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We examine fractional charge and spin errors in self-consistent Green’s function theory within a
second-order approximation (GF2). For GF2, it is known that the summation of diagrams resulting
from the self-consistent solution of the Dyson equation removes the divergences pathological to
second-order Møller-Plesset (MP2) theory for strong correlations. In the language often used in
density functional theory contexts, this means GF2 has a greatly reduced fractional spin error relative
to MP2. The natural question then is what effect, if any, does the Dyson summation have on the
fractional charge error in GF2? To this end, we generalize our previous implementation of GF2 to
open-shell systems and analyze its fractional spin and charge errors. We find that like MP2, GF2
possesses only a very small fractional charge error, and consequently minimal many electron self-
interaction error. This shows that GF2 improves on the critical failings of MP2, but without altering
the positive features that make it desirable. Furthermore, we find that GF2 has both less fractional
charge and fractional spin errors than typical hybrid density functionals as well as random phase
approximation with exchange. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921259]

I. INTRODUCTION

Self-consistent single-particle electronic structure
methods are of great interest because they combine conceptual
and computational simplicity while being free of a starting
reference bias. Probably, the most well known example of
this is density functional theory (DFT).1 Often these methods
are designed to satisfy known constraints that an exact elec-
tronic structure theory should obey. For example, the total
electronic energy should vary linearly in the fractional electron
occupancy between integer electron numbers,2–5 while for a
simple one-electron system like the hydrogen atom, the energy
should be degenerate with respect to variations in the fractional
spin.6 To the extent that a method disobeys these two exact
constraints, such a method will display many electron self-
interaction error (SIE) and static correlation error, respectively.
To understand how these errors are connected to fractional
electron behavior, let us consider the H2 molecule in the infinite
dissociation limit in two different scenarios.

First, let us focus on a fractional charge error. If an
extra electron were placed on this system with fractional occu-
pancies on each H atom given by na, nb, na + nb = 1, then
the net energy change of the system would be E∆ = −(naA
+ nbA) = −A, where A is the electron affinity of the hydrogen
atom. The energy of each subsystem would vary linearly in
the occupation, and the total energy of the entire [H2]− system
would be the same regardless if the extra electron were delocal-
ized across both atoms, or localized only on one. If the energy
of the subsystem varied nonlinearly, then either the delocalized
or localized solution would become unphysically lower in en-
ergy depending on whether the curve was convex or concave.
This unphysical behavior would be a simple manifestation of
many electron self-interaction error.

a)Author to whom correspondence should be addressed. Electronic mail:
philljj@umich.edu

Let us examine now a fractional spin error. For neutral
singlet H2 in the infinite dissociation limit, each H atom should
have half a spin up and down electron, and the energy of
the singlet should be identical to that of broken-symmetry
solutions where spin up and spin down electrons have localized
on different atoms; therefore, a method’s failure to yield equiv-
alent energies for one-electron H with fractional or integer spin
is equivalent to the failure to describe multireference static
correlation energy.

From this simple example, it is clear that fractional charge
and fractional spin errors are deeply connected to many elect-
ron self-interaction and static correlation errors. For this
reason, these errors have been studied extensively and are
known to have severe negative consequences for a given
method’s description of properties that depend on electron
delocalization and static correlation effects.6–11 This language
of fractional charge and spin has traditionally been used mainly
within the DFT community to analyze approximate density
functionals; however, these concepts have begun to make
inroads into other areas such as wavefunction12 and many-
body theory,13–17 and density matrix theory as well.18 For
example, it has been shown that MP2 (second order Møller-
Plesset19) possesses relatively little fractional charge error but
displays a massive diverging fractional spin error (which is
an alternative way of stating that MP2 diverges for strong
correlations).13 Double-hybrid density functionals that include
some MP2 correlation are expected to have a similar fractional
electron behavior.20,21 The Random Phase Approximation
(RPA)22 on the other hand has minimal fractional spin error,
but a severe fractional charge error.14 The closely related GW
approximation23 displays a fractional charge error similar to
RPA, but a larger fractional spin error.17

Motivated by these works, we find it interesting to
extend this analysis to self-consistent Green’s function the-
ory in a second order approximation (GF2).24,25 Similar to
MP2, GF2 includes all diagrams to second order in the bare
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FIG. 1. Feynman diagrams for the second order self-energy in GF2. Here
a red wavy line represents a two electron integral, while a black arrow line
represents a Green’s function. From left to right the diagrams shown are the
first order Hartree and exchange diagrams, and the second order pair bubble
and second order exchange.

electron-electron interaction, as shown in Figure 1, and is there-
fore exact for one electron systems; however, in contrast to
MP2, these diagrams are evaluated with self-consistent Green’s
functions, obtained by iterative solution of the Dyson equation,

G(ω) = G0(ω) + G0(ω)Σ(ω)G0(ω)
+G0(ω)Σ(ω)G0(ω)Σ(ω)G0(ω) + · · ·
= G0(ω)

(
n

�
Σ(ω)G0(ω)�n

)
=
�
G0(ω)−1 − Σ(ω)�−1

. (1)

Here, G0(ω) is the Green’s function of a non-interacting sys-
tem, while Σ(ω) is the proper self-energy, which in GF2 is trun-
cated at second order and written as an approximate functional
of the Green’s function, Σ[G(ω)]. Because of the structure
of the Dyson equation, the self-consistent G(ω) will contain
an infinite order summation of the second order proper self-
energy parts, Σ(ω). As we recently showed, this summation
of diagrams allows GF2 to give reasonably fine results for
strongly correlated systems such as stretched hydrogen lat-
tices24 when MP2 would diverge. In the language of fractional
electron errors, this suggests that GF2 improves tremendously
over MP2 for fractional spins as a result of the self-consistent
infinite order summation. An interesting question that arises
then is what effect does this Dyson summation have on the
more general fractional electron behavior? Relative to other
methods such as RPA, GW, approximate DFT, and Hartree-
Fock (HF), MP2 has only a very small fractional charge er-
ror,13 and consequently little many electron SIE. Ideally, one
would hope that GF2 improves on the disastrous fractional spin
error of MP2 without deteriorating MP2’s impressively small
fractional charge error. To investigate this question, here, we
will generalize our previous GF2 implementation24 to open-
shell systems and then investigate its fractional charge and spin
behavior.

Before closing this section, it should be emphasized that
what is challenging about the fractional charge and fractional
spin errors is that any attempt to reduce one error tends to
exacerbate the other.14,26,27 For example, a semilocal DFT
functional (such as BLYP28,29 or PBE30) will tend to have
a large fractional charge error but a relatively smaller frac-
tional spin error. On the other end of the extreme Hartree-

Fock will have significantly less fractional charge error but
a much greater fractional spin error. Any hybrid of these
two (B3LYP29,31 or PBEh,30,32 for example) will essentially
trade one error for the other to the extent that the HF-type
exchange is admixed in place of DFT exchange. What is
worth noting is that, in the language of hybrid DFT, the
Fock matrix in GF2 contains full HF-type exchange (which
in Green’s function theory is usually referred to as first order
exchange); yet, we will show GF2 yields both less fractional
charge and fractional spin errors than HF, B3LYP, and PBEh.
This unique result comes about from a combination of the
Dyson summation with including all diagrams to second
order.

II. SPIN UNRESTRICTED GF2 THEORY

To study open-shell systems, we generalize G(ω) to have
two spin blocks,

G =


Gα 0
0 Gβ


, (2)

where the spin-up and spin-down blocks are given by

Gσ(ω) = �(µσ + ω)S − Fσ − Σσ(ω)�−1
, σ = α, β. (3)

The off-diagonal spin-blocks of G(ω) here are identically 0,
meaning we do not allow for the possibility of spin-flips,
and our solutions are constrained to be eigenstates of Ŝz. In
Eq. (3), S and Fσ are the overlap and Fock matrices, Σσ(ω)
is the self-energy, µσ is the chemical potential, and ω is
an imaginary frequency. By introducing µα, µβ as separate
chemical potentials, we can allow for different numbers of
electrons in the respective correlated density matrices, Pα, Pβ,
which are given by Pσ = −Gσ(τ = 1/kBT), σ = α, β, where
Gσ(τ) is the Green’s function fast Fourier transformed (FFT)33

to the imaginary time domain, and 1/kBT is the inverse-
temperature. The expression for Fσ is the standard result from
spin-unrestricted HF theory,

Fα
i j = hi j +


kl

(Pα
kl + Pβ

kl
)vi jkl − Pα

klvikl j,

Fβ
i j = hi j +


kl

(Pα
kl + Pβ

kl
)vi jkl − Pβ

kl
vikl j .

(4)

However, unlike HF theory, the density-matrices that enter
this expression are those obtained from the Green’s function
and thus include electron correlation effects from solving the
Dyson equation. This covers the electron-electron interaction
from zeroth through first order (the first order diagrams in
Figure 1 are described by the HF mean-field). At second order
in GF2, the electron-electron interaction is described by the
frequency dependent self-energy, which is given in the imag-
inary time domain as

Σ
α
i j(τ) =


klmnpq

−Gα
mn(τ)Gα

kl(τ)Gα
pq(−τ)vimqk

�
vl pn j − vnpl j

�
− Gα

mn(τ)Gβ
kl
(τ)Gβ

pq(−τ)vimqkvl pn j,

Σ
β
i j(τ) =


klmnpq

−Gβ
mn(τ)Gβ

kl
(τ)Gβ

pq(−τ)vimqk

�
vl pn j − vnpl j

�
− Gβ

mn(τ)Gα
kl(τ)Gα

pq(−τ)vimqkvl pn j .
(5)
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The reasoning for this expression is that at second order, a
spin-up (down) electron can have a pair-bubble interaction
with both spin-up and down electrons; yet, the second-order
exchange (SOX) can only proceed between like-spin electrons
because we do not allow for the possibility of spin-flips. Once
Σσ(τ) has been built, it can be FFT to the frequency domain,
and then we can rebuild Gσ(ω) with Eq. (3). Looking at
Eqs. (3)–(5), the spin-up and spin-down Green’s functions
are coupled by the fact that Gβ appears in the expression for
Σα (likewise with Gα for Σβ), and that Gβ contributes to Fα

through Pβ = −Gβ(τ = 1/kBT) (likewise with Gα, Pα, and
Fβ); therefore, (3)–(5) will need to be solved self-consistently,
and at every iteration, µα and µβ will need to be adjusted to
give the desired number of α and β electrons. To start this self-
consistent procedure, we use a HF Green’s function generated
by output from the Dalton program.34 Note when Gα = Gβ,
then Σα = Σβ and Eq. (5) reduces to the familiar expression
for spin-restricted GF2.24,25

Overall in the large system limit, the most CPU time inten-
sive step in this procedure will be the self-energy formation
in Eq. (5). With appropriate programming, this step scales
as NτN5

b
, where Nτ and Nb are the number of imaginary

time grid points and basis functions, respectively. For the
practical numerical evaluation of Σ(τ) in Eq. (5), we use a
power mesh imaginary time grid35 that spans the interval 0 ≤ τ
≤ 1/kBT . It is important to understand that for each time grid
point τn, the building of Σ(τn) is completely independent, and
thus as a whole the self-energy formation is embarrassingly
parallel; therefore, in practical calculations, the Nτ prefactor
will be reduced to Nτ/Nproc, where Nproc is the number of
available processors. Furthermore, it should be emphasized
that the second order diagrams in Eq. (5), along with the
entirety of the GF2 procedure, are written and can be imple-
mented in the local atomic-orbital (AO) basis; therefore, this
means that first, the sparsity of the integrals can be exploited
to reduce the computational cost, and second, that GF2 is
a natural formalism for Green’s function-based embedding
approaches.36,37

The energy is evaluated as

E =
1
2

Tr
�(h + Fα)Pα + (h + Fβ)Pβ

�

+ kBT

n

Re

Tr
�
Gα(ωn)Σα(ωn) +Gβ(ωn)Σβ(ωn)�


,

(6)

where ωn is a Matsubara frequency, ωn = (2n + 1)πkBT . This
can be understood as essentially a spin-unrestricted HF-like
energy expression supplemented with a frequency depen-
dent correlation contribution from GF2, where the density
matrix dependent terms are evaluated using the correlated
Pσ as obtained from Gσ. It should be noted that Eq. (6) is
actually the Galitskii-Migdal expression,38 but recast into a
simpler form.39,40 While there exist many non-unique expres-
sions defining the total electronic energy in terms of G(ω)
(e.g., the Luttinger-Ward41 and Klein42 functionals, in addi-
tion to Eq. (6)), at self-consistency, these different expres-
sions all yield the same energy.39 This is in fact an added
benefit of performing Green’s function calculations fully self-
consistently. Furthermore, Green’s functions obtained from

the self-consistent solution of the Dyson equation will satisfy
the conservation laws of the reference Hamiltonian,43 meaning
that for example particle number will be conserved44 and the
calculated energy will agree with the virial theorem.25

Because the GF2 approximation includes in the proper
self-energy all exchange and Coulomb type diagrams to sec-
ond order, it is by construction exact for one-electron systems,
i.e., it is one-electron self-interaction and self-correlation free.
Less clear, however, is its many electron SIE for general sys-
tems. To this end, in the following, we investigate the fractional
electron behavior of GF2 for several archetypical cases, and
compare to standard density functional theory calculations ran
with Gaussian 09.45

III. RESULTS

First, we consider a single hydrogen atom with fractional
spin up and down electron occupations, nα, nβ, that are varied
in the interval 0 ≤ nα ≤ 1.0 and 0 ≤ nβ ≤ 1.0. For this case
with an exact method, the energy should change linearly in
the fractional electron number n = nα + nβ, while for con-
stant n, it should be invariant with respect to changes in the
fractional spin m = nα − nβ. Furthermore, there should be a
discontinuity in the slope dE(n)/dn across the line nα + nβ

= 1.0. Hence, the resulting energy surface should be two flat
planes that intersect along a seam.10 In Figure 2, we show
the exact result, compared against that obtained with spin-
unrestricted GF2. If first we focus only on the edge of the
plane where one occupation is held fixed at integer values of 0
or 1.0, this corresponds to the fractional charge behavior of
a method and thus SIE. It is clear that GF2 reproduces the
exact linear behavior almost perfectly, similar to the result
for MP2 in Ref. 13. Now if we focus on the more interesting
region towards the interior, discrepancies between GF2 and the

FIG. 2. The total energy for hydrogen with fractional spin up and down
occupations nα, nβ evaluated with aug-cc-pVDZ. Top: the exact result.
Bottom: GF2.
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FIG. 3. The energy difference ∆E = E −Elin for the hydrogen atom with
fractional spin up and down occupations nα, nβ, where E is the energy
evaluated with fractional electron number, and Elin is the flat-plane linear
interpolation for (a) GF2, (b) GF2-NoSOX, and (c) hybrid PBEh. All calcu-
lations are with aug-cc-pVDZ.

exact flat-plane behavior become apparent. To see this more
clearly, in Figure 3, we plot the difference between GF2 and
its interpolated flat-plane surface. Looking at the diagonal re-
gion connecting the coordinates {nα = 1.0, nβ = 0.0} and {nα

= 0.0, nβ = 1.0}, we find a hill of fractional spin error, where
GF2 is not able to fully recover the static correlation energy. On
either side of the hill (nα + nβ < 1.0 and nα + nβ > 1.0), we
find shallow valleys where GF2 moderately overestimates the
correlation energy. The GF2 results here for fractional spin are
in severe contrast to the MP2 result from Figure 4 of Ref. 13,
which rapidly diverges to −∞ correlation energy as one moves
towards the center at {nα = 0.5, nβ = 0.5}.

For purpose of comparison, we also show in Figure 3
the surface obtained with PBEh, as well as the GF2 result
obtained when the SOX diagram is neglected in the self-energy
(we call this GF2-NoSOX for short). Neglect of the SOX
diagram introduces an unphysical one electron self-correlation
error at second order. Because many electron SIE and static
correlation are known to be connected,14,27,46–48 GF2-NoSOX
should provide an interesting contrast to standard GF2. First,
let us compare the energy landscapes for GF2 and PBEh.
Despite being a hybrid functional, PBEh still yields a signifi-
cant fractional charge error along the outer rim of the surface,
along with a pronounced hill of fractional spin error running
through the center. The GF2 energy landscape in contrast
is appreciably flatter, with less fractional spin and fractional
charge error. This is notable, because it has been stressed that

simultaneously reducing the fractional charge and spin errors
in a single-particle method is very difficult.14 For example,
RPA+X (RPA with HF-type exchange) greatly improves over
the fractional charge error of RPA, but at the price of gaining a
considerably larger fractional spin error that is comparable to
Hartree-Fock.14 Now let us examine the GF2-NoSOX result.
As mentioned, neglect of the SOX diagram introduces a self-
correlation error at second order, and as a result, GF2-NoSOX
gives significant fractional charge errors comparable to PBEh.
At the same time, the hill of fractional spin error is appreciably
reduced relative to both PBEh and GF2.

To see the static correlation error more clearly, in Figure 4,
we plot the energy with respect to fractional spin m = nα

− nβ for hydrogen with GF2, GF2-NoSOX, PBEh, B3LYP,
and HF. This corresponds to the line running along the energy
surface from the coordinates {nα = 1.0, nβ = 0.0} to {nα

= 0.0, nβ = 1.0}. As stated previously, an exact method should
give a flat energy curve from m = −1 to m = 1. For example,
HF has a massive hill at m = 0, which reflects the complete
absence of static correlation energy in this method. Hybrid
DFT yields much smaller fractional spin errors, with B3LYP
being slightly lower than PBEh, likely because it includes less
HF-type exchange than PBEh. In comparison, the fractional
spin error is relatively lower for GF2, as a result of the infinite
order summation from the Dyson equation recovering some
static correlation. GF2-NoSOX has a much reduced fractional
spin error relative to all four methods, with its energy at m = 0
being not much different from that at m = ±1. It has been
understood for some time that SIE can mimic static correla-
tion.14,27,46–48 Usually, this is considered in the context of SIE
resulting from incomplete cancellation of Coulomb and ex-
change terms at first order. GF2-NoSOX’s small fractional spin
error in contrast is purely arising from incomplete cancellation
of Coulomb and exchange terms at second order, resulting in
an unphysical one-electron self-correlation that mimics static

FIG. 4. The energy difference ∆E = EX −EX
int for the fractional spin hy-

drogen atom, where EX is the energy from method X evaluated with the
fractional spin population m = nα−nβ, nα+nβ = 1, and EX

int is the energy
from X with integer m =±1. All calculations are with aug-cc-pVDZ.



194108-5 Phillips, Kananenka, and Zgid J. Chem. Phys. 142, 194108 (2015)

correlation energy, analogous to the situation that occurs with
RPA vs. RPA+SOSEX27 (second order screened exchange).
We think this is an example of getting the right result for
the wrong reason. Furthermore, GF2-NoSOX must obtain this
slightly reduced fractional spin error at the price of gaining a
tremendous fractional charge error, which is not a desirable
trade. In contrast, from comparing Figures 4 and 3, it is clear
that GF2 has less static-correlation error than typical hybrid
density functionals, and importantly achieves this while being
essentially one and two electron self-interaction free. This
means GF2 genuinely recovers some static correlation energy,
rather than fortuitously exploiting spurious self-interaction or
self-correlation. It is worth mentioning that a similar analysis
has been performed for RPA and RPA+X.14 Comparing our
GF2 result in Figure 4 to Figure 1 in Ref. 14, GF2 yields an
appreciably smaller fractional spin error than RPA+X, but is
still larger than RPA.

Finally, to analyze the fractional charge error in closer
detail, we consider the energy of helium with respect to frac-
tional electron number. In Figure 5, we plot EX(n) − EX

lin,
where EX(n) is the energy from method X for electron num-
ber 1.0 ≤ n ≤ 2.0, while EX

lin is the linear-interpolation be-
tween integer points with the same method. A method is said
to be M-electron SIE free if EX(n) − EX

lin = 0 for M − 1 ≤ n
≤ M .4 We find that GF2 has a very small concave curvature. In
contrast, HF is moderately concave, while PBEh, B3LYP, and
GF2-NoSOX are significantly convex. This clearly establishes
that GF2 is one and almost perfectly two electron SIE free.
Interestingly, comparing Figure 5 to Figure 4 in Ref. 14, it is
reasonable to conclude that GF2 should have less SIE than both
RPA and RPA+X.

FIG. 5. The energy difference ∆E = EX −EX
lin for the helium atom, where

EX is the energy from method X evaluated with fractional electron number,
and EX

lin is the linear interpolation from method X . All calculations are with
cc-pVTZ.

IV. CONCLUSIONS

We have analyzed fractional electron errors in self-
consistent Green’s function theory by generalizing our pre-
vious GF2 implementation24 to open-shell systems. Overall,
we find that GF2 has a very small fractional charge error and
a moderate fractional spin error. In comparison to other well
known methods, we find that GF2 has both less static correla-
tion and self-interaction error than hybrid density functionals
such as B3LYP and PBEh, as well as RPA+X and HF. Because
the GW approximation is diagrammatically identical to RPA,
GF2 will very likely have significantly less self-interaction
error than GW as well. Furthermore, it has been shown that
CCSD (coupled cluster singles doubles) has a roughly similar
fractional charge error to MP2.12 From this, it stands to reason
that GF2 and CCSD will have comparable fractional charge
errors.

Essentially, by virtue of the self-consistent Dyson summa-
tion, GF2 greatly improves on the tremendous fractional spin
error of MP2, but without deteriorating MP2’s relatively excel-
lent fractional charge behavior. GF2 includes the second or-
der exchange diagram, and such a diagram is important for
the description of localized densities. Moreover, the iterative
procedure includes a series of diagrams containing second
order exchange, and due to the recalculation of the Fock matrix
allows us to establish a new reference on which the perturba-
tion is done, thus resulting in a much better scheme having a
small perturbation at every step. These results could suggest
a way towards removing the fractional spin error from double
hybrid density functionals.20,21

As a further salient point, GF2 is fully self-consistent and
thus the converged density should reflect the relative lack of
many-electron self-interaction error in a second order approx-
imation. MP2 in contrast does not revise the underlying mean-
field reference and thus inherits the Hartree-Fock density with
its bias towards localization. This suggests that GF2 could
find good application for properties that sensitively depend on
electron delocalization. For example, much of the interesting
physics in transition metal complexes depends on the slight
delocalization of unpaired d electrons onto ligands, which is
determined by the interplay of dynamic correlation and self-
interaction error effects.49

Conceptually, GF2 is essentially a self-consistent single-
particle theory where the energy is expressed as a functional of
the single-particle Green’s function E[G], in obvious analogy
to DFT with density functionals E[ρ]. In terms of the energy,
it is fair to say GF2 is a “Green’s function functional” with
desirable fundamental properties compared to standard hybrid
density functionals.
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