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Abstract

We describe the following new features which significantly enhance the power of the recently developed real-space
imaginary-timeGW scheme (Rieger et al., Comp. Phys. Commun. 117 (1999) 211) for the calculation of self-energies and
related quantities of solids: (i) to fit the smoothly decaying time/energy tails of the dynamically screened Coulomb interaction
and other quantities to model functions, treating only the remaining time/energy region close to zero numerically and performing
the Fourier transformation from time to energy and vice versa by a combination of analytic integration of the tails and Gauss—
Legendre quadrature of the remaining part and (ii) to accelerate the convergence of the band sum in the calculation of the
Green’s function by replacing higher unoccupied eigenstates by free electron states (plane waves). These improvements make
the calculation of larger systems (surfaces, clusters, defects etc.) acces@B@0 Elsevier Science B.V. All rights reserved.

PACS:71.15.Th; 71.20.-b

Keywords:Electronic structure; Quasiparticle energies; Self-energy calculati@hsapproximation

1. Introduction

Density-functional calculations provide reliable information about the ground state properties of electron
systems but give, in principle, no access to the excitation spectrum of the system under study. Excitations can
be described by many-body perturbation theory which is, however, at present only computationally feasible for
real materials in its simplest form, tl&W approximation of Hedin [1,2]. The latter gives a comparatively simple
expression for the self-energy operator, which allows the one-particle Green’s function of an interacting many-
electron system to be described in terms of the Green’s function of a hypothetical non-interacting system with
an effective potential. The Green’s function contains information not only about the ground-state density and
energy but also about the quasiparticle (QP) spectrum.@Weapproximation has been successfully applied
to the calculation of QP bandstructures of semiconductors and other materials [3—6], for a recent review see
Ref. [7].
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The real-space imaginary-tingV method, first proposed by Rojas et al. [8] and — in a revised form — described
in detail by Rieger et al. [9] (we will refer to this paper as CPC | in the following) offers a more favourable scaling
of the computational effort with system size than conventional reciprocal-s§ptschemes [9]. It substantially
reduces the computational effort and allows to study larger systems than previously possible without resorting to
further approximations such as plasmon-pole models [3] for the energy dependence of the screened interaction or
model dielectric functions [10].

The new features outlined in the present paper, particularly the new treatment of the (imaginary) time/energy
dependence, further reduce the computational effort of the spac&tiieeheme by almost an order of magnitude.

This is achieved by fitting the smoothly decaying large energy/time tails of all quantities involvedsWV a
calculation to simple model functions and treating the remaining time/energy region numerically on a Gauss—
Legendre grid rather than using an equidistant grid and fast Fourier transformations (FFT) from time to energy
and vice versa. In the new scheme these Fourier transformations are performed by a combination of analytic
integration of the tails and Gauss—Legendre quadrature of the remaining part. Another improvement of the method
concerns the convergence of the calculated Green'’s function with the number of unoccupied eigenstates entering
the eigenstate (band) sum in the Green’s function Eqg. (2.1) below. Higher unoccupied eigenstates are approximated
by plane waves. This considerably reduces the number of eigenstates and energies which have to be computed in
a density-functional calculation (usually within the local density approximation (LDA)) preceding a calculation of

the self-energy with a given accuracy.

The present paper is organized as follows: first we give a brief summary of the real-space imagin&@ywime
scheme in order to clarify notation in reference to CPC | (Section 2). Then we describe the new treatment of the
time/energy dependence (Section 3) and the plane-wave substitution for accelerating the unoccupied-state sum
convergence of the Green'’s function (Section 4).

2. Summary of the real-space imaginary-timezWmethod

In the real-space imaginary-tin@W method [8,9] for computing electron self-energies and related quantities
such as dielectric response functions and quasiparticle energies the basic quantities Green’s function, dielectric
response function, dynamically screened Coulomb interaction and self-energy are represented on a real-space
grid and on the imaginary time axis. In those intermediate steps of the calculation where it is computationally
more efficient to work in reciprocal space and imaginary energy we change to the latter representation by means
of Fourier transforms. The choice of representing the time/energy dependence on the imaginary instead of on
the real axis allows us to deal with smooth, decaying quantities which give faster convergence. To obtain the
self-energy eventually on the real energy axis, we fit a model function to the computed self-energy on the
imaginary axis, and continue it analytically to the real axis. The energy dependence of the dynamically screened
interaction is fully taken into account within the method. The computational effort scales quadratically with the
number of atoms in the unit cell and linearly with the number of energy paigtsised to represent the energy
dependence [9].

First, the zeroth-order Green’s function is constructed in real space and imaginary time:

occ
ian G (N (1) eXplenk ), >0,

GLpa(r,r'sit) = (2.1)

. unocc
—i an G (DA (1)) explet), T <0,

from the LDA wavefunction®, (r) and eigenvalues,kx. Then the RPA irreducible polarizability is formed in real
space and imaginary time:

X2, 1 ity = —iGLpa(r, 1 it)GLpa (X', 15 —iT), (2.2)



L. Steinbeck et al. / Computer Physics Communications 125 (2000) 105-118 107

and Fourier transformed to reciprocal space and imaginary energy and the symmetrised dielectric matrix [11] is
constructed in reciprocal space,
4
Ik + Gk + G|

After that the symmetrised dielectric matrix is inverted for ekgtoint and each imaginary energy in reciprocal
space and the screened Coulomb interaction is calculated:

e (K, iw) = 8ca' x2o (K, iw). (2.3)

4
Woa (K, iw)=———— 51 (K, i), 2.4
ce' (K, iw) |k+G||k+G/|8GG( iw) (2.4)
and Fourier transformed to real space and imaginary time. From that the self-energy operator
2, r';it)=iGpa(r,r';it)W(r,r';it), (2.5)

and its expectation valuégn| X (it)|gn) are computed. The latter are Fourier transformed to imaginary energy and
fitted to a model function allowing analytic continuation onto the real energy axis and evaluation of the quasiparticle
corrections to the LDA eigenvalues by first-order perturbation theoyzin- VXLCDA). Since all quantities go to

zero with increasingr — r’| we use a finite cutoff region in real space which we call the interaction cell. Further
details of the method can be found in CPC I.

3. New treatment of time/energy dependence
3.1. Motivation and basic idea

The functions we are dealing with are relatively smooth on the imaginary time/energy axis. This allows to
employ a regular time/energy grid which has the advantage that the Fourier transformation from imaginary time to
imaginary energy and vice versa can be done efficiently by fast Fourier transformation (FFT). However, we still
need of the order of 100 grid pointsfor good convergence (resulting quasiparticle energies converged within
30 meV with respect to the/w grid parameters). This point is illustrated by Fig. 1 showing the matrix element of
the correlation self-enerdyfor the uppermost valence band of Sifatcalculated (withAw = 0.17 Hartree) with
30, 60, and 120 FFT grid points (a) on the imaginary energy axis and (b) analytically continued to real energies.
Crucially, the convergence on the imaginary axis transforms into a convergence of similar quality on the real axis
upon analytic continuation. Looking at the time/energy behaviour of the key quantities, particularly those which
have to be Fourier transformed such as polarizability, screened interaction and the matrix elements of the self-
energy (see Fig. 2) we observe that they possess nontrivial structure only in the region ¢loseQdiw = 0)
whereas they decay smoothly to zero for large imaginary times or energies. The FFT grid has to be large enough
to take account of the tails (reduce aliasing) and at the same time it needs to be sufficiently dense to describe the
structure in the region close to the origin properly.

This suggests another approach: represent the functions on a suitably chosen grid in a fixed and comparatively
small time/energy interval and fit the large/ i  tails to simple model functions which can be Fourier transformed
analytically, a method suggested by Blase et al. [12] in the context of their earlier mixed-space method [13]. For the
part handled numerically we choose a Gauss—Legendre (GL) grid (linearly transformegd-ftoi to (0, tmax) Or
(0, wmax), respectively). This turns out to be very efficient since the functions have to be computed for a relatively
small number of time or energy points only and this computation of the functions is much more time-consuming
than the Fourier transformations themselves which are done by Gaussian quadrature over the numerical values and

3 If we were working on the real energy axis this number would be an order of magnitude larger still, as can be concluded from Ref. [16].
4 Defined as the difference between B self-energy and its time-independent bare-exchange part.
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Fig. 1. Fig. 2.

Fig. 1. Convergence of the matrix element of the correlation self-engfggi»)) for the valence-band top‘z"é of silicon with respect temax

with a fixed energy grid spacing @ = 0.17 Har. The top panel shows the calculated self-energy on the imaginary axis with the analytically
continued dependence on real energy shown in the lower panel. The lines correspang to 5 Har (dotted), 10 Har (dashed) and 20 Har
(solid), i.e. 30, 60, and 120 FFT grid points, respectively.

Fig. 2. Matrix elementgXc(it)) (top panel) and Xc(iw)) (lower panel) of the correlation self-energy for the valence-bandyémf silicon.

The Gauss—Legendre grid points fgfax = wmax= 6 a.u. andV; = N,, = 15 are indicated by filled circles. This figure gives an idea about a
typical functional form on the imaginary time (energy) axis and a typical Gauss—Legendre grid which has to be used to Fourier transform this
function with good convergence. The other quantities which have to be Fourier transformed from time to energy or vice versa have similar (or
less) structure.

adding the Fourier transform of the tail The fit of the tail only needs to be performed whenever a quantity has to
be Fourier transformed frotir to iw or vice versa. The rest of the calculation is restricted to the GL grid. Hence
the following quantities have to be fitted: (1) the poIarizabi}Q@G,(k, it), (2) the screened Coulomb interaction
Wgse' (K, iw) and (3) the matrix elements of the correlation part of the self-en@pghec(it)|qn).

The advantages of this treatment of the time/energy dependence are obvious: all quantities have to be computed
for a much smaller number of imaginary times/energies thus saving computational time and reducing storage
requirements while retaining the flexibility to accomodate general functional forms of the energy dependence and
not being restricted to particular forms such as plasmon-pole models.

3.2. Polarizability

The imaginary-time dependence of the Green'’s function derives from the the decaying exponentigia gxp
with ¢,k < 0 (> 0) for T > 0 (< 0) in Eq. (2.1). The asymptotic behavior at large imaginary times is determined

5 An alternative to a GL grid would be a grid which is more dense towards the origin by a suitable transformation of variables. However, such
grids do not perform well in computing the ‘fast-oscillating’ components; ifeitf (it) exp(—iwt) for largew.
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by the slowest-decaying exponentials and can thus be approximated by a single exponential. This asymptotic
imaginary-time dependence carries over to the polarizability Eqg. (2.2). For that reason we fit the [t of
each(GG'k) element of the polarizability2 ., (k. it) ® to a decaying exponentialexp(—bt) (with & > 0 and for
t > 0 only sincex? is symmetric int). The two fit parameters andb are exactly determined by fitting two time
points: the outermost GL grid point and one additional point &tax. This fitting procedure turns out to be very
reliable.

The Fourier transformation fromt to iw is done in the following way:

imax o0
xw)) = Z pi[xo(im—aexp(—b|zi|)]exp(—w,-ri)+/draexp(—b|z|)exp(—a),-r)
i=—imax —o0
imax 2a
:ZZpi[)Zo(ir,-)—aexp(—b|ti|)]cos(wjti)+m (3.1)

i=1 J
with GL grid pointst; andw;, GL weightsp;, fit parameters andb, andi%@it) = —ing,(k, it).

For a small number of matrix elemer)gée, (k, i) (typically less than 5% of all matrix elements as longasx
is large enough to accomodate all the nontrivial structung@fr)) the large r tails cannot be fitted to a decaying
exponential because they increase or change sign. This is only the case for small matrix elements where the function
is already close to zero ahax anyway. We sek °(1.3tmay) t0 0.1x0(tmax) there, i.e. choose a reasonable decaying
constant which takes the (already small) function smoothly to zero. Simply setting the matrix element to zero for
T > tmax Would render the ensuing fit Vg (K, iw) unneccessarily difficult. Anyhowsmay is @ convergence
parameter which can be varied to check the quality of the results.

3.3. Dynamically screened Coulomb interaction

The large-imaginary-energy tail of the dynamically screened interadtigg (k, iw) is fitted to the Fourier
transform of a decaying exponential

o]

/ dta exp(—b|r|) expxiot) =

—00

2ab o

= . 3.2
Pta? B2ta? (3.2)

The energy region wher® is treated numerically has to be large enough to comprise the nontrivial structure
of W(iw). We found thatwmax should be between 3 and 10 times the plasmon erfefgy good convergence.

We could perform the tail fit along similar lines as that @, i.e. subtract the analytic tail function from the
given imaginary-energy W i0, wmax), Fourier transform this difference numerically and add the analytically
given Fourier transform of the function fitted to the tail back in. However, for a large number of matrix elements
Wgg (K, iw) the tail fit yields a negativg? because they decay more rapidly tha4. In this case the function
a/(B?+ w?) has a pole inside the intervéd, wmax) which does not allow the analytic Fourier transformation to be
performed and which makes the numerical Fourier transformation of the difference bé¥emahthe fit function
virtually impossible to compute. That is why we integrate the analytic tail function foggx to oo in this case,
provided thatg? > —w?,,. Part of this integral can still be solved analytically whereas the remainder is treated
numerically. The Fourier transfori (it) = —i Wgg (K, i T) is given by:

6 1n our experience fitting in reciprocal space rather than in real space is both easier and more efficient. For very large systems where it is
advantageous to use a real-space representation throughout [9] the fit can of course also be done in real space.
7 Taking the free-electron-gas plasmon energy at the average valence density of bulk Si that corresponds to between 2 and 6 Hartree.
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jmax o0
= . . 1 o
W(it) = - ;pj W(iwj)cosw;ti) + - / dw 7132 T coqwrt;) (3.3)
with
17 [ B coson) Somaxt)
o o cojwrt o | coOYwmaxt .
with the sine integral
o3 .
. Sin
Si(wmax?) = / do 2@ (3.5)
T

Wmax

Herer; andw; are the GL grid pointsp; the GL weightsg andp? the fit parameters and;,,, the outermost GL

grid point. The integral on the right hand side of Eq. (3.4) is solved numerically using a transformed GL grid. It
converges rapidly since the integrand is going to zero like*1 The second part of Eq. (3.4) is given analytically.

In this way mostWgg (k, iw) can be fitted except for a small number whgfe< —w?,,, (this only occurs for
matrix elements which are small anyway). In the latter case we take the correct valagamoothly to zero by
settingp? to —0.9w?,,,. Again, the quality of the results can be checked by varyimgx.

3.4. Matrix elements of correlation self-energy

The matrix elements of the correlation self-energy are fitted in a similar way as the polarizability. As the
asymptotic time dependence of the self-energy is determined by that of the Green’s function which is ‘shorter-
ranged’ (in imaginary time) thamV we again fit to a decaying exponentiaéxp(—bt). This time, however,
we have to perform separate fits on the positive and negative half-axis since the self-energy is not symmetric
in imaginary time. Therefore we obtain two contributions(tbc(iw)) for positive imaginary energies (with
Te(it) = —i(Ze(iD))):

(Zeliow)))= Z pi[ Zeliti) — ay exp(—by|t|) | exp(—iw;T;) +
i=1

a+
by +iw;j
—imax

+ Y pi[Telit) —a—exp(—b-|ul) ] exp—iw;T) +

i=—

—, 3.6
b_+ lw;j (3.6)
herer; andw; denote GL grid pointsp; GL weigths, andi,a_, b, andb_ are the fit parameters. The self-energy
matrix elements on the negative imaginary-energy half-axis are givéxfy-iw)) = (Zc(iw))*.

All matrix elements ofX; could be fitted in this way for all the systems investigated so far (Si, Ge, GaN).

3.5. Tests for bulk silicon and zincblende GaN

In order to test the stability and accuracy of the tail fit and the convergence with the GL grid size we performed
self-energy calculations for bulk Si (cutoff parameters are given in Table 1 and further details are as in CPC I). Fig. 2
gives an idea of the sampling of the matrix element of the correlation self-energy for the uppermost valence band
atI" on the imaginary time and imaginary energy axis by a GL grid withk = wmax= 6 a.u. andV; = N, = 15.

The convergence of two typical quasiparticle energies with the number of GL grid points and the size of the imag-
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inary time/energy region treated explicitly is summarized in Tatle e chose the lowest conduction Statg

and the valence-band bottafif. The latter is in our experience the slowest-converging quasiparticle energy which

is most sensitive to details of the calculation and cutoff parameters. Obvidisty,N,, andtmax = wmax have to

be increased simultaneously since the main structure of the functions we are dealing with is restricted to a limited
region around the origin. We observe that 15 GL grid points apgl = wmax = 5 a.u. are sufficient to converge

even the slowest-converging valence-band bottom to within 30 meV. The same accuracy is obtained with FFT grids
for tmax= wmax= 20 a.u. and 120 grid points, resulting in QP energies of 3.22/&¥) @nd—11.58 eV (I7).

Table 1
Cutoff and grid parameters used for the test calculations for Si and zincblende GaN,
respectively, in Section 3 of the present work

Parameter Si GaN
LDA plane-wave cutoff (in Ry) 135 50.
GW plane-wave cutoff (in Ry) 19. 38.
GW real-space grid %X9x9 12x 12x 12
Band cutoff (in Ry) 10. 16.
Size ofk grid 4x4x4 4x4x4
Rangermax of time gricfJ (ina.u.) 6. 6.
Size of time (energy) gri 15 15

@ Energy cutoff corresponding to radius of circumscribing sphere, see Ref. [9].
b This parameter is varied in the tests of Section 3.

Table 2
Convergence of quasiparticle energ]él%’ ande (in eV, top of valence band has been set to zero) for Si with respect to Gauss—Legendre grid
regiontmax = wmax (in a.u.) and number of grid poinf¢; = N,,

Tmax = ®Wmax Ny =N,
10 12 15 18 21 25
s
3. 3.27 3.28 3.28
4 3.24 3.24 3.24
5. 3.23 3.23 3.23
6 3.23 3.23 3.22
7 3.22 3.23 3.22
ny
3. —11.54 —11.53 —11.52
4. —11.58 —11.52 —11.52
5. —11.53 —11.56 —11.56
6. —11.56 —11.58 —11.60
7. —11.63 —11.58 —11.59

8 These quasiparticle energies are slightly different from those given in CPC | since head and wings of the dielectric matrix have not been
computed separately using a differéngrid in the present paper.
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Table 3
Convergence of quasiparticle energies (in eV, top of valence band has been set to zerd) and¢ point of zincblende GaN with respect to
Gauss—Legendre grid regiamax = wmax (in a.u.) and number of time/energy grid pois = N,

Nz =Ny 12 15 18 25
Tmax = @max 4. 5. 6. 8.

ry —15.88 —15.95 -15.93 —15.94
rf 3.03 3.00 3.00 2.99
I 11.56 11.54 11.53 11.52
xy —12.96 —13.00 -12.97 —12.98
Xy -6.38 —6.39 —6.38 -6.38
xy —2.66 —2.66 —2.66 —2.66
X§ 4.43 4.41 4.40 4.39
x§ 7.91 7.88 7.87 7.86
x5 13.23 13.19 13.16 13.14
xg 15.32 15.28 15.26 15.24

Our GW calculations for GaN in the zincblende structure were carried out at the experimental lattice constant
(a=8.54 a.u.). The LDA wavefunctions and eigenvalues used in the self-energy calculation were obtained from a
standard plane-wave pseudopotential calculation. The Ga 4s and 4p states Argsthad 2p states were treated
as valence states and the soft pseudopotentials of Troullier and Martins [14] were used. The cutoff parameters are
given in Table 1. Table 3 shows the convergence of the resulting QP enerdiearad X as a function of the
time/energy GL grid parameters. From these results we conclude that the speed of convergence of the QP energies
of GaN with respect to the imaginary time/energy grid is similar to that found for bulk Si.

The agreement of our calculated quasiparticle energies for Si and GaN with experiment is similar to that of
previousGW calculations but — in contrast to these earlier works — dynamical effects are fully included here.

Fitting of the tails allows to reduce the time/energy region which is treated explicitly by more than a factor of
three. This saves the same factor in the number of FFT grid points. Employing a GL grid enables us to reduce
the number of points where the functions have to be computed by another factor between two and three. In total,
the CPU time, memory and disk space requirements decrease by a factor of seven to eight in comparison with the
time/energy FFT grid treatment described in CPC I.

4. Plane wave substitution
4.1. Motivation and basic idea

A large number of unoccupied states have to be included in the band sum in the Green’s function Eq. (2.1)
for a proper convergence of the resulting self-energy and QP energies. With growing system size it becomes
increasingly difficult to provide such a large number of eigenstates by a density-functional calculation since direct
diagonalization may not be computationally feasible whereas iterative diagonalization yields only a limited number
of eigenstates or becomes prohibitively expensive. Besides that it would be desirable to accelerate the convergence
of the unoccupied-state sum in order to reduce the computational effort for the calculation of the Green’s function.

On the other hand we expect that the higher the energy of an unoccupied state the better it should be approximated
by a free-electron state (plane wave). This is illustrated by Fig. 3 showing the band energy as a function of the band
number for (LDA) eigenstates of Si and the corresponding plane-wave states with waveKest&rs G, G being
reciprocal lattice vectors of Si. At higher energies the two spectra look remarkably similar if we allow for a constant
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Fig. 3. Band energies as a function of band number for the LDA eigenstates of bulk Si (solid line) and the corresponding plane-wave states
(dotted line). The latter have been shifted upwards by 0.26 Ry (with this shift the energies of LDA and PW state number 50 coincide). At higher
energies the two spectra look remarkably similar (see text).

energy shift between the two. Although closer examination shows that this assumption is not fully justified for states
with moderately high energies, which, for symmetry reasons, rather resemble linear combinations of several plane
waves, the sum of all unoccupied states above a certain energy cutoff can still be reasonably well described by a
corresponding sum of plane waves. The aspect of taking proper account of the weight of the higher unoccupied
states seems to be more important than their explicit form. Thus there is good reason to expect that the number
of unoccupied eigenstates which have to be explicitly included into the band sum in Eq. (2.1) can be substantially
reduced by adding a sum of plane waves replacing the omitted higher unoccupied stétisss indeed the case

as is demonstrated by the significant improvement of the convergence of the QP energies as a function of the band
cutoff upon adding a plane-wave (PW) contribution to the Green'’s function, cf. Figs. 4 and 5.

4.2. Method

The PW contribution to the Green’s function Eq. (2.1) takes the following form in real-space:
AGPW(r. 13 iT) = —— 3 expliKr) exp(—iKr ) exp( —= (K2~ k2) ). (4.1)
V& 2

where theK vectors corresponding to energies below the lowest PW energy are excluded from the reciprocal-
space sum. The plane waves are normalized with respect to the crystal velamé;c Nk, with Ng being the

number ofk points in the Brillouin zone (BZ) andyc the volume of the unit cell. The energies of the PW
states are measured with respect to an energy adfc= k§/2 which is determined by adjusting the energy

of the highest LDA eigenstate included and the highest PW state not included in the calculation of the Green'’s
function, see Eq. (4.4) belowh Gpw can be computed analytically by transforming giesum into an integral by

Yk —> VUC/(Zn)3fd3K, i.e. taking the limitNy — oo and solving the resulting integral. It turns out, however,

that it is more practical to computeGpw numerically instead, even though that is computationally slightly more
expensive. In this way the contributions of the (LDA) eigenstates of the system and the plane waves are treated
on an equal footing which makes for a smoother convergence because of compensation of errors arising from
discretization. Fourier transformation AfGpw(r, r’; it) to reciprocal space results in:

1 T 5 T 2
NeVoe exp( Eko) exp( E(k +G) )(SGG/, (4.2)

9 A related approach was followed by James and Woodley [15].

AGpw(k,G,G;it) =
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Fig. 4. Calculated valence band bottd?if (top panel, the valence band maximum has been set to zero), direﬂfgépenter), and minimal

gap of bulk Si as a function of the inverse 8fangs the number of LDA eigenstates used for the calculation of the Green’s function. Two

sets of data are shown, the filled circles (solid lines) refer to calculations with LDA eigenstates only whereas the open circles (dashed lines)
are the results of corresponding calculations where the PW contribution was added (see text). The numbers along the top Migrge the

values used in the respective calculations. The number of LDA eigenstates needed to converge the quasiparticle energy is significantly reduced
by adding the PW contribution.

Fig. 5. Same as Fig. 4 for valence band bottb'{h(top panel), direct ga|zT1° (center), and conduction sta[éfs (bottom) of zincblende GaN.

with reciprocal-lattice vector§,G’ of the system withk + G|?/2 larger than a given cutoff energy. As Eq. (4.2) is
diagonal inG it is more efficient to first set up Gpw in reciprocal space and then transform it to real space before
adding it to the Green’s function contribution of the LDA eigenstates taken into account explicitly.

In order not to destroy the crystal symmetry of the Green'’s function when adding the PW contribution only
complete stars o6 vectors (groups of plane-wave states energetically degenerate &tiarthe BZ) must be
included into or excluded fromA Gpy. On the other hand the number@fexcluded fromA Gpw should be equal
to Npands the number of LDA eigenstates taken into account explicitly, which, in turn, has to be determined in such
a way as to include complete groups of energetically degenerate (&) &DA eigenstates. These two demands
cannot in general be fulfiled simultaneously. As a compromise we calcal@tgy from PW stategk + G;)
(ordered with respect to their energy) with weights

0 i < Ni(k),

Nbands— N1(K) .
T Nk — MK N1(kK) <i < Na(k), (4.3)

1 i > Na(k),

Wi (k) =



Table 5
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Table 4
Cutoff and grid parameters used for the test calculations for Si and zincblende GaN,
respectively, in Section 4 of the present work

Parameter Si GaN
LDA plane-wave cutoff (in Ry) 19. 50.
GW plane-wave cutoff (in Ry) 26. 50.
GW real-space grid 12 12x 12 15x 15x 15
Band cutoff (in Ry) 10. 27.
Size ofk grid Ax4x4 Ax4x4
Rangermax of time grid (in a.u.) 6. 6.
Size of time (energy) grid 15 15

2 Energy cutoff corresponding to radius of circumscribing sphere, see Ref. [9].
P This parameter is varied in the tests of Section 4.

Calculated quasiparticle energies at fieand X point for Si (in eV) as a function of the number of LDA eigenstadsgsincluded in the
calculation of the Green’s function. Two sets of results are shown, obtained with including (b) or not including (a) the PW contribution to the
Green'’s function (see text). The valence band maximum has been set to zero

Band cutoff [Ry] 6. 8. 12. 14. 16. 18.

Nbands 70 112 186 246 302 500

ry (@ —-11.61 —11.60 —-11.58 —-11.56 —-11.52 —11.48
(b) —11.44 —11.46 —11.45 —11.46 —11.45

i (@ 3.20 3.23 3.25 3.26 3.26 3.26
(b) 3.28 3.27 3.27 3.27 3.27

ry (@ 3.93 3.94 3.95 3.96 3.96 3.96
(b) 3.92 3.94 3.95 3.96 3.96

xy (@ -7.71 —~7.69 -7.68 —~7.66 —~7.64 -7.63
(b) ~7.64 —~7.65 —~7.64 —~7.64 —~7.64

Xy (@ —2.85 —-2.83 -2.82 -2.81 -2.80 —2.79
(b) —2.78 -2.80 —2.79 —2.80 —2.79

x5 (@) 1.24 1.27 1.31 1.33 1.35 1.36
(b) 1.38 1.36 1.36 1.35 1.35

X3 (@ 10.75 10.75 10.75 10.74 10.72 10.71
(b) 10.67 10.70 10.70 10.70 10.70

whereN1(k) andN2 (k) are the largest possible/smallest possible total number of PW states smaller than/larger than
Nbands respectively, both containing complete stars of PW states onlykTdependent cutoff ensures preservation
of both symmetry and number of bands and works well in practice.
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In order to account for the difference in the energy spectra of LDA eigenstates and plane waves we introduce an

energy shift

1 2
AE =3 |G (Nband3|” — Ecut+ Eves

(4.4)

between the highest PW state(s) not included and the highest LDA eigenstate(s) included in the band sum in
Eq. (2.1).Ecyt and Eygp stand for the energy (&= 0) of the highest LDA state taken into account and the LDA
valence-band bottom, respectively (both measured with respect to the Fermi level which is chosen halfway between
valence band top and conduction band bottom) %{hﬁi(NbandgF is the energy of plane wave numh¥pangsat

k = 0. Taking this energy shift & = 0 is somewhat arbitrary, but it turns out that the resulting self-energies and

QP energies are not sensitive to the exact value of the energy%hift

Table 6
Same as Table 5 for zincblende GaN
Band cutoff [Ry] 12. 16. 20. 28. 32. 36.
Nbands 113 168 234 374 459 572
Fi’ (a) —15.88 —15.85 —15.82 —-15.77 —15.76 —15.73
(b) —15.56 —15.64 —15.66 —15.68 —15.69 —15.70
rf (@) 3.07 3.12 3.15 3.19 3.20 3.21
(b) 3.38 3.31 3.28 3.24 3.23 3.23
Ffs (@) 11.58 11.66 11.72 11.79 11.81 11.83
(b) 12.05 11.97 11.92 11.86 11.85 11.84
X‘l’ €) —12.93 —12.91 —12.90 —12.87 —12.86 —12.85
(b) —12.75 —12.81 —12.82 —12.83 —12.84 —12.84
Xg €) —6.39 —6.34 —6.30 —6.26 —6.24 —6.22
(b) —6.10 —6.15 —6.17 —6.20 —6.20 —6.21
X (@) —2.66 —2.63 —2.61 —2.59 —2.58 —2.57
(b) —2.52 —2.54 —2.55 —2.56 —2.57 —2.57
XE (a) 4.46 4.55 4.61 4.67 4.70 4.72
(b) 4.94 4.86 4.81 4.76 4.75 4.74
x{ (@) 7.94 8.01 8.06 8.11 8.13 8.15
(b) 8.33 8.26 8.22 8.18 8.17 8.16
Xg (@) 13.27 13.28 13.29 13.30 13.31 13.31
(b) 13.31 13.31 13.31 13.31 13.31 13.31
X‘53 (a) 15.35 15.38 15.40 15.42 15.42 15.43
(b) 15.46 15.45 15.44 15.43 15.43 15.43

10 For example, setting this energy shift to zero changes the calculated QP energies by less than 10 meV in the case of bulk Si. Of course
the QP energies always converge to the same values as in a calculation where no plane waves were added since the plane wave contribution
vanishes fotVpangs— 0.
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Fig. 6. Fermi energy shifA Ep = E,?P — E',;DA for bulk Si (top panel) and zincblende GaN (bottom panel) as a function of the inverse of
Npands the number of LDA eigenstates used for the calculation of the Green’s function, calculated including (open circles, dashed lines) or not
including (filled circles, solid lines) the plane-wave contribution (see text). The plane-wave contribution improves the convergence of absolute
self-energies in qualitatively the same way as that of the QP energy differences shown in Figs. 4 and 5.

4.3. Tests for bulk Si and GaN

We performed a number of tests in order to assess the influence of adding the PW contribution on the convergence
of self-energy and QP energies. The cutoff parameters for our tests for Si are given in Table 4. Further calculational
details are as in CPC I. Fig. 4 exhibits the convergence of valence band bottom (top panel), dire¢t §zgnder),
and minimal gap (bottom) as a function of the inverseMghngs the number of LDA eigenstates used for the
calculation of the Green’s function. Two sets of data are shown in each figure, showing results obtained with (open
circles) and without (filled circles) adding the PW contribution. First of all we observe that, as expected, both sets
of calculations converge to the same answer fd¥ghngs— 0. However, adding the PW contribution dramatically
improves convergence; the number of eigenstates needed for an accuracy of the QP energies of 30 meV is about
70% smaller when the PW contribution is added (see also Table 5). For the slowly-converging valence band bottom
we find that the number of eigenstates in Eq. (2.1) can be reduced by as much as 85%.

Since bulk Si might be perceived as a particularly plane-wave like system we also tested the method for
zincblende GaN. The cutoff parameters are given in Table 4, for further details of the calculation see Section 3.5
above. Fig. 5 showing the band-cutoff dependence of valence band bottom (top panel), conduction band bottom
(center), and conduction stafg; (bottom) confirms that the PW contribution to the Green’s function improves the
band-cutoff convergence in the case of zincblende GaN, too, although not as much as for bulk Si. Adding the PW
contribution decreases the number of bands needed to converge the quasiparticle energies of GaN to an accuracy
of 30 meV by 30 to 50% (see also Table 6).

It can be concluded from the Fermi energy shift€r = ER- — ELPA shown in Fig. 6 that adding the PW
contribution improves the convergence of absolute self-energies in qualitatively the same way as that of QP energy
differences (Figs. 4 and 5).
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In summary, we find that the number of LDA eigenstates (bands) needed to converge the QP energies within
30 meV can be considerably reduced by including the PW contribution described in Section 4.2 in the calculation
of the Green'’s function.

5. Summary

In the present work we described two new features which significantly enhance the power of the real-space
imaginary-timeGW scheme for the calculation of self-energies and related quantities of solids. Fitting the smoothly
decaying large-imaginary-energy/time tails and treating the remaining imaginary energy/time region numerically
on a Gauss—-Legendre grid allows to reduce the computational time and storage requirements of the method by
a factor of seven to eight while retaining the flexibility to accomodate general functional forms of the energy
dependenct . The tail-fitting procedure suggested in the present work turned out to be accurate and reliable.
Substituting the contribution of higher unoccupied eigenstates to the Green’s function Eq. (2.1) with a sum of
corresponding free-electron states (plane waves) accelerates the convergence of the eigenstate sumin Eq. (2.1), thus
substantially reducing the number of eigenstates and eigenvalues which have to be provided by a density-functional
calculation preceding the calculation of the self-energy and simultaneously decreasing the computational effort for
the calculation of the Green'’s function itself.
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