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Electron propagator theory provides a practical means of calculating electron
binding energies, Dyson orbitals, and ground-state properties from first prin-
ciples. This approach to ab initio electronic structure theory also facilitates the
interpretation of its quantitative predictions in terms of concepts that closely re-
semble those of one-electron theories. An explanation of the physical meaning
of the electron propagator’s poles and residues is followed by a discussion of its
couplings to more complicated propagators. These relationships are exploited in
superoperator theory and lead to a compact form of the electron propagator that
is derived by matrix partitioning. Expressions for reference-state properties, rela-
tionships to the extended Koopmans’s theorem technique for evaluating electron
binding energies, and connections between Dyson orbitals and transition prob-
abilities follow from this discussion. The inverse form of the Dyson equation for
the electron propagator leads to a strategy for obtaining electron binding en-
ergies and Dyson orbitals that generalizes the Hartree–Fock equations through
the introduction of the self-energy operator. All relaxation and correlation ef-
fects reside in this operator, which has an energy-dependent, nonlocal form that
is systematically improvable. Perturbative arguments produce several, conve-
nient (e.g. partial third order, outer valence Green’s function, and second-order,
transition-operator) approximations for the evaluation of valence ionization en-
ergies, electron affinities, and core ionization energies. Renormalized approaches
based on Hartree–Fock or approximate Brueckner orbitals are employed when
correlation effects become qualitatively important. Reference-state total energies
based on contour integrals in the complex plane and gradients of electron bind-
ing energies enable exploration of final-state potential energy surfaces. C© 2012 John
Wiley & Sons, Ltd.
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INTRODUCTION

E lectron propagator theory1–15 provides a con-
ceptual foundation for the ab initio calculation

of electron binding energies, one-electron properties,
and total energies of molecules. This theory (and its
equivalent formulations known as the one-electron
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Green’s function or equation-of-motion theories) also
provides a direct path to interpreting these proper-
ties in terms of Dyson orbitals. Whereas the Hartree–
Fock equations may be understood in terms of the
self-consistent determination of a one-electron po-
tential with Coulomb and exchange components, the
generalizations achieved by electron propagator the-
ory through the Dyson equation introduce a correla-
tion potential that is energy dependent and nonlocal.
Electron binding energies and Dyson orbitals emerge
as eigenvalues and eigenfunctions of one-electron
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equations that include this potential, which is known
as the self-energy. Dyson orbitals are related to tran-
sition probabilities that pertain to the attachment or
removal of a single electron. Summations that in-
volve electron binding energies and corresponding
Dyson orbitals may be related to one-electron prop-
erties and total energies. Ab initio electron propaga-
tor methods may be systematically improved by in-
creasing the flexibility of self-energy approximations
and by enlargement of basis sets. In electron propa-
gator theory, equations that contain correlated, one-
electron operators resemble the Kohn–Sham equa-
tions of density-functional theory16 and also are
related to the extended Koopmans’s theorem17 ap-
proach. Diagrammatic expression of the self-energy
operator establishes a link with many-body theory
and the summation of various terms that describe
long-range and short-range correlation effects in the
random-phase and ladder approximations. Propaga-
tor methods derive from multiple-time generalizations
of density matrices. Although the Hermitian eigen-
value problem of configuration interaction is defined
in Hilbert space, its counterpart in electron propaga-
tor theory is defined in Fock space, where states with
different numbers of electrons are explicitly coupled.

A self-contained review of electron propaga-
tor concepts starts below with a discussion of poles,
residues, and their physical significance in terms of
electron binding energies and Dyson orbitals. The
coupling of the electron propagator to higher prop-
agators leads to the superoperator approach to de-
riving approximations. Partitioning techniques then
establish the structure of the electron propagator ma-
trix. Reference state and transition properties are
related to electron binding energies and Dyson or-
bitals. The inverse form of the Dyson equation pro-
vides a correlated generalization of self-consistent
field equations. Low-order self-energies that are con-
venient for calculations on large molecules and renor-
malized approximations that are capable of higher
accuracy and flexibility are presented. Finally, to-
tal energy expressions and their gradients are dis-
cussed. Approximations that are based on an op-
timum Slater determinant of the Hartree–Fock or
Brueckner types are emphasized here. Alternative
approaches that employ multiconfigurational self-
consistent fields have been discussed elsewhere.18–20

The non-Dyson Green’s function methods that per-
form variational–perturbative calculations of to-
tal energies and energy differences in Hilbert
space are not discussed.21 Methods that employ a
semiempirical Hamiltonian also have been reviewed
separately.22,23

ELECTRON PROPAGATOR CONCEPTS

Spectral Form: Electron Binding Energies
and Dyson Orbitals
The molecular electron propagator may be expressed
in terms of field operators that annihilate or create
electrons in a finite set of orthonormal spin-orbitals
with indices r, s, t,. . .. Let the spectral form for the r,
s element of the electron propagator matrix be

Grs (E) = �nU∗
nrUns(E − Dn)−1

+�mV∗
msVmr(E − Am)−1,

where Uns = <N − 1, n|as|N, 0> and
Vmr = <N + 1, m|ar

†|N, 0>.11 The in-
dices n and m run over states with
N − 1 or N + 1 electrons, respectively. The
reference state, |N, 0>, is usually chosen to be the
ground state of an N-electron system with energy
E0(N). The poles (values of E that produce a singu-
larity) occur at Dn = E0(N) − En(N − 1) or at Am

= Em(N + 1) − E0(N). Dyson orbitals for electron
detachments, defined by

ϕDyson
n (x1) = N0.5 ∫ �N(x1, x2, x3, . . . ,xN)

�∗
n,N−1(x2, x3, x4, . . . , xN)

× dx2dx3dx4 . . . dxN,

may be expanded in terms of the spin-orbital basis
such that

ϕDyson
n (x1) = �rUnrϕr (x1).

For Dyson orbitals that pertain to electron attach-
ments, where

ϕDyson
m (x1) = (N + 1)0.5 ∫

�m,N+1(x1, x2, x3, . . . , xN, xN+1)

×�∗
N(x2, x3, x4, . . . , xN, xN+1)

× dx2dx3dx4 . . . dxNdxN+1,

the corresponding relationship to the residues of the
electron propagator matrix elements reads

ϕDyson
m (x1) = �r Vmrϕr (x1).

Propagator Couplings
The electron propagator may be related to other prop-
agators that involve more complex products of field
operators. The role of field operators is emphasized
in the notation

Grs(E) ≡ 〈〈
a†

r ;as
〉〉

,
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where the dependence on E is repressed in the right-
hand expression. If each of the bras and kets that
appear in the definition of Grs(E) is an eigenfunction
of the many-electron Hamiltonian, H, then

E
〈〈
a†

r ; as
〉〉 = �nU∗

nrUns[1 + Dn(E − Dn)−1]

+�mV∗
msVmr[1 + Am(E − Am)−1].

Because the sums over n and m are assumed to be
complete,

�nU∗
nrUns = 〈N, 0| a†

r as |N, 0〉
and

�mV∗
msVmr = 〈N, 0|asa†

r |N, 0〉.
In the remaining terms of the E〈〈ar

†;as〉〉 expression,
a new set of residues that involve the commutator of
as with H may be identified:

�nU∗
nrUns Dn(E − Dn)−1

= �nU∗
nr 〈N − 1, n| [as, H] |N, 0〉 (E − Dn)−1

�mV∗
msVmr Am(E − Am)−1

= �m 〈N, 0| [as, H] |N + 1, m〉 Vmr(E − Am)−1.

Therefore, the electron propagator may be related to
a more complex propagator that depends on [as, H]
by writing 1,11

E
〈〈
a†

r ; as
〉〉 = 〈N, 0| [a†

r , as] + |N, 0〉 + 〈〈
a†

r ; [as, H]
〉〉

.

The latter term is coupled to a yet more complex
propagator in which the operator [[as, H], H] appears
through

E
〈〈
a†

r ; [as, H]
〉〉 = 〈N, 0| [a†

r , [as, H]]+ |N, 0〉
+ 〈〈

a†
r ; [[as, H], H]

〉〉
.

In general, propagators that involve operators, which
change the number of electrons by one (μ† and ν) are
subject to the relation

E
〈〈
μ†; ν

〉〉 = 〈N, 0| [μ†,ν]+ |N, 0〉 + 〈〈
μ†; [ν,H]

〉〉
.

Because each propagator is coupled to a higher prop-
agator, the electron propagator may be expressed as
a series:
〈〈
a†

r ; as
〉〉 = E−1 〈N, 0| [a†

r ,as]+ |N, 0〉
+ E−2 〈N, 0| [a†

r , [as, H]]+ |N, 0〉
+ E−3 〈N, 0| [a†

r , [[as, H], H]]+ |N, 0〉
+ E−4 〈N, 0| [a†

r , [[[as, H], H], H]]+ |N, 0〉
+ . . . .

Note that electron propagator matrix elements are
determined by commutators with H and an anticom-
mutator and that density matrices of the reference
state, |N, 0>, suffice to evaluate each term.

Superoperator Notation
A succinct expression of the previous equation may
be realized through the introduction of a superop-
erator metric for operators that change the num-
ber of electrons by one and accompanying identity
and Hamiltonian superoperators.11,24 The metric is
defined by

(μ|ν) = 〈N, 0|[μ†, ν]+|N, 0〉.
The identity and Hamiltonian superoperators are de-
fined, respectively, by

Î μ = μ

and

Ĥ μ = [μ,H].

The series expression for the electron propagator ma-
trix elements may be expressed in terms of superop-
erators as
〈〈
a†

r ; as
〉〉 = E−1(ar |as) + E−2(ar |Ĥas) + E−3(ar |Ĥ2as)

+E−4(ar |Ĥ3as) + . . . .

A compact expression for the electron propagator in
terms of the superoperator resolvent, (EÎ-Ĥ)−1, reads

〈〈
a†

r ; as
〉〉 = (ar |(EÎ − Ĥ)−1as) = Grs(E).

Partitioning of Operator Spaces
By introducing a row vector of creation operators
whose rank, R, is that of the spin-orbital basis,

a† = [a†
1a†

2a†
3 . . . a†

R],

the electron propagator matrix may be written as

G(E) = (a|(EÎ − Ĥ)−1a).

The inverse superoperator may be avoided in favor
of an inverse matrix through an inner projection that
invokes the set of field operator products that change
the number of electrons by 1. In addition to the el-
ements of a (simple annihilators), this set includes
products of ñ creators and ñ + 1 annihilators for ñ =
1, 2, 3, . . .. If the latter set is arrayed in a vector, w,
one may write

G(E) = (a|w)(w|(EÎ − Ĥ)w)−1(w|a).

The inner projection space25 may be partitioned into
a primary space, a, and an orthogonal secondary
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space, f, which contains triple, quintuple, septuple,
and higher products of annihilators and creators. In
the superoperator metric, (a|a) = 1a, (f|f) = 1f , (a|f)
= 0axf, and (f|a) = 0fxa. The partitioned form of the
electron propagator matrix is

G(E) = [1a0axf](a; f|(EÎ − Ĥ)a; f)−1[1a0axf]
†

= [1a0axf][EÎ − Ĥ]−1[1a0axf]
†.

Only the upper-left (primary space) block of the
inverse matrix is not annihilated by multiplication
with the matrices [1a 0axf] and [1a 0axf]†. Now
let the eigenvalues and eigenvectors of the superoper-
ator Hamiltonian matrix, Ĥ, be given by Ĥ� = �ω,
where �†� = 1. An alternative spectral form of the
electron propagator may be written as

G(E) = [1a0axf][�(E1 − ω)−1�†][1a0axf]
†

= �a(E1 − ω)−1�†
a .

Eigenvalues of Ĥ are poles of the electron propaga-
tor, with ωn = Dn for electron detachment energies
and ωm = Am for electron attachment energies. Only
the primary-space components of the eigenvectors of
Ĥ, �a, remain in the latter expression. For electron
detachment energies, �rn = Unr, and for electron at-
tachment energies, �rm = Vmr.

In electron propagator and equation-of-motion
theories, one may obtain electron binding energies
and corresponding linear combinations of operators
in the primary (a) or secondary (f) spaces by di-
agonalizing Ĥ.26,27 The entire set of simple annihi-
lators, two-annihilator-one-creator products, three-
annihilator-two-creator products, and higher prod-
ucts may contribute to a given operator regardless of
reference states that may stipulate occupied and vir-
tual subsets of the orbital spaces. For example, for a
final state with N − 1 electrons, the corresponding
operator may have primary-space components corre-
sponding to virtual spin orbitals and secondary-space
components corresponding to two virtual spin or-
bitals and one occupied spin orbital. Hilbert-space
methods typically restrict such operators to the de-
scription of final states with N + 1 electrons.

Reference-State Properties
Elements of the first-order reduced density matrix of
the reference state, ρ, are related to the electron prop-
agator residues via

ρrs = 〈N, 0| a†
r as |N, 0〉 = �nU∗

nrUns

= δsr − �mV∗
msVmr.

In coordinate space, the density operator can be re-
lated to the Dyson orbitals through

ρ(x,x′) = �rsϕr (x)ρrsϕ
∗
s (x′)

= �nϕ
Dyson
n (x)ϕDyson∗

n (x′).

The latter summation is an exact generalization of
the usual Dirac form that pertains to a Slater determi-
nant. In this expression, the number of terms in the
summation is larger than the number of electrons, for
it considers all final states with N − 1 electrons. In
addition, the Dyson orbitals are not necessarily nor-
malized to unity. The norms of the Dyson orbitals are
known as pole strengths, where

Pn = ∫ |ϕDyson
n (x)|2dx = �r |Unr|2

for final states with N − 1 electrons or

Pm = ∫ |ϕDyson
m (x)|2dx = �r |Umr|2

for final states with N + 1 electrons. The following
rule relates the number of electrons in the reference
state to the pole strengths for electron detachments:

N = ∫ ρ(x, x)dx = �n Pn.

Reference-state total energies also may be related to
poles and residues of the electron propagator by using
the identity

�r�nU∗
nrUnr Dn = �r�n 〈N, 0| a†

r |N − 1,n〉
× 〈N − 1,n|[ar , H]|N, 0〉.

Whereas the right-hand side of the previous equation
is the trace of a kind of energy-weighted density ma-
trix, the left-hand side is the expectation value of an
operator that includes the one-electron part of the
Hamiltonian plus twice the two-electron part:

Tr(U†DU) = 〈N, 0| �rthrta†
r at + 0.5�rtuv

×〈rt||uv〉a†
r a†

t avau|N, 0〉,
where D is a diagonal matrix of electron detachment
energies. The total energy of the reference state, there-
fore, may be obtained by restoring the proper coeffi-
cients to the one-electron and two-electron terms in
the Hamiltonian:

〈N, 0| H |N, 0〉 = 〈N, 0| �rthrta†
r at + 0.25�rtuv

× 〈rt| |uv〉 a†
r a†

t avau |N, 0〉
= 0.5 Tr(U†DU)

+ 0.5 〈N, 0| �rshrsa†
r as |N, 0〉

= 0.5�r�nU∗
nrUnr Dn

+ 0.5�rshrs�nU∗
nrUns.
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In the latter expression, the second term is one half
of a sum of one-electron matrix elements over Dyson
orbitals for electron detachments. The first term com-
prises electron detachment energies weighted by pole
strengths. Therefore,

〈N, 0| H |N, 0〉 = 0.5�n Pn Dn

+ 0.5�n
〈
ϕDyson

n

∣∣ hϕDyson
n

〉
,

where both summations run over final states with
N − 1 electrons. In terms of Dyson orbitals that are
normalized to unity, 
, the same expression reads

〈N, 0| H |N, 0〉 = 0.5�n Pn
(
Dn + 〈


Dyson
n

∣∣ h
Dyson
n

〉 )
.

This generalization of the Hartree–Fock energy ex-
pression substitutes pole strengths for occupation
numbers and electron-detachment Dyson orbitals for
occupied canonical orbitals. It also displays a relation-
ship between electron-detachment and total energies
that is exact.

The generalized eigenvalue problem associated
with the so-called extended Koopmans’s theorem17

may be expressed as

FEKTC = ρCD,

where the Fock-like matrix

F EKT
rs = 〈N, 0| a†

r [as, H] |N, 0〉
may be generated from the one-electron and two-
electron density matrices corresponding to the ref-
erence state. A symmetric form of this matrix reads

FEKT = U†DU.

Transition Probabilities
When bound-continuum transitions occur between an
initial, N-electron bound state, |N, initial>, and a fi-
nal state that is approximated by an antisymmetrized
product of a continuum orbital, ϕcont, and a bound
state with N − 1 electrons, |N − 1, final>, the tran-
sition probability, σ if, is related to the corresponding
Dyson orbital according to

σ if = Kif
∣∣∣
〈
ϕ

Dyson
if

∣∣∣ T ϕcont
〉∣∣∣

2
,

where Kif is a constant and T is a transition
operator.28 For example, photoionization cross-
sections in the sudden approximation may be de-
termined when T describes the interaction between
a radiation field and electrons.3 Penning ioniza-
tion cross-sections for collisions between excited He

atoms and molecules involve the electron repul-
sion operator.29 Transition probabilities that pertain
to electron-two-electron scattering experiments in-
voke probability amplitudes corresponding to Dyson
orbitals.30,31 Approximate intensity ratios in spectra
are often generated by assuming the equality of ma-
trix elements between continuum orbitals and Dyson
orbitals normalized to unity. Under this assump-
tion, relative intensities become proportional to pole
strengths.

Inverse Form of the Dyson Equation
The structure of the electron propagator matrix,
where

G(E) = [1a0axf](a; f|(EÎ − Ĥ)a; f)−1[1a0axf]
†,

implies that the top-left block in the central, inverse
matrix is identical to G(E). To determine this inverse
matrix, one may write two simultaneous equations:

(a|(EÎ − Ĥ)a)G(E) + (a|(EÎ − Ĥ)f)gfa(E) = 1a,

(f|(EÎ − Ĥ)a)G(E) + (f|(EÎ − Ĥ)f)gfa(E) = 0fxa.

Because of the orthogonality of the a and f operator
subspaces, solving for G(E) yields

G(E) = [(a|(EÎ − Ĥ)a) − (a|Ĥf)

× (f|(EÎ − Ĥ)f)−1(f|Ĥa)]−1.

Evaluation of the first term on the right-hand side
of the previous equation reveals the presence of a
generalized Fock matrix, Fref, which depends on the
reference state’s one-electron density matrix:

(ar |(EÎ − Ĥ)as) = Eδrs − hrs − �tu 〈rt| |su〉
× 〈N, 0| a†

t au |N, 0〉
≡ Eδrs − F ref

rs .

The inverse electron propagator matrix therefore
reads

G−1(E) = E1 − Fref − (a|Ĥf)(f|(EÎ − Ĥ)f)−1(f|Ĥa).

The second term on the left-hand side is known as the
energy-dependent self-energy matrix, σ (E), and leads
to the inverse form of the Dyson equation,

G−1(E) = E1 − Fref − σ (E).

Whereas poles of the electron propagator occur when
det G(E) diverges, an alternative computational strat-
egy for obtaining poles is provided by demanding that
det G−1(E) = 0. The latter condition requires that
G−1(E) have a zero eigenvalue such that

[Fref + σ (E)]C = CE.

Volume 3, March /Apr i l 2013 127c© 2012 John Wi ley & Sons , L td .



Advanced Review wires.wiley.com/wcms

The latter expression is a generalization of the canon-
ical Hartree–Fock equations, where Coulomb and ex-
change terms in Fref are potentially subject to a cor-
related one-electron density matrix and where an en-
ergy dependent, nonlocal operator also describes the
effects of electron correlation as well as relaxation
of orbitals in final states. A pole search may involve
diagonalization of the matrix Fref + σ (E) for various
values of E until one of the eigenvalues equals E. Such
values of E are poles. The accompanying eigenvec-
tor, C, is proportional to the corresponding U vector
for electron detachments or to the corresponding V
vector for electron attachments. The pole strength is
given by

P = [1 − C†σ ′(E)C]−1,

where σ ′
rs(E) = dσ rs(E)/dE and C†C = 1. In the

canonical, Hartree–Fock orbital basis,

F ref
rs = εrδrs + �tu 〈rt| |su〉 ρcorr

tu ,

where the correlation contribution to the one-
electron density matrix, ρcorr, generates nonvanish-
ing off-diagonal elements of Fref and corrections
to the Hartree–Fock orbital energies in the diago-
nal elements. These terms are sometimes known as
the energy-independent self-energy. The uncorrelated
electron propagator defined by the Hartree–Fock ap-
proximation, G0(E), has a simple structure of poles
and residues where

[G0(E)]sr = (E − εr )
−1δrs.

One may rewrite the inverse Dyson equation in terms
of a zeroth-order electron propagator matrix and the
total self-energy matrix, �(E), where

G−1(E) = G−1
0 (E) − �(E).

The total self-energy matrix has energy-dependent
and energy-independent (or constant) components,
where

�(E) = σ (E) + �(∞).

In the limit of E approaching infinity, only the con-
stant component of the self-energy matrix,

�rs(∞) = �tu 〈rt| |su〉 ρcorr
tu ,

remains, for the energy-dependent component van-
ishes. Electron attachment poles at very high E there-
fore approach the eigenvalues of Fref.

SELF-ENERGY APPROXIMATIONS

Practical calculations generally require that approx-
imations be made to the self-energy matrix. Low-
order, perturbative methods employ the Møller–
Plesset partitioning of the Hamiltonian and identify
terms of various orders in the fluctuation potential.
For cases where strong orbital relaxation occurs,
reference-ensemble density matrices may supplant
reference-state density matrices obtained from wave-
functions. Renormalized (or infinite-order) methods
also may employ the same partitioning of the Hamil-
tonian, but with the object of generating all self-
energy terms of a given order. Still other approaches
depart not from the Hartree–Fock electron propaga-
tor, but from reference states generated by multicon-
figurational, self-consistent-field wavefunctions.18

Perturbative methods
Hartree–Fock orbital energies are the poles of the
zeroth-order electron propagator, G0(E), and provide
a point of departure for perturbative corrections that
account for final-state orbital relaxation and electron
correlation. With the Møller–Plesset partitioning of
the Hamiltonian (H = H0 + W), correlation correc-
tions to the reference state’s one-electron density ma-
trix, ρcorr, from Rayleigh–Schrödinger perturbation
theory occur first in second order. Therefore, constant
self-energy terms do not appear until third order.

Superoperator matrix elements that occur in the
energy-dependent self-energy matrix, where

σ (E) = (a|Ĥf)(f|(EÎ − Ĥ)f)−1(f|Ĥa),

involve members of f that are products of two annihi-
lators and one creator (f3), three annihilators and two
creators (f5), four annihilators and three creators (f7),
and so on. Elements of (a|Ĥf3) and (f3|Ĥa) depend on
the two-electron or lower-order reduced density ma-
trices of the reference state. For Hartree–Fock density
matrices, zeroth-order terms vanish, but first-order
terms in (a|Ĥf3) and (f3|Ĥa) do appear. Elements of
(f3|Ĥf3) depend on the three-electron or lower-order
density matrices. Here nonzero terms occur in zeroth
and first order. Zeroth- and first-order terms vanish
for superoperator couplings between a and f2k+1 for
k > 1. Therefore, the first corrections in σ (E) occur
in second order:

σ (2)(E) = (a|Ĥf3)1(f3|(EÎ − Ĥ)f3)−1
0 (f3|Ĥa)1,

where the subscripts indicate the order in which
the matrix elements have been evaluated. Two-
particle-one-hole (2ph) and two-hole-one-particle
(2hp) f3 operators may couple with simple
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annihilators via electron repulsion integrals. Zeroth-
order couplings between f3 operators occur only in
the diagonal elements of (f3|Ĥf3) and involve or-
bital energies but not electron repulsion integrals.
Elements of the second-order self-energy matrix
read:

σ (2)
pq (E) = 0.5�aij 〈pa| |i j〉 (E + εa − εi − ε j )

−1

× 〈i j | |qa〉 + 0.5�iab 〈pi | |ab〉
× (E + εi − εa − εb)−1 〈ab| |qi〉 ,

where p and q are general spin-orbital indices, i, j,
and k are occupied spin-orbital indices and a, b, and c
are virtual spin-orbital indices. The first term, with its
summation over two occupied and one virtual indices,
is the 2hp contribution; the second term is its 2ph
counterpart.

Self-energy terms in third order may be constant
or energy dependent.32 For the former terms, pertur-
bative corrections to the one-electron density matrix
may arise from first-order double substitutions with
amplitudes tijab = 〈ij‖ab〉(εi + εj − εa − εb)−1, or
from second-order single substitutions where

|N, 0〉 = {1 + 0.25�ijabtijaba†
aa†

baia j

+�ia(εi − εa)−1[0.5�jbctijbc 〈bc| |aj〉
+ 0.5�jkbtjkab 〈ib| | jk〉 ]a†

aai + . . . } |HF〉 .

Energy-dependent terms arise in two ways. First-order
double substitutions occur in the two-electron density
matrix of the reference state and, therefore, also ap-
pear in formulas for (a|Ĥf3)2 and (f3|Ĥa)2. The inverse
matrix (f3|(EÎ − Ĥ)f3)−1

1 may be expressed as an ex-
pansion about its zeroth-order, diagonal part:

(f3|(EÎ − Ĥ)f3)−1
1 = [(f3|(EÎ − Ĥ0)f3)−1

0

− (f3|Ŵf3)−1
1 ]−1

= (f3|(EÎ − Ĥ0)f3)−1
0

+ (f3|(EÎ − Ĥ0)f3)−1
0 (f3|Ŵf3)1

× (f3|(EÎ − Ĥ0)f3)−1
0

+ (f3|(EÎ − Ĥ0)f3)−1
0 (f3|Ŵf3)1

× (f3|(EÎ − Ĥ0)f3)−1
0 (f3|Ŵf3)1

× (f3|(EÎ − Ĥ0)f3)−1
0 + . . . .

Through third order, the energy-dependent part of the
self-energy reads

σ (3)
pq (E) = σ (2)

pq (E) + (a|Ĥf3)2(f3|(EÎ − Ĥ)f3)−1
0

× (f3|Ĥa)1 + (a|Ĥf3)1(f3|(EÎ − Ĥ)f3)−1
0

× (f3|Ĥa)2 + (a|Ĥf3)1(f3|(EÎ − Ĥ0)f3)−1
0

× (f3|Ŵf3)1(f3|(EÎ − Ĥ0)f3)−1
0 (f3|Ĥa)1.

Electron repulsion integrals with four particle, four
hole or two particle and two hole indices oc-
cur in the formulas for (f3|Ŵf3). Ladder and ring
terms therefore appear first in the last term of the
previous equation and have two energy-dependent
denominators.

There is ample computational evidence that the
off-diagonal elements of the self-energy matrix in the
canonical Hartree–Fock basis are negligible for elec-
tron binding energies near the Fermi level in closed-
shell molecules. Neglect of these elements leads to the
diagonal self-energy approximation (which also has
been called the quasiparticle approximation) and to a
simple form of the inverse Dyson equation:

G−1(E)rr = 0 = E − εr − �(E)rr.

This expression may be iterated with respect to E to
produce a pole. Satisfactory convergence is generally
achieved within three iterations when εr serves as the
initial guess for E.

When the pole is approximated by a canon-
ical orbital energy, the resulting values of εr +
�(2)(εr)rr and εr + �(3)(εr)rr are equal to electron bind-
ing energies determined by Møller–Plesset, Rayleigh–
Schrödinger perturbation theory with a frozen set of
spin orbitals in second order.11 Pole strengths also are
easily evaluated according to Pr = (1–d�(E)rr/dE]−1.
Perturbative calculations of this kind are most likely
to be valid when pole strengths are close to unity. The
value of 0.85 has become an approximate standard
of validity for calculations of valence ionization ener-
gies and electron affinities performed with low-order,
diagonal self-energy methods.33

Second-order, diagonal self-energy results for
valence ionization energies of closed-shell molecules
generally overestimate corrections to Hartree–Fock
orbital energies, but third-order results often display
the opposite trend. Although root-mean-square errors
for the results of Koopmans’s theorem are over 1 eV,
their counterparts for the diagonal, third-order self-
energy still exceed 0.5 eV. Therefore, various schemes
have emerged to provide more accurate results
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without requiring significant, additional computa-
tional effort.

On the basis of a diagrammatic analysis of the
second- and third-order self-energy terms, the outer
valence Green’s function (OVGF) approximations
were devised.4,5,34,35 In the A version of OVGF, a
scaling factor for the third-order terms is introduced,
where

�OVGF−A(E)rr = �(2)(E)rr + (1 + Xr )
−1�(3)(E)rr.

[Note that �(2)(E) = σ (2)(E).] In the latter expression,
the third-order self-energy matrix elements comprise
constant and energy-independent terms such that

�(3)(E) = �(3)(∞) + (a|Ĥf3)2(f3|(EÎ − Ĥ)f3)−1
0

× (f3|Ĥa)1 + (a|Ĥf3)1(f3|(EÎ − Ĥ)f3)−1
0

× (f3|Ĥa)2 + (a|Ĥf3)1(f3|(EÎ − Ĥ0)f3)−1
0

× (f3|Ŵf3)1(f3|(EÎ − Ĥ0)f3)−1
0 (f3|Ĥa)1

and the scaling factor reads

Xr = −2[(a|Ĥf3)2(f3|(EÎ − Ĥ)f3)−1
0 (f3|Ĥa)1]rrσ

(2)−1
rr .

Another scaled approximation, known as the B ver-
sion of OVGF, introduces two factors for the 2ph and
2hp contributions to �(3)(E), where

�OVGF−B(E)rr = �(2)(E)rr + �(3)(∞)rr

+ (1 + X2hp
r )−1�(3−2hp)(E)rr

+ (1 + X2ph
r )−1�(3−2ph)(E)rr.

Each of the scaling factors, X2ph
r and X2ph

r , has the
same formula as in the A version, but only 2hp and
2ph terms are included, respectively. The C version
of OVGF once again scales the entire third-energy
term as in the A version, but with a different factor,
where

�OVGF−C(E)rr = �(2)(E)rr + (1 + XC
r )−1�(3)(E)rr

and

XC
r = [X2hp

r �(3−2hp)(E)rr + X2ph
r �(3−2ph)(E)rr]

×[�(3−2hp)(E)rr + �(3−2ph)(E)rr].

Root-mean-square errors for the A, B, and C version
are all approximately 0.3 eV. The latter figure may be
reduced to 0.25 eV by adopting a selection procedure
that employs several numerical criteria.5,35

An alternative approach employs no scaling fac-
tors or numerical parameters and is founded on an
asymmetric superoperator metric approximation,

(μ|ν) = 〈
det

∣∣ [μ†,ν]+(1 + T2)
∣∣det

〉
,

where |det> is a Slater determinant and T2 is a double
substitution operator.36,37 After choosing |det> to be
the Hartree–Fock wavefunction and T2 to be its first-
order, perturbative correction, the asymmetric self-
energy through third order reads

�(E) = (a|Ĥf3)1(f3|(EÎ − Ĥ)f3)−1
0 (f3|Ĥa)1

+ (a|Ĥf3)1(f3|(EÎ − Ĥ)f3)−1
0 (f3|Ĥa)2

+ (a|Ĥf3)1(f3|(EÎ − Ĥ0)f3)−1
0

× (f3|Ŵf3)1(f3|(EÎ − Ĥ0)f3)−1
0 (f3|Ĥa)1.

Note that there is no constant term in the latter ex-
pression. In numerical trials on ionization energies
of small, closed-shell molecules, the 2ph terms are
important in second, but not third order. The bottle-
neck matrix multiplication in third-order calculations
involves the largest block of electron repulsion inte-
grals, those with four virtual-orbital indices. There-
fore, omission of third order, 2ph terms may improve
efficiency without reducing accuracy for this class of
electron binding energies. Diagonal matrix elements
of the resulting, partial third-order (P3) self-energy
for ionization energies read

�P3(E)kk = 0.5�iab 〈ki | |ab〉 (E + εi − εa − εb)−1

× 〈ab| |ki〉 + 0.5�aij 〈ka| |i j〉
× (E + εa − εi − ε j )

−1Wkaij + 0.5�aij

Ukaij(E)(E + εa − εi − εj)
−1〈i j ||ka〉,

with the intermediate matrices

Wkaij = 〈ka| |i j〉 + 0.5�bc 〈ka| |bc〉 t∗
ijbc

− (1 − Pij)�bl 〈kl| |bi〉 t∗
jlab

Ukaij(E) = −0.5�lm 〈ka| |lm〉 (E + εa − εl − εm)−1

× 〈lm| |i j〉 − (1 − Pij)�bl 〈kb| | jl〉
× (E + εb − ε j − εl)

−1 〈al| |bi〉 .

(A spin-orbital permutation operator is denoted by
Pij.) Correlation effects are represented in the sec-
ond and third terms of the Wkaij intermediate, which
arises from the superoperator Hamiltonian’s coupling
between simple field (ak) and 2hp (a†aaiaj) opera-
tors and first-order, perturbative corrections to the
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reference-state’s two-electron density matrix. Ladder
and ring terms are generated, respectively, by the first
and second terms in the U intermediate. The bottle-
neck contraction for the calculation of diagonal, P3
self-energy matrix elements occurs in the second term
of the W intermediate. This is the only term in which
electron repulsion integrals with three virtual-orbital
indices appear. No integrals with four virtual-orbital
indices are needed. For ionization energies of closed-
shell molecules, P3 results produce root-mean-square
errors that are slightly smaller than those of the OVGF
methods. Similar self-energy formulas with a reversal
of roles between occupied and virtual orbital indices
pertain to electron attachment energies. An extension
of the P3 self-energy, known as P3+,38 produces ac-
curate electron detachment energies of small, closed-
shell anions and applies the (1 + X2ph

r )−1 scaling fac-
tor of the OVGF B approximation to the U inter-
mediate and to the second and third terms of the W
intermediate.

Diagonal self-energy approximations that are
based on perturbative corrections to canonical,
Hartree–Fock orbital energies have been widely used
for calculating the lowest ionization energies and
largest electron affinities of molecules and for cal-
culating the lowest electron detachment energies of
anions. In these cases, the effects of final-state or-
bital relaxation and electron correlation have sim-
ilar magnitudes. Relaxation and correlation terms
in the self-energy may be identified systematically.39

However, for ionization energies of core levels, re-
laxation effects are considerably larger and domi-
nate the corrections that must be made to the re-
sults of Koopmans’s theorem. The second-order,
third-order, OVGF, P3, and P3+ methods dis-
cussed above generally fail to produce predictions
for core ionization energies that are appreciably
more accurate than canonical, Hartree–Fock orbital
energies.

To tackle such cases, the transition opera-
tor method (TOM)40 has been employed to gener-
ate an orbital whose energy recovers large relax-
ation effects and which offers an improved reference
for diagonal, perturbative self-energy calculations.
TOM self-consistent field calculations are based on a
Fock matrix that depends on spin-orbital occupation
numbers:

F TOM
rs = hrs + �t 〈rt| |st〉 nt.

In the usual Hartree–Fock equations, spin-orbital oc-
cupation numbers are unity or zero for occupied and
virtual orbitals, respectively. This choice is modified

for a single spin-orbital, that has an occupation num-
ber of 0.5. The resulting spin-orbital’s energy provides
an excellent approximation to 
SCF, differences of
self-consistent field results for core and outer-valence
electron binding energies.

To accommodate this transition spin-orbital
and its energy, reference density matrices may be
chosen to correspond to ensembles instead of pure
states.41–43 Grand-canonical Hartree–Fock (GCHF)
theory,44 which permits spin-orbital occupation num-
bers between zero and unity, provides such flexibility.
The resulting density matrices, when used with gen-
eral expressions for superoperator Hamiltonian ma-
trix elements between a and f3 operators, produce
the following, generalized form of the second-order
self-energy matrix:

�(TOEP2)(E)pq = 0.5�aij 〈pa| |i j〉 (E + εa − εi − ε j )
−1

× 〈i j | |qa〉 nin j (1 − na) + 0.5�iab

×〈pi | |ab〉 (E + εi − εa − εb)−1

×〈ab| |qi〉 (1 − na)(1 − nb)ni .

(TOEP2 stands for transition-operator, second-order
electron propagator.) Summations in the latter equa-
tion refer to spin orbitals obtained from a single
GCHF calculation. For each final state, a separate
GCHF calculation is performed with a single spin or-
bital that has an occupation number of 0.5. In diag-
onal self-energy calculations that are based on TOM
spin orbitals, the same, simplified form of the inverse
Dyson equation is employed, where

E = εTOM
p + �(TOEP2)

pp (E).

TOEP2 results provide improvements to TOM or-
bital energies that reduce average absolute errors
to about 1 eV. For valence ionization energies
of closed-shell molecules, TOEP2 performs much
better than diagonal, second-order theory based on
ordinary Hartree–Fock orbitals. Average absolute er-
rors are approximately 0.35 eV. The TOEP2 method
therefore provides a useful description of core and
outer-valence ionization energies.

Renormalized methods
Renormalized methods procure self-energy terms in
all orders of the fluctuation potential by considering
the eigenvalues and eigenvectors of the superoperator
Hamiltonian matrix, where Ĥ� = �ω. For example,
in the two-particle-one-hole Tamm–Dancoff approx-
imation (2ph TDA),2,4 the self-energy is based on the
following choices for superoperator matrix elements
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that involve a and f3 operators:

�2ph TDA(E) = (a|Ĥf3)1(f3|(EÎ − Ĥ)f3)−1
1 (f3|Ĥa)1.

Expansion of the inverse matrix about its
zeroth-order part sufficed above to produce third-
order ring and ladder terms. Retention of the en-
tire inverse matrix generates ring and ladder terms in
all orders and also produces mixed ring-ladder terms
starting in fourth order. Solving the Dyson equation
for its poles and residues with this self-energy approx-
imation is equivalent to diagonalizing Ĥ such that the
operator manifold is restricted to a and f3 with all ma-
trix elements being evaluated in first order. For typical
closed-shell molecules, there will be several ionization
energies for which the pole strength,

Pn = �r |�rn|2 ,

where �rn is the element pertaining to spin-orbital r
in the nth eigenvector of Ĥ, is close to unity. In these
cases, the Koopmans description of final states may
retain its qualitative validity, provided that a single
�rn element is dominant. However, for many more
states, the more numerous f3 components of their
eigenvectors make the largest contributions to the
norm, �†� = 1. When 2hp components dominate
in this way, the final state is said to be a shake-up, or
a correlation state, with no Koopmans counterpart.
Couplings between 2hp operators in the f3 manifold
and inner-valence orbitals in the a manifold are gen-
erally so strong that the Koopmans picture of final
states is obliterated, with many low pole strengths dis-
tributed over the ionization energy spectrum above 25
eV. This breakdown of the simple molecular-orbital
picture for higher valence ionization energies typifies
photoelectron spectra of closed-shell molecules.45 The
2ph TDA self-energy is capable of producing a quali-
tatively reasonable description of this effect. Its first-
order treatment of Ĥ yields a matrix with h + 2hp
and p + 2ph configuration interaction blocks that are
coupled through nonzero matrix elements between p
and 2hp operators and between h and 2ph opera-
tors. (First-order matrix elements between 2hp and
2ph operators vanish.) Therefore, the 2ph TDA im-
proves, respectively, on h + 2hp and p + 2ph configu-
ration interaction treatments of final states pertaining
to electron detachment and attachment energies with
a correlated description of the reference state’s energy.

The 2ph TDA does not suffice to generate all
third-order terms in the self-energy and is not capable
of accurate predictions of outer-valence ionization en-
ergies. To recover all of these terms through improve-
ments to Ĥ, the (a|Ĥa) block must be correct through

third order and the (a|Ĥf3) and (f3|Ĥa) blocks must be
correct through second order. The corresponding 3+
self-energy has constant and energy-dependent parts:

�(3+)(E) = �(3)(∞) + σ 3+(E)

= �(3)(∞) + [(f3|Ĥa)1 + (a|Ĥf3)2]|
× (f3|(EÎ − Ĥ)f3)−1

1 [(f3|Ĥa)1 + (a|Ĥf3)2].

As in the 2ph TDA, ring, ladder, and mixed ring-
ladder terms are retained in all orders of the fluctu-
ation potential in the 3+ approximation and, there-
fore, a qualitatively reasonable description of correla-
tion states is conserved. In addition, the second-order
description of couplings between the a and f3 opera-
tor manifolds that is necessary for accurate treatment
of valence electron binding energies is present.

Several attempts at improving the 3+ self-energy
focus on the constant term, which depends on the ref-
erence state’s one-electron density matrix. By extend-
ing the argument of the electron propagator matrix
into the complex plane, such that

Grs(E) = limη→0[�nU∗
nrUns(E − Dn − iη)−1

+�mV∗
msVmr(E − Am + iη)−1],

one may express this density matrix as

ρ = (1/2π i) ∫
C

G(E)dE,

where the C contour encloses all electron detachment
poles but no electron attachment poles. A series ex-
pansion for G(E) may be obtained by inverting both
sides of the inverse Dyson equation

[G−1(E)]−1 = [G−1
0 (E) − �(E)]−1,

so that

G(E) = G0(E) + G0(E)�(E)G0(E)

+ G0(E)�(E)G0(E)�(E)G0(E) + · · ·
= G0(E) + G0(E)�(E)G(E).

After making the approximation

ρ = (1/2π i) ∫
C

[G0(E) + G0(E)�(E)G0(E)]dE

where �(E) is approximated according to

�(E) = �(∞) + σ 3+(E),
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TABLE 1 Ĥ Matrix Elements in ADC(4)

Ĥ XY Y = a Y = f3 Y = f5

X = a 4 3 2
X = f3 3 2 1
X = f5 2 1 0

one may recover all contributions to ρ through
third order in the fluctuation potential.5,46 There-
fore, the constant contribution to the self-energy ma-
trix is correct through fourth order. Many higher-
order terms in ρ also are included in this scheme,
which includes a renormalized, energy-dependent
self-energy matrix that is correct through third or-
der and an energy-independent self-energy matrix
that is correct through fourth order. This approxi-
mation is known as the third-order, algebraic, dia-
grammatic construction, or ADC(3),4 although other
similar schemes for the determination of the constant
part of the self-energy matrix have been associated
with the same name. ADC(3) calculations on outer-
valence ionization energies of closed-shell molecules
produce root-mean-square errors of approximately
0.3 eV.

Renormalized self-energies that are correct
through fourth order require introduction of the f5

operator manifold. In addition, ĤXY matrix elements
must be calculated through the orders in the fluctu-
ation potential that are shown in Table 1. A similar
approach to calculating the constant part of the self-
energy matrix through fifth order is adopted in the
ADC(4) method.47

Another approach to renormalized self-energies
employs the asymmetric superoperator metric that
was invoked in the derivation of the P3 method. Only
first-order perturbative corrections to the Hartree–
Fock determinant are needed in computing reference-
state density matrices. In calculations on electron de-
tachment energies, superoperator matrix elements are
evaluated through the orders shown in Table 2.38

Electron binding energies are obtained as eigen-
values of the matrix 1

2 (Ĥ + Ĥ†). This approxima-
tion recovers all self-energy terms that occur in the P3
method and also includes 2hp ring and ladder terms in
all orders. Because of the latter renormalization and
the recovery of all second-order terms, this method
has been designated the renormalized, second-order
method or NR2. It has proven to be an efficient means
of describing outer-valence electron detachment ener-
gies and correlation states when large basis sets are
required.48

TABLE 2 Ĥ Matrix Elements in NR2

Ĥ XY Y = 1h Y = 1p Y = 2hp Y = 2ph

X = 1h 0 0 2 1
X = 1p 0 0 1 1
X = 2hp 1 1 1 0
X = 2ph 1 1 0 0

TABLE 3 Ĥ Matrix Elements in BD-T1

Ĥ XY Y = 1h Y = 1p Y = 2hp Y = 2ph

X = 1h 0 1 2 2
X = 1p 1 0 2 2
X = 2hp 1 1 2 2
X = 2ph 1 1 2 2

Additional renormalizations may be incorpo-
rated through the use of Brueckner orbitals and
double substitution amplitudes that are produced in
a Brueckner-doubles, coupled-cluster calculation.49

The resulting superoperator metric becomes (μ|ν)
= 〈Brueckner|[μ,ν]+exp(T2)|Brueckner〉, where the
Brueckner determinant now defines the set of occu-
pied spin-orbitals. In this basis, the primary-space su-
peroperator (i.e., Fock operator) couplings between
occupied and virtual spin-orbitals no longer vanish,
even in the semicanonical basis that diagonalizes the
Fock operator in the occupied-occupied and virtual-
virtual blocks. The T2 amplitudes occur in formulas
for the primary-secondary and secondary-secondary
blocks so that the Ĥ matrix now has the structure
shown in Table 3.

The first Brueckner-doubles, triple field-
operator method (BD-T1)6,50–54 neglects the 2hp–
2ph couplings that appear first in second order and,
as in the NR2 method, obtains electron binding
energies through diagonalization of a Hermitized ma-
trix. The BD-T1 method has proven to be remark-
ably versatile. Average errors for valence ionization
energies of small, closed-shell molecules are less than
0.2 eV. Electron detachment energies of small, closed-
shell anions are accurate to within 0.1 eV. Core ion-
ization energies have average errors of less than 1 eV.
Even ionization energies of molecules with large di-
radical character have been accurately calculated with
the BD-T1 method.

Several methods for obtaining a small number
of the eigenvalues and eigenvectors of large, sym-
metric matrices have been successfully employed in
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renormalized calculations. Davidson’s method55 was
originally developed for configuration interaction
calculations where only the lowest eigenvalues are
needed. However, this strategy was successfully ap-
plied to valence electron binding energies that lie in
the middle of the eigenvalue spectrum of Ĥ.26,27 Lanc-
zos methods for obtaining eigenvalues and eigenvec-
tors also have been implemented in 2ph-TDA and
ADC(3) calculations.56

Total Energies and Energy Gradients
Just as it is possible to express the one-electron density
matrix in terms of a contour integral that involves
the electron propagator matrix, a total energy of the
reference state may be expressed in a similar way:

〈H〉 = Tr[(4π i)−1 ∫
C

(h + E1)G(E)dE],

where h is the matrix of the one-electron (kinetic
energy plus nuclear attraction) operator. The unper-
turbed Hamiltonian of Møller–Plesset theory is re-
lated to h through

h = H0 − v,

where v is the Coulomb-exchange operator. Perturba-
tive contributions to total energies in order n, there-
fore, may be expressed as57

E(n) = Tr[(4π i)−1 ∫
C

(H0 + E1)G(n)(E)dE]

− Tr[(4π i)−1 ∫
C

vG(n−1)(E)dE].

The zeroth-order propagator matrix, where G0(E) =
G(0)(E), suffices to evaluate the Hartree–Fock total
energy,

〈H〉HF = E(0) + E(1)

= Tr[(4π i)−1 ∫
C

(h + E1)G0(E)dE],

for �(1)(E) and G(1)(E) vanish. The second-order term
in the total energy requires the second-order electron-
propagator expression generated by the Dyson equa-
tion:

G(2)(E) = G0(E) + G0(E)�(2)(E)G0(E).

[Because �(1)(E) vanishes, the second-order term
G0(E)�(1)(E)G0(E)�(1)(E)G0(E) also vanishes.] By
combining total energies of N-electron reference
states determined in this way (e.g., second-order
perturbation theory) with electron binding energies
calculated with one of the self-energy approxima-
tions discussed above, one may obtain total ener-

gies for states with N ± 1 electrons that are de-
fined completely in terms of electron propagator
concepts.58–60

To optimize geometries of such states, gradients
of the reference-state energy and of the electron bind-
ing energies are needed.58 The latter may be derived
for methods based on Hartree–Fock orbitals by not-
ing that a pole of the electron propagator obeys the
relation

Epole = C†[ε + �(Epole)]C.

After differentiating with respect to a one-electron
perturbation, α, one finds that

Eα
pole = C†α[ε + �(Epole)]C + C†[ε + �(Epole)]Cα

+ C†[εα + �α(Epole) + Eα
poleσ

′(E)]C

and consequently that

Eα
pole[1 − C†σ ′(E)C] = C†αC Epole + C† Cα Epole

+ C† [εα + �α(Epole)]C.

Because C†C = 1, the first two terms on the right-hand
side of the previous equation vanish, leaving

Eα
pole = PC† [εα + �α(Epole)]C.

Only derivatives of orbital energies, derivatives of
self-energy matrix elements, and pole strengths are
needed.60 For renormalized methods, where poles are
obtained as eigenvalues of the superoperator Hamil-
tonian matrix such that Ĥ� = �Epole and �†� = 1,
the energy gradients are obtained from

Eα
pole = �†Ĥα�.

SURVEY OF RECENT APPLICATIONS
Various diagonal, self-energy approximations such
as OVGF and P3 have been implemented in the
Gaussian program suites (see www.gaussian.com and
www.auburn.edu/cosam/JVOrtiz for more informa-
tion) by V. G. Zakrzewski and the author since the
1994 version.

Many applications of ab initio electron prop-
agator methods to neutral and anionic carbon clus-
ters, fullerenes, porphyrins, phthalocyanines, nucleic
acid fragments, polycyclic aromatic hydrocarbons,
organometallics, and other organic compounds have
been reported and reviewed recently by the author
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and his collaborators.61–93 In collaboration with
Martı́nez and coworkers94–102 and Zein103,104 photo-
electron spectra of metal-oxide clusters anions have
been assigned and patterns of electronic structure and
reactivity have been analyzed with the aid of Dyson
orbitals. Unusual patterns of bonding and spectra
in double Rydberg anions, multiply-charged anions
and diffusely bound anions have been predicted
and interpreted.105–113 Relationships between elec-
tron binding energies, Dyson orbitals, and transport
along molecular wires have been established in collab-
oration with Dahnovsky and coworkers.114–118 Qual-
itatively important effects of aqueous solvation on
the electronic structure of halide solutions have been
demonstrated with the aid of solvent modeling per-
formed by Canuto and coworkers.119,120 In Seabra et
al.,121,122 Dyson orbitals have been used to calculate
photoionization intensities and angular dependencies
with transition operators that surpass the dipole ap-
proximation. In Martı́n and coworkers,123–125 elec-
tron propagator calculations on the Rydberg states
of small radicals have provided quantum defects that
may be used to determine photoionization intensities
as a function of photon energy.

Deleuze et al. have made extensive use of
electron propagator methods in studies of the
electron binding energies of carbon clusters126–128

and polycyclic aromatic hydrocarbons.33,129,130 The
same techniques have been applied successfully
to electron momentum spectra.131–135 Ohno and
coworkers136–138 have combined Penning ionization
experiments with electron propagator calculations to
obtain novel insights into chemical bonding.

Close et al.139–142 have employed the P3 ap-
proximation to determine electron binding energies
of isolated and microhydrated nucleic-acid bases, nu-
cleotides, and amino acids.

Pérez-González and Galano143 have related P3
predictions of ionization energies to the propensity of
edaravone derivatives to scavenge free radicals.

Mishra and coworkers have applied several
electron propagator approximations to the study
of nitrogen-rich anionic rings,144,145 interactions be-
tween functional groups in cyclic compounds146–148

and tautomers of nucleic-acid bases.149

Boldyrev and coworkers’ interpretations of an-
ion photoelectron spectra by Wang and coworkers
have disclosed the existence of several novel patterns
of chemical bonding, including aromaticity in metal-
lic clusters, planar tetracoordination by carbon, and
superhalogenic electron affinities.150–155 In this work,
routine use is made of electron propagator methods in
the assignment of these spectra and in the qualitative
interpretation of chemical bonding.

Trofimov and coworkers have employed the
OVGF and ADC(3) methods to advantage in
studies of vibronic structure in photoelectron
spectra,156 electron momentum spectroscopy of sat-
urated hydrocarbons,157 photoelectron spectra of
substituted organic compounds,158,159 purines and
pyrimidines,160–163 and donor–acceptor relationships
in silatranes.164

EMERGING TECHNIQUES

The generalized formulas for BD-T1 Ĥ matrix ele-
ments that are based on a semicanonical set of ref-
erence spin orbitals (i.e., those that diagonalize the
occupied–occupied and virtual–virtual blocks of the
Fock matrix) also are suitable for use with Kohn–
Sham orbitals. The performance of several renormal-
ized self-energies that include ring and ladder terms
has been evaluated with Kohn–Sham orbitals gener-
ated with several density functionals.165

Improved virtual orbitals for electron propaga-
tor calculations may be obtained by retaining only
some of the eigenvectors of the virtual–virtual block
of the density-difference matrix for a second-order,
diagonal self-energy calculation.166,167 The latter ma-
trix is an intermediate that is formed in the evaluation
of gradients of electron binding energies.58–60 For cal-
culations on large molecules, 50% reductions in the
dimension of the virtual orbital space produce only
minor discrepancies with regular calculations.

Resolution-of-the-identity techniques show
considerable promise for improving the efficiency of
electron propagator calculations.168,169 A related ap-
proach which employs the Cholesky decomposition
of the matrix of the two-electron repulsion operator
also has appeared.170

Links between concepts of electron propaga-
tor theory, especially Dyson orbitals, and those of
density-functional theory, such as Fukui functions,
have been examined recently.171

CONCLUSIONS

The electron propagator’s structure of poles and
residues provides a computationally powerful and
conceptually concise approach to interpreting molec-
ular spectra and chemical bonding. In electron prop-
agator theory, relationships between electron binding
energies, Dyson orbitals, one-electron properties, and
total energies are simple to state and provide conve-
nient generalizations of concepts that arise naturally
in one-electron theories. The association of electron
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binding energies to Dyson orbitals and pole strengths
is an especially flexible interpretive tool.

Relaxation and correlation effects may be de-
scribed by systematic improvements to the self-energy
or superoperator Hamiltonian matrices. Diagonal
self-energy approximations that are based on low-
order terms provide an efficient and accurate means
to predicting the smallest electron detachment ener-
gies and the largest electron affinities of molecular
species. Extensions of these concepts that account
for large orbital-relaxation effects in final states en-
able consideration of core binding energies. Renor-
malized methods that are somewhat less efficient are
capable of describing complex correlation effects in

the inner-valence region where Koopmans final states
are no longer discernible. They also offer an accu-
rate depiction of valence electron binding energies.
By employing renormalized reference states, it is pos-
sible to produce versatile methods that are applica-
ble in all energy regions from core ionization ener-
gies to electron affinities. Total energies may be gen-
erated from the electron propagator by performing
contour integrations in the complex plane that in-
clude all electron-detachment poles. By combining
reference-state total energies with electron binding en-
ergies, it is possible to obtain final-state total energies
that may be optimized with the aid of corresponding
gradients.
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1. Linderberg J, Öhrn Y. Propagators in Quantum
Chemistry. 1st ed. New York: Academic Press; 1973.

2. Cederbaum LS, Domcke W. Theoretical aspects of
ionization potentials and photoelectron spectroscopy:
a Green’s function approach. Adv Chem Phys 1977,
36:205–344.
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43. Ortiz JV, Basu R, Öhrn Y. Electron-propagator cal-
culations with a transition-operator reference. Chem
Phys Lett 1983, 103:29–34.

44. Abdulnur SF, Linderberg J, Ohrn Y, Thulstrup PW.
Atomic central-field models for open shells with appli-
cation to transition metals. Phys Rev A 1972, 6:889–
898.

45. Cederbaum LS, Domcke W, Schirmer J, Von Niessen
W. Correlation effects in the ionization of molecules:
breakdown of the molecular orbital picture. Adv
Chem Phys 1986, 65:115–159.

46. Schirmer J, Angonoa G. On Green-function calcula-
tions of the static self-energy part, the ground state
energy, and expectation values. J Chem Phys 1989,
91:1754–1761.

47. Schirmer J, Cederbaum LS, Walter O. New approach
to the one-particle Green’s function for finite Fermi
systems. Phys Rev A 1983, 28:1237–1259.

48. Dolgounitcheva O, Zakrzewski VG, Ortiz JV.
Electron-propagator calculations on the photoelec-
tron spectrum of ethylene. J Chem Phys 2001,
114:130–135.

49. Handy NC, Pople JA, Head-Gordon M,
Raghavachari K, Trucks GW. Size-consistent

Volume 3, March /Apr i l 2013 137c© 2012 John Wi ley & Sons , L td .



Advanced Review wires.wiley.com/wcms

Brueckner theory limited to double substitutions.
Chem Phys Lett 1989, 164:185–192.

50. Ortiz JV. Approximate Brueckner orbitals and
shakeup operators in electron propagator calcula-
tions: applications to F− and OH−. Int J Quantum
Chem 1998, 70:651–658.

51. Ortiz JV. Single-reference electron propagator calcu-
lations on vertical ionization energies of ozone. Chem
Phys Lett 1998, 297:193–199.

52. Ortiz JV. Electron detachment energies of closed-shell
anions calculated with a renormalized electron prop-
agator. Chem Phys Lett 1998, 296:494–498.

53. Ortiz JV. Approximate Brueckner orbitals in electron
propagator calculations. Int J Quantum Chem 1999,
75:615–621.

54. Ortiz JV. Brueckner orbitals, Dyson orbitals, and
correlation potentials. Int J Quantum Chem 2004,
100:1131–1135.

55. Davidson ER. The iterative calculation of a few of the
lowest eigenvalues and corresponding eigenvectors of
large real-symmetric matrices. J Comput Phys 1975,
17:87–94.

56. Weikert HG, Meyer HD, Cederbaum LS, Tarantelli F.
Block Lanczos and many-body theory: application to
the one-particle Green function. J Chem Phys 1996,
104:7122–7138.

57. Holleboom LJ, Snijders JG. A comparison between
the Moeller–Plesset and Green-function perturbative
approaches to the calculation of the correlation en-
ergy in the many-electron problem. J Chem Phys
1990, 93:5826–5837.

58. Cioslowski J, Ortiz JV. One-electron density ma-
trixes and energy gradients in second-order electron
propagator theory. J Chem Phys 1992, 96:8379–
8389.

59. Ortiz JV. Total energies and energy gradients in elec-
tron propagator theory. Int J Quantum Chem 1992,
26:1–11.

60. Ortiz JV. Energy gradients and effective density dif-
ferences in electron propagator theory. J Chem Phys
2000, 112:56–68.

61. Dolgounitcheva O, Zakrzewski VG, Ortiz JV. Elec-
tron binding energies of nucleobases and nucleotides.
Int J Quantum Chem 2002, 90:1547–1554.

62. Dolgounitcheva O, Zakrzewski VG, Ortiz JV. Ioniza-
tion energies and Dyson orbitals of thymine and other
methylated uracils. J Phys Chem A 2002, 106:8411–
8416.

63. Dolgounitcheva O, Zakrzewski VG, Ortiz JV. Elec-
tron propagator calculations on the ionization ener-
gies of nucleic acid bases, base-water complexes and
base dimers. In: Brandas EJ, Kryachko ES, eds. Fun-
damental World of Quantum Chemistry: A Tribute to
the Memory of Per-Olov Löwdin. Vol. 2. Dordrecht,
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