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Random phase approximation correlation energies with
exact Kohn–Sham exchange

Andreas Heßelmann* and Andreas Görling

Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg,
Egerlandstr. 3, D-91058 Erlangen, Germany

(Received 30 September 2009; final version received 6 November 2009)

The random phase approximation (RPA) correlation energy is expressed in terms of the exact local Kohn–Sham
(KS) exchange potential and corresponding adiabatic and nonadiabatic exchange kernels for density-functional
reference determinants. The approach naturally extends the RPA method in which, conventionally, only the
Coulomb kernel is included. By comparison with the coupled cluster singles doubles with perturbative triples
method it is shown for a set of small molecules that the new RPA method based on KS exchange yields
correlation energies more accurate than RPA on the basis of Hartree–Fock exchange.

Keywords: random phase approximation; exact exchange; Kohn–Sham; orbital-dependent functional; exact
exchange kernel

1. Introduction

The description of electron correlation effects has been
shown to be essential for an accurate description of
molecular energetics, structures and properties.
Because of this, in recent years, there has been much
effort to improve the methods that are in use to
determine correlated wave functions and energies and
also the underlying algorithms that are used for their
computer implementation. Concerning the latter point
the most significant developments probably were
density-fitting methods [1–5] that reduce the computa-
tional cost with respect to the basis set size and
secondly methods that treat electron correlation using
localised orbitals [5–9].

The nowadays most widely used approaches to
describe electron correlation effects are Møller–Plesset
(MP) perturbation theory [10–14], coupled-cluster (CC)
methods [11,14,15] and density-functional theory
(DFT) [14,16–18]. Principally all three approaches aim
at describing electron correlation exactly, i.e. they offer
the possibility to obtain the exact ground-state energy of
the nonrelativistic Schrödinger equation. In practice,
however, approximations have to be introduced: in MP
and CC theory the wave function is usually restricted to
include at most triple excitations from the given refer-
ence determinant while in the case of DFT the yet
unknown exchange-correlation (xc) functional has to be
approximated.

The most prominent approximations of the xc
functional are the local density approximation (LDA)
[16–18] and generalised gradient approximation
(GGA) functionals [16–20] that describe the xc
energy in terms of the electron density and its gradient.
More recently these methods were further improved by
introducing functionals depending on the laplacian of
the density or the kinetic energy density (meta GGAs)
[21–24] or functionals that include fractions of non-
local exchange (hyper GGAs) [25–28]. Unfortunately it
was found that GGAs and many of their extensions
suffer from a number of shortcomings, most impor-
tantly they are unable to describe long-range correla-
tion effects or dispersion interactions [18,29].

An important step forward in the development of
density functionals was therefore to introduce functionals
that are dependent on occupied or even on both occupied
and unoccupied molecular orbitals and thus only
implicitly dependent on the electron density [30–49].
While such orbital-dependent functionals on the one
hand have the advantage that exchange interactions in
molecules can be treated exactly [35–37,41,49–51] and
thus the self-interaction error of the Coulomb interaction
term is cancelled exactly, on the other hand, within the
framework of orbital-dependent functionals, accurate
expressions for the correlation functional can be obtained
from many-body perturbation theory [31,33,34,45,48,
52–57] or coupled-cluster theory [42]. Indeed it has been
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demonstrated that orbital-dependent functionals derived
from second-order perturbation theory are capable to
describe dispersion interactions [34,58] and yield
improved total energies and molecular properties com-
pared with standard GGA functionals [39,40]. There are,
however, a number of points that limit the use of
correlation functionals derived from perturbation
theory: first the standard second-order correlation
energy expression is variationally unstable [54,59]
and so has to be modified in the energy denominators
[40,45], second the use of perturbation theory methods
is problematic for extended and periodic systems
which have a small or vanishing band gap. Finally it
was shown in the case of Møller–Plesset perturbation
theory that the perturbation expansion of the correla-
tion energy or of molecular properties often diverges
[60–63].

Because of this there is the need to derive new
orbital-dependent functionals that sum certain types of
perturbation diagrams up to infinity as it is for
example done in coupled-cluster theory. One such
method is the random phase approximation (RPA)
[12,13,64–72] which can be seen as an approximate
coupled-cluster doubles (CCD) approach in which the
doubles amplitudes are restricted to those portions that
lead to ring diagrams [12,73].

The name random phase approximation stems
from a classical mechanical treatment of the collective
properties of the electron gas by Bohm and Pines
[74,75]. Later on Nozieres and Pines demonstrated
that in a quantum-mechanical framework RPA is
equivalent to the addition of singly excited determi-
nants to an independent particle determinant [76] and
Ehrenreich et al. have then shown the equivalence
with the perturbed self-consistent field method [77].
Historically, however, the earliest RPA calculations
were not based on antisymmetrised wave functions
and RPA was originally associated with ring sums for
the electron gas in which the interactions were not
antisymmetrised. This term of the RPA is still used and
usually refered to in solid state physics (see e.g. [78])
while in quantum chemistry the term RPA is often
used as another term for time-dependent Hartree–Fock
(TDHF) because RPA here is used mainly for the
determination of excitation energies and response
properties [13,79–81]. In order to avoid the confusion
that arises due to these different definitions it has
become common to term RPA methods including
exchange interactions either ‘RPA with exchange’ or
‘full RPA’ while RPA methods excluding exchange
terms are termed just RPA or ‘direct RPA’.

The RPA method without exchange has been
shown to yield the exact correlation energy of the
electron gas in the high density limit [12,65] and thus

may be very useful for larger and particularly extended
electronic systems. However, from a diagrammatical
point of view ‘direct RPA’ has the disadvantage that
it contains many exclusion principle violating (EPV)
diagrams whose cancelling counterparts are absent.
This deficiency is most severe for small systems with
small basis sets and this might explain that it did not
play a significant role in quantum chemical treatments.

This is different for the ‘RPA with exchange’ which
apart from its use for the calculation of response
properties and excitation energies has also been used to
directly determine non-multipole expanded dispersion
energies [13,82–84] and total correlation energies
[85–88]. In 1977 Szabo and Ostlund analysed the full
RPA correlation contribution to the interaction
energy of two remote molecules and showed that the
dispersive part of the interaction is described on the
coupled Hartree–Fock level (identical with TDHF)
[86]. The ‘full RPA’ method should therefore be more
suited to describe intermolecular interactions than
second-order Møller–Plesset theory which describes
the dispersion energy contribution only on an
uncoupled Hartree–Fock level [86,89]. However, the
full RPA method nevertheless has not been widely used
for the determination of correlation energies and this
may stem from the fact that coupled-cluster methods
turned out to be more accurate while not much more
expensive.

Very recently a revival of RPA methods in quan-
tum chemistry has occurred as RPA was found to be
an attractive starting point for the development of new
orbital-dependent density functionals [44,46,73,90–96].
Compared with the second-order perturbation theory
functionals described above, RPA based functionals
do not possess a variational instability, can be applied
also to extended systems with small band gaps and
they describe dispersion interactions on a coupled
TDDFT level which has been found to give very
accurate dispersion energies in the framework of the
DFT-SAPT (symmetry-adapted intermolecular pertur-
bation theory) method [97]. Moreover, Furche has
shown [92] that the correlation energy of the direct
RPA method can be computed with an efficient
algorithm that scales only as N 5 with the molecular
size and therefore the computational cost does not
exceed the cost from perturbation theory based
functionals. However, while for bulk properties of
solids the direct RPA method has been shown to give
a good agreement with experimental results [78], for
molecular systems its performance for, e.g. the predic-
tion of atomisation energies was found to be not much
better than with standard GGA functionals [91].
Because of this the exchange(-correlation) interactions
omitted in direct RPA have to be accounted for and
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a straightforward approach to do so is the inclusion
of local exchange-correlation kernels derived from
the functional derivatives of GGA functionals [44].
It has been shown that in conjunction with hybrid
functionals this extension to the RPA, termed
fluctuation-dissipation theorem DFT (FDT-DFT),
yields atomisation energies and intermolecular interac-
tions that outperform direct RPA results [44]. However,
it has been shown that the use of local xc kernels
in the framework of FDT-DFT leads to unphysical pair
density functions that diverge for small interelectronic
distances and this apparently leads to a slow basis set
convergence of correlation energies [44].

One solution to this problem consists of a separa-
tion of the electron interaction into a short-range and
a long-range part and to treat the RPA correlation
for the long-range part only while the short-range
interactions are described using GGA functionals.
Such short-range–long-range functionals have very
recently been developed by Scuseria and co-workers
[94,95] and Toulouse et al. [96]. Both types of
functionals were especially tested for the description
of van der Waals interactions and it was found that
they perform exceedingly better than direct RPA
[95,96]. It should be noted here that the long-range
RPA part is different in both functionals: the func-
tional from Scuseria and co-workers uses direct RPA
only while the functional from Toulouse et al. in
addition contains the exchange kernel according to
the TDHF formalism. Another extension to the RPA
correlation functional was proposed by Jiang and
Engel that was based on adding the second-order
exchange energy perturbation expression to the direct
RPA energy [46]. This approach, however, leads to the
same problematic properties of the functional as
described above for the pure second-order perturba-
tion theory functionals.

A natural extension to direct RPA functionals are
full RPA functionals that account for exchange
interactions by using directly the exact exchange
kernel of DFT [98–100]. The exact exchange kernel,
that is the functional derivative of the exact
KS-exchange potential with respect to the electron
density, in contrast to standard GGA kernels is both
nonlocal and frequency-dependent and therefore does
not lead to an unphysical behaviour of the pair density
for small interelectronic distances. The exact KS
exchange potential is determined and used in EXX
(exact-exchange) methods [35,36,41] within the frame-
work of the optimised effective potential method
[31,48,101] that yields derivatives of orbital-dependent
functionals with respect to the electron density. First
implementations of the adiabatic and nonadiabatic
KS exchange kernel [102,103], however, relying on

expansions of the Kohn–Sham response function in
auxiliary basis sets suffered from numerical instabilities
and are therefore impractical for the accurate deter-
mination of response properties and energies. We have
recently implemented the exact-exchange kernel
using a modified TDDFT method ([104], see also
Section 2.3) and this new approach has been used to
calculate excitation energies of weakly bound dimers,
demonstrating that the time-dependent EXX method is
capable to describe charge-transfer excitations.
Independently a time-dependent EXX method for
atomic systems using cubic splines radial basis func-
tions has been implemented by Hellgren and von
Barth and it was shown that this approach yields
excitation energies and dispersion coefficients that are
close to the corresponding TDHF results [93,105].
Furthermore Hellgren and von Barth have also
calculated correlation energies using RPA with the
exact-exchange kernel for a few closed-shell atomic
systems and report a significantly good agreement with
accurate configuration interaction (CI) correlation
energies [93].

In this work a RPAmethod with exact KS exchange
(RPA(EXX)) is presented that is applicable to general
molecular systems. For this the TDDFT formalism
for orbital-dependent xc kernels from [104] will be used
that avoids the numerically problematic inversion of the
Kohn–Sham response matrices. It will be shown in
Section 2.3 that from the full RPA(EXX) method two
further approximations can be devised, namely an RPA
method including only the adiabatic exact-exchange
kernel (RPA(AEXX)) and an RPA method with an
exchange kernel obtained by scaling the nonadiabatic
part of the full exact-exchange kernel with one half
(RPA(EXXh)). Section 4 shows and discusses the
results for total energies, correlation energies and
reaction energies for a set of small organic molecules.
Finally Section 5 summarises and concludes.

2. Theory

2.1. Electron correlation energies from the
fluctuation-dissipation theorem

The electronic energy of a many-body interacting
system is usually split into the reference energy of a
single-determinant wave function and a remainder
termed the correlation energy. The reference energy is
given by:

E0 ¼ hF0jĤjF0i ¼
Xocc

i

2 !ij"
1

2
r2 þ vextj!i

! "

þ
Xocc

ij

h
2ðiij jj Þ " ðij jij Þ

i
, ð1Þ
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where F0 is the reference determinant, Ĥ is the
electronic hamilton operator, !i denotes an occupied
orbital, vext is the external potential (usually containing
electron–nucleus interactions) and (ij j kl ) is a two-
electron repulsion integral in chemists notation. Note
that, in the following, for convenience a closed-shell
formalism will be considered and spin will be taken
into account by appropriate prefactors. Occupied
orbitals shall be labelled by i, j, k, . . . and unoccupied
orbitals by a, b, c, . . . . The definition of the correlation
energy:

Ec ¼ hCjĤ jC i" hF0jĤ jF0i ð2Þ

depends on the reference determinant F0 which a priori
is not specified (C may be the exact or an approxima-
tion to the exact wave function). If F0 is chosen as
the HF determinant then the definition of the corre-
lation energy results, which is usually referred to in
wave-function based quantum chemistry methods. In
density-functional theory F0 is the KS determinant.
This leads to another definition of the correlation
energy. In this work the reference determinant will be
the EXX determinant with orbitals obtained from
an exact-exchange method [41] which does not yield
Hartree–Fock but EXX orbitals.

Using the fluctuation-dissipation theorem [106,107]
the correlation energy of the interacting many-body
system can be obtained from a coupling strength
integration over the Coulomb-type integral of the
correlated part of the pair correlation function P c

"

[44,106,107]:

Ec ¼
1

2

Z 1

0
d"

Z
dr1dr2

P c
"ðr1, r2Þ
r12

¼ " 1

2p

Z 1

0
d"

Z
dr1dr2

1

r12

Z 1

0
d!

&
#
#"ðr1, r2, i!Þ " #0ðr1, r2, i!Þ

$
, ð3Þ

where " is the coupling strength, w0 is the uncoupled
response function and w" is the coupled response
function at coupling strength ". The response functions
in Equation (3) are evaluated for complex-valued
arguments. The uncoupled response function is given
in terms of the orbitals and eigenvalues of the
noninteracting KS system:

#0ðr1, r2, i!Þ ¼ "
X

ia

4"ia
"2ia þ !2

!iaðr1Þ!iaðr2Þ ð4Þ

where !ia(r)¼!i(r)!a(r) denotes an occupied-virtual
orbital product and the convention "ia¼ "a" "i is used.
The coupled response function w" can be obtained

from the Dyson-type equation:

#"ðr1, r2,!Þ ¼ #0ðr1, r2,!Þ þ
Z

dr3dr4#0ðr1, r3,!Þ

& "

r34
þ f "xcðr3, r4,!Þ

% &
#"ðr4, r2,!Þ, ð5Þ

which is rewritten symbolically by

#" ¼ #0 þ #0W"#", ð6Þ

where Wa ¼ "=r12 þ f "xc is the interaction operator
comprising Coulomb-, exchange- and correlation-
effects. It can be seen that Equation (6) can be solved
iteratively obtaining an n-order expansion of the
coupled response function:

#ðnÞ" ¼ #0 þ #0W"#0 þ #0W"#0W"#0 þ ' ' ' ð7Þ

and in infinite order the interacting response function
is given by:

#" ¼ ð1" #0W"Þ"1#0

¼ ð#"10 "W"Þ"1: ð8Þ

The response function can also be written as
(we assume in the following an implict dependency
on the coupling strength ")

#"ðr1, r2, i!Þ ¼ "
X

p

X

ia, jb

4!p

!2
p þ !2

Up,iaUp, jb!iaðr1Þ!jbðr2Þ,

ð9Þ
where !p are the excitation energies and Up¼
(!p)

"1/2"1/2Vp are obtained from the corresponding
eigenvectors Vp of the TDDFT eigenvalue equation:

h
e2 þ 4e1=2Kð!Þe1=2

i
Vp ¼ !2

pVp ð10Þ

with

Kia, jbð!Þ ¼
Z

dr1dr2!iaðr1ÞWðr1, r2,!Þ!jbðr2Þ ð11Þ

and e is a diagonal matrix with the elements "ia, jb¼
$ia, jb("a" "i).

It is now assumed that the coupling matrix K and
thus the eigenvectors U are frequency independent.
Then the !-integration in Equation (3) can be done
analytically. If in addition also the Coulomb-type
integrals over r1 and r2 are performed the correlation
energy can be rewritten as:

Ec ¼
Z 1

0
d"

X

p

X

ia, jb

Up,iaUp, jbðiaj jbÞ "
X

ia

ðiajiaÞ
" #

¼
Z 1

0
d"

X

p

X

ia, jb

Up,iaUp, jbðiaj jbÞ
" #

"
X

ia

ðiajiaÞ:

ð12Þ
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If however the xc-kernel is frequency dependent the
correlation energy would have to be obtained from:

Ec ¼
1

2p

Z 1

0
d"

Z 1

0
d!

&
X

p

X

ia, jb

4!p

!2
p þ !2

Up,iaði!ÞUp, jbði!Þðiaj jbÞ
" #

"
X

ia

ðiajiaÞ: ð13Þ

Alternatively the computation of the correlation
energy can also be done without solving the eigenvalue
Equation (10). For this we define:

%ia, jbði!Þ ¼ $ia, jb
4"ia

"2ia þ !2
,

Kia, jbði!Þ ¼ ia
1

r12
þ fxcði!Þ

''''

'''' jb
( )

,

x" ¼ "ð1þ "lKÞ"1l ð14Þ

(compare with Equation (8)) so that Ec can be
written as:

Ec ¼ "
1

2p

Z 1

0
d"

Z 1

0
d!
X

ia, jb

#
ð#"Þia, jb þ %ia, jb

$
ðiaj jbÞ:

ð15Þ

Note that of course again the uncoupled part involving
an " and ! integration of the % term can be separated
as in Equation (12) and again yields the termP

iaðiajiaÞ.

2.2. Coupling strength integration

If the exchange-correlation kernel f "xc is approxi-
mated by the exchange-kernel f"x ¼ "f 1x ¼ "fx with
fx ¼ f"¼1x then the electron interaction operator
W" ¼ ð"=r12Þ þ f"xc turns into W"¼ "W1¼ "W¼
"[(1/r12)þ fx] with W¼W"¼1 and depends linearly
on the coupling strength. The response function at
coupling strength " then is given by:

#" ¼ #0 þ "#0W#0 þ "2#0W#0W#0 þ ' ' ' ð16Þ

and in the occupied-virtual orbital product space
(Equation (14)):

x" ¼ "lþ "lKl" "2lKlKlþ ' ' ' , ð17Þ

so that the coupling strength integration gives:
Z 1

0
d"x" ¼"lþ1

2
lKl"1

3
lKlKlþ1

4
lKlKlKl"'' ' :

ð18Þ

It is now convenient to exploit the fact that j is
diagonal and its square root can easily be taken. Using
~K ¼ l1=2Kl1=2 the coupling strength integrated
response matrix can be rewritten:
Z 1

0
d" x" ¼ l1=2 "1þ 1

2
~K" 1

3
~K ~Kþ 1

4
~K ~K ~K" ' ' '

% &
%1=2:

ð19Þ

Compared with the power series:

" lnð1þ xÞ ¼ "xþ 1

2
x2 " 1

3
x3 þ 1

4
x4 " ' ' ' ð20Þ

the coupling strength integrated response function can
be expressed by

Z 1

0
d" x" ¼ l1=2

h
" lnð1þ ~KÞ ~K"1

i
l1=2: ð21Þ

The logarithm of the symmetric matrix ð1þ ~KÞ can be
evaluated analytically as:

lnð1þ ~KÞ ¼ UT lnð,ÞU, ð22Þ

where the matrix U contains the eigenvectors and , is
a diagonal matrix containing the eigenvalues of the
symmetric matrix ð1þ ~KÞ. Note that the precondition
for applying Equation (22) is of course that the matrix
ð1þ ~KÞ is positive definite. This was the case for all
systems that were studied in this work and so the
logarithm according to Equation (22) could always be
taken. Finally note also that apart from an eigenvalue
decomposition of ð1þ ~KÞ other numerical techniques
exist to compute logarithms of matrices that might be
more efficient for larger matrices [108–110].

Using Equation (22) the correlation energy can
now be computed as:

Ec ¼ "
1

2p

Z 1

0
d!
X

ia, jb

& l1=2 "UT lnð,ÞU ~K"1
h i

l1=2 þ l
h i

ia, jb
ðiaj jbÞ:

ð23Þ

2.3. FD-DFT using the exact-exchange kernel

The frequency dependent exact-exchange kernel can
generally be written as [98–100]:

fxðr1, r2,!Þ ¼
Z

dr3dr4#
"1
0 ðr1, r3,!Þ

& hxðr3, r4,!Þ#"10 ðr4, r2,!Þ ð24Þ

with hx ¼ h½1)x þ h½2)x given by (note that ! is replaced by
the complex-valued argument i!, so for real
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frequencies the signs in front contributions containing
!2 are changed):

with hijv̂NL
x " v̂xj ji giving the differences of the matrix

elements of the nonlocal (v̂NL
x ) and local (v̂x) exchange

potentials. Unfortunately the computation of the
exact-exchange kernel via Equation (24) using finite
basis sets is problematic due to the occurrence of the
inverses of the uncoupled response functions w0.
Because of this in [104] the TDDFT response equations
were reformulated yielding the response to the effective
Kohn–Sham potential and not, as usual, the electron
density. With this a close approximation of the
exact-exchange kernel is obtained that does not involve
the inverses of the KS response functions anymore
and that would be the exact functional derivative
of the exact local KS exchange potential if the
occupied-virtual orbital products were linearly inde-
pendent. As in case of the exact-exchange kernel
defined in Equations (24)–(26) it can be split into two
parts and the first part can be written as [104]:

½K½1)x ði!Þ)ia, jb ¼
1

4
1" !2

"ia"jb

% &
½"ðij jabÞ þ $ijhajv̂NL

x " v̂xjbi

" $abhijv̂NL
x " v̂xj j i) "

1

4
1þ !2

"ia"jb

% &
ðibj jaÞ,

ð27Þ

while the second part, corresponding to Equation (26),
contains the occupied–unoccupied matrix elements
hijv̂NL

x " v̂xjai. While its computation is more demand-
ing than the computation of K½1)x (see [104] for details)
it has been found that its inclusion has a negligible
effect for excitation energies or correlation energies of
small molecules. This is concordant with the fact that
the EXX orbitals can approximately be obtained from
an occupied–occupied virtual–virtual unitary transfor-
mation of the Hartree–Fock orbitals which is explicitly
exploited in approximate exact-exchange density func-
tional theories [37,51]. Therefore the K½2)x contribution
has not been included in the calculations of this work.

Since the exchange-kernel of Equation (27) is
frequency-dependent we can define two additional

approximations that will be used in the calculations:

It will now be shown that the correlation
energy defined in terms of the exchange-kernel of
Equation (27) is related to the leading, i.e. second
order, term in perturbation theory along the adiabatic
connection which is the analogue of Møller–Plesset
perturbation theory within the KS formalism [31,48].
In order to show this the power series of Equation (17)
is truncated after the second term and inserted in
Equation (15) yielding:

E ð2Þc ¼ "
1

2p

Z 1

0
d"

Z 1

0
d!
X

ia, jb

#
"ðlKlÞia, jb

$
ðiaj jbÞ

¼ " 1

4p

Z 1

0
d!
X

ia, jb

#
ðlKlÞia, jb

$
ðiaj jbÞ: ð28Þ

The coupling matrix K can be split into a Coulomb
contribution and an exchange contribution:

K ¼ KC þ Kx ð29Þ

with Kx given by Equation (27) and [KC]ia, jb¼ (iaj jb).
Accordingly the second-order correlation energy is
split into a Coulomb and an exchange part. For the
Coulomb part the frequency integration yields (see
also [91]):

E ð2Þc,C ¼
X

ia, jb

"2ðiaj jbÞðiaj jbÞ
"ia þ "jb

, ð30Þ

which is the direct part of the second-order correlation
energy. For the exchange part one can make use of

h½1)x ðr1, r2, i!Þ ¼
X

ij,ab

"4"ia"jb þ 4!2

ð"2ia þ !2Þð"2jb þ !2Þ

#
ðij jabÞ þ $abhijv̂NL

x " v̂xj ji" $ijhajv̂NL
x " v̂xjbi

$"

þ "4"ia"jb " 4!2

ð"2ia þ !2Þð"2jb þ !2Þ
ðibj jaÞ

#

!iaðr1Þ!jbðr2Þ, ð25Þ

h½2)x ðr1, r2, i!Þ ¼
X

ij,a

4"ja
"iað"2ja þ !2Þ

hijv̂NL
x " v̂xjai

h
!ijðr1Þ!jaðr2Þ þ !jaðr1Þ!ijðr2Þ

i

þ
X

i,ab

"4"ib
"iað"2ib þ !2Þ

hijv̂NL
x " v̂xjai

h
!abðr1Þ!ibðr2Þ þ !ibðr1Þ!abðr2Þ

i
ð26Þ

adiabatic
approximation
(AEXX):

!-dependent terms in Equation (27)
are omitted

EXXh: !-dependent terms in Equation (27)
are scaled with one half
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the integrals
Z 1

0
d!

xy" !2

ðx2 þ !2Þð y2 þ !2Þ ¼ 08 x2, y2, xy4 0,

Z 1

0
d!

xyþ !2

ðx2 þ !2Þð y2 þ !2Þ
¼ p

xþ y
8 x2, y2, xy4 0

and obtains:

E ð2Þc,x ¼
X

ia, jb

ðiaj jbÞðibj jaÞ
"ia þ "jb

, ð31Þ

which shows that the first part of the exchange-kernel
of Equation (27) vanishes upon !-integration and does
not contribute to the second-order correlation energy.
The sum of E ð2Þc,C and E ð2Þc,x defined in Equations (30) and
(31) yields the correlation energy through second order
in the interelectronic interaction as given in [31,48],
except for terms proportional to jhijv̂NL

x " v̂xjaij2 that
are small in magnitude and are neglected here. The
neglected terms have their origin in the fact that
products of occupied and unoccupied orbitals are
linear dependent, which is also the reason why HF and
exact exchange-only KS determinants are different
[111,112].

Finally it is noted that while the full RPA approach
with exact KS exchange described in this section scales
as N 6 with the molecular size we have recently
implemented the method exploiting density-fitting
of occupied-virtual orbital products using a similar
approach as the one used in [113] to obtain the
response functions for the TDHF or hybrid-DFT
methods. The density-fitting RPA(EXX) method only
scales as N 5 with the molecular size and is therefore
applicable to relatively large molecular systems. This
will be demonstrated for weakly bound van der Waals
complexes in a subsequent publication [114].

3. Computational details

Total energies and correlation energies were calculated
with the approach described in Section 2 for a set of 21
small organic molecules. The geometries used in this
work were optimised at the MP2 (second-order
Møller–Plesset perturbation theory) level with the
aug-cc-pVTZ basis set [115] and are the same as
those used in [116].

The exact-exchange Kohn–Sham (EXX) orbitals
and eigenvalues were obtained by first performing
numerically stable EXX calculations with the method
from [41] for all 21 molecules in two steps. In the first
step the exact local KS exchange potential was
obtained with the balanced uncontracted triple-zeta
orbital and auxiliary basis sets of [41]. In the second

step EXX orbitals and eigenvalues were calculated by
using the exact local exchange-potential represented
in the auxiliary basis set obtained in the first step in a
subsequent EXX calculation with the smaller con-
tracted aug-cc-pVTZ orbital basis set [115]. In the
EXX calculation of the second step only the Coulomb
potential was optimised self-consistently. Correlation
energies using the approach described in Section 2
were then calculated using the EXX orbitals and
eigenvalues as input, i.e. the calculations were
performed in a post Kohn–Sham (post self-consistent
field) way.

While the coupling-strength integration required
for the computation of the correlation energies (see
e.g. Equation (3)) could be done analytically using the
approach described in Section 2.2, the ! integration
over imaginary frequencies can not be done analyti-
cally for frequency-dependent exchange-correlation
kernels. In this work we have used a 12-point Gauss–
Legendre quadrature [117] for the frequency integra-
tion which was found to be accurate to approximately
10"5 hartree.

For comparison the molecular energies were
also calculated using Hartree–Fock (HF), MP2,
coupled cluster with singles and doubles (CCSD) and
additionally also perturbative triples (CCSD(T)), the
Becke–Lee–Yang–Parr three-parameter hybrid density
functional (B3LYP) [25,26], and the random-phase
approximation with exact Hartree–Fock exchange
(RPA(HF)). The correlation energy for the latter
approach can be obtained from Equation (12) if the
response eigenvectors U are given by the solutions of
the time-dependent Hartree–Fock equations [13,81].

All calculations were done using the aug-cc-pVTZ
basis set [115] and all electrons were correlated. The
method described in Section 2 has been implemented
in the development version of the Molpro quantum
chemistry package [118].

4. Results

The total molecular energies calculated for the set of 21
molecules are displayed in Table 1. The last three lines
of the table show the root-mean square errors, the
mean absolute errors and the relative percentual
deviations from the CCSD(T) reference values of the
fifth column. It can be observed that while the MP2
method generally captures over 90% of the correlation
effect, with only a few exceptions the CCSD energies
are closer to the CCSD(T) reference results than the
MP2 ones, as expected. In contrast to this the B3LYP
method almost always yields total energies that are
about 0.1–0.2 hartree larger in magnitude than

Molecular Physics 365



Table 1. Total energies in hartree, aug-cc-pVTZ basis set. The last four lines display the root mean squared error (RMS), the mean absolute error (MAE), the mean error
(ME) and the total relative deviation (jDj) to the CCSD(T) reference values for each method.

System HF MP2 CCSD CCSD(T) B3LYP RPA(HF) RPA(AEXX) RPA(EXX) RPA(EXXh)

H2 "1.133 "1.165 "1.173 "1.173 "1.173 "1.170 "1.175 "1.175 "1.175
H2O "76.060 "76.344 "76.349 "76.358 "76.429 "76.322 "76.375 "76.346 "76.361
H2O2 "150.839 "151.377 "151.383 "151.404 "151.551 "151.327 "151.429 "151.373 "151.401
CO "112.780 "113.171 "113.173 "113.192 "113.306 "113.132 "113.212 "113.169 "113.191
CO2 "187.707 "188.369 "188.358 "188.389 "188.580 "188.294 "188.421 "188.347 "188.385
NH3 "56.220 "56.478 "56.489 "56.498 "56.552 "56.465 "56.516 "56.490 "56.503
CH4 "40.214 "40.433 "40.454 "40.460 "40.502 "40.434 "40.479 "40.457 "40.468
C2H2 "76.849 "77.198 "77.210 "77.228 "77.313 "77.173 "77.249 "77.210 "77.229
C2H4 "78.065 "78.440 "78.465 "78.481 "78.566 "78.429 "78.509 "78.468 "78.489
C2H6 "79.260 "79.673 "79.705 "79.719 "79.800 "79.668 "79.754 "79.710 "79.732
CH3OH "115.092 "115.563 "115.581 "115.597 "115.710 "115.537 "115.629 "115.579 "115.605
C2H5OH "154.145 "154.811 "154.840 "154.864 "155.015 "154.779 "154.912 "154.840 "154.877
HCHO "113.913 "114.348 "114.358 "114.376 "114.493 "114.314 "114.400 "114.353 "114.377
HNCO "167.830 "168.469 "168.465 "168.496 "168.672 "168.404 "168.531 "168.459 "168.496
HCOOH "188.844 "189.534 "189.538 "189.566 "189.755 "189.471 "189.605 "189.529 "189.568
C2H4O "152.928 "153.566 "153.584 "153.610 "153.764 "153.525 "153.654 "153.582 "153.619
CH3CHO "152.974 "153.604 "153.624 "153.650 "153.806 "153.564 "153.690 "153.621 "153.656
H2CCO "151.785 "152.385 "152.393 "152.421 "152.584 "152.336 "152.458 "152.390 "152.424
HCONH2 "169.005 "169.671 "169.680 "169.708 "169.881 "169.618 "169.749 "169.675 "169.713
HCOOCH3 "227.879 "228.762 "228.777 "228.814 "229.042 "228.694 "228.868 "228.769 "228.820
NH2CONH2 "224.084 "224.978 "224.990 "225.027 "225.251 "224.908 "225.085 "224.985 "225.036

RMS 3.4& 10"1 1.2& 10"3 5.3& 10"4 2.0& 10"2 5.7& 10"3 1.2& 10"3 7.5& 10"4 4.1& 10"5

MAE 5.4& 10"1 3.2& 10"2 2.1& 10"2 1.3& 10"1 7.0& 10"2 3.2& 10"2 2.4& 10"2 5.3& 10"3

ME 5.4& 10"1 3.2& 10"2 2.1& 10"2 "1.3& 10"1 7.0& 10"2 "3.2& 10"2 2.4& 10"2 "4.6& 10"3

jDj [%] 0.58 0.06 0.02 0.10 0.07 0.03 0.03 0.01
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the respective CCSD(T) values. On the other hand the
RPA method with Hartree–Fock exchange (RPA(HF))
tends to underestimate the CCSD(T) energies slightly.
It is interesting to note here that while RPA(HF) is
superior to MP2 from the theoretical point of view
(it sums up certain types of diagrams to infinity
including all second-order diagrams), on average it
does not give more accurate total energies than the
MP2 method as can be observed from Table 1. For
example the mean absolute errors from RPA(HF) are
about twice as large as the MAEs of the MP2 method
for the given set of molecules. In contrast to this
the RPA method with KS exchange (RPA(EXX))
gives total energies that are almost always closer to
CCSD(T) than the MP2 energies and actually the
RPA(EXX) energies are very close to the CCSD
energies, exhibiting similar RMS errors and MAE.
It can also be seen that the RPA(EXX) energies
are always larger in magnitude than their RPA(HF)
counterparts. This is likely due to the different
eigenvalue spectrum of the HF and EXX method,
more precisely the EXX method yields bound unoccu-
pied orbitals and thus smaller energy gaps between
the occupied and lowest unoccupied molecular orbi-
tals. In contrast to the RPA(EXX) energies the
RPA energies from the adiabatic exchange kernel
(RPA(AEXX)) always overestimate the CCSD(T)
energies and this led us to devise the RPA(EXXh)
approach with an EXX kernel in which the frequency
dependent part is scaled by one half. The total energies
of this method are shown in the last column of Table 1.
It can be observed that the correspondence with the
CCSD(T) reference values is excellent, the mean
absolute deviations being only about 5 millihartree
for the studied systems.

The diagram in Figure 1 shows the deviations
of the correlation energies of the respective methods
from the CCSD(T) reference correlation energies. Note
that the correlation energy displayed in Figure 1 in all
cases is defined as the difference of the total energies
and the Hartree–Fock energies of the second column
of Table 1 in order to consider comparable values.
Figure 1 also shows that RPA(EXX) correlation
energies are close to CCSD ones while being always
larger than their RPA(HF) counterparts, again likely
due to the different eigenvalue spectrum of HF and
EXX. The diagram in Figure 1 also shows clearly that
the correlation energies of the RPA(EXXh) method
interpolate between the RPA(AEXX) and RPA(EXX)
energies and as a consequence are very close to the
CCSD(T) reference correlation energies. This is also
summarised in the diagram in Figure 2 which displays
the absolute deviations from the CCSD(T) correlation

energies for all methods averaged over the 21 molecules
studied in this work. Figure 2 shows that the
RPA(AEXX) and RPA(EXX) method clearly improve
the accuracy of the correlation energy if compared
with the corresponding RPA(HF) method, but they
have about the same average deviation of 25 milli-
hartree as obtained with the MP2 and CCSD methods.
On the other hand the RPA(EXXh) correlation
energies deviate from the CCSD(T) reference energies
only by 5 millihartree on average.
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Figure 1. Deviations of correlation energies (defined in all
cases as difference of the total energy with the HF total
energy) from CCSD(T) correlation energies, aug-cc-pVTZ
basis set.
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Figure 2. Mean absolute deviations from CCSD(T) correla-
tion energies (defined in all cases as difference of the total
energy with the HF total energy) of 21 molecules, aug-
cc-pVTZ basis set.
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In order to assess the presented RPA approach
with KS exchange for the prediction of reaction
energies, we have considered the 14 chemical reactions
listed in Table 2. Note that compared to the prediction
of total energies this is an even more difficult test for
electron correlation methods as the energy differences
are typically an order of magnitude smaller than total
(correlation) energies and for the reactions studied
here they lie in the range of 8 to 80 millihartree. The
input energies used for the calculation of the reaction
energies all were taken from Table 1. Figure 3 shows
the statistical error estimates for all methods averaged
over the 14 reactions with CCSD(T) as reference.
Interestingly the B3LYP method that yields large
deviations from CCSD(T) total energies gives a
comparable accuracy for the chemical reactions of
Table 2 as MP2. The RPA(EXXh) method on the
other hand yields mean absolute errors for the reaction
energies of about 1.7 kcalmol"1 which is about
0.7 kcalmol"1 larger than the deviations obtained
with the CCSD method, despite the rather accurate
total energies obtained with the RPA(EXXh)
method. It can however be observed from Figure 3
that both, the RPA(EXX) and RPA(EXXh)
methods improve upon the accuracy of RPA(HF)
for the chemical reactions while RPA(AEXX) and
RPA(HF) themselves give reaction enthalpies compar-
able to MP2.

While the comparison with CCSD(T) reaction
energies is certainly the ultimate test for any lower
level electron correlation method, it may be more
equitable to use the CCSD method as the reference
approach since both, MP2 and the RPA methods
account only for double excitations and thus are rather
approximations to the CCSD method. Therefore devi-
ations to CCSD for the chemical reactions are
displayed in Figure 4. Here it can now be seen that
the RPA(EXX) and RPA(EXXh) methods perform
clearly better than MP2 and even than the related

RPA(HF) method. For example the root-mean square
errors are only 0.9 and 1.7 kcalmol"1 while the MP2
method has a root-mean square error of nearly
12 kcalmol"1 for the chemical reactions. As expected
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Figure 3. Root-mean squared errors (RMS), mean absolute
errors (MAE) and total relative deviations (jDj) from
CCSD(T) reference values for the 14 reactions of Table 2.

Table 2. Reactions.

C2H2þH2 ! C2H4

C2H4þH2 ! C2H6

C2H6þH2 ! 2CH4

COþH2 ! H2CO
H2COþH2 ! CH3OH
H2O2þH2 ! 2H2O
C2H2þH2O ! CH3CHO
C2H4þH2O ! C2H5OH
CH3CHOþH2 ! C2H5OH
COþNH3 ! HCONH2

COþH2O ! CO2þH2

HNCOþNH3 ! NH2CONH2

CH3OHþCO ! HCOOCH3

COþH2O2 ! CO2þH2O
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the RPA(AEXX) does not perform as well as the
approaches with frequency dependent kernels, but
anyhow it performs as well as RPA(HF) and also
improves the MP2 method.

5. Summary

Random phase approximation methods for the corre-
lation energy including exchange interactions have
been developed for exact-exchange Kohn–Sham refer-
ence determinants using the recently developed
TDDFT formalism for orbital-dependent xc func-
tionals that avoids the numerically difficult inversion
of the Kohn–Sham response matrix. The exchange
kernel derived from this approach, in contrast to
standard GGA kernels, is both nonlocal and frequency
dependent and therefore improves upon the unphysical
behaviour of the pair density at small interelectronic
distances occurring in the case of local GGA kernels.
Besides RPA with the full exact-exchange kernel
(RPA(EXX)) two approximate methods were
derived, one in which the frequency dependent part
is completely neglected (adiabatic approximation,
RPA(AEXX)) and one in which the frequency
dependent part is scaled with one half (RPA(EXXh)).

It has been shown for a set of 21 small organic
molecules that the RPA(EXX) method underestimates
the correlation energy compared to coupled cluster
singles doubles with perturbative triples (CCSD(T))
correlation energies while the RPA(AEXX)) over-
estimates the CCSD(T) correlation energies by about
the same amount. Accordingly the RPA(EXXh)
method yields correlation energies that are close to
the CCSD(T) reference energies with an average
deviation of only 0.005 hartree for the systems that
were studied. All three RPA approaches with exact KS
exchange give correlation energies that are on average
in a much better agreement with CCSD(T) correlation
energies than the corresponding RPA method includ-
ing Hartree–Fock exact-exchange (RPA(HF)) and the
RPA(EXXh) method clearly outperforms second-oder
Møller–Plesset (MP2) and CCSD in this respect.

However, it was found that the reaction energies
for 14 organic reactions obtained by all three intro-
duced RPA methods are only slightly better than
corresponding MP2 and RPA(HF) reaction energies
if compared to CCSD(T) reference energies and gave
worse results than CCSD. However, if compared to
CCSD as the reference method for the reaction
energies the RPA(EXX) and RPA(EXXh) method
performed clearly better than the MP2 and RPA(HF)
method for the reactions that were studied. This
finding is significant from the point of view that the
computational cost of full RPA(EXX) calculations
should be not much higher than that of MP2 if density-
fitting methods are exploited, as is shown in [114],
since both methods then scale as N 5 with respect to
the molecular size. The presented RPA(EXX) method
is therefore an orbital-dependent functional that can
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Figure 4. Root-mean squared errors (RMS), mean absolute
errors (MAE) and total relative deviations (jDj) from CCSD
reference values for the 14 reactions of Table 2.
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be applied to large molecules and may become an
attractive method for quantum chemistry applications
in the future.
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M. Schütz, P. Celani, T. Korona, A. Mitrushenkov,

G. Rauhut, T.B. Adler, R.D. Amos, A. Bernhardsson,
A. Berning, D.L. Cooper, M.J.O. Deegan, A.J.
Dobbyn, F. Eckert, E. GolI, C. Hampel, G. Hetzer,
T. Hrenar, G. Knizia, C. Köppl, Y. Liu, A.W. Lloyd,
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