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Accurate optical spectra of solids from pure time-dependent density-functional theory
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We present accurate optical spectra of semiconductors and insulators within a pure Kohn-Sham
time-dependent density-functional approach. In particular, we show that the onset of the absorption
is well reproduced when comparing to experiment. No empirical information nor a theory beyond
Kohn-Sham density-functional theory, such as GW , is invoked to correct the Kohn-Sham gap.
Our approach relies on the link between the exchange-correlation kernel of time-dependent density
functional theory and the derivative discontinuity of ground-state density-functional theory. We
show explicitly how to relate these two quantities. We illustrate the accuracy and simplicity of our
approach by applying it to a semiconductor and a wide-gap insulator.

Time-dependent-density functional theory
(TDDFT) [1] has become, over the years, one of
the few well-established first-principles’ approaches to
describe time-dependent phenomena for a large variety
of systems, both in the linear-response regime and
beyond (see, e.g., Refs [2, 3] and references therein).
In the last two decades TDDFT has been increasingly
applied to solids, and in particular to the calculation of
the optical absorption spectra. Optical experiments in
general are very useful tools to investigate and charac-
terize condensed-matter systems; it is hence desirable to
develop efficient and reliable theoretical approaches to
complement experiment.

Within TDDFT the description of optical spectra de-
pends crucially on the exchange-correlation (xc) kernel
fxc which relates the response of the Kohn-Sham system
to a small perturbation to the response of the true sys-
tem. Thanks to the numerical efficiency of TDDFT, it is
desirable that a simple but accurate xc kernel is available
for the calculation of optical spectra. It is well-known
that traditional xc kernels, such as the random-phase
approximation (RPA), i.e., fxc = 0, and the adiabatic
local-density approximation (ALDA) [4], fail to describe
two important features of optical spectra: 1) excitonic ef-
fects and 2) the absorption onset. While excitonic effects
can nowadays be described accurately with a variety of xc
kernels [5–10], the correct description of the absorption
onset within TDDFT remains an unsolved problem.

The starting point for a TDDFT calculation is the
Kohn-Sham band structure. As is well known, the Kohn-
Sham band gap is, in general, estimated to be much
smaller than the fundamental gap, i.e., the difference
between the ionization potential and the electron affin-
ity. [11–13]. Therefore, since TDDFT should give the
exact absorption spectra, the TDDFT xc kernel has the
difficult task to ensure that there is no absorption below
the optical gap even though transitions between Kohn-
Sham valence and conduction bands are available. In-
deed, optical spectra obtained with all currently avail-

able xc kernels show absorption at energies close to the
Kohn-Sham band gap, thereby severely underestimating
the absorption onset.
The standard approach to circumvent this problem is

to add a scissors operator [14] to the Kohn-Sham Hamil-
tonian. The shift parameter is either obtained from ex-
periment or from a method that goes beyond KS-DFT,
such as GW [15–19], or generalised KS-DFT with a
hybrid functional, such as those based on a screened
Coulomb interaction [20–23]. Unfortunately these ap-
proaches have a significantly larger computational cost
than pure KS-DFT.
In this work we will present an expression for the xc

kernel within a pure KS approach that correctly describes
the absorption onset in optical spectra. We will combine
it with an approach that accurately includes the excitonic
effects [8], thereby obtaining spectra comparable to those
obtained in experiment.
The TDDFT xc kernel fxc can be written exactly as

[24]

fxc(1, 2) = χ−1
KS(1, 2)− χ−1

0 (1, 2)
︸ ︷︷ ︸

f
(1)
xc

−i

∫

d345χ−1
0 (1, 5)G(5, 3)G(4, 5)

δΣ(3, 4)

δρ(2)
︸ ︷︷ ︸

f
(2)
xc

(1)

where χKS and χ0 = −iGG are the Kohn-Sham and in-
dependent quasiparticle polarizability, respectively, and
G(1, 2) and Σ(1, 2) are the one-body Green function
and the self-energy, respectively. The collective index
(1) = (x, t) = (r, s, t) contains the space, spin and time
coordinates. The xc kernel written in Eq. (1) clearly ex-

hibits two distinct parts. The first part f
(1)
xc = χ−1

KS−χ−1
0

only involves independent (quasi-)particles, and, there-
fore, is responsible for the shift of the Kohn-Sham band

gap to the fundamental gap, while the second part, f
(2)
xc ,

which includes the electron-hole interaction, accounts for
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the excitonic effects. In general, both terms are required
to guarantee a correct onset of the absorption, unless

the exciton binding energy is small, in which case f
(1)
xc

is sufficient. Although Eq. (1) clearly distinguishes these
two parts it is not useful in practical applications since it
would require the calculation of G. From the above dis-

cussion one would expect a link between f
(1)
xc and the

derivative discontinuity of ground-state DFT [25, 26],
which is defined as the difference between the fundamen-
tal gap and the Kohn-Sham gap. One of the goals of this
work is to make this link explicit.

In order to obtain an expression for f
(1)
xc that can be

applied in practice, we first generalize the two-point KS
polarizability to four points: [27]

4χKS(x1,x2,x3,x4, ω) =
∑

i,j

(fj − fi)

×
φi(x1)φj(x2)φ

∗
j (x3)φ

∗
i (x4)

ω − (ǫi − ǫj) + iη
,

(2)

where φi is a KS spinorbital, ǫi its energy, fi its occu-
pation (0 and 1 for unoccupied and occupied orbitals,
respectively), and η is a positive infinitesimal that en-
sures causality. For the solids we study here i and j

are multi-indices composed of a band index (comprising
the spin) and a Bloch vector, k and k

′, respectively. We
note that, although the final goal is the description of op-
tical absorption for which k

′ → k, the discussion below
is completely general, i.e., k 6= k

′. The usual two-point

KS polarizability is retrieved from χ
(4)
KS by the following

contraction,

χKS(x1,x2, ω) =
4χKS(x1,x2,x1,x2, ω). (3)

We can express χ
(4)
KS in the Kohn-Sham basis by using

the following basis transformation

χ
[n4n2]

KS[n1n3]
(ω) =

∫

dx1x2x3x4
4χKS(x1,x2,x3,x4, ω)

× φ∗
n1
(x1)φ

∗
n2
(x2)φn3(x3)φn4 (x4). (4)

This yields a 2M×2M diagonal matrix with M the num-
ber of KS excitations. It is schematically given by [28]

χKS(ω) =













1
ω−ω1

. . .
1

ω−ωM

− 1
ω+ω1

. . .

− 1
ω+ωM













(5)
where ωi is a KS excitation energy, i.e., a pole of χKS(ω),
and the matrix elements are arranged in order of in-
creasing excitation energy, i.e., ω1 ≥ ω2 ≥ ω3, etc. In

particular, the lowest KS excitation energy is given by
ω1 = ǫCBM − ǫVBM, with ǫCBM and ǫVBM the KS energy
of the conduction band minimum (CBM) and the KS en-
ergy of the valence band maximum (VBM), respectively.
We now assume that also χ0 is diagonal in the Kohn-

Sham basis. This is in accordance with many practi-
cal calculations, in particular those based on the GW

method, in which χ0 is built with KS orbitals [17, 29].
We can thus write

χ0(ω) =













1
ω−Ω1

. . .
1

ω−ΩM

− 1
ω+Ω1

. . .

− 1
ω+ΩM













(6)
where Ωi are quasiparticle energy differences, i.e., dif-
ferences of ionization potentials and electron affinities.
In particular, the lowest excitation energy is given by
Ω1 = I −A, where I is the first ionization potential and
A is the first electron affinity. Here we assume that the
ordering of the excitation energies is the same as that of
the KS system. We thus obtain a frequency-independent

xc kernel, f
(1)
xc = χ−1

KS − χ−1
0 ,

f (1)
xc =













Ω1 − ω1

. . .

ΩM − ωM

Ω1 − ω1

. . .

ΩM − ωM













.

(7)

We note that f
(1)
xc contains two equivalent blocks. The

absorption onset is determined by the head of the matrix

f
(1)
xc,11. It is given by

f
(1)
xc,11 = I −A− (ǫCBM − ǫVBM) (8)

It can be shown that the ionization potential is exactly
equal to minus the KS energy at the VBM, i.e., I =
−ǫVBM [30–32]. Since an equivalent relation holds for
the N + 1 system, i.e., the system with one additional
electron, and the fact that A should be equal to the first
ionization potential of the N +1 system, one can deduce
that A = −ǫN+1

VBM, where ǫN+1
VBM is the KS energy at the

VBM of N +1 system. Therefore, we can rewrite Eq. (8)
as

f
(1)
xc,11 = ǫN+1

VBM − ǫCBM. (9)

Although Eq. (9) seems a simple expression, it is not
easy to calculate in practice. The problem arises from the
fact that ǫN+1

VBM is difficult to evaluate in solids since they
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are usually described within the thermodynamic limit,
which implies an infinite number of electrons from the
outset. However, ǫN+1

VBM − ǫCBM is equal to the difference
between the fundamental gap Eg and the KS gap EKS

[26, 32, 33]. This difference is also known as derivative
discontinuity ∆ [25, 26]. Therefore we arrive at the fol-
lowing relation,

f
(1)
xc,11 = ∆. (10)

This is one of the main results of this work.

As first proposed by Kuisma et al. [34] and further
discussed by Baerends [32], the derivative discontinuity
can be approximated in terms of simple ground-state KS-
DFT quantities according to

∆ = Kxc

N∑

i=1

[√
ǫCBM − ǫi −

√
ǫVBM − ǫi

]

× 〈φCBM| |φi|2
ρ0

|φCBM〉 (11)

where φCBM is the KS spinorbital corresponding to the

CBM, ρ0 is the ground-state density and Kxc = 8
√
2

3π2 ≈
0.382.

The expression in Eq. (11) can be obtained from
the GLLB approximation to the ground-state xc poten-
tial [35]. The GLLB functional is an approximation to
the exact exchange optimized effective potential. A de-
tailed derivation of Eq. (11) is given by Baerends [32].
The constant Kxc ensures that the GLLB functional
yields the exact ground-state energy of the uniform elec-
tron gas. Fundamental gaps calculated using the deriva-
tive discontinuity in Eq. (11) have been reported for a
large number of solids. [32, 34, 36–38]. In general, the
results are excellent.

We can include the effect of f
(1)
xc on the spectra by in-

troducing a modified Kohn-Sham polarizability χ
(1)
KS(ω)

defined by

[χ
(1)
KS]

−1(ω) = [χKS]
−1(ω)− f

(1)
xc,11 = ω − ω1 −∆. (12)

Using the inverse of the basis set transformation in
Eq. (4), and using a similar contraction as in Eq. (3)
we obtain the following expression for the modified two-

point KS polarizability χ
(1)
KS ,

χ
(1)
KS(x1,x2) =

∑

i,j

(fj − fi)
φi(x1)φj(x2)φ

∗
j (x1)φ

∗
i (x2)

ω − (ǫi − ǫj)−∆+ iη
.

(13)

The modified KS polarizability χ
(1)
KS will account for the

correct absorption onset of the spectra. The true re-

sponse function can then be written in terms of χ
(1)
KS as

χ(ω) = χ
(1)
KS(ω) + χ

(1)
KS(ω)

[

vc + f (2)
xc (ω)

]

χ(ω), (14)
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FIG. 1: (Color online) The optical absorption spectra of
bulk silicon. Solid line (black): polarization functional (PF);
Dashed line (red): RPA; Dotted line (blue): experiment from
Ref. [48].

with vc the Coulomb potential. From χ(ω) one can read-
ily obtain the dielectric function ε(ω) = 1+ vcχ(ω). The
optical spectra are obtained from the imaginary part of
ǫM (ω), the macroscopic part of ǫ(ω):

εM (ω) = ε1(ω) + iε2(ω). (15)

In practice, we use a slight generalization of TDDFT,
namely TD-current-DFT (TDCDFT) [39–42]. The prac-
tical details of how we solve the KS equations within
TDCDFT can be found elsewhere [43–47]. We approxi-

mate f
(2)
xc with the polarization functional (PF) of Ref. [8]

which accurately describes the excitonic effects. We will

refer to the full kernel, i.e., f
(1,GLLB)
xc + f

(2,PF )
xc , as the

Pure kernel to highlight the fact that it is based on pure
Kohn-Sham theory.
We implemented our approach in a modified version of

the Amsterdam Density Functional (ADF) code [49–51].
We use the TZ2P (triple-ζ + 2 polarization functions)
and QZ4P (quadruple-ζ + 4 polarization functions) ba-
sis sets provided by ADF for bulk silicon and solid argon,
respectively. The k-space integrals are done analytically
using a Lehmann-Taut tetrahedron scheme [52]. The
ground-state calculations are done within the GLLB-SC
xc potential [32, 34, 35], which is based on the PBEsol
[53] correlation potential and uses the GLLB approxima-
tion to the exchange optimized effective potential. The
GLLB-SC values we obtained for ∆ are 0.38 eV and 4.65
eV for silicon and solid argon, respectively.
We will now illustrate our approach by applying it to



4

8 9 10 11 12 13 14 15 16
ω (eV)

0

10

20

30

ε 2(ω
)

Pure
RPA
Experiment

-10

0

10

20

ε 1(ω
)

FIG. 2: The optical absorption spectra of solid Argon. Solid
line (black): polarization functional (PF); Dashed line (red):
RPA; Dotted line (blue): experiment from Ref. [54].

the calculation of the optical spectra of two very different
types of solids, Silicon and solid Argon, which are typical
examples of a standard semiconductor and a wide-gap
insulator, respectively.

In Fig. 1 we report the dielectric function of bulk sili-
con calculated with the Pure functional at 0 Kelvin and
compare it to the RPA spectrum as well as to the experi-
mental spectrum obtained at 30 Kelvin. The Pure kernel
yields an absorption spectrum that is in excellent agree-
ment with the experimental measurements. In particu-
lar, the absorption onset and the excitonic effects in ǫ2(ω)
are well reproduced. Also, the real part of the dielectric
function obtained with the Pure kernel compares well to
the experiment. Instead, the RPA spectrum exhibits the
well-known shortcomings mentioned before, i.e., the un-
derestimation of the absorption onset and the absence
of excitonic effects. We note that the theoretical spec-
tra have more structure than the experimental spectrum
because it is calculated at 0 Kelvin and no broadening
parameter is used to simulate temperature effects.

In Fig. 2 we show the dielectric function of solid Argon
calculated with the Pure kernel at 0 Kelvin and compare
it to the RPA spectrum as well as to the experimen-
tal spectrum. We see that the onset of the absorption
is well-reproduced as is the full spectrum, except for an
overestimation of the first peak, i.e., the absorption re-
lated to the bound exciton. Unfortunately, to the best of
our knowledge, there is no experimental data of ǫ1(ω).

In conclusion, we have made explicit the link between
the derivative discontinuity of ground-state DFT and the

xc kernel of TDDFT. Using this link we proposed the
Pure kernel, which combines the derivative discontinu-
ity and the polarization functional, to describe optical
spectra. We showed that it yields optical spectra in
good agreement with experiment for typical examples of
a semiconductor and a wide-gap insulator. The central
issue here is that these results were obtained within a
pure KS approach without resorting to empirical data or
approaches that go beyond TDDFT.

This work has been supported through the EUR grant
NanoX ANR-17-EURE-0009 in the framework of the
“Programme des Investissements d’Avenir” and by ANR
(project no. ANR-18-CE30-0025-01). .
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[37] F. Hüser, T. Olsen, and K. S. Thygesen, Phys. Rev. B
87, 235132 (2013).

[38] F. A. Rasmussen and K. S. Thygesen, J. Phys. Chem. C
119, 13169 (2015).

[39] A. K. Dhara and S. K. Ghosh, Phys. Rev. A 35, 442
(1987).

[40] S. K. Ghosh and A. K. Dhara, Phys. Rev. A 38, 1149
(1988).

[41] G. Vignale, Phys. Rev. B 70, 201102(R) (2004).
[42] D. Sangalli, J. A. Berger, C. Attaccalite, M. Grüning,
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