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Connections between first-quantized Rayleigh-Schrddinger perturbation-theory and one-particle Green%function cal- 
culations of the ionization potentials and e!ectron affinities of atoms and molecules are reported. 

1. Introduction 

The ionization potentials and electron affinities of 
atoms and molecules can be obtained from the differ- 
ences of appropriately calculated neutral and ionic en- 
ergies [l-8], and from the poles of one-particle Green’s 
functions [g--25] constructed employing various ap- 
proximations to the self-energy [26-351. Although 
these two procedures are apparently different in spirit 
and outward appearance, recent calculations [6,14] 
indicate that identical numerical results can be ob- 
tained from them in certain cases under appropriate 
conditions. A clarifying theoretical investigation of 
interconnections between energy-difference and 
Green’s_function calcuIations of ionization potentials 
and electron affinities in atoms and molecules would 
be helpful. 

In the present letter, connections between energy- 
difference and Green’s_function calculations of ioniza- 
tion potentials using perturbation theory are reported 
for closed-shell systems, based on a detailed analysis 
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[36] of both approaches employing various diagram- 
matic techniques [3741]. The equivalence of energy- 
difference ionization-potential calculations employing 
Rayleigh-SchrClinger perturbation theory in a canoni- 
cal Fock basis of the N-electron system with the so- 
called quasi-particle Green’s_function approximation 
[42] is proved to third order, and shown to fail in the 
fourth- and higher-orders of perturbation theory. These 
results follow most directly from the irreducible nature 
of the self-energy and a second- and third-order iso- 
morphism between ionization-potential and self-energy 
diagrams when a Fock basis is employed [40,41]. 
Illustrative calculations on two- and four-electron s;rs- 
terns indicate that the effects of iteration in the solu- 
tion of the Schwinger-Dyson equation on the locations 
of ionization-potential poles are generally small when 
the self-energy is evaluated to second or third order. 
The possibility of obtaining conjugate pairs of com- 
plex poles from the Green’s function formalism when 
the self-energy is evaluated in third order is indicated. 
It is noted that neither energy-difference nor Green’s- 
function calculations in perturbation theory employing 
L 2 functions converge for the ionization potentials of 
core states which are unstable to Auger effect [43]. 
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The theoretical development is given in section 2, 
illustrative calculations in the cases of the two- and 
four-electron isoelectronic series are given in section 3, 
and concluding remarks are made in section 4. 

2. Theory 

The customary Rayleigh-Schriidinger series for the 
ground-state energy of an N-electron system employ- 
ing the Hartree-Fock approximation in zeroth order 
can be written in the form [44,45], 

E(N) = E@‘(N) + E(1)(N) + d2’(N) + --- , (1) 

where E(‘)(N) + E(‘)(N) is the Hartree-Fock energy, 
and the higher-order terms E(“)(N) provide a series 
representation of the correlation energy. A useful ap- 
proximation to the ionization potential associated with 
the removal of the kth canonical spin orbital (1 d 
k <IV) is given by the difference 

4Ek=Ek(N- 1)-E(N), 

where 

Ek(N - 1) = Ei’)(N - 1) 

(2) 

+@(N- I) + Ei2)(N- 1) + _.. (3) 
is the corresponding Rayleigh-Schrodinger series for 
the (IV - I)-electron system, obtained employing a 
Hartree-Fock function in zeroth order comprised of 
N - 1 canonical Fock spin orbitals from the N-elec- 
tron system. In this case the ionization potential can 
be written 

AE,=L@LIE it’ +AE f) f . . . , (4) 

where 

AEi@ -I- AE 8” = 
-+k (5) 

corresponds to the Koopmans approximation [46], 
and the higher-order terms .&Et) provide a series for 
relaxation effects_ and the change in correlation energy 
upon the removal of the kth canonical spin orbital. 
The perturbation-theory ccrrections to the Koopmans 
approximation can be calculated from the conventional 
expressions [45] employing as a basis the appropriate 
completing complement to the occupied canonical 
Fock orbitals. 

An alternative expression for the ionization potential 
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associated with the removal of the kth canonical spin 
orbital is obtained from the kth pole in the left-hand 
plane of the one-particle Green’s function [47--523 

G(z)= [zl -h-X(z)]-‘, (6) 

where the Fock matrix h and self-energy matrix X(z) 
are constructed in the occupied and virtual Fock basis 
of the N-electron system. Since the shifts of the ioni- 
zation potentials from their Koopmans values [eq. (S)] , 
- the so-called Koopmans defects - are relatively small 
the poles wk of G(z) are conveniently obtained from 
iterative solution on the real axis of the eigenvalue 
problem 

detlh + I=(e) - lel = 0, (7) 

starting from the so-called quasi-particle value x(ek) 
of the self-energy matrix [42]. Although various ap- 
proximations to the latter are useful [26-351, a sys- 
tematic approach is provided by the perturbation series 
[3742] 

Z(z) = Z@‘(z) + Z(3)(z) + . . . ) (8) 

where the first-order term vanishes identically as a 
consequence of the use of Fock spin orbitals in zeroth 
order. 

In order to establish connections between the energy 
difference and Green%-function approaches to ioniza- 
tion potentials, it is convenient to evaluate the terms in 
eq. (4) algebraically, and to compare these explicitly 
with results obtained from eqs. (7) and (8). Although 
the lowest-order terms in the developments of eqs. (1) 
to (5) and (6) to (8) can be constructed algebraically 
with relative ease, the higher-order terms are difficult 
to evaluate explicitly. Diagrammatic techniques are 
particularly useful in this connection [3742] _ The 
terms in the Rayleigh-Schriidinger series of eqs. (l), 
(3), and (4) are conveniently determined employing 
operators in normal form and appropriate distinct 
Hugenholtz diagrams [40,41], with subsequent vertex 
expansion to obtain the corresponding Goldstone en- 
ergy diagram in each order ]39]. In this way explicit 
energy-difference expressions involving integrals over 
Fock orbit& are obtained. As an alternative to this 
approach, modified Brandow rules [38] are employed 
in the construction of energy expressions corresponding 
to Hugenholtz diagrams, providing results in terms of 
integrals over Fock spin orbit&, which are then reduce< 
by appropriate spin summations. The necessary self- 
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energy 

@b) 

(9c) 

(9d) 

Here, eq. 

(91, eq- (W confirms the previousiy established 
[29] equivalence of the second-order Rayleigh- 
Schrijdinger correction with the second-order quasi- 
particle approximation [42], eq. (9c) extends this re- 
sult to the third order, and eq. (9d) indicates that the 
equivalence of Rayleigh-Schriidinger perturbation 
theory for the correction to the Koopmans result with 
th.: quasi-particle approximation fails in the fourth 
and higher orders. Although eqs. (9a) and (9b) can be 
obtained using the conventional fast-quantized ap- 
proach based on Slater determinants in the evaluation 
of the Rayleigh-Schriidinger terms, the diagrammatic 
analysis is particularly helpful in establishing eqs. (SC) 
and (9d). It is appropriate to note that eqs. (9b) and 
(9c) can also be regarded as a consequence of an iso- 
morphism between ionization-potential [40,41] and 
self-energy [28] diagrams of the Hugenholtz type in 
second and third order. Moreover eq. (9d) follows from 
the fact that the self-energy appearing in eqs. (6) to 
(8) corresponds to irreducible diagrammatic contribu- 
tions only [39], whereas the diagrammatic representa- 
tion of the Rayleigh-Schriidinger series [eqs. (l), (3), 
and (4)] includes reducible contributions in fourth and 
higher order [40,41]. Indeed, when a zeroth-order ap- 
proximation other than the Hartree-Fock approach is 
employed, reducible contributions appear in the 
Rayleigh-Schrodinger ionization-potential series in 
second and higher order, non-zero first-order terms are 
present in the self-energy series, and eqs. (9b) and (9c) 
fail in this case. Although the third-order self-energy 
contributions have been described and employed in 
previous calculations [10,14,28,30,32,34], the ex- 
plicit algebraic expressions have apparently not appear- 

ed in the literature. They can be constructed most sim- 
ply [36] from the self-energy parts of third-order ex- 
citation diagrams [40,41] _ 

Eqs. (9) clarify the observed similarities between 
ionization potentials obtained from the Rayleigh- 
Schrijdinger development [6] and from the Green’s- 
function formalism [ 14]_ Specifically, it is evident from 
eqs. (9a), (9b), and (9c) that the Rayleigh-Schrddinger 
and Green’s_function values differ in second and third 
order only by the effects of iteration in the solution of 
eq. (7) when the quasi-particle approximation is used as 
the starting value for the self-energy [eq. (8)]. In order 
to determine the magnitude of these effects, it is helpful 
to perform some illustrative calculations on appropriate- 
ly chosen systems. 

3. Calculations 

Calculations of the ionization potentials of two- 
and four-electron atoms and ions employing the 
Rayleigh-Schrodinger and Green’s_function methods 
described in the preceding section are reported here. 
Basis sets of good quality are available in each case for 
these systems for the construction of occupied and 
virtual Fock orbitals [53]. Consequently, it is antici- 
pated that adequate convergence can be achieved in 
calculations of the separate contributions to ionization 
potentials, and that conclusions drawn on basis of these 
values will not be strongly basis-set dependent. By con- 
trast, although the ionization potentials of larger sys- 
tems are of interest, inadequate basis sets can render 
unreliable a comparison of Rayleigh-Schrodinger and 
Green’s_function calculations in these cases. 

Basis sets of 5s, 4p, 3d Slater-type orbitals [53] are 
used in the calculations on the two-electron systems. 
Conventional Rayleigh-Schrodinger perturbation- 
theory energy calculations to third order indicate that 
the basis sets provide approximately 95% of the corre- 
lation energy in all cases. In table 1 are shown the ioni- 
zation potentials obtained from the Koopmans approxi- 
mation, from the Rayleigh-Schri5dinger or quasi-par- 
ticle approximation in second and third order, and from 
the fully-iterated solution of the Dyson equation [eq. 
(7)] employing the self-energy to second and third 
order *_ 

*For footnote see next page. 
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Table 1 
Ionization potentials in the two-electron isoelectronic Series (atomic units) 

Atom Orbital SCF Quasi-particlea) Dyson-equationb) Exactc) 

--Ek ~(2) x(2)+;;@) -# xt2)+20) 

EI- IS 0.0470 0.0257 0.027 1 0.0292 0.0275 0.0277 
He 1s 0.9180 0.905% 0.9027 0.9060 0.9035 0.9036 
Li’+ IS 2.7926 2.763 2.7790 2.7810 2.7793 2.7800 _ 
Be2* 1s 5.6673 5.6563 5.6549 5.6564 5.655 1 5.6556 
$1 :: 14.4168 9.5422 14.4062 9.5310 14.4054 9.5300 14.4063 9.5311 14.4055 9.5301 14.4065 9.5311 

N5+ 1s 20.2926 20.2819 20.2812 20.2819 20.2813 20.2820 
06+ ZS 27.1668 27.1566 27.1560 27.1568 27.1561 27.1576 

a) Values corresponding fo Rayleigh-SchrGdinger perturbation theory [eq. (4)]- 

b) Fully-iterated solution of the Dyson equation [eq. (7) j. 
C) Nonrelativistic values calculated by Pekeris [54] - 

Evidently, the Koopmans values provide excellent 
first approximations to the available precise calculations 
[54] in each case except the negative hydrogen ion- 
The Rayleigh-Schr8dinger series and Dyson-equation 

solutions provide improved ionization potentials in 
each of the two orders considered for the systems H- 
to BeZf, and the third-order results are in excellent 

accord with the exact values in these cases. For the 
systems B3+ to 06* the Dyson-equation and 
Rayleigh-S&r&linger results provide improved po- 
tentials in second order, but rbe third-order results 
fall below the exact values. Evidently, both sets of 
third-order results underestimate the ionization po- 
tentials in all cases, although the discrepancies are 
quite small. The calculated third-order Koopmans de- 
fects are ah within 5% of the exact values, and hence 
in accord with the observation that the basis sets em- 
ployed provide 95% of the correlation energy in third- 
order perturbation theory. Moreover, the Dyson-equa- 
tion values are evidently in good agreement with the 

* The poles of the Green’s function need not necessarily lie on 
the real axis when the self-energy is evaluated in third and 
higher orders [42] _ In the present studies, the Is and 2s ion- 
ization-potential poles obtained in third order are aii real, 
although conjugate pairs of complex poles corresponding 
to high-lying ionicstates associated with combined ioniza- 
tion and core excitation are generally found in the far left- 
hand plane. Moreover additional studies [ 361 not reported 
here indicate that the pole associated with the removal of a 
2s orbital in Ar apparently shifts off the real axis when the 
third-order self-energy correction is introduced_ 
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corresponding Rayleigh-Schrodinger or quasi-particle 
results in each order in every case, indicating that the 
effects of iteration of eq_ (7) are very small in these 
cases. 

Basis sets of 6s, Sp, 2d Slater-type orbitals [53] are 
used in the study of the four-electron systems. Third- 
order Rayleigh-S&r&linger calculations in these cases 
provide approximately 85% of the total correlation en 
ergies. In table 2 the ionization potentials obtained are 
compared with corresponding experimental values [S] 
The Koopmans values evidently provide useful first 
approximations to both the 1 s and 2s ionization poten 
tials in every case except possibly Li-. In the cases of 
the 2s ionization potentials both the Rayleigh- 
Schrodinger and Dyson-equation results for the four- 
electron systems provide improved values in each order 
and the effects of iteration are apparently small in 
each order. Moreover, the calculated third-order 
Koopmans defects account for approximately 75% 
of the experimental values, except in the case of LT. 
Both sets of results for the Is ionization potentials 
give no indication of convergence, however. This is in 
accord with the observation that core states of the 
type (1~2~~)~s are unstable with respect to Auger ef- 
fect [43] _ Consequently, the appropriate level shifts 
from the Hartree-Fock values must be calculated by 
mixing in the degenerate (l~~ks)~S continuum states 
according to the prescriptions of Feshbach-Fano 
theory 155,561. Conventional L2 basis set calculations 
of the shifts in perturbation theory are not expected 
to converge in these cases. 
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Table 2 

Ionization potentials in the four-electron isoelectronic series (atomic units) 

e_ 
Atom Orbital SCF Quasi-particlea) Dyson-equaticnb) 

-fZk +I ~o)+c(3) c(2) C(2)+Z(3) 

Li- IS 2.3223 2.1469 2.1036 2.2102 2.1859 

Li- 2s 0.0142 0.0179 0.0189 0.0176 0.0185 

Be IS 4.7309 4.5917 1.555 1 4.6118 4.5874 

Be 2s 0.3084 0.3280 0.3347 0.3274 0.3334 

B+ IS 8.1843 8.0528 S-0223 8.0630 8.0388 

B’ 2s 0.8732 0.9030 0.9136 0.9023 0.9 122 

C*+ IS 12.649 1 12.5194 12.4945 12.5260 12.504 1 

Cat 2s 1.6935 1.7308 1.7450 1.7301 1.7433 

N3+ Is 18.1200 17.9886 17.9665 17.9937 17.9733 

NJf 25 2.7667 2.8111 2.8228 2.8103 2.8264 

04+ 1s 24.5922 24.4606 24.4405 24.4645 24.4455 

04+ 2s 4.0907 4.1417 4.1623 4.1408 4.1602 

a) Values corresponding to Rayleigh-Schrddinger p.erturbation theory [eq. (4)]. 

b) Fully-iterated solution of the Dyson equation [eq. (7)]. 
C) Experimental values taken from the tabulation of Day et al. [ 8]_ 

Exptl. c) 

2.0 
0.0226 
4.45 
0.3426 

7.2 
0.9245 

11.3 

1.7599 
16.5 

2.8472 

22.4 
4.1859 

4. Concluding remarks 

Connections between Rayleigh-SchrGdinger and 
Green’s_function calculations of ionization potentials 
in closed-shell systems are reported, based on a dia- 
grammatic analysis of the appropriate expressions in 
each case. The equivalence of the Green%function ap- 
proach in the so-called quasi-particle approximation 
with conventional Rayleigh-Schrodinger perturbation 
theory is demonstrated to third order in the self-en- 
ergy, and shown to fait in fourth and higher orders of 
perturbation theory when a Fock basis is employed_ 
These results follow most directly from a previously 
unidentified isomorpbism between ionization-potential 
and self-energy diagrams in second and third order. The 
failure of the theorem in fourth and higher orders can 
be attributed to the irreducible nature of the self-en- 
ergy operator, and to the presence of terms of a reducible 
nature in fourth and higher order in the conventional 
Rayleigh-Schr&linger perturbation series. Calculations 
of the ionization potentials of two- and four-electron 
systems indicate that the effects of iteration in the solu- 
tion of the Dyson equatibn are generally small in sec- 
ond and third order. The failure to converge ofL2 per- 

turbation theory calculations for the ionization poten- 
tials of core electrons is attributed to their Auger in- 
stability, necessitating a Fano-Feshbach treatment. 

Additional related comments are given elsewhere 
[361- 
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