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a b s t r a c t

Almost all time-dependent density-functional theory (TDDFT) calculations of excited states make use of
the adiabatic approximation, which implies a frequency-independent exchange-correlation kernel that
limits applications to one-hole/one-particle states. To remedy this problem, Maitra et al. [N.T. Maitra,
F. Zhang, R.J. Cave, K. Burke, Double excitations within time-dependent density functional theory linear
response theory, J. Chem. Phys. 120 (2004) 5932 ] proposed dressed TDDFT (D-TDDFT), which includes
explicit two-hole/two-particle states by adding a frequency-dependent term to adiabatic TDDFT. This
paper offers the first extensive test of D-TDDFT, and its ability to represent excitation energies in a gen-
eral fashion. We present D-TDDFT excited states for 28 chromophores and compare them with the bench-
mark results of Schreiber et al. [M. Schreiber, M.R. Silva-Junior, S.P.A. Sauer, W. Thiel, Benchmarks for
electronically excited states: CASPT2, CC2, CCSD, and CC3, J. Chem. Phys. 128 (2008) 134110]. We find
the choice of functional used for the A-TDDFT step to be critical for positioning the 1h1p states with
respect to the 2h2p states. We observe that D-TDDFT without HF exchange increases the error in excita-
tions already underestimated by A-TDDFT. This problem is largely remedied by implementation of
D-TDDFT including Hartree–Fock exchange.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Time-dependent density-functional theory (TDDFT) is a popular
approach for modeling the excited states of medium- and large-
sized molecules. It is a formally exact theory [1], which involves
an exact exchange-correlation (xc) kernel with a role similar to
the xc-functional of the Hohenberg–Kohn–Sham ground-state the-
ory. Since the exact xc-functional is not known, practical calcula-
tions involve approximations. Most TDDFT applications use the
so-called adiabatic approximation which supposes that the xc-po-
tential responds instantaneously and without memory to any
change in the self-consistent field [1]. The adiabatic approximation
limits TDDFT to one hole-one particle (1h1p) excitations (i.e., sin-
gle excitations), albeit dressed to include electron correlation ef-
fects [2]. Overcoming this limitation is desirable for applications
of TDDFT to systems in which 2h2p excitations (i.e., double excita-
tions) are required, including the excited states of polyenes, open-
shell molecules, and many common photochemical reactions
ll rights reserved.
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[3–5]. Burke and coworkers [6,7] proposed the dressed TDDFT
(D-TDDFT) model, an extension to adiabatic TDDFT (A-TDDFT)
which explicitly includes 2h2p states. The D-TDDFT kernel adds
frequency-dependent terms from many-body theory to the adiabatic
xc-kernel. While initial results on polyenic systems appear encour-
aging [7–9], no systematic assessment has been made for a large
set of molecules. The present article reports the first systematic
study of D-TDDFT for a large test set namely, the low-lying excited
states of 28 organic molecules for which benchmark results exist
[10,11]. This study has been carried out with several variations of
D-TDDFT implemented in a development version of the density-
functional theory (DFT) code deMon2k [12].

The formal foundations of TDDFT were laid out by Runge and
Gross (RG) [1] which put on rigorous grounds the earlier TDDFT
calculations of Zangwill and Soven [13]. The original RG theorems
showed some subtle problems [14], which have been since re-
examined, criticized, and improved [15–17] providing a remark-
ably well-founded theory (for a recent review see [18].) A key
feature of this formal theory is a time-dependent Kohn–Sham
equation containing a time-dependent xc-potential describing
the propagation of the density after a time-dependent perturbation
is applied to the system. Casida used linear response (LR) theory to
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derive an equation for calculating excitation energies and oscillator
strengths from TDDFT [19]. The resultant TDDFT response equa-
tions [19] are

AðxÞ BðxÞ
�B�ðxÞ �A�ðxÞ

� �
X
Y

� �
¼ x

X
Y

� �
: ð1:1Þ

Here A(x) and B(x) explicitly include the Hartree (H) and xc
kernels,

Aair;bjs ¼ �ra � �ri
� �

dijdabdrs þ iajf r;s
HxcðxÞjbj

� �
Bair;bjs ¼ ðiajf r;s

HxcðxÞjjbÞ; ð1:2Þ

where �rp is the KS orbital energy for spin r, and

ðpqjf ðxÞjrsÞ ¼
Z

d3r
Z

d3r0/�pðrÞ/qðrÞf ðr; r0;xÞ/�r ðr0Þ/sðr0Þ: ð1:3Þ

Here and throughout this paper we use the following indexes nota-
tion: i, j, . . . are occupied orbitals, a, b, . . . are virtual orbitals, and p,
q, . . . are orbitals of unspecified nature.

In chemical applications of TDDFT, the Tamm–Dancoff approx-
imation (TDA) [20],

AðxÞX ¼ xX ð1:4Þ

improves excited state potential energy surfaces [21,22], though
sacrificing the Thomas–Reine–Kuhn sum rule. Although the stan-
dard random-phase approximation (RPA) equations [23] provide
only 1h1p states, the exact LR-TDDFT equations include also 2h2p
states (and higher-order nhnp states) through the x-dependence
of the xc part of the kernel f r;s

xc ðxÞ. However, the matrices A(x)
and B(x) are supposed x-independent in the adiabatic approxima-
tion to the xc-kernel, thereby losing the non-linearity of the LR-
TDDFT equations and the associated 2h2p (and higher) states.

Double excitations are essential ingredients for a proper
description of several physical and chemical processes. Though
they do not appear directly in photo-absorption spectra, (i.e., they
are dark states), signatures of 2h2p states appear indirectly
through mixing with 1h1p states, thereby leading to the fracturing
of main peaks into satellites [24,25]. In open-shell molecules such
mixing is often required in order to maintain spin symmetry
[2,26,27]. Perhaps more importantly dark states often play an
essential important role in photochemistry and explicit inclusion
of 2h2p states is often considered necessary for a minimally correct
description of conical intersections [5]. A closely-related historical,
but still much studied, problem is the location of 2h2p states in
polyenes [28,3,29–35], partly because of the importance of the
polyene retinal in the photochemistry of vision [36–38].

It is thus manifest that some form of explicit inclusion of 2h2p
states is required within TDDFT when attacking certain types of
problems [39]. This has lead to various attempts to include 2h2p
states in TDDFT. One partial solution was given by spin-flip TDDFT
[40,41] which describes some states which are 2h2p with respect
to the ground state by beginning with the lowest triplet state
and including spin-flip excitations [42–45]. However, spin-flip
TDDFT does not provide a general way to include double excita-
tions. Strengths and limitations of this theory have been discussed
in recent work [46].

The present article focuses on D-TDDFT, which offers a general
model for including explicitly 2h2p states in TDDFT. D-TDDFT was
initially proposed by Maitra, Zhang, Cave and Burke as an ad hoc
many-body theory correction to TDDFT [6]. They subsequently
tested it on butadiene and hexatriene with encouraging results
[7]. The method was then reimplemented and tested on longer
polyenes and substituted polyenes by Mazur et al. [8,9].

In the present work, we consider several variants of D-TDDFT,
implement and test them on the set of molecules proposed by
Schreiber et al. [10,11] The set consists of 28 organic molecules
whose excitation energies are well characterized both experimen-
tally or through high-quality ab initio wavefunction calculations.

This paper is organized as follows. Section 2 describes D-TDDFT
in some detail and the variations that we have implemented. Sec-
tion 3 describes technical aspects of how the formal equations
were implemented in deMon2k, as well as additional features
which were implemented specifically for this study. Section 4 de-
scribes computational details such as basis sets and choice of
geometries. Section 5 presents and discusses results. Finally, Sec-
tion 6 concludes.

2. Formal equations

D-TDDFT may be understood as an approximation to exact
equations for the xc-kernel [47]. This section reviews D-TDDFT
and the variations which have been implemented and tested in
the present work.

An ab initio expression for the xc-kernel may be derived from
many-body theory, either from the Bethe–Salpeter equation or
from the polarization propagator (PP) formalism [2,48]. Both equa-
tions give the same xc-kernel,

fxcðx; x0; xÞ ¼
Z

d3x1

Z
d3x2

Z
d3x3

�
Z

d3x4Ksðx; x1; x2; xÞKðx1; x2; x3; x4; xÞKyðx3; x4; x0; xÞ;

ð2:1Þ

where xp = (rp,rp), K is defined as

Kðx1;x2; x3;x4;xÞ ¼ P�1
s ðx1;x2; x3;x4;xÞ �P�1ðx1; x2; x3; x4;xÞ

ð2:2Þ

and P and Ps are respectively the interacting and non-interacting
polarization propagators, which contribute to the pole structure of
the xc-kernel. The interacting and non-interacting localizers, K
and Ks, respectively, convert the 4-point polarization propagators
into the 2-point TDDFT quantities (4-point and 2-point refer to
the space coordinates of each kernel.) The localization process
introduces an extra x-dependence into the xc-kernel. Interestingly,
Gonze and Scheffler [49] noticed that, when we substitute the inter-
acting by the non-interacting localizer in Eq. (2.1), the localization
effects can be neglected for key matrix elements of the xc-kernel
at certain frequencies, meaning that the x-dependence exactly can-
cels the spatial localization. More importantly, removing the local-
izers simply means replacing TDDFT with many-body theory terms.
To the extent that both methods represent the same level of
approximation, excitation energies and oscillator strengths are
unaffected, though the components of the transition density will
change in a finite basis representation. In Ref. [2], Casida proposed
a PP form of D-TDDFT without the localizer. In Ref. [47], Huix-Rotl-
lant and Casida gave explicit expressions for an ab initio x-depen-
dent xc-kernel derived from a Kohn–Sham-based second-order
polarization propagator (SOPPA) formula. Equivalent expressions
were derived by Zhang and Burke in Ref. [50], in which they calcu-
lated the excitation energy by truncating to second-order the Gör-
ling–Levy perturbation theory.

The calculation of the xc-kernel in SOPPA can be cast in RPA-like
form. In the TDA approximation, we obtain

½A11 þ A12 x122 � A22ð Þ�1A21�X ¼ xX; ð2:3Þ

which provides a matrix representation of the second-order approx-
imation of the many-body theory kernel K(x1,x2;x3,x4;x). The
blocks A11, A21 and A22 couple respectively single excitations among
themselves, single excitations with double excitations and double
excitations among themselves. In Appendix A we give explicit equa-
tions for these blocks in the case of a SOPPA calculation based on
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the KS Fock operator. We recall that in the SOPPA kernel, the A11 is
frequency independent, though it contains some correlation effects
due to the 2h2p states. All x-dependence is in the second term and
it originates from the A22 coupled to the A11 block.

The D-TDDFT kernel is a mixture of the many-body theory ker-
nel and the A-TDDFT kernel. This mixture was first defined by Mai-
tra et al. [6]. They recognized that the single-single block was
already well represented by A-TDDFT, therefore substituting the
expression of A11 in Eq. (2.3) for the adiabatic A block of Casida’s
equation (Eq. (1.2)). This many-body theory and TDDFT mixture
is not uniquely defined. As we will show, different combinations
of A11 and A22 give rise to completely different kernels, and not
all combinations include correlation effects consistently. In the
present work, we wish to test several definitions of the D-TDDFT
kernel by varying the A11 and A22 blocks. For each D-TDDFT kernel,
we will compare the excitation energies against high-quality ab
initio benchmark results. This will allow us to make a more accu-
rate definition of the D-TDDFT approach.

We will use two possible adiabatic xc-kernels in the A11 matrix:
the pure LDA xc-kernel and a hybrid xc-kernel. Usually, hybrid
TDDFT calculations are based on a hybrid KS wavefunction. Our
implementations are done in deMon2k, a DFT code which is lim-
ited to pure xc-potentials in the ground-state calculation. There-
fore, we have devised a hybrid calculation that does not require a
hybrid DFT wavefunction. Specifically, the RPA blocks used in Cas-
ida’s equations are modified as

Aair;bjs ¼ �ra dab þ c0 � ðaj bMxcjbÞ
h i

dijdrs

� �ri dij þ c0 � ðij bMxcjjÞ
h i

dabdrs

þ aijð1� c0Þ � f rs
x þ c0 � bRHF

x þ f rs
Hc jjb

� �
ð2:4Þ
Bair;bjs ¼ aijð1� c0Þ � f rs
x þ c0 � bRHF

x þ f rs
Hc jbj

� �
where bRHF

x is the HF exchange operator and bMxc ¼ bRHF
x � vxc pro-

vides a first-order conversion of KS into HF orbital energies. We
note that the first-order conversion is exact when the space of occu-
pied KS orbitals coincides with the space of occupied HF orbitals.
Also, the conversion from KS to HF orbital energies introduces an
effective particle number discontinuity.

Along with the two definitions of the A11 block, we will also test
different possible definitions for the A22 block. First, we will test an
independent particle approximation (IPA) estimate of A22, consist-
ing of diagonal KS orbital energy differences. It was shown in Ref.
[47] that such a block also appears in a second-order ab initio xc-
kernel. We will call that combination D-TDDFT. Second, we will
use a first-order correction to the IPA estimate of A22. This might
give an improved description for the placement of double excita-
tions [51]. We call that combination extended D-TDDFT (x-D-
TDDFT). We note that this is the approach of Maitra et al. [6].
Table 1
Summary of the methods used in this work. CIS, CISD and A-TDDFT are the standard
methods, whereas the (x-)D-CIS and (x-)D-TDDFT are the variations we use. The
kernel fHxc represents the Hartree kernel plus the exchange-correlation kernel of DFT
in the adiabatic approximation, RHF

x is the HF exchange and D� is a zeroth-order
estimate for a double excitation.

Method A02 A11 A22

CIS No fH þ RHF
x

0

A-TDDFT No fHxc 0
CISD Yes fH þ RHF

x
D�HF + first-order

D-CIS No fH þ RHF
x

D�KS

x-D-CIS No fH þ RHF
x

D�KS + first-order

D-TDDFT No fHxc D�KS

x-D-TDDFT No fHxc D�KS + first-order
In Table 1 we summarize the different variants of D-TDDFT and
D-CIS, according to A11 and A22 blocks. All the methods share the
same A12 block unless the A22 block is 0, in which case the A12 is
also 0. We recall that only the standard CISD has a coupling block
A01 and A02 with the ground state, but none of the methods used in
this paper has.
3. Implementation

We have implemented the equations described in Section 2 in a
development version of deMon2k. The standard code now has a
LR-TDDFT module [52]. In this section, we briefly detail the neces-
sary modifications to implement D-TDDFT.

deMon2k is a Gaussian-type orbital DFT program which uses an
auxiliary basis set to expand the charge density, thereby eliminat-
ing the need to calculate 4-center integrals. The implementation of
TDDFT in deMon2k is described in Ref. [52]. Note that newer ver-
sions of the code have abandoned the charge conservation con-
straint for TDDFT calculations. For the moment, only the
adiabatic LDA (ALDA) can be used as TDDFT xc-kernel.

Asymptotically-corrected (AC) xc-potentials are needed to cor-
rectly describe excitations above the ionization threshold, which
is placed at minus the highest-occupied molecular orbital energy
[53]. Such corrections are not yet present in the master version
of deMon2k. Since such a correction was deemed necessary for
the present study, we have implemented Hirata et al.’s improved
version [54] of Casida and Salahub’s AC potential [55] in our devel-
opment version of deMon2k.

Implementation of D-TDDFT requires several modifications of
the standard AA implementation of Casida’s equation. First an algo-
rithm to decide which 2h2p excitations have to be included is
needed. At the present time, the user specifies the number of such
excitations. These are then automatically selected as the N lowest-
energy 2h2p IPA states. Since we are using a truncated 2h2p space,
the algorithm makes sure that all the spin partners are present, in
order to have pure spin states. The basic idea is illustrated in Fig. 1.
Both 2h2p excitations are needed in order to construct the usual
singlet and triplet combinations. A similar algorithm should be
implemented for including all space double excitations which in-
volve degenerate irreducible representations, but this is not imple-
mented in the present version of the code.

These IPA 2h2p excitations are then added to the initial guess
for the Davidson diagonalizer. We recognize that a perturbative
pre-screening of the 2h2p space would be a more effective way
for selecting the excitations, but this more elaborate implementa-
tion is beyond the scope of the present study.

We need new integrals to implement the HF exchange terms
appearing in the many-body theory blocks. The construction of
these blocks require extra hole-hole and particle–particle three-
center integrals apart from the usual hole-particle integrals already
needed in TDDFT. We then construct the additional matrix ele-
ments using the resolution-of-the-identity (RI) formula
Fig. 1. Necessary double excitations that need to be included in the truncated 2h2p
space to maintain pure spin symmetry.



M. Huix-Rotllant et al. / Chemical Physics 391 (2011) 120–129 123
ðpqjfHjrsÞ ¼
X
IJKL

ðpqjgIÞS
�1
IJ ðgJ jfHjgKÞS

�1
KL ðgLjrsÞ; ð3:1Þ

where gI are the usual deMon2k notation for the density fitting
functions and SIJ is the auxiliary function overlap matrix defined
by SIJ = (gIjfHjgJ), in which the Coulomb repulsion operator is used
as metric.

Solving Eq. (2.3) means solving a non-linear set of equations.
This is less efficient than solving linear equations. In Ref. [47] it
was shown that Eq. (2.3) comes from applying the Löwdin–Fesh-
bach partitioning technique to

A11 A12

A21 A22

� �
X1

X2

� �
¼ x

X1

X2

� �
; ð3:2Þ

where X1 and X2 are now the single and double excitation compo-
nents of the vectors. The solution of this equation is easier and does
not require a self-consistent approach, albeit at the cost of requiring
more physical memory, since then the Krylov space vectors have
the dimension of the single and the double excitation space.

Calculation of oscillator strengths has also to be modified when
D-TDDFT is implemented. In a mixed many-body theory and
TDDFT calculation, there is an extra first-order term in the
ground-state KS wavefunction [47]

j0i ¼ 1þ
X

ia

ðij bMxcjaÞ
�i � �a

âyaâi

 !
jKSi; ð3:3Þ

where jKSi is the reference KS wavefunction. This correction consti-
tutes a ‘‘Brillouin correction’’ to the Kohn–Sham Hamiltonian which
is absent when using a Hartree–Fock reference. The evaluation of
transition dipole moments in deMon2k was modified to include
the contributions from 2h2p poles,

ðrjâyaâiâ
y
bâjÞ ¼ Xaibj

ðij bMxcjaÞ
�i � �a

ðjjrjbÞ þ ðjj
bMxcjbÞ
�j � �b

ðijrjaÞ
 

�ðij
bMxcjbÞ
�i � �b

ðjjrjaÞ � ðjj
bMxcjaÞ
�j � �a

ðijrjbÞ
!
; ð3:4Þ

where Xaibj is an element of the eigenvector X2, the double excita-
tion part of the eigenvector of Eq. (3.2).

4. Computational details

Geometries for the set of 28 organic chromophores were taken
from Ref. [10]. These were optimized at the MP2/6–31G⁄ level,
forcing the highest point group symmetry in each case. The orbital
basis set is Ahlrich’s TZVP basis [56]. As pointed out in Ref. [10],
this basis set has not enough diffuse functions to converge all Ryd-
berg states. We keep the same basis set for the sake of comparison
with the benchmark results. Basis-set errors are expected for states
with a strong valence-Rydberg character or states above 7 eV,
which are in general of Rydberg nature.

Comparison of the D-TDDFT is performed against the best esti-
mates proposed in Ref. [10]. These best estimates are taken as
highly correlated ab initio calculations using large basis sets, if
available in the literature. Otherwise, they are taken as the coupled
cluster CC3/TZVP calculation if the weight of the 1h1p space is
more of than 95%, and CASPT2/TZVP in the other cases.

All calculations were performed with a development version of
deMon2k (unless otherwise stated) [12]. Calculations were carried
out with the fixed fine option for the grid and the GEN-A3⁄ density
fitting auxiliary basis. The convergence criteria for the SCF was set
to 10�8.

To set up the notation used in the rest of the article, excited
state calculations are denoted by TD/SCF, where SCF is the functional
used for the SCF calculation and TD is the choice of post-SCF
excited-state method. Additionally, the D-TD/SCF(n) and x-D-
TD/SCF(n) will refer to the dressed and extended dressed TD/SCF
method using n 2h2p states. Thus TDA D-ALDA/AC-LDA(10) de-
notes an asymptotically-corrected LDA for the DFT calculation fol-
lowed by a LR-TDDFT calculation with the dressed xc-kernel kernel
and the Tamm-Dancoff approximation. The D-TDDFT kernel has
the adiabatic LDA xc-kernel for the A11 block and the A22 block is
approximated as KS orbital energy differences.

In this work, all calculations are done in using the TDA and a AC-
LDA wavefunction. For the sake of readability, we omit writing
them when our main focus is on the discussion of the different
variants of the post-SCF part.

Calculations on our test-set show few differences between
ALDA/LDA and ALDA/AC-LDA. The singlet and triplet excitation
energies and the oscillator strengths are shown in Table I in the
Supplementary material. The average absolute error is 0.16 eV
with a standard deviation of 0.19 eV. The maximum difference is
0.91 eV. The states with larger differences justify the use of asymp-
totic correction. However, the absolute error and the standard
deviation are small. We attribute this to the restricted nature of
the basis set used in the present study.
5. Results

In this section we discuss the results obtained with the different
variants of D-TDDFT. In particular, we compare the quality of D-
TDDFT singlet excitation energies against benchmark results for
28 organic chromophores. These chromophores can be classified
in four groups according to the chemical nature of their bond: (i)
unsaturated aliphatic hydrocarbons, containing only carbon–car-
bon double bonds; (ii) aromatic hydrocarbons and heterocycles,
including molecules with conjugated aromatic double bonds; (iii)
aldehydes, ketones and amides with the characteristic oxygen-car-
bon double bonds; (iv) nucleobases which have a mixture of the
bonds found in the three previous groups.

These molecules have two types of low-lying excited states:
Rydberg (i.e., diffuse states) and valence states. The latter states
are traditionally described using the familiar Hückel model. The
low-lying valence transitions involve mainly p orbitals, i.e. the
molecular orbitals (MO) formed as combinations of pz atomic orbi-
tals. The p orbitals are delocalized over the whole structure. Elec-
trons in these orbitals are easily promoted to an excited state,
since they are not involved in the skeletal r-bonding. The most
characteristic transitions in these systems are represented by
1h1p p ? p⁄ excitations. Molecules containing atoms with lone-
pair electrons can also have n ? p⁄ transitions, in which n indicates
the MO with a localized pair of electrons on a heteroatom. In a few
cases, we can also have r ? p⁄ single excitations, although these
are exotic in the low-lying valence region.

The role of 2h2p (in general nhnp) poles is to add correlation ef-
fects to the single excitation picture. For the sake of discussion, it is
important to classify (loosely) the correlation included by 2h2p
states as static and dynamic. Static correlation is introduced by
those double excitations having a contribution similar to the single
excitations for a given state. This requires that the 1h1p excitations
and the 2h2p excitations are energetically near and have a strong
coupling between the two (Fig. 2.) We will refer to such states as
multireference states. Dynamical correlation is a subtler effect.
Its description requires a much larger number of double excita-
tions, in order to represent the cooperative movement of electrons
in the excited state.

For the low-lying multireference states found in the molecules
of our set, a few double excitations are required for an adequate
first approximation. Organic chromophores of the group (i) and
(ii) have a characteristic low-lying multireference valence state



Fig. 2. Schematic representation of the interaction between the 1h1p and the 2h2p
spaces. The relaxation energy D is proportional to the size of the coupling and
inversely proportional to the energy difference between the two spaces.
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(commonly called the Lb state in the literature) of the same sym-
metry as the ground-state. The Lb state is well known for having
important contributions from double excitations of the type
ðpa;pbÞ ! ðp�a;p�bÞ, thereby allowing mixing with the ground
state. Some contributions of double excitations from r orbitals
might also be important to describe relaxation effects of the orbi-
tals in the excited state that cannot be accounted by the self-con-
sistent field orbitals [29].

The different effects of the 2h2p excitations that include dy-
namic and static correlation are clearly seen in the changes of
the 1h1p adiabatic energies when we increase the number of dou-
ble excitations. As an example, we take two states of ethene, one
triplet and singlet 1h1p excitations, for which we systematically
include a larger number of 2h2p states. The results for the D-
ALDA/AC-LDA approach are shown in Fig. 3. We plot the adiabatic
1h1p states for which we include one 2h2p excitation at a time un-
til 35, after which the steps are taken adding ten 2h2p states at a
time. When a few 2h2p states are added, we observe that the exci-
tation energy remains constant. This is due to the high symmetry
of the molecule, which 2h2p states are not mixed with 1h1p states
by symmetry selection rules. It is only when we add 32 double
excitations when we see a sudden change of the excitation energy
of both triplet and singlet states. This indicates that we have
included in our space the necessary 2h2p poles to describe the
static correlation of that particular state. Static correlation has a
major effect in decreasing the excitation energy with only few
number of 2h2p excitations. In this specific case, the triplet
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Fig. 3. Dependence of the 1h1p triplet (solid line) and singlet (dashed line)
excitation energies of one excitation of ethene with increasing number of double
excitations. Calculations are done with D-ALDA/AC-LDA. Excitation energies are in
eV.
excitation energy decreases by 0.54 eV while the singlet excitation
energy decreases by 0.82 eV. In this case, all static 2h2p poles are
added, and a larger number of these poles does not lead to further
sudden changes. The excitations are almost a flat line, with a
slowly varying slope. This is the effect of the dynamic correlation,
which includes extra correlation effects but which does not
suddenly vary the excitation energy.

A-TDDFT includes some correlation effects in the 1h1p states,
both of static and dynamic origin. However, it misses completely
the states of main 2h2p character. These states are explicitly in-
cluded by the D-TDDFT kernel. Additionally, D-TDDFT includes ex-
tra correlation effects into the A-TDDFT 1h1p states through the
coupling of 1h1p states with the 2h2p states. This can lead to dou-
ble counting of correlation, i.e., the correlation already included by
A-TDDFT can be reintroduced by the coupling with the 2h2p states,
leading to an underestimation of the excited state. In order to avoid
double counting of correlation, it is of paramount importance to
have a deep understanding of which correlation effects are in-
cluded in each of the blocks that are used to construct the D-TDDFT
xc-kernel. Therefore, we have compared the different D-TDDFT
kernels with a reference method of the same level of theory, but
from which the results are well understood. This is provided by
some variations of the ab initio method CISD, since the mathemat-
ical form of the equations is equivalent to the TDA approximation
of D-TDDFT. Standard CISD has coupling with the ground state,
which we have not included in D-TDDFT. Therefore, we have made
some variations on the standard CISD (Section 2.) We call these
variations D-CIS and x-D-CIS, according to the definition of the
A22 block. In both methods, the 1h1p block A11 is given by the
CIS expressions, which does not include any correlation effect (re-
call that in response theory, correlation also appears in the singles-
singles coupling block.) The correlation effects in D-CIS and x-D-CIS
are included only through the coupling between 1h1p and 2h2p
states. This will provide us with a good reference for rationalizing
the results of A-TDDFT versus D-TDDFT.

Our implementation of CIS and (x-)D-CIS is done in deMon2k.
Therefore, all CI calculations actually refer to RI-CI and are based
on a DFT wavefunction. We have calculated the absolute error be-
tween HF-based CIS excitation energies (performed with GAUSSIAN

[57]) and CIS/AC-LDA excitation energies for the molecules in the
test set. We have found little differences, giving an average abso-
lute error is 0.18 eV with a standard deviation of 0.13 eV and a
maximum absolute difference of 0.54 eV. It is interesting to note
that almost all CIS/AC-LDA excitations are slightly below the corre-
sponding HF-based CIS results.

We now discuss the results for singlet excitation energies of A-
TDDFT and D-TDDFT. Since the number of states is large, we will
discuss only general trends in terms of correlation graphs for each
of the methods used with respect to the benchmark values pro-
vided in Refs. [10,11]. Our discussion will mainly focus on singlet
excitation energies. For the numerical values of triplets, singlets,
and oscillator strengths for each specific molecule, the reader is re-
ferred to Table I of the Supplementary material.

We first discuss the results of the adiabatic theories (i.e., x-
independent) CIS/AC-LDA and TDA ALDA/AC-LDA, shown in graphs
(a) and (b) of Fig. 4, respectively. None of these theories includes
2h2p states, although ALDA includes some correlation effects in
the 1h1p states through the xc-kernel. We see that CIS overesti-
mates all excitation energies with respect to the best estimates.
This is consistent with the fact that CIS does not include any corre-
lation effects. The mean absolute error is 1.04 eV with a standard
deviation of 0.63 eV. The maximum error is 3.02 eV. A better per-
formance of the ALDA is observed. We see that ALDA underesti-
mates most of the excitation energies, especially in the low-
energy region. A similar conclusion was drawn by Silva-Junior
et al. [11], who applied the pure BP86 xc-kernel to the molecules
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Fig. 4. Correlation graphs of singlet excitation energies for different flavors of D-CIS and D-TDDFT with respect to best estimates. Excitation energies are given in eV.
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of the same test set. Nonetheless, the overall performance of the
ALDA is clearly superior over CIS, giving an average absolute error
of 0.67 eV with a standard deviation of 0.44 eV. The maximum
absolute error of is 2.37 eV.

When we add explicit double excitations to CIS and A-TDDFT,
we add correlation effects to the 1h1p picture and the excitation
energies decrease. We have truncated the number of 2h2p states
to 10 double excitations, in order to avoid the double counting of
correlation in the D-TDDFT methods and in order to keep the cal-
culations tractable. However, we realize that with our primitive
implementation, the use of only 10 2h2p states may not include
all static correlation necessary to correct all the states, especially
for higher-energy 1h1p states.

As we have shown in Section 2, there is more than one way to
include the 2h2p effects. We first consider the D-CIS/AC-LDA(10)
and TDA D-ALDA/AC-LDA(10) variants, shown in graphs (c) and
(d) of Fig. 4, in which we approximate the double-double block
by a diagonal zeroth-order KS orbital energy difference. In both
cases, we observe that the results get worse with respect to those
of CIS or ALDA. This degradation is especially important for
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Fig. 5. A-TDDFT and x-D-TDDFT correlation graphs for singlet excitation energies
using the hybrid xc-kernel of Eq. (2.4), in which c0 = 0.2.

Table 2
Summary of the mean absolute errors, standard deviation and maximum error of each
method. All quantities are in eV.

Method Mean error Std. dev. Max. error

ALDA 0.67 0.44 2.37
D-ALDA(10) 1.03 0.73 3.51
x-D-ALDA(10) 0.83 0.46 2.19
CIS 1.04 0.63 3.02
D-CIS(10) 0.78 0.54 3.02
x-D-CIS(10) 0.84 0.58 3.02
HYBRID 0.43 0.34 1.44
x-D-HYBRID(10) 0.45 0.33 1.44
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D-ALDA(10) and might be interpreted as due to double counting of
correlation. Already, ALDA underestimates the excitation energies
of most states. With the introduction of double excitations, we
introduce extra correlation effects, which underestimates even
more the excitations. In some cases, like o-benzoquinone, some
excitation energies falls below the reference ground-state, possibly
indicating the appearance of an instability. The average absolute
error of the D-ALDA(10) is 1.03 eV with a standard deviation of
0.73 eV and a maximum error of 3.51 eV, decreasing the descrip-
tion of 1h1p states with respect to ALDA or CIS. As to D-CIS(10),
the results are slightly better. The average absolute error is
0.78 eV with a standard deviation of 0.54 eV and a maximum error
of 3.02 eV, improving over the CIS results. However, some singlet
excitation energies are smaller than the corresponding triplet exci-
tation energies and some state energies are now largely underesti-
mated. This also indicates an overestimation of correlation effects,
though it might be partially due to the missing A02 block.

A better estimate of the 2h2p correlation effects is given when
the A22 block is modified to include the first-order correction to the
HF orbital energy differences. This type of calculation is what we
call x-D-CIS/AC-ALDA(10) and x-D-TDDFT/AC-ALDA(10), the re-
sults of which are shown respectively in graphs (e) and (f) of
Fig. 4. In both cases we observe an improvement of the excitation
energies. The x-D-CIS provides a more consistent and systematic
estimation of correlation effects, and most of the excitations are
still an upper limit to the best estimate result. However, the mean
absolute error is still high, with an average absolute error of
0.84 eV and a standard deviation of 0.58 eV and a maximum error
of 3.02 eV. The x-D-TDDFT results slightly improve over x-D-CIS,
giving a mean absolute error of 0.83 eV with a standard deviation
of 0.46 eV and a maximum error of 2.19 eV. The superiority of x-D-
TDDFT is explained by the fact that TDDFT includes some correla-
tion effects in the 1h1p block. However, x-D-TDDFT still gives in
overall larger errors than A-TDDFT. This might be again a problem
of double-counting of correlation. Since A-TDDFT with the ALDA
xc-kernel underestimates most excitation energies, the application
of x-D-TDDFT leads to a further underestimation. In any case, D-
TDDFT works better when 2h2p states are given by the first-order
correction to the HF orbital energy difference.

From the schematic representation of the interaction between
1h1p states and 2h2p states (Fig. 2), we can rationalize why we ob-
serve overestimation of correlation when the A22 block is approx-
imated as an LDA orbital energy difference. The 2h2p states as
given by the LDA fall too close together and too close to the
1h1p states (i.e., a too large value of D). The results show large cor-
relation effects in the 1h1p states, indicating an overestimation of
static correlation effects. The first-order correction to the KS orbital
energy difference gives a better e stimate of correlation effects. The
reverse effect was observed in the context of HF-based response
theory. In SOPPA calculations, the 2h2p states are approximated
as simple HF orbital energy differences, which are placed far too
high, therefore underestimating correlation. In HF-based response,
it was also seen that the results are improved when adding the
first-order correction to the HF orbital energy differences.

Up to this point, we have seen that D-TDDFT works best when
2h2p states are given by the first-order correction to the HF orbital
energy differences. However, we have also seen that the LDA xc-
kernel underestimates the 1h1p states, so that we degrade the
quality of the A-TDDFT states when we apply any of the D-TDDFT
schemes. A better estimate for the 1h1p states is given by an adi-
abatic hybrid calculation. In Fig. 5(a) we show the calculation of
our implementation of the hybrid xc-kernel based upon a LDA
wavefunction. In this hybrid we use 20% HF exchange. This per-
centage is the usual amount used in most popular functionals, both
for ground- and for excited state calculations [58–62]. The results
show an improvement over all our previous calculations. The aver-
age absolute error of 0.43 eV with respect to the best estimates and
a standard deviation of 0.34 eV. The maximum error is 1.44 eV.
Fig. 5(b) shows the x-D-HYBRID(10) calculation. The mean error
and the standard deviation are very similar to what the adiabatic
hybrid calculation gives. The average absolute error with respect
to the best estimate is 0.45 eV, and the standard deviation is
0.33 eV with a maximum error of 1.44 eV. This is a very important
result, since we have been able to include the missing 2h2p states
without decreasing the quality of 1h1p states.

In Table 2 we summarize the mean absolute errors, standard
deviations and maximum errors for all the methods. The best re-
sults are given by the hybrid A-TDDFT calculation, closely followed
by the x-D-TDDFT based also on the hybrid. We can therefore state
that the best D-TDDFT kernel can be constructed from a hybrid xc-
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kernel in the A11 block and the first-order correction to the HF orbi-
tal energy differences for A22.

The results given by the different D-TDDFT kernels show a close
relation between the A11 and A22 blocks. Our results show that the
singles-singles block is better given by a hybrid xc-kernel and the
doubles-doubles block is better approximated by the first-order
correction to the HF orbital energy difference. By simple perturba-
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Fig. 6. Effect on excited states with more than 10% of 2h2p character of mixing HF
exchange in TDDFT. CASPT2 results from Ref. [10] are taken as the benchmark.
BHLYP results are taken from Ref. [11].
tive arguments, we have rationalized that the A22 block as given by
the first-order approximation accounts better for static correlation
effects. Less clear explanations can be given to understand why a
hybrid xc-kernel gives the best approximation for the A11 block,
although it seems necessary for the construction of a consistent
kernel.

The main interest of using a D-TDDFT kernel is to obtain the
pure 2h2p states, which are not present in A-TDDFT and to better
describe the 1h1p states of strong multireference character. We
now take a closer look at the latter states in our test set. In partic-
ular, we will compare against the benchmarks those 1h1p states
that have a 2h2p contribution larger than 10% (this percentage is
determined by the CCSD calculation of Ref. [10].) The molecules
containing such states are the four polyenes of the set, together
with cyclopentadiene, naphthalene and s-triazine. From this sub-
set, the polyenes are undoubtedly the ones which have been the
most extensively discussed. Some debate persists as to whether
A-TDDFT is able to represent a low-lying localized valence state
which have a strong 2h2p contribution of the transition promoting
two electrons from the highest- to the lowest-occupied molecular
orbital. It was first shown by Hsu et al. that A-TDDFT with pure
functionals gives the best answer for such states [63], catching
both the correct energetics and the localized nature of the state.
Starcke et al. recognize this to be a fortuitous cancellation of errors
[3].

In Fig. 6 we show the results for the different adiabatic and
dressed theories used in this work. For the numerical values of
the excitation energies and the absolute errors for each state, see
Table 3. In Fig. 6(a), we show the behavior of CIS (100% HF ex-
change) and A-TDDFT with different hybrids: ALDA with 0% HF ex-
change, ALDA with 20% HF exchange and BHLYP which has 50% HF
exchange. In this comparison, we take the CASPT2 results (stars) as
the benchmark result, since the best estimates were not provided
for all the studied states [10]. As seen in the graph, CIS (filled cir-
cles) seriously overestimate the excitation energies, consistent
with the fact that it does not include any correlation effect. A-
TDDFT with pure functionals give the best answer for doubly-ex-
cited states, very close to the CASPT2 result. This confirms the
observation of Hsu et al. [63]. Hybrid functionals, though giving
the best overall answer, do not perform as well for these states.
Additionally, the more HF exchange is mixed into the xc-kernel,
the worse the result is. A different situation appears when we in-
clude explicitly 2h2p states. In Fig. 6(b), we show the results of
x-D-CIS and x-D-TDDFT. Now, the x-D-ALDA(10) underestimates
the multireference excitation energies, due to overcounting of cor-
relation effects. The best answer is now given by x-D-HYBRID(10)
with 20% HF exchange. The x-D-CIS stays always higher. One can
notice that the three last excitations (naphthalene 2 and s-triazine
1 and 2) are best described by the x-D-ALDA(10). The lack of cor-
rection might be due to the lack of inclusion of the appropriate
double excitation. To check this we added 50 doubles to naphtha-
lene and 75 doubles to s-tetrazine. The error of the x-D-TDDFT re-
sult was 0.18 eV for naphthalene 2, 0.07 eV for s-tetrazine 1 and
0.02 eV for s-tetrazine 2. This is consistent with our hypothesis.
In future versions of the code, a pre-screend selection of double
excitations will be implemented, which is required to avoid to
some extent this problem.
6. Conclusion

D-TDDFT was introduced by Maitra et al. to explicitly include
2h2p states in TDDFT. The original work was ad hoc, leaving much
room for variations on the original concept. A limited number of
applications by Burke and coworkers [6,7] as well as by Mazur
et al. [8,9] showed promising results for D-TDDFT, but could hardly



Table 3
Singlet 1h1p excitation energies and mean absolute errors (with respect to the CASPT2, in parenthesis) for the excited states with more than 10% contribution of 2h2p state. For a
graphical representation, see Fig. 6. The extended dressed calculations are done including 10 double excitations. All energies and absolute errors are in eV.

Molecule State CASPT2 ALDA HYBRID BHLYP RI-CIS x-D-ALDA x-D-HYBRID x-D-CIS

Butadiene 21Ag 6.27 6.32 (0.05) 6.92 (0.65) 7.61 (1.34) 8.52 (2.25) 4.67 (1.6) 6.36 (0.09) 6.72 (0.45)
Hexatriene 21Ag 5.20 5.05 (0.15) 5.70 (0.50) 6.66 (1.46) 7.84 (2.64) 3.43 (1.87) 5.05 (0.15) 5.68 (0.48)
Octatetraene 21Ag 4.38 4.17 (0.21) 4.82 (0.44) 5.83 (1.45) 7.07 (2.69) 2.76 (1.62) 4.23 (0.15) 4.95 (0.57)
Cyclopentadiene 21A1 6.31 6.14 (0.17) 6.63 (0.32) 7.23 (0.92) 8.51 (2.2) 4.90 (1.41) 6.28 (0.03) 6.68 (0.37)
Naphthalene 1 31Ag 6.04 6.28 (0.12) 6.37 (0.33) 7.70 (1.66) 8.90 (2.86) 5.82 (0.22) 6.12 (0.08) 7.17 (1.13)
Naphthalene 2 31B3u 7.18 7.71 (0.53) 8.67 (1.49) 9.84 (2.66) 12.21 (5.03) 7.14 (0.04) 8.63a (1.45) 9.52 (2.34)
s-tetrazine 1 31B1g 6.20 6.38 (0.18) 7.04 (0.84) 9.20 (3.00) 11.96 (5.76) 6.38 (0.18) 7.04b (0.84) 11.48 (5.28)
s-tetrazine 2 21B3g 8.12 8.10 (0.02) 8.58 (0.46) 9.96 (1.84) 10.53 (2.33) 8.10 (0.02) 8.58c (0.46) 10.77 (2.65)

a Using 50 double excitations, the excitation energy is 7.36 (0.18).
b Using 75 double excitations, the excitation energy is 6.27 (0.07).
c Using 75 double excitations, the excitation energy is 8.10 (0.02).
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be considered definitive because (i) of the limited number of mol-
ecules and excitations treated and (ii) because the importance of
the details of the specific implementations of D-TDDFT were not
adequately explored. The present article has gone far towards rem-
edying these problems, and providing further support for D-TDDFT.

We have implemented several variations of D-TDDFT and RI-CI
in deMon2k, with the aim of characterizing the minimum neces-
sary ingredients for an effective implementation of D-TDDFT. We
have seen that DFT-based CIS gives very similar answers to HF-
based CIS, showing that the effects of exact (HF) exchange can in-
deed be added in a post-SCF calculation. We have also found that
although the ALDA works better than CIS, it underestimates most
of the excitation energies. Therefore, when we explicitly include
2h2p states through the D-TDLDA, it leads to worse results, due
to the double counting of correlation. The x-D-ALDA give the least
scatter of the results and hence a better answer. Nevertheless, the
lower errors are still given by the ALDA.

With the results of the ALDA, we have shown that it is impor-
tant to have a correct relative position of the 1h1p and the 2h2p
manifolds in order to have a consistent account of correlation.
We have introduced a hybrid TDDFT as a post-LDA calculation,
and we have shown that the results are superior to those of ALDA.
We have determined that the method giving the best answer for
MR states is the combination of a hybrid xc-kernel with 2h2p (dou-
ble) excitations approximated by first-order corrections to the HF
orbital energy differences.

Our work has gone much farther than previous work in testing
D-TDDFT and in detailing the necessary ingredients to make it
work well. We find a hybrid approach to be essential. We recognize
that our work could be improved by a perturbative pre-selection
procedure and consider this work to be ample justification for a
more elaborate implementation of D-TDDFT. This work also consti-
tutes a key step towards a full implementation of the polarization
propatagor model of the exact fxc(x).
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Appendix A. Kohn–Sham-based second-order polarization
propagator

In this appendix, we summarize the main expressions for the
construction of the matrix elements of Eqs. (2.2) and (3.2). For a de-
tailed derivation, the reader is referred to Ref. [47], in which this
equations were derived for the construction of an exact ab initio
xc-kernel consistent to second-order in perturbation theory.

The explicit expression for the single-single block is given by
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the single-double block is given by

½A12�ck;aibj ¼ dkjðbckaiÞ � dkiðbckajÞ þ dacðbikkjÞ � dbcðaikkjÞ; ðA2Þ

and the double-double block is given by

½A22�aibj;ckdl ¼ �b þ �a � �i � �j
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The first-order double-double block is given by

½A22�aibj;ckdl ¼ ½ð�bdbd þ ðbj bMxcjdÞÞdac þ ð�adac

þ ðaj bMxcjcÞÞdbd�dikdjl � ½ð�idik þ ðij bMxcjkÞÞdjl

� ð�jdjl þ ðdj bMxcjlÞÞdik�dacdbd � dachðbdÞ
� dbdhðacÞ þ dadhðbcÞ þ dbchðadÞ � dacdbdðkjkliÞ
� djldkiðadkbcÞ; ðA5Þ

with
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hðpqÞ ¼ dikðljkpqÞ þ djlðkikpqÞ � dkjðlikpqÞ � dilðkjkpqÞ: ðA6Þ

Integrals with double bar are defined as in Eq. (1.3), in which the
kernel fH is changed with the kernel f ðr1; r2Þ ¼ ð1� bP12Þ=jr1 � r2j,
where bP12 is the permutation operator that permutes the coordi-
nates of two electrons.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.chemphys.2011.03.019.
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