gathered. This accuracy is meant 
to be with respect to each parameter individually. We 
estimate the overall accuracy of our results to be better 
than 0.1 eV. The plane-wave (PW) cutoffin Table I is 

t the cutoff of ~7 (k + G) e in the LDA calculation provid- 
ing the wavefunctions q?,,k. All PW components of  the 
LDA wave functions are used in the GW calculation. 
The real-space grids in the unit cell (see Section 3.2) 

resulting from PW cutoffs of  13.5 Ry and 16 Ry com- 
prise 9 x 9 x 9 and 12 x 12 x 12 points, respectively. The 
band cm:off determines the number of bands included 
in the band summation in Eq. (3.3) for the calculation 
of the Green function. Band cutoffs of  8 and 10 Ry 
correspond to taking 109 and 145 bands, respectively, 
into account. For sampling the BZ we employ a regular 
non-offset grid of k points. The LDA wavefunctions 
are calculated at the k points in the irreducible wedge 
of  the BZ. As described in Section 3.2 the dimensions 
of  the k grid in the BZ are equal to the dimensions (in 
multiples of primitive lattice vectors) N~ of the IC, 
which must be large enough to comprise the range of  
nonlocality of  the Green function and the self-energy 
in Si. The smaller k grid given in Table 1 can roughly 
accommodate a nonlocality range of 14.5 a.u. and the 
larger of 18 a.u. (-rma~, +';'max) and ,57" stand for the 
range and spacing of the equidistant grid for sampling 
the funclions F(r, r ~, ir) on the imaginary time axis. 
The parameters Wmax and Ao9 of  the corresponding 
grid in the imaginary energy domain are related to the 
time-grid parameters by Aw = 27r / (2N,  - l ) A r  with 
Tma x = ]~'rAy. 

6.2. Quasiparticle energies for bulk silicon 

The quasiparticle energies for bulk Si obtained 
from a well-converged calculation with the present 
method are given in Table 2 8. The LDA calcula- 
tion was done with the PW pseudopotential method 
employing a pseudopotential constructed according 
to the prescription of Hamann [24] and using the 
Ceperley-Alder exchange-correlation potential [25] 
in the parametrization of Perdew and Zunger [ 261]. As 
can be seen from Table 2 the calculated GW quasipar- 
ticle energies agree well with quasiparticle excitation 
energies derived from photoemission, inverse pho- 
toemission and optical experiments [27-33] ,  except 
for lhe position of  the bottom of the valence band 
which appears to be too high in our calculation. The 
agreement of  the quasiparticle energy differences ob- 

These results are somewhat different from those reported in 
Ref. 1151. The calculations there still used a spherical culoff for 
the interactions as described in Ref. 1161, instead of the interaction 
ceil defined by the k point grid. Tests indicate that the discrepancy 
arises from the fact that the spherical cutoff in i r -  r'[ used 
in Ref. I lfi] is not quite consistent with the k-grid used (see 
Section 3.2 above). 
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Table 2 
Calculated quasiparticle energies at points of high symmetry lot 
Si (in eV) 

Band LDA GW 1 GW 2 Experiment 

l'h. --11.89 --11.57 --11.58 --12.5 ± 0.6 a 
/'~5 c 0.00 0.00 0.00 0.00 
l'~ls~. 258 3.24 3.32 3.40 ~, 3.05 h 
I'~,. 3.28 3.94 4.02 4.23 ~, 4. I b 

XIr -7.78 -7.67 -7.68 
XJ,~, -2.82 -2.80 --2.81 -2.9 c, --3.3 • 0.2 d 

XI~ 0.61 1.34 1.42 1.25 b 
X4c 10. I 1 10.54 10.63 

L;~ -9.57 -9.39 -9.40 -9.3 4- 0.4 a 
LI,. --6.96 -6.86 --6.88 -6.7 4- 0.2 a 
L~. -I.17 - - 1 . 1 7  - - 1 . 1 7  -1.2±0.2 a, -1.5 e 
Ll~. 1.46 2.14 2.22 2.1 ~, 2.4 ::t: 0.158 
L3c 3.33 4.05 4.14 4.15 4- 0.1g 
L2~. 7.71 8.29 8.39 

Egap 0.49 1.20 1.28 1.17 a 

a Ref. 127] c Ref. 1291 e Ref. 131] g Ref. [331 
h Ref. [281 d Ref. [301 I" Ref. [321 
The valence band maximum has been set to zero. The calculation 
was done with a plane-wave cutoff of 16 Ry, a 5 ,< 5 x 5 k-point 
grid, a band cutoff of 10 Ry and a time grid with At" = 0.3 a.u. 
and ~'max = 20 a.u. For comparison the eigenvalues obtained in the 
LDA calculation providing the input for the GW calculation have 
been included. GW 1 refers to a GW calculation using the LDA 
Green function, whereas in GW 2 the Green function h~ been 
updated by replacing the LDA eigenvalues by the quasiparticle 
energies obtained in GW 1. In the last column some experimental 
data are given (see text). 

tained with the present method ( G W  I in Table 2) 
with those of a recent G W  calculation by Fleszar and 
Hanke [34] is very good. Like us, these authors did 
not make use of a plasmon pole model to describe 
the energy dependence of the dynamically screened 
Coulomb interaction but directly computed its full 

energy dependence. 
We investigated how the quasiparticle energies 

change when the Green function is updated by replac- 
ing the LDA eigenvalues by the quasiparticle energies 
and the self-energy recalculated with the updated 
Green function as input, as was done by Hybertsen 
and Louie [3].  The results ( G W  2) are also included 
in Table 2. Updating the Green function increases 
the gap by about 0.1 eV. Now the conduction band 
energies agree within better than 0.1 eV with those 
given in Ref. [3],  whereas the valence band energies 
remain higher by between 0.1 eV and 0.5 eV (rela- 
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tive to the top of the valence band),  the difference 
increasing with the distance of the respective state 
from the Fermi level. 

Indeed, the results of several earlier G W  calcula- 
tions [ 3,35] are somewhat different from those given 
in Table 2 (and Ref. [34] ). This can be attributed to 
the following reasons: 

(i) a possi~ble lack of convergence with respect to the 
number of conduction bands taken into account 
in the earlier calculations, causing the topmost 
occup ied state (which is particularly sensitive: to 

this parameter) to be about 0.2 eV too high, as 
discussed in Ref. [34];  and 

(ii) the use of plasmon pole models for the en- 
ergy dependence of the dynamically screened 
Coulomb interaction in the earlier calculations. 

6.3. Silicon supercells 

In Table 3 we compare the quasiparticle energies 
for slab-like Si4 and Sis supercells to the bulk Si 
results. Shown are the quasiparticle energies for the 

high-symmetry k points of Si (which are not neces- 
sarily symmetry points for the superce[1 geometry) 
and for those k points which are mapped onto these 
symmetry points when the unit cell size is increased. 
The calculations were done with a PW cutoff of 13.5 
Ry (leading to a real-space grid spacing of Ar = 0.8 

a.u.), a bartd cutoff of 10 Ry, AT = 0.3 a.u. and rmax 
= 20 a.u. 2he k grids have been chosen to make the 
IC of equal size in all three dimensions for all the cal- 
culations, f~r the reason discussed in Section 3.2. The 
grid sizes resulting from these parameters are summa- 

rized in Table 4. Njuc, Nuc,  and Nlc are the numbers 
of real-space grid points in the irreducible part of the 
unit cell, the unit cell and the interaction cell, respec- 
tively (see Section 4 above). N~ stands for the num- 

ber of k points in the BZ and Nr/,o is the number of 
positive t ime/energy points. The supercell results in 
Table 3 agree with the bulk Si results, as expected. 
The small differences for the highest conduction band 
given in Table 3 are ascribed to the lower symmetry 
of the supercells leading to different G vector sets. 

6.4. Scaling 

As outlined in Section 4 the computational effort 
in the present method should scale quadratically with 
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Table 3 
Comparison of quasiparticle energies (in eV) at high symmetry points for bulk Si with the corresponding values obtained from calculations 
for Si 4 and Sis supercells (see text) 

bulk Si Si4 Sis 

/" --11.55 - 7 . 6 3  - 1 0 . 5 3  - 1 1 . 5 3  -7 .61  - 1 1 . 5 5  - 7 . 6 3  -10.513 

0,00 - 2 . 7 8  - 3.41 0.00 - 2.78 0.00 - 2.78 -- 3.41 
3.23 1.35 - 1.81 3.22 1.37 3.22 1.37 -- 1.81 

3,97 10..52 1.77 3.96 10.45 3.96 10.43 1.78 
3.82 3.82 

6.35 6.3l) 

L - 9 , 3 5  - 9 . 6 2  - 9 . 3 4  - 9 . 3 6  - 9 . 6 3  

- 6 . 8 3  -5.135 -6 .81  - 6 . 8 3  - 5 . 3 5  

- I . 1 6  - 3 . 6 2  - 1 . 1 6  - I . 1 6  - 3 . 6 2  
2.17 - I . 2 7  2.18 2.18 - 1 . 2 7  
4.04 3.13 4.03 4.02 3.12 

8.28 5.46 8.26 8.25 5.42 

5.66 5.63 
6 775 6.70 

X --7.63 - 7  46 -7 .61  - 7 . 6 4  - 7 . 4 7  

- 2 . 7 8  - 3  73 - 2 . 7 8  - 2 . 7 9  3.73 
1.35 4 8 4  1.37 1.36 4.82 

10.52 5 6 7  10.44 10.42 5.63 

All energies refer to the respective valence band top. Shown are the band energies for all k-points  mapping onto I', X, and L, respectively, 
when the unit cell size is increased, where those k-points  appear in the calculation. 

Table 4 
Grid parameters for the Sin (n = 2, 4, 8) calculations (see text) 

Parameter Si2 (bulk Si) Si4 Sis 

N~uc 55 230 455 
Nuc 9 x 9 × 9  9 x 9 x  18 9 x 9 x 3 6  
Nk 4 × 4 x 4  4 × 4 x 2  4 × 4 x  I 

Nrc = NucNk 3 6 x  36 x 36 3 6 x  3 6 ×  36 3 6 x  36 x 36 

Nr/,o 63 63 63 

the number of  atoms in the unit cell. Fig. 6 shows 
the CPU times for a full GW calculation for Si, (n 
= 2, 4, 8) on a Digital Alpha 500/500 workstation. 
The parameters of  these calculations are those given in 
Table 4 and the discussion thereof. Si2 (bulk Si) has a 
higher symmetry than the tetragonal supercells Si4 and 
Sis. As the symmetry is ,exploited in most parts of  the 
calculation this saves approximately a factor of two in 
CPU time (cf. Njuc values in Table 4). Taking this 
into account the overall scaling is indeed quadratic, 
as expected. The most time consuming parts of  the 
calculation are: 

(i) setting up the Green function according to 
Eq. (3.3); 

(ii) calculating the dynamically screened Coulomb 
interaction (including the inversion of the di- 
electric matrix 9, the transformation to and from 
reciprocal space, and reading of p0 from and 
wri~:ing of W to disk) ; 

(iii) computation of the matrix elements of  the energy 
dependent self-energy for a given number of  k 
points and bands. 

Optionally, the Green function can be recomputed 
when the self-energy is calculated, rather than storing 
it on disk when it is first set up and reading it in for the 
calculation of the self-energy. This procedure reduces 
the required disk space by a factor of 2/3.  It has been 
used for the Si supercell calculations described here. 
As can be seen from the breakdown of the total CPU 
time shown in Fig. 6 all these parts of  the calculation 
scale roughly like N 2. More precisely, the scaling is 
like NIucNbands for (i), NIvcNuc for (ii) and N~c for 
(iii) as was discussed in Section 4. 

9 Although (i i)  forms a major part of the calculation, the inversion 
of the dielectric matrix itself accounts for only between 2% (Si2) 

and 4% (Si~) of the total CPU time, as a consequence of doing 
this inversion in reciprocal space as discussed in Section 4.2. 
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Fig. 6. Scaling of the CPU time on a Digital Alpha 500/500 work- 
station with respect to unit cell size for Si, (n = 2,4,8). Besides 
the total CPU time (o) the times for three major parts of the 
computation are given: calculation of (i) the Green function ( [ ] ) ,  
(ii) the dynamically screened Coulomb interaction ((>), and (iii) 
the matrix elements of the self-energy including a recomputation 
of the Green function ( A ) ,  see text. Note the quadratic spacing 
of the abscissa. 

Comparing the performance of our method with 
conventional techniques we note that although a num- 
ber of quasiparticle calculations within the GW ap- 
proximation have been reported for systems with up 
to 60 atoms, e.g. for surfaces [36-38],  defects [39], 
and fullerenes [40], several simplifying approxima- 
tions have been employed in these calculations in or- 
der to reduce the computational effort. These authors 
focus on the calculation of quasiparticle energies and 
therefore only a number of self-energy matrix ele- 
ments were computed. This is in contrast to the present 
method which provides the full self-energy (thus giv- 
ing access to quantities other than the quasiparticle en- 
ergies, see conclusions section below). In all the cal- 
culations mentioned above plasmon-pole models have 
been employed to approximate the energy dependence 
of the dynamically screened Coulomb interaction. In 
some cases [37,40] a model static dielectric matrix 
has been used as well. To aid comparison we note that 
although the plane-wave cutoff of the underlying LDA 
pseudopotential calculation can be (and has been in 
many GW calculations reported in the literature) con- 
siderably reduced in the GW calculation because the 
quasiparticle corrections usually converge much faster 
with this parameter than the LDA eigenvalues, this has 
not been done in the test calculations reported in the 

present paper. The energy dependence of the screened 
interaction is fully taken into account in the method 
proposed in this paper. Hence the dielectric matrix 
is computed and inverted for about 60 to 100 imag- 
inary energies which is computationally much more 
demanding than using a plasmon-pole model. We es- 
timate that the crossover to the advantageous scaling 
behavior of CPU time in our method occurs (a) al- 
ready for bulk Si if we compare with a calculation 
of the lull se]lf-energy with a conventional reciprocal- 
space approach and (b) for systems in the range stud- 
ied in this paper if we compare with a reciprocal- 
space method where a plasmon-pole model is used and 
which is restricted to computing a moderate number 
of self-energy matrix elements only. Finally, we men- 
tion that work, particularly regarding the treatment of 
the time/energy dependence of the key quantities, is 
in progress to reduce the prefactor of the scaling of 
our method. 

7. Summary 

We have presented a detailed account of a method 
for calculatirtg the electron self-energy and related 
quantities from ab initio many-body perturbation the- 
ory within tile GW approximation. The method is 
based on representing the basic quantities (Green's 
function, dielectric response function, dynamically 
screened Coulomb interaction and self-energy) on a 
real-space grid and on the imaginary time axis. In 
those intermediate steps of the calculation where it is 
computationally more efficient to work in reciprocal 
space and imaginary energy we change to the latter 
representation by means of fast Fourier transforms. 
Working on the imaginary time/energy axis consid- 
erably facilitates the numerical treatment. The matrix 
elements of the self-energy on the real-energy axis 
are obtained by an analytic continuation procedure 
which was shown to be accurate and stable. We have 
demonstrated the accuracy of the method by calculal- 
ing quasipartMe excitation energies at high-symmetry 
points for the prototype semiconductor Si. The com- 
putational effort of the method scales quadratically 
with unit cell size. This was shown explicitly by cal- 
culations for Si supercells. The method allows the 
extension of ab initio work beyond the calculation of 
quasiparticle energies and its application to materials 
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with  la rger  bas is  sets or la rger  uni t  cel ls  than were  

p rev ious ly  feasible .  Ca lcu la t ing  the full  se l f -energy  

g ives  access  to quan t i t i e s  l ike the c h a r g e  dens i ty  [ 15 ], 

spect ra l  func t ion  [ 1 6 ] ,  m o m e n t u m  d is t r ibu t ion  and  

total  e n e r g y  at the G W  level.  It also opens  the possi-  

bil i ty o f  ca l cu la t ing  tile se l f -energy  se l f -cons i s ten t ly  

and  to p rov ide  the G W  G r e e n  func t ion  ( a f t e r  so lv ing  

the D y s o n  e q u a t i o n )  - e s s e n t i a l  p re requ is i t es  for  go-  

ing b e y o n d  the  G W  a p p r o x i m a t i o n ,  e.g., by i tera t ing 

H e d i n ' s  equa t ions .  Th i s  r e m a i n s  to be inves t iga ted  in 

future.  
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