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Triplet excitation energies within the approximate coupled cluster singles and doubles model CC2 have been
implemented using an explicitly spin coupled basis and the resolution of the identity approximation for two-
electron integrals. This approach reduces substantially the requirements for CPU time, disk space and memory,
and extends the applicability of CC2 for triplet excited states to molecules that could not be studied before with
this method. We report an application to the lowest singlet and triplet vertical excitation energies of trans-
azobenzene. An accurate ab initio geometry optimized at the MP2/cc-pVTZ level is presented, and CC2
calculations in the aug-cc-pVTZ basis set with 874 basis functions are combined with coupled cluster singles and
doubles (CCSD) calculations in modest basis sets to obtain the best possible estimates for the vertical excitation
energies. The results show that recently reported SOPPA calculations are unreliable. Good agreement with
experiment is obtained for the lowest excited singlet state S1 , but for the lowest triplet state T1 the results
indicate a large difference between the vertical excitation energy and the experimentally observed transition.

I. Introduction

In a recent series of publications, Hald et al.1–3 have reported
an implementation of coupled cluster singles and doubles
(CCSD) and the approximate coupled cluster models CC24

and CC35 for triplet excitation energies using an explicitly spin
coupled basis for the excitation operators and the corres-
ponding projection manifold. Compared to a spin orbital
based formulation—which has been standard for triplet excita-
tions—the spin coupled formulation reduced the computa-
tional requirements significantly. For closed shell systems,
the computational costs for the calculation of triplet excitation
energies thus became comparable to those for singlet excita-
tions, for which spin coupled formulations have been used
for many years.
In the present article we focus on the approximate coupled

cluster singles and doubles model CC2, which is obtained from
the CCSD model by truncating the equations for the double
excitation amplitudes in second-order perturbation theory.4

This leads to a coupled cluster model for which the computa-
tional costs formally scale as nN4, where n is the number of
correlated electrons and N the size of the basis set. CC2 ground
state energies and excitation energies for single excitation
dominated transitions are both correct to second order in per-
turbation theory, while excitation energies for double excita-
tion dominated transitions are only correct to zeroth order.
This should be compared with the CCSD method for which
the computational costs scale as n2N4. CCSD provides ground
state energies which are correct through third order in pertur-
bation theory, and excitation energies which are also only cor-
rect through second order for single excitation dominated
transitions, but correct through first order for double excita-
tion dominated transitions. The CC2 method is thus designed
for the calculation of excitation energies of modest accuracy
(�0.3 eV error) for which CCSD calculations with accurate
basis sets are not possible. However, in integral-direct

implementations as they have been reported in refs. 1–3,
which employ conventional four-index electron repulsion
integrals, the computational costs for both CC2 and CCSD
are dominated to a large extent by the costs for the calculation
and the transformation of these integrals, which hampers the
application of CC2 to large molecules. Other severe bottle-
necks for large-scale CC2 calculations with this approach
are huge memory and disk space demands which scale as
n2N2 since the storage of double excitation amplitudes is
required.
Recently, Hättig and Weigend have shown that for CC2

both the CPU time and the storage bottlenecks can be
removed if the resolution of the identity (RI) approximation
for the electron repulsion integrals is employed. We report here
an extension of this work to triplet excitations, where we
employ the explicitly spin coupled basis reported in ref. 1 to
obtain the most efficient formulation. With the RI approxima-
tion the operation count for CC2 calculations can be reduced
to O(n2N2Naux), where Naux is the size of the auxiliary basis set
for the resolution of the identity, which is �2.5N. In practice,
this means a reduction by about an order of magnitude or
more, depending on the basis set size or the ratio n/N.6,7

Furthermore, the RI approximation makes it possible to sepa-
rate the calculation and transformation of electron repulsion
integrals from the contraction of these integrals with double
excitation amplitudes. This allows the use of a partitioned for-
mulation of CC2 which does not require the storage of double
excitation amplitudes or other intermediates of O(n2N2) size on
disk and removes the storage bottlenecks.
We apply the RI-CC2 implementation to the lowest vertical

singlet and triplet excitation energies in trans-azobenzene.
Azobenzene is the parent compound of a class of dyes which
is of interest in the development of materials for optical data
storage.8–10 In thin films of polymers or oligomers of azoben-
zene dyes the azobenzene group can be aligned by polarized
laser light. The alignment changes the diffraction, and the
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information coded in the aligned molecules can be read by
another laser. This storage process exploits a trans-to-cis and
cis-to-trans isomerization process of the electronically excited
azobenzene group which involves the lowest singlet and the
lowest triplet states. Anyway, the important information which
is needed for the optimization of the storage process is the laser
wavelength, i.e. the transition energy, required to excite the
azobenzene group. In the planar molecule the transition to
the lowest singlet excited state S1 is forbidden for symmetry
reasons and the lowest allowed transition is the p!p* excita-
tion into the S2 state. Because of the size of azobenzene, pre-
vious theoretical investigations have been limited to
semiempirical and density functional theory (DFT) calcula-
tions and a few ab initio studies using second-order Møller–
Plesset perturbation theory (MP2), configuration interaction
(CI), complete active space self-consistent field (CASSCF) or
the second-order polarization propagator approach (SOPPA)
with small basis sets insufficient to describe correctly the elec-
tronic structure.10–15

This paper is organized as follows: In the next section we
give a brief review of the equations for the CC2 method formu-
lated in an explicitly spin coupled operator basis, and outline
the implementation of the RI-CC2 approach for triplet excita-
tion energies. In Section III.A we report a new ab initio geome-
try for trans-azobenzene, optimized at the MP2/cc-pVTZ
level. The results obtained for the lowest singlet and triplet
excitations of trans-azobenzene with RI-CC2 calculations in
an accurate aug-cc-pVTZ basis and CCSD calculations in
small ANO basis sets are presented in Section III.B. In Section
IV we give a short summary of our conclusions.

II. Theory and implementation

Starting from the coupled cluster ansatz for single reference
states

CCj i ¼ expðTÞ HFj i ð1Þ

we obtain the similarity transformed Schrödinger equation

expð�TÞH CCj i ¼ E HFj i ð2Þ

where T is the cluster operator, H the Hamiltonian for the sys-
tem and |HFi the Hartree–Fock reference state. In the CC2
model, the cluster operator is truncated after double excita-
tions. It is written as

T ¼
X
m1

tm1tm1þ
X
m2

tm2tm2 ð3Þ

where m1 and m2 denote respectively single and double excita-
tions, tm are the cluster amplitudes and tm the corresponding
excitation operators. The amplitudes are determined from
cluster equations which for the CC2 model have been defined
in ref. 4 as

Om1 ¼ m1h jĤH þ ĤH;T2

� �
HFj i ¼ 0 ð4Þ

Om2 ¼ m2h jĤH þ F ;T2½ � HFj i ¼ 0 ð5Þ

where

ĤH ¼ expð�T1ÞH expðT1Þ

¼
X
pq

ĥhpqEpq þ
1

2

X
pqrs

pq ĵj rs
� �

EpqErs � dqrEps

� � ð6Þ

and F is the usual SCF Fock operator. The energy is given by

E ¼ HFh jH CCj i ð7Þ

In the canonical SCF MO basis, eqns. (4) and (5) can be solved
explicitly for the double excitation amplitudes:

taibj ¼
ðai ĵj bjÞ

ei � ea þ ej � eb
ð8Þ

Here and in the following i, j, k, l denote occupied and a, b, c, d
unoccupied canonical orbitals. Because of the simple structure
of the CC2 double excitation amplitudes, these can be gener-
ated ‘‘on the fly’’ and do not need to be stored on disk or in
memory.
Excitation energies and the amplitudes describing the

excited state are obtained as solutions to the asymmetric eigen-
value problem

AR ¼ oSR ð9Þ

where A is the Jacobian for the vector function Om and S is the
overlap matrix

Amn ¼ @Om

@tn
ð10Þ

Smn ¼ mh jtn HFj i ð11Þ

and R is a right eigenvector. With the parameterization
employed here for the cluster amplitudes, S is a unit matrix.
For the CC2 model the Jacobian is

A ¼ m1h j ĤH; tn1
� �

þ ĤH; tn1
� �

;T2

� �
HFj i m1h j ĤH; tn2

� �
HFj i

m2h j ĤH; tn1
� �

HFj i dm2n2 em2

 !

ð12Þ

where the doubles–doubles block is diagonal with the elements

eaibj ¼ ea � ei þ eb � ej ð13Þ

Explicit formulae for the transformation of a trial vector with
singlet16 and triplet1 spin symmetry have previously been
derived and are summarized in Table 1. Capitalizing the diag-
onal structure of the doubles–doubles block we partition the
CC2 eigenvalue problem as

Am1n1 �
X
g2

Am1g2Ag2n1

eg2 � o

" #
Rn1 ¼ Aeff

m1n1
oð ÞRn1 ¼ oRm1 ð14Þ

Rm2 ¼ �
X
n1

Am2n1Rn1

em2 � o
ð15Þ

where now a non-linear eigenvalue problem only in the space
of the single excitations needs to be solved. The double excita-
tion part of the eigenvector R is given as a function of the
single excitation part by eqn. (15). In order to apply iterative
techniques to solve the eigenvalue problem we need the cap-
ability to transform, for a given guess for the eigenvalue o, a
trial vector with the effective matrix Aeff

m1n1
(o) in eqn. (14).

Explicit expressions for these transformations for both singlet
and triplet excitations are given in Table 1. In the latter table
we use for triplet excitations the combination

Rab
ij ¼ 2 ðþÞRab

ij þ ð�ÞRab
ij

� �
ð16Þ

with the individual parts (+)R and (�)R of the triplet double
excitation vector given by

ðþÞRab
ij ¼ 1

2

ðai j bjÞ þ ðbj j aiÞ � ðaj j biÞ � ðbi j ajÞ
ei � ea þ ej � eb þ o

ð17Þ

ð�ÞRab
ij ¼ 1

2

ðbj j aiÞ � ðai j bjÞ
ei � ea þ ej � eb þ o

ð18Þ
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while in the singlet case the double excitation vector is
obtained as

Rab
ij ¼ 1

2

2ðai j bjÞ þ 2ðbj j aiÞ � ðaj j biÞ � ðbi j ajÞ
ei � ea þ ej � eb þ o

ð19Þ

The modified two-electron MO integrals used in eqns. (17)–
(19) are defined through a generalized AO to MO transforma-
tion

ðai j bjÞ ¼
X
abgd

�LLp
aaL

h
bi þ Lp

aa
�LLh
bi

h i
Lp

gbL
h
dj abjgdð Þ ð20Þ

with the transformation matrices Lp ¼ C(1� tT1 ), Lh ¼
C(1+ t1), �LL

p ¼ �CRT
1 and �LLh ¼ CR1 , where C is the canoni-

cal orbital coefficient matrix and a, b, g, d are atomic orbitals.
The partitioning of the CC2 eigenproblem of itself would

not reduce the scaling of the memory and disk space require-
ments since an efficient ‘‘on the fly’’ calculation of either the
doubles amplitudes or the doubles part of the trial vector
would require the storage of O(n2N2) integrals where N is the
number of basis functions and n is the number of electrons.
This bottleneck can be avoided with a resolution of the identity
approximation for the two-electron integrals.17–19 In the RI
approximation the products of atomic orbitals appearing in
the four-index two-electron integrals are expanded in an aux-
iliary fitting basis,

abjgdð Þ ¼
X
PQ

cab;P VPQ cgd;Q ð21Þ

VPQ ¼ P jQð Þ ð22Þ

where cab,P are the expansion coefficients and (P|Q) are two-
index two-electron integrals in the auxiliary basis set. If the
expansion is done employing a Coulomb metric,19,20 the
expansion coefficients are obtained in terms of three-index
two-electron integrals (ab|P) and the two-index two-electron
(V|P) integrals by solving a linear set of equations,

cab;P ¼
X
P

ab jPð ÞV�1
PQ ð23Þ

and the four-index two-electron integrals can be expanded
as19–22

ab j gdð Þ ¼
X
PQ

ab jPð ÞV�1
PQ Q j gdð Þ ð24Þ

This allows one to perform the AO to MO transformation
and some of the contractions with three-index integrals instead
of four-index integrals and thereby removes the need to store
any four-index integrals. The algorithm for calculating trans-
formations of a triplet trial vector with the effective Jacobian
in eqn. (14) is summarized in Fig. 1. Compared with the origi-
nal implementation1 in the DALTON program package,23

which employed conventional four-index two-electron inte-
grals, the present approach reduces disk space and memory
requirements to O(nNNaux) and O(mNNaux), respectively,
where m is the size of the subsets of occupied orbitals I, and
Naux� 2.5N. I/O scales as O(nInNNaux) where nI is the number
of subsets I. The computationally most demanding operations
in terms of CPU time and memory requirements are carried
out in steps 3 and 5 of the algorithm in Fig. 1. Step 3 describes

Table 1 Explicit expressions for singlet and triplet trial vectors transformed with the effective CC2 Jacobian Aeff(o) defined in eqn. 14

Term

r(o) ¼ Aeff(o)R

Singlet Triplet

r1ai þ
X
d

EadRdi þ
X
d

EadRdi

r2ai �
X
l

RalEli �
X
l

RalEli

r3ai þ
X
ck

½2ðai ĵj kcÞ � ðki ĵj acÞ�Rck þ
X
ck

½2ðai ĵj kcÞ � ðki ĵj acÞ�Rck

r4ai þ
X
dlc

Rcd
il ðld ĵj acÞ þ

X
dlc

Rcd
il ðld ĵj acÞ

r5ai �
X
dlk

Rad
kl ðld ĵj kiÞ �

X
dlk

Rad
kl ðld ĵj kiÞ

r6ai þ
X
ck

ðRac
ik F̂Fkc � t

acð1Þ
ki

�FFkcÞ þ
X
ck

ðRac
ik F̂Fkc � t

acð3Þ
ki

�FFkcÞ

ð1Þ �FFkc ¼
X
dl

½2ðkc j ldÞ � ðkd j lcÞ�Rdl
ð3Þ �FFkc ¼ �

X
dl

ðkd j lcÞRdl

Eab ¼ F̂Fab �
X
dkl

ð2tadkl � tadlk Þðld j kbÞ

Eji ¼ F̂Fji �
P
cdk

ð2tcdik � tcdki Þðkd j jcÞ

Phys. Chem. Chem. Phys., 2002, 4, 2111–2118 2113
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the evaluation of transformed three-index two-electron inte-
grals B̄Q

ai. The batch size for the loop over the occupied orbitals
i is chosen such that the half-transformed integrals
(ai|P) ¼

P
b
�LLh
bi(ab|P) can be kept in memory for the complete

batch I. The AO three-index integrals are evaluated in a batch
loop over shell pairs for a, b. The memory requirements for
this step are thus O(mNNaux). The computationally most
expensive steps are the construction of the four-index MO inte-
grals (aijbj) and (bjjai) from the three-index intermediates B̂Q

ai

and B̄Q
ai and the calculation of the Y~Qia intermediate—described

at step 5—which both take O(n2N2Naux) operations. In these
steps, there are no differences in the operation count for triplet
and singlet excitations. The differences caused by the different
spin couplings appear only in operations scaling as O(n2N2) or
less. The computational requirements are thus practically the
same for singlet and triplet excitations.

III. trans-Azobenzene

A. Structure

The structure of trans-azobenzene has been studied experimen-
tally with various spectroscopic methods in the solid, the
liquid, and the gas phase, but it is still a matter of dispute.
The first X-ray diffraction results24,25 suggested that the

trans-azobenzene (TAB) molecule has a planar structure with
C2h symmetry in the solid phase. A recent reinvestigation,26

however, showed that there are two crystallographically inde-
pendent sites in the crystal and that the symmetry group of the
TAB molecule in the crystal is only Ci . Early gas electron dif-
fraction (GED) measurements,27 on the other hand, indicated
that in the gas phase the geometry is slightly distorted from
planarity to a structure with Ci symmetry and also for the
liquid phase a distorted geometry with Ci molecular symmetry
is found in Raman experiments.28 A very recent accurate GED
measurement by Tsuji et al.,29 however, led to the conclusion
that the gas phase equilibrium structure has indeed C2h sym-
metry. Theoretically the structure has been studied at the Har-
tree–Fock and the density functional theory (DFT) level with
different functionals using the 6-31G* basis. Also second-order
Møller–Plesset perturbation theory (MP2) has been used,11,29

but only in combination with small basis sets insufficient for
a description of electron correlation effects.
We have therefore performed a new geometry optimization

at the MP2 level using the cc-pVTZ basis set of Dunning and
coworkers.30 In these calculations we imposed C2h molecular
symmetry, i.e. a planar geometry, as found in the latest
GED experiment for the gas phase structure. Anyway, after
distorting the molecule into Ci or into C2 symmetry, optimiza-
tions resulted again in essentially planar geometries. For these
calculations we employed the DSCF31 and RI-MP222 modules
of the TURBOMOLE program package.32 In the MP2 calcu-
lations the 1s2 shells of the carbon and nitrogen atoms were
kept frozen and for the resolution of the identity approxima-
tion in the RI-MP2 program the optimized auxiliary cc-pVTZ
basis from ref. 7 was used. The details of the structure are
given in Table 2, together with the experimental data from refs.
25 and 27 and the B3LYP/6-31G* results from ref. 12. The
atom numbering is explained in Fig. 2.
Comparing the MP2/cc-pVTZ results with the previous

DFT results in the 6-31G* basis, it is observed that the differ-
ences for the angles and the bond lengths are small compared
with the experimental uncertainties. The largest differences are
observed for the N=N bond lengths and the C(3)–N(1)=N(2)
angle. The deviations between the B3LYP and B3P86 and
the present MP2 results are within kdrk� 4 mÅ and an average
change of 0.2� in the angles, the smallest within the five DFT
functionals used in ref. 12. For the three other functionals—
SVWN, BLYP and BP86—the average differences in the bond
lengths are 9, 13 and 12 mÅ respectively. The angles for
SVWN deviate on average by 0.6� from the MP2 results,
whereas the differences are only 0.3� and 0.2� for BLYP and
BP86. The largest deviations are found for the angles C(3)–
N(1)=N(2), C(5)–C(3)–C(7) and C(15)–C(5)–C(3). Anyway,
the present MP2/cc-pVTZ geometry is expected to be the most
accurate ab initio structure available for trans-azobenzene and
should be useful for a refinement of the GED structures, which
rely on ab initio data for a full determination of all structure
parameters, and the latest analysis29 was based on an MP2/
6-31+G* calculation.

B. Vertical excitation energies

The vertical excitation energies of trans-azobenzene were cal-
culated using the RI-CC2 approach described above, the usual
CC2 (without RI approximation) and the CCSD methods. For
all models the 1s2 cores at the nitrogen and carbon atoms were
kept frozen in the correlation and response calculations. In the
CC2 and CCSD calculations we employed the same contrac-
tions of the atomic natural orbital (ANO) basis sets by Wid-
mark et al.33 that have been used in the SOPPA calculations
by Åstrand et al.10 The first one—denoted as [3s2p1d/2s]—
was taken from the work of Molina et al.34,35 and consists of
two contracted functions for hydrogen and a [3s2p1d] contrac-
tion for carbon and nitrogen. A second smaller ANO contrac-

Fig. 1 Algorithm for the transformation of the triplet spin coupled
trial Rm1

with the effective Jacobian Aeff(o) defined in eqn. (14). The
integral intermediates B̂Q

pq ¼ lpapl
h
bq(ab|P)V

�1=2
PQ and the intermediates

Eab , Eji and F̂jb are independent of the trial vector Rm1
. These inter-

mediates are precalculated once and for all after the determination
of the ground state amplitudes prior to the solution of the eigenvalue
problem. For definitions and notations see Section II and Table 1.

2114 Phys. Chem. Chem. Phys., 2002, 4, 2111–2118
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tion—denoted as [3s2p(1d)/2s]—is obtained by leaving out the
d-type polarization functions at the carbon atoms, including
them only for the nitrogen atoms in the azo group. For the
RI-CC2 calculations we employed the aug-cc-pVDZ and
aug-cc-pVTZ basis sets of Dunning and coworkers,30,36 and
for the resolution of the identity approximation the optimized
aug-cc-pVDZ and aug-cc-pVTZ auxiliary basis sets of Wei-
gend et al.7 To test whether, in the investigated range of the
spectrum, some states have (partial) Rydberg character, we

performed in addition a RI-CC2 calculation in an aug-cc-
pVDZ basis augmented with two primitive (2s2p2d) sets of dif-
fuse functions (exponents 0.01 and 0.0033, as proposed in ref.
16 for a benzene molecule), located at the center of mass of
each of the two C6 rings in trans-azobenzene. We denote this
basis in the following as aug-cc-pVDZ-CM2. As shown in
ref. 7, the aug-cc-pVTZ basis gives at the MP2 level (valence)
correlation energies within �11� 2% of the basis set limit and
(valence) correlation contributions to dipole moments within
�7� 6% of the basis set limit, while the additional error intro-
duced by the resolution of the identity approximation is about
an order of magnitude smaller. A similar accuracy is expected
for CC2 ground state and excitation energies.
In Table 3 we have listed the lowest singlet and triplet excita-

tion energies computed with the CCSD model and the
[3s2p1d/2s] basis and the SOPPA results from ref. 10 obtained
in the same basis set. We have calculated the CCSD excitation
energies using both the planar X-ray diffraction structure from
ref. 24 which was used in the SOPPA calculations by Åstrand
et al.10 and the MP2/cc-pVTZ optimized geometry. The two
geometries differ mainly in the parameters that describe the
azo group, i.e. the N=N and C–N bond lengths and the C–
N–N angle. Focusing first on the CCSD results for the two dif-
ferent structures, we observe large changes in the verticalFig. 2 Geometry and atom numbering for trans-azobenzene.

Table 2 The MP2/cc-pVTZ optimized geometry of trans-azobenzene. A planar geometry with C2h symmetry was enforced. For technical details

see Section III.A

Bond

Ab initio calculations Experiments

MP2/cc-pVTZ B3LYP/6-31G*a X-rayb X-rayc GEDd GEDe

Bond length/Å

N(2)=N(1) 1.268 1.260 1.257 1.247 1.268 1.260(8)

C(3)–N(1) 1.417 1.418 1.437 1.428 1.427 1.427(8)

C(5)–C(3) 1.400 1.405 1.385 1.389 1.396 1.405

C(7)–C(3) 1.397 1.401 1.385 1.387 1.396 1.401

C(9)–C(7) 1.391 1.393 1.385 1.384 1.396 1.396

C(11)–C(9) 1.393 1.395 1.385 1.382 1.396 1.397

C(13)–C(11) 1.398 1.401 1.385 1.391 1.396 1.402

C(13)–C(5) 1.388 1.389 1.385 1.384 1.396 1.393

H(15)–C(5) 1.080 1.084 1.084 1.088 1.102(7)

H(17)–C(7) 1.081 1.085 1.084 1.088 1.102(7)

H(19)–C(9) 1.081 1.086 1.084 1.088 1.102(7)

H(21)–C(11) 1.081 1.086 1.084 1.088 1.102(7)

H(23)–C(13) 1.082 1.086 1.084 1.088 1.102(7)

Angles/degree

C(3)–N(1)=N(2) 113.7 114.7 113.0 114.1 114.5 113.6(8)

C(5)–C(3)–N(1) 124.6 124.7 123.7 123.0 124.7(9)

C(7)–C(3)–N(1) 115.1 115.3 115.6

C(3)–C(5)–C(13) 119.3 119.5 119.1

C(3)–C(7)–C(9) 120.1 120.2 119.6

C(5)–C(13)–C(11) 120.5 120.4 120.5

C(5)–C(3)–C(7) 120.3 119.8 120.7

C(13)–C(11)–C(9) 120.0 120.0 119.7

C(11)–C(9)–C(7) 119.8 119.7 120.3

H(15)–C(5)–C(3) 119.1 118.6

H(15)–C(5)–C(13) 121.6 121.7

H(23)–C(13)–C(5) 119.7 119.7

H(23)–C(13)–C(11) 119.8 119.8

H(21)–C(11)–C(13) 119.9 119.9

H(21)–C(11)–C(9) 120.0 120.0

H(19)–C(9)–C(11) 120.2 120.1

H(19)–C(9)–C(7) 120.0 120.0

H(17)–C(7)–C(9) 121.6 121.6

H(17)–C(7)–C(3) 118.3 118.1

a Density functional theory, ref. 12. b X-ray diffraction, ref. 24; for the SOPPA calculations in ref. 10 and the present CCSD calculations for this

structure, the angles C–C–C, C–C–N and C–C–H were assumed to be 120�. c X-ray diffraction, ref. 25. d Gas electron diffraction, ref. 27. e Gas

electron diffraction, ref. 29; in addition to values given in the table, also the angle difference [C(5)–C(3)–N(1)�C(7)–C(3)–N(1)]/2 was determined

to be 5.0(9).
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excitation energies between the two geometries. Only for the 1
1Bg , 2

1Au , 1
3Bg and 1 3Ag states the changes are less than 0.2

eV. For all other states we find changes between 0.3 and 1.0
eV. Two conclusions can be drawn from these results: first,
for some of the states the vertical excitation energies are prob-
ably so sensitive to geometry effects that only limited compar-
ison will be possible with experimental data; and second, the
crystal structure from ref. 24 is probably too inaccurate to
be appropriate for use in ab initio calculations. Before compar-
ing the CCSD and the SOPPA results, we note that in SOPPA,
similarly as in the CC2 model, excitation energies are correct
through second-order perturbation theory for single excitation
dominated transitions, but only correct through zeroth order
for double excitations. Since CCSD treats doubles excitations
correctly through first order, it provides a benchmark for both
SOPPA and CC2.4,37 If one compares the SOPPA results from
ref. 10 with CCSD excitation energies calculated at the same
geometry and with the same basis sets, differences larger than
0.6 eV are found for the lowest excited states 1 1Bg , 1

3Bg and 1
3Bu . This indicates that these states are not correctly described
by SOPPA.
In Table 4 we have listed the CC2 excitation energies for the

[3s2p(1d)/2s] and the [3s2p1d/2s] basis sets as well as the RI-

CC2 results for the aug-cc-pVTZ basis. It has been demon-
strated that the RI approximation for CC2 excitation energies
only gives rise to errors of the order of meV,6 meaning that the
differences between the results in Table 4 are solely caused by
differences in the one-electron basis sets. It is not surprising
that there are significant changes in the excitation energies
between the [3s2p(1d)/2s] and the [3s2p1d/1s] basis sets for
the higher lying states, because the polarization functions at
the carbon atoms—excluded in the [3s2(1d)/2s] basis—are
necessary for a quantitative description of the two phenyl
rings. Nevertheless, the changes are moderate for the lowest
excitations, since these are dominated by transitions at the
azo group. Going from the [3s2p1d/2s] to the aug-cc-pVTZ
basis the CC2 results for all states investigated here change
only little. For the singlet states we obtain shifts of 0.07–0.19
eV, whereas the triplet excitation energies change only by
0.01–0.05 eV. We therefore expect that the CC2 results in the
aug-cc-pVTZ basis are practically converged with respect to
the one-electron basis. This is corroborated by the results
obtained in the aug-cc-pVDZ and aug-cc-pVDZ-CM2 basis
sets. These two basis sets gave CC2 vertical excitation energies
which deviated by less than 0.02 eV between aug-cc-pVDZ and
aug-cc-pVDZ-CM2 and by less than 0.05 eV from the aug-cc-
pVTZ results for all investigated states, with the exception of 3
1Ag and 2 1Au . For the latter states the aug-cc-VDZ results are
5.73 eV (3 1Ag) and 5.93 eV (2 1Au) and the aug-cc-pVDZ-
CM2 basis gave 5.64 eV (3 1Ag) and 5.85 eV (2 1Au). This
shows that, with the exception of the latter two states, all the
investigated states have pure valence character and that the
aug-cc-pVTZ results must be close to the CC2 basis set limit.
The basis set dependence increases with the correlation level,

i.e. at the CCSD level the basis set effects are slightly larger
than for SOPPA and CC2. In Table 5 we have summarized
the CC2 and CCSD excitation energies in the [3s2p1d/2s] basis
and the RI-CC2 results in the aug-cc-pVTZ basis set. Though
the basis set effects are slightly larger for CCSD than for CC2,
we correct the CCSD result obtained in the [3s2p1d] basis for
the remaining basis set effect by the difference between the two
CC2 results to obtain best estimates for the excitation energies.
The results are denoted in Table 5 as ‘‘extrapolated CCSD’’
excitation energies. For the lowest singlet excited state 1 1Bg

we obtain very good agreement with the experimental results
for the band maxima. The agreement is less favourable for
the 1 1Bu and 3 1Bu states, but still acceptable, taking into
account that we compare calculated electronic vertical excita-
tion energies, not corrected for vibrational effects, with the
experimentally observed band maxima. For the triplet states,
the comparison of the extrapolated CCSD energies with the

Table 3 Singlet and triplet excitation energies using the [3s2p1d/2s]

basis set

State SOPPAa CCSDa CCSDb %T1(CCSD
b )

Singlet

1 1Bg 2.31 2.94 3.06 93.6

1 1Bu 3.71 3.85 4.46 93.0

2 1Bu 4.07 4.31 4.71 91.0

1 1Ag 4.08 4.33 4.69 90.4

2 1Ag 4.83 5.05 5.64 91.9

2 1Bg 5.50 6.90 6.59 90.5

3 1Bu 5.53 5.85 6.27 92.0

3 1Ag 5.57 5.88 6.30 91.6

1 1Au 5.58 5.71 6.65 90.7

2 1Au 5.77 6.81 6.75 90.2

Triplet

1 3Bg 1.57 2.21 2.36 98.3

1 3Bu 2.40 1.75 2.65 98.3

1 3Ag 3.55 3.62 3.80 98.6

2 3Bu 3.85 4.03 4.34 97.9

a Results at the X-ray diffraction geometry from ref. 24. b Results at

the MP2/cc-pVTZ optimized equilibrium geometry.

Table 4 CC2 singlet and triplet excitation energies using the MP2/cc-pVTZ geometry

State CC2/[3s2p(1d)/2s] CC2/[3s2p1d/2s] RI-CC2/aug-pVDZ RI-CC2/aug-pVDZ-CM2 RI-CC2/aug-pVTZ %T1(RI-CC2)

Singlet

1 1Bg 3.09 2.94 2.89 2.89 2.84 93.9

1 1Bu 4.31 4.14 4.07 4.07 4.04 91.8

2 1Bu 4.66 4.51 4.48 4.48 4.44 90.5

1 1Ag 4.67 4.52 4.49 4.49 4.45 90.5

2 1Ag 5.48 5.26 5.19 5.18 5.15 90.9

2 1Bg 6.30 5.83 5.65 5.65 5.64 90.0

3 1Bu 6.19 5.93 5.81 5.81 5.79 91.5

3 1Ag 6.22 5.96 5.73 5.64 5.80 91.5

1 1Au 6.41 5.94 5.79 5.79 5.78 89.9

2 1Au 6.56 6.15 5.93 5.85 5.97 90.6

Triplet

1 3Bg 2.41 2.30 2.27 2.27 2.26 98.1

1 3Bu 2.89 2.84 2.83 2.83 2.83 98.0

1 3Ag 4.08 4.04 4.04 4.04 4.03 98.2

2 3Bu 4.50 4.29 4.27 4.27 4.24 97.3

2116 Phys. Chem. Chem. Phys., 2002, 4, 2111–2118

Pu
bl

is
he

d 
on

 0
2 

M
ay

 2
00

2.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
 P

au
l S

ab
at

ie
r 

on
 0

4/
01

/2
01

8 
07

:5
6:

24
. 

View Article Online

http://dx.doi.org/10.1039/b110847f


experimental results reveals a huge difference of 0.74 eV for the
lowest triplet state 1 3Bg , which can hardly be explained by
remaining basis set or higher-order correlation effects. For this
state the basis set effects have been small in the series
[3s2p(1d)/2s]–[3s2p1d/2s]–aug-cc-pVTZ, and also the change
from CC2 to CCSD is (at �0.06 eV) relatively small. We there-
fore conclude that the observed difference of 0.74 eV must be
due to a geometry effect, i.e. that the excited state equilibrium
geometry for this state differs significantly from the ground
state geometry and that the observed transition cannot be
compared with the calculated vertical excitation energy. While
the excitation energies for the singlet states and for the second-
lowest triplet state are from absorption and magnetic optical
rotation dispersion spectra for the ground state, the excitation
energy for the lowest excited triplet state was extracted from
the results of a flash kinetic spectrophotometry study with dif-
ferent sensitizers. The determined transition energy thus corre-
sponds rather to an emission from the excited triplet state than
to an absorption from the ground state equilibrium.

IV. Conclusions

An implementation of triplet excitation energies within the
CC2 model has been described which employs the resolution
of identity (RI) approximation for two-electron integrals.
The RI approximation leads to a large reduction in the opera-
tion count and allows the use of a partitioned form of the CC2
eigenvalue problem, where doubles amplitudes are calculated
‘‘on the fly’’ and do not need to be stored in memory or on
disk. Memory and disk space requirements are thereby
reduced to O(N2) and O(N3), respectively. An application to
the lowest excited states of trans-azobenzene is represented,
where RI-CC2 calculations for the aug-cc-pVTZ basis (874
functions) are combined with CCSD calculations in a smaller
basis to obtain the best possible estimates for the electronic
vertical excitation energies. For these calculations we have
employed a geometry optimized at the MP2/cc-pVTZ level,
which should be the most accurate ab initio structure available
for trans-azobenzene. The convergence of the CC2 vertical
excitation energies with respect to the cardinal number (z-level)
of the one-electron basis and with respect to diffuse Rydberg
functions was tested by calculations in the aug-cc-pVDZ basis
and an aug-cc-pVDZ basis augmented with diffuse Rydberg
functions. All investigated excited states, with the exception

of 3 1Ag and 2 1Au , are found to have pure valence character,
and the basis set effects when going from the aug-cc-pVDZ to
the aug-cc-VTZ basis are found to be small compared to other
remaining error sources.
The present results suggest that previous SOPPA calcula-

tions in a non-optimized geometry are inaccurate for most
excited states. With the present calculations, good agreement
with the available experimental data is obtained for the lowest
excited singlet state. For the lowest triplet state a large differ-
ence between the calculated electronic vertical excitation
energy and the experimentally observed transition is found.
This difference can probably be attributed mostly to a differ-
ence between the ground state and the excited state equilibrium
geometries.
The main sources of errors in the extrapolated CCSD results

are the neglect of vibrational effects, i.e. the comparison of
electronic vertical excitation energies with the observed band
maxima. Furthermore there seems to be a large geometry effect
for the excitation energies. In order to obtain more informa-
tion about the system one would need to determine the equili-
brium geometry of the excited states. For systems of the size of
trans-azobenzene, geometry optimizations for excited states
are, however, not feasible at a correlated level with the pro-
grams available today. Compared to the effects mentioned
above, the errors due to the neglect of higher-order contribu-
tions to the coupled cluster expansion and remaining basis
errors are expected to be small.
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19 O. Vahtras, J. E. Almlöf and M. W. Feyereisen, Chem. Phys.

Lett., 1993, 213, 514.
20 M. W. Feyereisen, G. Fitzgerald and A. Komornicki, Chem. Phys.

Lett., 1993, 208, 359.
21 D. E. Bernholdt and R. J. Harrison, Chem. Phys. Lett., 1996, 250,

477.
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