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We study the effects of local vertex corrections to the self-energy of the electron gas. We find that a vertex
derived from time-dependent density-functional theory can give accurate self-energies, provided, however, a
proper decay at large momentum trangfargeq) is built into the vertex function(The local-density approxi-
mation for the vertex fails badlyTotal energies are calculated from the Galitskii-Migdal formula, and it is
shown that a proper largg-behavior results in a close consistency between the chemical potentials derived
from these energies and those obtained directly from the self-energy. We show that this internal consistency
depends critically on including the same vertex correction in both the self-energy and the screening function.
In addition the total energies become almost as accurate as those from elaborate Monte Carlo calculations. This
as well as previous works show that self-energy corrections are important for properly describing electron
propagation at energies around and above the plasmon energy. For easy use in calculations of photoemission
and x-ray extended fine structure spectra, we parametrize our calculated self-energies in terms of a simple
analytical expressio}S0163-182807)03040-3

I. INTRODUCTION face. As we will show, the TDDFT approach greatly im-
proves the consistency between the total energy and the self-
The dynamically screened-exchange@w approxima-  energy as well as their absolute values.
tion* has emerged as a successful tool for obtaining quasi- The self-energy for the homogeneous system has some
particle bands in real solids. As usually practiced, the selfinterest on its own right as a starting point for local approxi-
consistency requirement on the self-enebyis relaxed and Mations toX in, say, calculations of x-ray extended fine
typical calculations involve a suitably chosen independentStructure(EXAFS) and electron spectroscopies. In order to
particle Green’s functiorG, (the GoW approximation. In facilitate such a use of our data we provide simple analytical

fits.
attempts to go beyond th& W,A, one has added vertex . . .
corrections derived using mean-field arguments or time-, [" SE€C- Il we give a theoretical background and discuss

dependent density-functional theoff/DDFT).2~" However, different ways of obtg|n|_ng approximate vertex func_tlons.
. . ' Results and parametrization are given in Sec. lll, and in Sec.
these efforts have shown little effect on the quasiparticl

SV, finally, we give some concluding remarks.
bands. , finally, we give some concluding remarks

A closer examination of th&yWA shows that, although
it usually gives a good description of the relative positions of Il. THEORETICAL BACKGROUND
the occupied bands, it also gives a rather large absolute error.
For the occupied states, the errors in quasiparticle energies
are similar in magnitude. When we move from the Fermi In this section we summarize some key formulas in order
energy up to high energies, however, the self-energy variet establish our notation. For a general overview we refer to
from relatively large negative values up to zero. Consethe work by Hedin and Lundqvist.

quently, absolute errors will distort the relative positions of ~The self-energy® may be defined from the equation of
the higher bands. motion for the Green’s functio® as

In this paper, we will study mean-field based vertex ap-

A. The electron self-energy

proximations using the homogeneous electron gas as a test V2
system. We will demonstrate the severe shortcomings of the e+ ——Vc|G(e)=1+3(€)G(e). )
vertex corrections derived from the time-dependent local- 2

density approximatiofTDLDA). We trace this failure to the

wavelength independence of the corresponding local-fieltHere V. is the total Coulomb potential from the electron
correction. Including, however, a Hubbard-like decay atground-state densityMy) and from external sourceswj,
large momentum transfetarge o=|q|), we obtain signifi- and we use atomic units with energies in Hartrees. Special-
cant improvements beyond th8oWA. In particular, the izing to a homogeneous electron g¥s,=0 in equilibrium.
Fermi-surface value is greatly improved. In order to investi-The self-energy can be written explicitly as

gate the internal consistency of our approach we also com-

pute total energies from the Galitskii-Migdal formildn d*q

this way, we can compare chemical potentials derived from . _

the toteﬂ energy and f?om the self—enpergy at the Fermi sur- E(k)_lf (277)4G(k PW@AK.Q). @
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Here, the dynamically screened interactddi=e¢ v, eis  andP is approximated by the independent-electron polariz-
the dielectric screening function, andis the Coulomb in-  ability
teraction. We use the simplified notatida=(k,e) and

k=|k|. The vertex function\ gives the(linear response in d%k
> when we break the translational invariance by a nonzero Po(q)= —zif (2—)4Go(k)Go(k—q), (12
VC(q)v 7

The energy shifi\ in G, [Eq. (8)] gives merely a shift in the
82(k,q) frequency variable o, e—e—A.
A(k,g)=1+ m 3 One way to go beyond th&,WA is to imagine that the
interacting electrons respond as free electrons to an effective
Also the dielectric functiore can be expressed solely in field Vq;. As far as static perturbations are concerned,
the Green’s function and the same vertex as above. It idensity-functional theofy*°then, in principle, gives the ex-
customary to introduce an irreducible polarizatiBrby the  act results. In the case of time-dependent phenomena, this
relation way of looking at the problem has been successfully used by
Singwi, Sjdander, and collaboratof$’ for modeling the di-
—1— electric function. Similar ideas have been applied to the
@=1-v(@P(a), @ problem of core electrons by Minnhag&hAlso Mahan and
where Serneliu§ and Del Soleet al.” extend theGW approximation
along these lines. We thus calculate the response of our sys-

) d*k tem in a one-particle manner using the effective potential,
P@=-2i [ 53 GHGK-aA K. (©)

As is well known, in perturbation theo®y will inherit the OVetll @) = Ve(A) + dud ), 13
Fermi surface of the independent-electron propagatowhere we identify the exchange-correlation pagt with the
Go.'%! Consistency therefore requires that we add a onelensity-functional ground-state potential. Comparing with
body potential to the noninteracting system so as to keep thed. (3) we see that the change in the self-energy has been
Fermi surface unchanged. In a homogeneous systems, thigplaced by the corresponding changevig. This leads to

potential is simply a constant, approximations to\ andW given by
A= pye=3 (ke 1), (6) OVer(Q) 1
: . . Alg)= == : (14
whereu andu,. are the chemical potential and its exchange- oVe(q)  1—Po(q)Ky(q)
correlation part, and wheig is the Fermi momentum. From
the equation of motiofiEq. (1)] we readily find W) —o(a) V() ) (@)1~ K,o(q)Po(a)]
oW 1-P +K )
G(k,é):[é_ E(k)_z(k,é)]il, (7) (q) O(q)[v(q) xc(q)] (15)
_ _ Here,K,. is a functional derivative of . with respect to the
Go(k,e)=[e—ef—A+idsgne=m] ™ ®  genshy” & P
(6 being a positive infinitesimal anef=k?/2), and a Dyson
equation connecting the two Green’s functions, Sv4(Q)
Kyl )= : (16)
on(q)
G(k)=Go(Kk) + Go(K)[2 (k) = A]G(K). €)

If the Green'’s function in Eq(2) is again approximated

The quasiparticle energieg are obtained from by the independent-electron Green’s funct®g, we obtain

e=ep+Re3(k €. (10

[ d'q ~
2(k)=|f WGo(k—Q)W(Q), 17
B. Approximation for the vertex function

The GW approximation consists of approximating the where the effective screened interactMhis given by
vertex in Eq.(3) by unity. On this level, the approximation is
conserving in the sense of Baym and Kadarff which, _ v(q)
among other things, implies mutual consistency between the  W(q)=W(q)A(q)= .
total energy and the Fermi-surface valueofin the GyWA 1=Po(a)[v(a)+Kul(a)]
we furthermore replace all propagators by their independent-
electron counterparts3,). Thus,

(18)

The basic building block in the present TDDFT approxi-
mation is the functiorK,,(q). Unfortunately, it is accurately
known only in the limit of spatially slowly varying densities

dq a : :
_ B ppropriate to the LDA. Of course, even if we knédy,
() If (277)“60(k a)W(a), (12) exactly our approach is still approximate because the state
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and energy dependent self-energy has been replaced by a TABLE |. Relation betweenx and f(«) [Eq. (20)].
local potential when deriving.
It should be noted that our effective vertex accounts, infs alke [f(2)=3 alke [f()=1]
some average way, for both self-consistency corrections arii- 273 193
ing from the difference betwee® andG, as well as proper ' '
vertex corrections. If we would solve tli&W equations self- 2.67 1.89
consistently, as has been done by Holm and von Bdrne 6 2.62 1.85
encounters subtle problems which are not yet fully under-

stood. The problems originate in the different levels of re- | d Aldes ized b ket al 25
sponses in conserving theoridsThe self-energy and thus CEPerley and Alder as parametrized by Vosket al™ In

the screening functids) to be used in constructing it 12bPle I we give the mapping betweé(re) anda. The sen-
emerges as a first-order derivative of an underlydndunc- sitivity of the final results on different choices &) will
tional with respect t@. The actual response function of the be discussed in the next section. It is also of interest to know

theory is defined as a second-order derivative and is, in geftoW Sensitive the results are to the detailed shape,of To
dhis end, we also do calculations with local-field factors sug-

gested by Hubbartf, Vashishta and Singwl, and by Gel-
dart and Voskd® They all give very similar results, as does
the interpolation scheme suggested here.

So far we have tacitly assumed that the same local-field
dcorrection should be applied to both the screening and di-
rectly in X. This seems most natural because in the exact
expressions it is the same vertex that occurs in both places.
However, different procedures have been used in the past in
order to explain the band narrowing in the heavy alkali met-
als. In order to shed light on the usefulness of such schemes
we also perform calculations with local-field effects only in
the screening or only in the self-energy.

GW approximation, this latter response functigftime-
dependenG W approximation’) is only known in the high-
density limit?° Particle conservation requires that the vertex
must be a functional derivative & (Refs. 12 and 18as in
Eqg. (3). In GW theory the appropriate vertex is produce
when the total energy is differentiated twice to form the cor-
rect response functiofbut not in the intermediate step which
definesX, and P. Holm and von Barth indeed detect a large
violation of thef-sum rule. Approximations like the present
one with independent-electron Green'’s functions havé no
entering in the calculation &. They are consequently com-
patible with having no vertex corrections at éthe GoWA)

as well as with having vertices depending only on the mo-

mentum transfer g. C. Ground-state energy

In works on the dielectric function, the effective vertexis  aAg shown by Galitskii and Migd&(GM) the ground-state
usually expressed in a “local-field factorf(q). In our  energy can be expressed in terms of the one-particle Green's
density-functional description, we have function of the system. Since we are considering the total

energy, which is a thermodynamic property, it is natural to
1 use the finite temperature formalism in {fs=0 limit. This
fla)=— wKxc(Q)- (19 method is also computationally more efficient. The GM for-
mula was first applied to the electron gas by Lundqvist and
Itis generally accepted that this local-field factor should tendsgmathiyakatanit’ (No other extended system has, to our
to a constant of the order unity for large=¢q| and that it ~ knowledge, been treated.
should level off from its quadratic |OW-q behavior around According to GM, the grand potentiﬂ for a homoge-
q=2kg . In the strict static limit of the density-response func- neous system can be written as
tion, NiklassoR' has shown thaf(q) tends to a limit be-
tween 1/3 and 2/3 for high g. Recent glzjantum—Monte Carlo 1
calculations givef(q) for intermediate d: T N — 0_ e

In the local-density approximatioffDLDA), K,. is re- Q=(T-uN+U) 2; (e mINict 2 g, (2D
placed by its low-q limitdu,./dn, andf(qg) tends to infinity A A
as d for large . The TDLDA has been successfully appliedwhereT, N, U are the operators for kinetic energy, particle
to atoms?® and most calculations in solids employ the samenumber, and interaction energy, respectively. In &4) we
approximation. While the TDLDA certainly is correct for have introduced the Matsubé?a:ounterparts to the Green’s
slowly varying static perturbations, it gives a very unphysicalfunction and self-energy,
local-field factor for higher g. In order to investigate the
importance of the high-q behavior, we study also time- _ .
dependent density-functional approximations which interpo- Gk e)=Glkietp), (22
late between the LDA values for low-q to a high-q behavior

with a () in the range 1/2-1: S(ke)=3(k,ie+p), (23

Kxc(0) andn, are the occupation numbers. The symbol Tr is short
K @)= 77772 (200 for
1+ (g/a)?

A similar Ansatzhas been used by Shirféyfor estimating g
the first vertex diagram. We fix to have a given value of 22 f _Eei Se
f(). In our calculationsK,.(0) was obtained from data by K 2m
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FIG. 1. The correlation potentiakd) for an unpolarized elec- FIG. 2. The correlation energy per particle calculated from Eq.
tron gas from different app_roxnmate self-energies and from(24) with 3(k,ro) calculated from Eq(11) (G,WA) and from Eq.
quantum-Monte Carlo calculations by Ceperley and Alder. (17) (TDDFT) are compared with the values by Ceperley and Alder

L N and with the corresponding RPA values.
where the limit6—07 should be taken at the end of the

calculation.

The nontrivial part ofQ) is the correlation energy, or
rather the correlation energy per partiele. We thus sub-
tract the exchange energy and independent-electron kinet
energy and divide by the particle numb¥r This gives

is well known that the RPA overestimates the correlation

energies, and th&,WA inherits this deficiency. In calcula-

tions of occupied-state energies, though, the self-energy is

lather constant, and this relatively large but constant error

has little effect on the relative positions of occupied bands.
The very bad behavior of the TDLDA can be understood

1 as follows. The self-energy depends on the effective interac-
GC:N[ZE tion in Eq. (18), for all g. The spectral function for the ef-
fective interaction is

HereAn, is the difference between occupation numbers with

and without interaction., is the Hartree-Fock self-energy,

and3.=3-3,. Theoretically, it is not clear if one should Cim [ f(@)1w(@)*7Se(q)

use the particle number frogi or from G, for obtaininge. . m W(a)sgrie)= |[1-[1—f(q)]Po(q)v(q)|?’

However, we find that the particle number froghis con-

served to within 0.01% in the entire rangg<6.

. (29

o 1 1=
et 53(K) | Ayt 5 TrE g

(Sy is the independent-electron structure fagtd@ecause
IIl. RESULTS f(q) increases as’gn the TDLDA, the effective interaction
will have a negative spectral function at higher g. The spec-
tral function has a plasmon part arising from the zeros of the
In order to assess the merits of different local-field ap-denominator, and a particle-hole part arising from the nu-
proximations we need information about the self-energy obmerator. The resulting self-energy still has a non-negative
tained by other means. Generally, little is known abBut spectral function, but its electron-hole part from the electron-
beyond theGoWA level except at the Fermi surface, where hole part ofW is negative at higher momenta. This unphysi-
is should yield the exchange-correlation parf. of the  cal behavior of the spectral function ¥¥(q) is the likely
chemical potentiafcf. Eq. (6)]. The latter quantity is rather reason why the TDLDA fails.
well known from quantum Monte Carlo calculations by Cep-  Proceeding to the local-field corrections by Hubbrd,
erley and Aldef® In Fig. 1 we compare the correlation part vashishta and Singw, and the TDDFT interpolation for-
of the chemical potentigh.=3.(kg,0) in different approxi- mula of the previous sectiofEq. (20)] with f(«)=1/2, we
mations with results derived from the Ceperley-Alder datanotice that they all give very similar results and correct
by Vosko et al?® We notice that theG,WA overestimates roughly 2/3 of theG,WA error. If we stretch the interpola-
the magnitude ofu. by as much as 40% in the metallic tion to allow f(«)=1, the resulting Fermi-surface values
range, and that TDLDAK,(q) =K,.(0)] is way above and agree with the Ceperley-Alder data within 1-2 %. This very
has even the incorrect sign fog larger than 4. good agreement is of course much better than expected from
In the case ofGoWA, one can actually show that the such a simple approximation. Being interested in quasiparti-
Fermi-surface value should equal the value obtained frontle energies at all momenta, we feel it is justified to use this
the random phase approximati¢RPA) dielectric function value of a to calculate the self-energy also away from the
integrated over the interaction strength(This correspon- Fermi surface.
dence is fulfilled to 0.01% or better in our numerical dala. In Fig. 2 we show the correlation energy per particle in

A. Chemical potential and total energy
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FIG. 3. The violation of the consistency relation in Eg6) in FIG. 4. The chemical potential with(«) = 1. The results when
different approximations. local fields are included only in the screening and onlyZirare

compared with the values by Ceperley and Alder.

different approximations. Again we compare with Ceperley-
Alder data as compiled by Vosket al. cluded inX but not in the screening functiop,. is pushed

We notice that the energies from tlBWA are approxi- above the Ceperley-Alder results. Looking at the total ener-
mately midway between the RPA values, which are too deergies(Fig. 5 we see the same trends but somewhat less pro-
and the Ceperley-Alder values. This confirms the conclusiofounced. Thus, the correlation energy drops below the
by Lundqvist and Samathiyakatafithat already this first GoWA results when local fields are included only in the
approximation represents a considerable improvement. Thecreening, and it is pushed above the Ceperley-Alder values
various local-field corrections with exception of the TDLDA With local fields only inX. The other local-field approxima-
give similar results and they are close to the Ceperley-Aldetions (Hubbard, et9.give similar results. It is clear that by

data. including local-field effects only in the screening or only in
In an exact theory, the self-energy is related to the correX we destroy the consistency between the chemical potential
lation energy by and the total energy and also the quality of RgWA re-

sults. Our findings support the conclusions by Mahan and
Serneliu§ concerning the inadequacy of such approxima-

d :
2 (kg u)= %(nec(n)) (26)  tions.

(2.=2-3,). This consistency relation is violated in the B. Parametrization of quasiparticle dispersions

GoWA. By adding local-field corrections, both the Fermi-  The electron-gas quasiparticle energies within GV A
surface value ok, and the correlation energy approach thewere obtained long ago by Hedin and Lundqvfst® and

Ceperley-Alder values[which by construction fulfill  calculations with local-field corrections, like the present
uc=d(ne.)/dn]. Thus the violation is greatly reduced by

the local-field corrections. The violation of the consistency

relation in EQ.(26) in different approximations is plotted in 0.00 ' ' ' ' ' '
Fig. 3.

As mentioned in the previous section, consistency be- 0.02 o 9 § ¢
tween the Fermi-surface value &f and the total energy is o 9 g ¢ ; ; 8
guaranteed in any conserving approximation. Thus, it is 004 b g g = s 8 :
obeyed in the first self-consistent solution to B&V func- . g 4 8
tional by Holm and von Barth® Their correlation energies = B . .

. . . < -006} 2 o Loc. fieldonlyinT -
and chemical potentials are very close to the ones obtained — g a Loc. field only in W
with our interpolation scheme here. Thus, the local-field cor-  «’ a ¢ Loc. fieldinW & X
rections have largely removed the self-consistency errors in- 008 | ® ‘ fggwe”e Ader |
herent in theGoWA. That this is at all possible gives some 5 perey
credibility to our approach. 0.0 F .

Let us finally discuss approximations with local fields in
only the screening function or only . In Fig. 4 we show . . . . . X
results for the chemical potential witt{e)= 1. 01200 1.0 2.0 3.0 4.0 5.0 6.0

When local fields are included only in the screening func- fs

tion, we see thaj.. drops way below the already too deep
GoWA values. If, on the other hand, the local fields are in- FIG. 5. The correlation energy with(«)=1 as in Fig. 4.
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The quasiparticle strength=[1— (d2/de)]~* with and
without local-field effects are also very similar. Below the
threshold for plasmon excitatio, is of the order of 0.6—
0.8, and it rapidly approaches unity above the threshold.

The results from the calculation of Rgk) have been
parametrized in terms of simple functions of momentum and
density. Because the ground-state potential is much better

0.0 T T T T

i: known than the self-energy, it is natural to parametrize the
5 quantity
(]
<
Re 3 (k,rg)
F(krg)=——F—7—, 2
(krs) Uydl's) @0

rather than itself. The functionF is calculated in the
GoWA from Eq.(11) and in the TDDFT from Eq(17) with
Y 10 20 3.0 4.0 5.0 vye=2(Kg,u) for consistency. The calculated values Fof

k/ke are in both cases parametrized and the explicit expressions
for the parametrizations &t are given in the Appendix. The
parametrizations of the functidh are constructed in such a
way that the approximate R&Kk) obtained from these func-
tions have the same main analytical properties as the exact
ones, were obtained by Mahan and Serndliakhough they electron self-energy. The latter has two main features:
only present changes in the bandwidths. Our results can be

FIG. 6. The k dependence of Rgk,r;) from Eg. (11)
(GoWA).

used to construct local approximatidhé® to 3, which are 1
useful in calculations of, for example, electron energy loss or limRe X (k)= K’
photoelectron propagation. It may therefore be of some in- k—o

terest to have a compilation of results with local-field correc-

tions in a convenient parametrized form. We thus calculate J Re 3 (k)
Re3(k)=ReX(k,e) at the quasiparticle energy, [Eqg. lim =
(10)]. Results at different densities are compared with those k—0 ok

of the GuWA in Figs. 6 and 7. The dispersions from the
G,WA and from TDDFT are very similar in shape, in agree-  In both theGoWA and in TDDFT the real part ok (k)
ment with previous finding$. has a cusp atkk., where plasmon excitations become pos-
At higher energies where plasmon losses become pogible. This is a consequence of the fact that, in our approxi-
sible, roughly a plasmon energy above the Fermi energy, th&ation, the plasmons are sharp excitations until they hit the
dispersion corrections become more pronounced_ Phot0e|e§artiC|e-h0|e continuum. In the exact dielectric function the
tron energies typically fall in this energy region, and theplasmons are broadened and the cusp inZR¢ is
self-energy corrections are quite important here. In the casgmoothed. We have therefore introduced an extra parameter
of the quasiparticle damping, again the straighfWVA are v in the parametrizations d¢f which simulates this broaden-
similar but somewhat larger than those of TDDFT. ing. The parameter only affects the behavior of the param-
etrization of ReX(k) in the vicinity of k=k; and y=0 re-
produces the calculated results. Both parametrizations for
Re 3 (k) reproduces the calculated values for€r3<6 and
k<2kg to within 5%.

0.0 T T T T

IV. CONCLUSIONS

-05
In this paper we have scrutinized commonly used mean-

field-type vertex corrections using as a guiding principle the
consistency between the total energy and the chemical po-

tential. We have shown that rather simple local-field approxi-

mations derived from time-dependent density-functional
theory can be used to systematically improve the absolute
values of the self-energy. In particular, the rather large error
in the correlation potential at the Fermi surface can be almost

s . . . . entirely eliminated. In doing so, the total energy and the

~0.0 1.0 2.0 3.0 4.0 5.0 chemical potential become approximately consistent and

k/ke rather close to quantum Monte Carlo results and to those

from a self-consistent solution to t&W problem.

FIG. 7. The k dependence of Rgk,r.) from Eq. (17) We have also been able to isolate some severe problems
(TDDFT) with f(«)=1. with approximation schemes used in the past. Thus, we have

-ReZ(k)V,,

-
(=]
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found that the time-dependent LDA gives bad results and TABLE Il. GoWA constants.

that it is essential that the local-field reflects density changes

in a region of the order of the screening length in the system. Cmn

We have also demonstrated that local-field correctiongn/n 0 1 2 3

Z:gutlgzbisagf“ed consistently to both the screening functioly 0170073 —0.461614 0766573 —0.0436796
Like previous workers, we find little effects on occupied 1 3.014 —1.20923 4.03085 —2.43659

states on a relative energy scale. All vertex corrections coné 1.01252  —0.44149 1.13575 0

sidered here are local, i.e., they depend only on the momer 0.735628 0.548797 0.817027 0

tum transferg and not on the momenta and energies of the4 3.00073  —0.913005 —0.873964 1.12073

colliding electrons. A common theme from many investiga-

tions is that vertex approximations of this kind have little

effect 027226 quasiparticles around "’?”d be!ow the Fem”l'he parameterg,, . ..,c, are all functions ofrg and are

energy®®>"*In the case of band gaps in semiconductors, 'tgiven by

is known that it is primarily thenonlocality of the self-
energy that is of importance, and not so much its energy

dependence. Vertex approximations depending onlg are Codfs  VIs(Cort CooTs+ Coal )
obtained from docal approximation toX. Thus, it seems Co(rg)= z v 0(co),
conceivable that approximations based on a nonlanahtz \/1+rs 1+rs
are to be preferred. The consistency requirements discussed (A7)
in the present work will be useful in deriving such more
advanced approximations. Finally, we provide simple fits to 2
quasiparticle energies in the hope that they may be usefulin, ;) Ciofs  Fs(Curt Cool s+ Cagfs) B(c,—10°°)
approximate calculations of spectra involving electrons at S V14 rsz 1+r‘s1 ! '
higher energies, such as photoemission and EXAFS spectra. (A8)
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APPENDIX: PARAMETRIZATION
The functionF discussed in Sec. Il B is given by C4(rs):C40r[S(c4l+c42rs)/(1+c43rs)]_ (A11)
C,B(K) . .
F(K,y,rs)=CoA(K)+ ————=[1+[B(K)]%] The constantg,, are given in Tables Il and IlI.
2myl+cy Note that the condition
XIm In z,+C(K)Im In z;, (A1)
F(kF(rS)vyvrs)zlv (A].Z)
where
from Eq. (6) is not exactly fulfilled by this parametrization.
K If this property is desired, the expression forin Eq. (Al)
K=—, (A2)  should be divided byF(kg). If this is done, the agreement
C4 with the calculated values df is slightly worse but still
within the accuracy mentioned in Sec. Ill B. For those inter-
1—K?2 ested, the computer code for this parametrization is available
A(K)=Re Inz; 5 ——1Im[In z,=In z,]+1, (A3)  via anonymous ftp alip.teorfys.lu.se

TABLE Ill. TDDFT constants.

BK—\/C1+1 A4
(K)= K2 (Ad) Conn

m/n 0 1 2 3
C(K)= Co ’ (A5) 0 0.13405 —0.1245 0.0124766 0.384274
W\/WZ 1 3.68646 —2.08264 5.10236 —3.87509
2 1.00252 —0.367488 1.10035 0
. K-1 47K4 3 0.775477 0.516925 0.893986 0
2,=—12; :K+1 +1 (11KHZ" (AB) 4 2.96853 —0.910738 —1.2975 1.58913
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