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We have calculated the self-consistent Green’s function for a number of atoms and diatomic
molecules. This Green’s function is obtained from a conserving self-energy approximation, which
implies that the observables calculated from the Green’s functions agree with the macroscopic
conservation laws for particle number, momentum, and energy. As a further consequence, the kinetic
and potential energies agree with the virial theorem, and the many possible methods for calculating
the total energy all give the same result. In these calculations we use the finite temperature
formalism and calculate the Green’s function on the imaginary time axis. This allows for a simple
extension to nonequilibrium systems. We have compared the energies from self-consistent Green’s
functions to those of nonselfconsistent schemes and also calculated ionization potentials from the
Green’s functions by using the extended Koopmans’ theorem. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1884965g

I. INTRODUCTION

Recent progress in molecular electronics has exposed the
need for better theoretical methods forab initio studies of
nonequilibrium many-electron systems.1 When describing
transport through a single molecule one must account for the
details of the electronic structure in the molecule and in the
contacts. Unfortunately, the currently used theoretical meth-
ods typically predict values for the conductivity that differ by
orders of magnitude from the experimentally measured val-
ues. Most of these methods aim only at describing the
steady-state properties of these nonequilibrium systems, but
this also requires taking the correlated dynamics of the
many-electron systems into account. A first-principles de-
scription of nonequilibrium systems is highly complicated.
Time-dependent density-functional theory2 sDFTd offers an
exact description and is also suitable for treating the quantum
conduction problem.3 At present, however, density-
functional calculations for quantum conduction have only
been carried out at the level of the adiabatic local-density
approximation,4 which corresponds to using exchange-
correlation functionals without memory.

How to construct such improved functionals that can
take dissipation properly into account is far from obvious.
Solving the time-dependent Schrödinger equation for the full
many-particle system is not an option due to the large com-
putational effort. Instead, Green’s-function techniques offer a
natural and relatively simple method for describing a non-
equilibrium correlated many-particle systems.5–8 Within this
formalism, we can systematically improve our approxima-
tions, also including electron-phonon interactions. Compared
to density-functional theory, the Green’s function
Gsr1t1,r2,t2d is obviously more complicated than the elec-
tron density since it is a time-dependent function of two

coordinates. But while we know from DFT that the observ-
ables are functionals of the electron density alone, these
functionals are in most cases unknown and presumably
highly complicated. The same observables are simple func-
tionals of the Green’s function. Furthermore, there is no ob-
vious path towards improved approximations in DFT, while
improved approximations for the Green’s functions can sys-
tematically be derived from diagrammatic techniques. In
fact, the Green’s-function formalism is highly useful also for
deriving approximations in DFT.9–12

In this paper, we will present results of Green’s-function
calculations for equilibrium systems as a first step towards
time propagation of the full nonequilibrium Green’s func-
tions. The use of ground-state Green’s-function techniques
has a long history in quantum chemistry.13–17 The most at-
tractive feature of this formalism is that the Green’s function
provides expectation values of all one-body operators, the
total energy, ionization potentials, and spectral function,
while being a much simpler object than the many-particle
wave function. Our approach differs in two important ways
from this earlier work. Firstly, we use the finite temperature
formalism and calculate the Green’s function on the imagi-
nary time axis. This choice leads to a number of computa-
tional simplifications but is ultimately motivated by the pos-
sibility of easily extending the calculations to nonequilibrium
systems. The second characteristic feature is that we have
carried out the calculations such that the observables ob-
tained from the Green’s function agree with the macroscopic
conservation laws of the underlying Hamiltonian, e.g., con-
servation of particle number, momentum, angular momen-
tum, and energy. This requires the use of conserving
approximations,18,19 a concept which is rarely discussed in
quantum chemistry literature, but which is particularly im-
portant for calculations on nonequilibrium systems. Another
essential part of these calculations is that the Green’s func-adElectronic mail: n.e.dahlen@rug.nl
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tions should be calculated self-consistently, i.e., should not
depend on a reference state. Such calculations have, to the
best of our knowledge, never been carried out on molecules,
though partially self-consistent solutions exist.15,20 If the
Green’s function is not self-consistent, the particle number
will be incorrect,15 and the kinetic and potential energy will
not be in agreement with the virial theorem. A further advan-
tage of the conserving approximations is that the many dif-
ferent methods for calculating the total energy from the
Green’s function will give the same results.

As a first step towards studying the nonequilibrium sys-
tems, it is necessary to calculate the self-consistent Green’s
function of the initial equilibrium system. Such self-
consistent solutions have earlier been obtained for model
systems such as the homogenous electron gas21 and the Hub-
bard model,22 and lately also for the silicon crystal23 and
atoms.24 While the two latter calculations aimed at calculat-
ing spectral properties and ionization potentials, we have in
our calculations also been able to calculate the self-consistent
total energies. We will, in the following discussions, start by
briefly explaining the equations for the self-consistent
Green’s function, indicating which conditions must be ful-
filled for obtaining physically consistent results. At the end
of Sec. II, we will put our equilibrium calculations in the
context of nonequilibrium many-particle physics. We will in-
dicate there how our representation of the Green’s function
on the imaginary time axis corresponds to a branch of the
Keldysh contour,5 on which the nonequilibrium Green’s
functions are represented. In Sec. III we will present the
details on how the calculations were implemented, and self-
consistent results for total energies and the ionization poten-
tials obtained from the extended Koopmans’ theorem.25

II. SELF-CONSISTENT GREEN’S FUNCTIONS

We study a system in thermal equilibrium characterized
by a temperatureT and a chemical potentialm. Although we
are here only interested in the zero-temperature limit, the
finite-temperature formalism6 simplifies the notation and also
allows for a simple generalization to time-dependent non-
equilibrium systems. The equilibrium Green’s function de-
pends on the imaginary-time coordinatet, in the range −b
øtøb;1/skBTd, wherekB is the Boltzmann constant. With
the notationx=sr ,sd, the Green’s functionGsx1,x2;td is a
relatively simple quantity which provides a wealth of infor-
mation. In particular, the one-particle density matrix is given
by rsx ,x8d=limh→0 Gsx ,x8 ;−hd, and the expectation value
of any one-body operator can be written according to

kÔl = Trhr̂Ôj =E dx lim
x8→x

h→0

OsxdGsx,x8,− hd. s1d

The trace indicates a summation over a complete set of states
in Hilbert space and the equilibrium density operator is given

by r̂=e−bsĤ−mN̂d /Trhe−bsĤ−mN̂dj. From a given Green’s func-
tion, there is also a large number of methods for obtaining
the total energy.19,26 It is not automatically true that these
calculated observables agree with the macroscopic conserva-
tion laws of the underlying Hamiltonian. This could, for in-

stance, mean that the trace of the density matrix gives the
wrong particle number, that the energy will depend on the
method used for calculating it, or that the potential and ki-
netic energies do not satisfy the virial theorem. We will in
this paper stress the importance of calculating the Green’s
function from so-called conserving approximations,18,19

which ensures the physicality and internal consistency of the
calculated observables.

Our system is described by the Hamiltonian

Ĥ =E dxc†sxdft̂ + wsrdgcsxd

+
1

2
E dxE dx8c†sxdc†sx8dysr,r8dcsx8dcsxd, s2d

wheret̂=−¹2/2 is the operator for the kinetic energy,wsrd is
the external potential andvsr ,r8d=1/ur −r8u is the electron
interaction. We use atomic units throughout this paper. In an
analogy with the Heisenberg picture, the operators are given

a time dependence according toÔHstd=etsĤ−mN̂dÔe−tsĤ−mN̂d.
The Green’s function is then defined as the expectation value

Gsx1t1,x2t2d = kTfĉHsx1t1dĉH
† sx2,t2dgl

= ust1 − t2dkĉHsx1t1dĉH
† sx2t2dl

− ust2 − t1dkĉH
† sx2t2dĉHsx1t1dl, s3d

whereĉHsxtd and ĉH
† sxtd are field annihilation and creation

operators in the Heisenberg picture. The time-ordering op-
eratorT moves the operator with the largest time argument to
the left. The equilibrium Green’s function depends only on
the difference between the two time coordinates, and we can
thus write Gsx1t1,x2t2d=Gsx1,x2;t1−t2d. The Green’s
function solves the equation of motion

F− ]t +
¹2

2
− wsrd − yHsrd + mGGsx,x8;td

= dstddsx − x8d +E
0

b

dt1E dx1Ssx,x1;t − t1d

3Gsx1,x8;t1d, s4d

where the Hartree potentialvHsrd and the self-energy
Ssx ,x8 ;td account for the effects of the electron-electron
interaction. Both the Hartree potential and the self-energy are
functionals of the Green’s function, which means that the
Dyson equation fEq. s4dg should be solved to self-
consistency. The self-energy functional must be approxi-
mated, but for any approximation beyond Hartree–Fock the
computational effort involved in solving this equation is
rather larger. Self-consistent calculations for real systems
have only recently appeared.23 Earlier calculations on mol-
ecules and atoms have, however, obtained partially self-
consistent solutions.15,20

While we in this paper are concerned with atoms and
small molecules at zero temperature, the calculations will
have to be carried out at a finite temperature. The tempera-
ture must be low enough such that we can clearly distinguish
between occupied states with energies below the chemical
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potential and unoccupied states with energies below the
chemical potential. This presents no problem for systems
with a finite highest occupied molecular orbital-lowest unoc-
cupied molecular orbitalsHOMO-LUMOd gap, and the exact
value of the chemical potentialm is not important as long as
the value is in the gap. In the zero-temperature limit, shifting
the chemical potential by a small value will obviously
change the Green’s function, but not the value of the observ-
ables.

Expanding the Green’s function in a one-particle basis
hfisxdj, the DysonfEq. s4dg becomes an equation to the time-
dependent matrixGijstd. It is convenient to write the Green’s
function on the form Gijstd=ustdGij

.std
+us−tdGij

,std, as indicated in Eq.s3d. This notation clearly
displays the discontinuity of the Green’s function att=0
given by

lim
t→0

fGijstd − Gijs− tdg = fGij
.s0d − Gij

,s0dg = − di j . s5d

To solve Eq.s4d we also need the boundary conditionGijst
− ibd=−Gijstd, which expresses that the Green’s function is
antiperiodic in thet variable.27 This follows from the defi-
nition of the Green’s function in Eq.s3d. To illustrate these
and other properties of the Green’s function, it is useful to
consider a noninteracting Green’s functionG0, which results
from approximating the self-energyS with a t-independent
one-particle potential. Finding the Green’s function then cor-
responds to solving a set of one-particle equations. Using the
corresponding orbitals as eigenfunctions,G0 is diagonal and
given in terms of the eigenvaluesei according to6

Gij
0,,std = di jnseide−tei s6ad

Gij
0,.std = − di jf1 − nseidge−tei . s6bd

Here, ei =ei −m, and the termnsed=1/sebe+1d is the Fermi
distribution. The fact thatG0 is antiperiodic and has the dis-
continuity fEq. s5dg is easily verified. We now see that ifb
→`, then Gii

0,,s0d=−Gii
0,.sbd=1 if ei ,m, and 0 if ei .m.

Conversely, we haveGii
0,,s−bd=−G0,.s0d=0 if ei ,m, and 1

otherwise. Due to the exponential dependence ont, the
Green’s function will be peaked around the timest=0 and
t= ±b. This is true also for the fully interacting Green’s
function as well as the self-energySstd, although the values
at the endpoints will then not be exactly 0 and 1.

We will in the following consider unpolarized systems,
such thatfi↑=fi↓;fi. While the Dyson equationfEq. s4dg
is exact, the self-energySfGg must be approximated in prac-
tical calculations. In these calculations we have chosen to use
the second-order approximation to the self-energy, as illus-
trated in Fig. 1. Since the electron interaction is instanta-
neous, this self-energy has a particularly simple form. The
first diagram in Fig. 1 is the exchange diagram,

Sx,i jstd = − 2dstdo
kl

Gkl
,s0dyikl j , s7d

where the two-electron integrals are here defined according
to

yi jkl =E dr E dr8fi
*srdf j

*sr8dysr − r8dfksr8dflsrd. s8d

The two remaining diagrams represent the correlation contri-
bution.

Sc,i jstd = − o
klmnpq

GklstdGmnstdGpqs− td

3yiqmkf2ylnpj − ynlpjg. s9d

The factor 2 that appears in Eqs.s7d and s9d comes from
summing over the spin indices. It can be shown that both the
Green’s function and the self-energy are real, symmetric,
t-dependent matrices. The second-order diagrams resemble
those evaluated in second-order Møller–Plesset perturbation
theory.15 The most important difference between our calcu-
lations and second-order perturbation theory is that we solve
the Dyson equation to self-consistency, and the final result is,
for this reason, independent of any reference state. It also
means that the self-energyfEq. s9dg is evaluated using a non-
diagonal Green’s function matrix.

The second-order approximation is an example of a con-
serving approximation,18,19 which means that the self-energy
can be obtained as the functional derivative of a functional
FfG,vg,

Ssx,x8;td =
dF

dGsx8,x;− td
. s10d

TheF functional corresponding to the second-order approxi-
mation is shown in Fig. 1. The observables calculated from
the Green’s function will then agree with the macroscopic
conservation laws of the underlying Hamiltonian. The Har-
tree potential is also a functional of the Green’s function
since the density given bynsxd=rsx ,xd=limh→0 Gsx ,x ;
−hd. In calculations, one will start with an initial guess forG,
e.g., the Hartree–FocksHFd Green’s function on the form
indicated in Eq.s6d. One then calculates the Hartree potential
and the self-energy from Eqs.s7d and s9d and solves the
Dyson equationfEq. s4dg. If the self-consistency cycle is not
continued, the resulting observables will depend on the ini-
tial Green’s function. The results can be unphysical and can
produce e.g., an incorrect particle number. Partial self-
consistency, which means that the correlation part of the self-
energy fEq. s9dg is fixed while the Hartree–Fock potential
vH+Sx is updated, can significantly improve the results15 but
will, in general, not remove the unphysical features of the
calculated observables.

Another advantage of self-consistent calculations, is that
all the various methods for calculating the total energy from
the Green’s function give the same resultsfor a detailed dis-

FIG. 1. The second-order approximation to the self-energyS can be derived
as a functional derivative of a functionalF. The first diagram ofF andS
are the exchange-energy and self-energy diagrams, respectively.
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cussion, see Refs. 19 and 26d. The most straightforward of
these methods is to evaluate the individual energy terms,

E = T + Vne+ Vee+ Vnn, s11d

where the kinetic energyT and the nuclear-electron attraction
energyVne are trivially obtained from the density matrix. The
electron interaction energy isVee=U0+Uxc, where U0

=1/2edrdr8nsrdvsr ,r8dnsr8d is the Hartree energy, and the
exchange and correlation energy can be calculated from the
expression

Uxc =
1

2
E

0

b

dto
i,j

Si js− tdGjistd. s12d

When the Green’s function is obtained from a conserving
approximation, the kinetic and potential energy will agree
with the virial theoremssee Appendixd such that 2T=−Vne

−Vee−Vnn.
The Green’s functions have frequently been used to ob-

tain removal and addition energies, since these correspond to
poles in the Fourier-transformed Green’s function,Gsvd
=edtGstdeivt, where the time variablet corresponds to a real-
time variable.6 Such calculations has recently been carried
out on atoms,24 where the Green’s function was calculated
self-consistently from a self-energy with a dynamically
screened coulomb interactionsthe GW approximation.28d the
one-particle Green’s function with screened coulomb inter-
action sGWd approximation.28 In the present work, we have
employed the finite-temperature formalism and the Green’s
function is represented on the imaginary rather than on the
real-time axis. The Fourier transform of the real-time
Green’s function can be obtained from the Fourier transform
of the Green’s function for imaginary times,Gsivnd
=e0

bdtGstdeivnt, by analytic continuation. Such calculations
have been done for the silicon crystal,23 where the Green’s
function was obtained on the imaginary time axis, and the
Fourier transformGsvd was found fromGsivd by the use of
Padé approximations.

For our calculations we have not found this approach
practical. We have instead chosen to calculate ionization po-
tentials from the extended Koopmans’ TheoremsEKTd.25

The ionization potentials are found from the eigenvalue
equation

o
i j

Di juj
m = sE0

N − mN − lmdo
j

ri juj
m, s13d

where the matrixD is defined according to

Di j =E dxE dx8f jsxdkĉ†sxdfĉsx8d,Ĥ − mN̂glfi
*sx8d.

s14d

This definition differs from the one found in Ref. 25 by the
inclusion of the chemical potential. Using the definition of
the Green’s function in Eq.s3d and the Dyson equationfEq.
s4dg, we can writeD and the density matrixr as

Di j = u − ]tGijstdut=0− andri j = Gijs0−d. s15d

We now interpret the eigenvalueslm as the energies of the
N−1 particle system,lm=Em

N−1−msN−1d. For the second-

order approximation, the self-consistent Green’s function is
real and symmetric, which implies that both the matricesD
andr are symmetric. The eigenvalue problem can therefore
be rewritten according to

o
i j

D̃i j ũj
m = − l̃mũi

m, s16d

where D̃i j =sr−1/2Dr−1/2di j and ũi
m=o jsr1/2dikuk

m. The eigen-

values give the EKT ionization potentials according tol̃m

=lm−E0
N+mN=m+Em

N−1−E0
N= Im

EKT+m.
As we mentioned in the Introduction, one of the main

reasons why we choose to work in the finite-temperature
formalism is that the equations can easily be generalized to
nonequilibrium systems. For a system initially in equilibrium
at t=0, the time-dependent value of the expectation value is

given bykÔlstd=Trhr̂ÔHstdj, where the subscriptH indicates
the Heisenberg picture. The time-dependence of the operator

is given by the evolution operatorsÔHstd=Ûs0,tdÔÛst ,0d,
where i]tÛst ,t8d=K̂stdÛst ,t8d, and we have definedK̂std
=Ĥstd−mN̂. Since the equilibrium density operatorr̂ can

also be written as an evolution operator,r̂=Ûs−ib ,0d /
TrhUs−ib ,0dj, the time-dependent expectation value of the

operatorÔ can be written as

kÔlstd =
TrhÛs− ib,0dÛs0,tdÔÛst,0dj

TrhUs− ib,0dj
. s17d

The numerator, read from right to left, describes an evolution
along a time contour from the initial time 0 tot, then back to
0, and along the imaginary time axis to −ib. This introduces
the concept of the Keldysh time contour,5 which is central to
the study of nonequilibrium system. A nonequilibrium sys-
tem at a timet can now be described by a Green’s function
Gsx1t1,x2t2d, where the time arguments must be located on
this contour starting at 0, passing throught, and ending at
−ib. In calculations, this means that we will first calculate
the Green’s function for time arguments on the imaginary
axis in order to describe the initial equilibrium systems. The
time evolution then implies extending the contour on which
the Green’s function is defined along the real axis, starting
from t=0. Our calculations therefore constitute the first step
in the propagation of the nonequilibrium Green’s functions.
This method is also a direct way of obtaining the equilibrium
Green’s function on the real time axis rather than on the
imaginary time axis. This is simply done by propagating the
Green’s function along the real time axis, without any addi-
tional time-dependent potential. The resulting Green’s func-
tion will only depend on the differencet1− t2 between the
time coordinates, and will essentially be equivalent to ordi-
nary real-time Green’s function.

III. RESULTS

The calculations were carried out using a set of Slater
basis functions, using 25 basis functions for each hydrogen
atom and 30–40 basis functions for each of the other
atoms.29 As the Green’s function is peaked around the end-
points t=0 and t= ±b, it is inconvenient to represent the
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Green’s function on an even-spaced time grid. We have
therefore used the uniform power mesh method, as described
in Ref. 23, which is dense only at the end points 0 andt
= ±b. It is usually sufficient to have between 40 and 80
points on the time mesh. The first step in the calculations
consists of solving the HF or DFT equations, resulting in an
initial Green’s functionG0std. Using the orbitals with eigen-
valuesei as basis functions, this Green function matrix is
diagonal and has the form

Gi
0std = ustdsnseid − 1de−eit + us− tdnseide−eit. s18d

We have again used the notationei =ei −m, subtracting the
chemical potentialm from the HF or DFT eigenvalues. In our
calculations, the inverse temperature was set tob=100,
which is sufficiently low to approximate the zero-
temperature limit. Only if the HOMO-LUMO gap becomes
very narrow, as for an H2 molecule at large internuclear sepa-
rations, must the temperature be set lower in order to clearly
distinguish between occupied and unoccupied levels. The ex-
act location of the chemical in the HOMO-LUMO gap is
otherwise arbitrary. We can shift the chemical potential
sequivalent to shifting the eigenvalueseid without changing
the properties of the system, as long as the eigenvalues of the
occupied states are negative and the eigenvalues of the un-
occupied states are positive.

The noninteracting Green’s function corresponds to a so-
lution of the noninteracting Dyson equation,

f− ]t − hijgGj
0std = di jdstd + o

k

Si j
0Gj

0std. s19d

The self-energy matrixSi j
0 equalsedxfi

*sxdvHxcsxdf jsxd if
the orbitals are obtained from a DFT calculation, or
edxedx8fi

*sxdvHFsx ,x8df jsx8d if the orbitals are obtained
from a HF calculation. From this initial Green’s function, we
can solve the Dyson equation on the integral form,

Gijstd = di jGi
0std +E

0

b

dt1E
0

b

dt2o
k

Gi
0st − t1d

3S̃ikst1 − t2dGkjst2d, s20d

whereS̃ikst1−t2d;Sikst1−t2d−dst1−t2dSik
0 . For a givenS,

solving the Dyson equationfEq. s20dg for G means having to
solve a set of linear equations, which can be done by using
iterative methods such as, e.g., the biconjugate gradient

method. This is somewhat more complicated than the con-
ventional procedure of solving the Dyson equation for the
Fourier-transformed functionGsvd, when the time convolu-
tion integrals transform into products of the Fourier-
transformed functions. While representing the functions in
frequency space is convenient when not attempting to find a
self-consistent solution, the discontinuities at the pointst
=0 and ±b makes this inconvenient for our calculations. The
frequency space representation has the additional problem
that the functions decay slowly as a function ofv, which
causes frequency integrals to converge very slowly.

Having solved Eq.s20d, the self-energyS must now be
calculated with this newG, for which a new solution of Eq.
s20d must be obtained. This procedure will eventually lead to
a self-consistent Green’s function. It is important to stress
that while the reference functionsG0 and S0 appear in the
Dyson equationfEq. s20dg, the observables obtained from the
self-consistent Green’s function should not depend on the
choice of reference state, as is also indicated by Eq.s4d.
Using orbitals from the local density approximationsLDA d
or HF, orbitals should lead to the same resultsi.e., the ob-
servables calculated from the Green’s function should be the
samed. Solving the Dyson equation for different choices of
S0 can therefore serve as a useful numerical test of the cal-
culationssin particular, for checking whether the number of
points of the time mesh is large enoughd. We have found that
convergence is reached much more quickly when using HF
rather than DFT as starting point.

The self-consistent energies are shown in Table I. We
have also included the HF energies and the total energy cal-
culated from the Luttinger–WardsLWd functional.30–32 The
LW functional ELWfGg is a functional of the Green’s func-
tion, such thatdEfGg /dG=0 whenG is the self-consistent
solution of the Dyson equation. At the self-consistentG, the
LW functional gives exactly the same result as the methods
discussed above. Evaluating the LW functional on an ap-
proximate noninteracting Green’s function such as, e.g., the
HF Green’s function then yields energies close to the self-
consistent values due to the variational property of the en-
ergy functional. That this is indeed the case can be seen in
Table I, where the deviation between the LW energies and
the self-consistent results are less than one millihartree. This
illustrates the fact that the functional is indeed insensitive to
the input of Green’s function, and that a very good estimate

TABLE I. Energies calculated from the self-consistent Green’s function and from the Luttinger–Ward func-
tional evaluated at the HF and LDA Green’s functions. The termUc denotes the correlation part of the inter-
action energy. The energyEfG2g is calculated from the second-ordersnon-selfconsistentd Green’s function. All
energies are in hartrees. The H2 calculation was carried out for internuclear separationR=1.4, while the
separation wasR=3.015 for LiH.

T Vne Uc Vee E ELW
2 fGHFg EfG2g EHF

He 2.8981 −6.7585 −0.0703 0.9635 −2.8969 −2.8969 −2.9013 −2.8617
Be 14.6362 −33.6781 −0.1367 4.4009 −14.6409 −14.6405 −14.6662 −14.5728
Ne 128.8790 −311.1072 −0.5748 53.3944 −128.8339 −128.8332 −128.7979 −128.54704
Mg 199.8400 −479.0677 −0.5937 79.3181 −199.9097 −199.9093 −199.9279 −199.6146
Mg2+ 199.0333 −469.8175 −0.5489 71.6822 −199.1020 −199.1025 −199.0754 −198.8305
H2 1.1600 −3.6463 −0.0645 0.6062 −1.1659 −1.1658 −1.1722 −1.1336
LiH 8.0488 −20.4673 −0.1294 3.3746 −8.0515 −8.0513 −8.0608 −7.9868
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for the self-consistent energies can be obtained without hav-
ing to solve the Dyson equation. As can be seen from the
table, the virial theorem is satisfied reasonably well. The de-
viation of the kinetic from the negative of the total energy is
due to the limited size of the basis sets and becomes smaller
when increasing the number of basis functions.

The advantage of self-consistent calculations is that the
results depend only on the chosen diagrammatic approxima-
tion and not on the reference state. In Ref. 30, we showed
how the LW energies are also very close to the conventional
second-order Møller–PlessetsMP2d energies, and according
to the results in Table I, the MP2 energies are thus also very
close to the self-consistent energies. This is interesting, since
the Møller–Plesset series can be shown to diverge,33 while
the self-consistent Green’s function calculations take into ac-
count contributions to infinite order in the electron interac-
tion. We can expect to see a large difference between the
MP2 energy and the self-consistent results in systems where
MP2 fails badly, e.g., for the dissociation curve of the H2

molecule. While the MP2 energy diverges when the internu-
clear separationR→`, the first iteration of the Dyson equa-
tion fEq. s20dg yields a finite result.15

In addition to results obtained from the self-consistent
Green’s function, we have also included non-self-consistent
results. These are calculated using a Green’s function ob-
tained from solving the Dyson equationfEq. s20dg only once,
with S0 and G0 equal to the HF self-energy and Green’s
function. This means thatG2 solves the equationsskipping
the indices and the time coordinates for notational simplic-
ityd

G2 = GHF + GHFScfGHFgG2, s21d

whereSc is given by Eq.s9d, evaluated with the HF Green’s
function. We have also included the HF eigenvalues, corre-
sponding to the conventional Koopmans’ theorem. The re-
sults clearly show that iterating the Dyson equation to self-
consistency significantly changes the ionization potentials.

In Table II we list ionization potentials calculated from
the EKT. Also the ionization potentials depend significantly
on whether the calculations are carried out to self-
consistency or not. The ionization potentials are in agree-
ment with the preliminary results we have obtained from
real-time propagation.

IV. CONCLUSIONS

The use of conserving approximations is essential not
only when considering time-dependent systems, but also for
systems in the ground state. The concept of conserving ap-
proximations implies finding a self-consistent solution to the
Dyson equation. While this increases the computational ef-
fort, the results are unambiguous in the sense that the result-
ing observables are internally consistent and independent
both of reference state and of the particular method used for
calculating them from the Green’s function. We have found it
useful to confirm that the self-consistent total energies are in
very good agreement with those obtained from the
Luttinger–Ward functional. This means that it is possible to
estimate the merits of a certain diagrammatic approximations
without actually performing the self-consistent calculation of
the Green’s function. For calculating anything else than the
total energy, one still needs to carry out the full calculations.

Using the finite-temperature formalism to represent the
Green’s function on an imaginary time axis simplifies the
calculation of observables from the Green’s function, since
we avoid performing the slowly converging frequency inte-
grals that appear when using the Fourier-transformed quan-
tities. But the most important reason for calculating the
Green’s function on the imaginary time axis is that this is the
obvious starting point for treating the system out of equilib-
rium. We should here point out that a very good approxima-
tion to the self-consistent Green’s function can be obtained
by updating only the static part of the self-energy,vH+Sx,
while letting the correlation part be calculated from the HF
Green’s function, i.e.,Sc=ScfGHFg. This calculation is sig-
nificantly faster than the fully self-consistent procedure, but
is not relevant when considering nonequilibrium systems.
The reason for this is that while the self-consistent Green’s
function in the ground state remains largely diagonal in the
HF basis functions, the off-diagonal terms become signifi-
cant when the system is disturbed. The truly nonequilibrium
case will be part of a future publication.
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APPENDIX: THE VIRIAL THEOREM

We will in the following show that a self-consistent
Green’s function obtained from a conserving approximation
produces energies in agreement with the virial theorem. As
shown by Baym,19 a conserving self-energy corresponds to a
functional derivative of a functionalFfG,vg, as indicated in
Eq. s10d. Such a functional can be constructed by summing
up a selected class of self-energy diagrams according to the
formula31

FfGg = o
n,k

1

2n
trhSk

sndGj, sA1d

wheren labels the order of the diagram, i.e., the number of
interaction lines, andk labels the distinct self-energy dia-
grams of that order. The trace is here defined as

TABLE II. Ionization potentials calculated from the extended Koopmans’
theorem. The results in the first column are calculated from the self-
consistent Green’s function, while those in the column labeled EKTfG2g are
calculated from the Green’s function obtained from the first iteration of Eq.
s20d. The HF values correspond to the HF eigenvalues.

EKTfGg EKTfG2g HF Expt.

He 0.9017 0.9059 0.9181 0.9036a

Be 0.3130 0.3275 0.3084 0.3426a

Ne 0.7412 0.7363 0.8504 0.7925a

Mg 0.2548 0.2605 0.2530 0.2810a

H2 0.5921 0.5999 0.5947 0.5669b

LiH 0.2884 0.2942 0.3015 0.2903c

aFrom Ref. 34.
bFrom Ref. 35.
cFrom Ref. 36.
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trhABj =E
0

b

dtE dr E dr8Asr,r8;− tdBsr8,r ;td. sA2d

The systems we consider in this paper consist of electrons
interacting with nuclei of chargehZij that we treat as fixed-
point charges in the positionshRij, collectively labelledR.
This means that the total energy can be written asE=Eel

+Vnn, where the nuclear repulsion term isVnn

=1/2oi,jÞiZiZj / uRi −R ju. The electronic termEel=T+Vne

+Vee can be obtained from variational functionals of the
Green’s functionsas discussed in, e.g., Ref. 30d. Using the
finite temperature formalism, it is in fact more convenient to
use the thermodynamic grand potentialV, which is related to
the energy through limT→0 V=Eel−mN.

For nuclei in fixed positions, the grand potential corre-
sponding to a conserving approximation is a functional19 of
G,

VfGg = FfGg + U0fGg − trhsGG0−1 − 1dj + tr lnh− Gj,

sA3d

whereU0=1/2ensrdvsr −r8dnsrd is the Hartree energy, and
the operator G0−1sr1,r2;td=s−]t+¹2

2/2−wsr2;Rd
+mddsr1,r2d. We have here made explicit the dependence of
w on the positions of the nuclei,R. In fEq. sA3dg, all quanties
except G0−1 are functionals ofG, and whenG is a self-
consistent solution of the Dyson equation, the total energy
calculated from this expression will agree with the energy
obtained from the method discussed above. An important
property of the functionalfEq. sA3dg is that it is stationary,

dVfGg
dG

= 0, sA4d

when G equals the self-consistent Green’s function corre-
sponding to a self-energyS=dF /dG. We now define a
Green’s functionGl which depends on the parameterl ac-
cording to Glsr ,r8 ;td=l3Gslr ,lr8 ;td. The Green’s func-
tion G=Gl=1 is the self-consistent Green’s function, and by
definition the particle numberN=2 TrhGlj is independent of
l.

The proof is now based on the two following points: 1d
The variational property fEq. sA4dg implies that
dVfGlg /dl=0 at l=1. 2d The total energyEel+Vnn is sta-
tionary with respect to changes to the positions of the nuclei
when they are in their equilibrium positions, i.e.,dE/dRi

=0. If we consider thel-dependence of the Hartree energy,
we find

U0
l =

1

2
E d3r E d3r8

nlsrdnlsr8d
ur − r8u

=
l6

2
E d3r E d3r8

nslrdnslr8d
ur − r8u

= lU0. sA5d

We now consider annth order term in theF functional de-
fined in Eq.sA1d. A term Sk

sndfGlgGl will consist of n inter-
action lines, 2n Green’s function lines and integration over
2n spatial coordinates. This yields

E d3r E d3r8Sk
sndfGlgsr,r8;tdGlsr8,r ;td

= lnE d3r E d3r8Sk
sndfGgsr,r8;tdGsr8,r ;td. sA6d

Summing up all the terms in Eq.sA1d, we obtain

UdFl

dl
U

l=1
=

1

2o
n,k

trhSk
sndfGgGj = Uxc, sA7d

whereUxc is defined as in Eq.s12d.
The term tr lnh−Glj is independent ofl. This can be

seen by first writing the logarithm as a power series,

tr lnh− Glj = − o
n

1

n
trhs1 + Gldnj sA8d

From the definition ofGl, it follows that terms on the form
ed3r1. . .rNGlsr1,r2;−t1d . . .GlsrN,r1;tN−1d are independent
of l, and we therefore have

d ln trh− Glj
dl

= 0. sA9d

Finally, we consider the term −TrhGlG0
−1j, which trans-

lates to

E drUF−
¹2

2
+ wsr ;RdGrlsr,r8dU

r8=r

=E drUF− l2¹2

2
+ lwsr ;lRdGrsr,r8dU

r8=r
sA10d

plus terms that are independent ofl. The density matrix is
rlsr ,r8d=l3rslr ,lr8d. The first term on the right hand side
is l2 times the self-consistent kinetic energy, while the sec-
ond term equalsl times the electron-nuclear attraction en-
ergy, with the position of the nuclei scaled byl. The deriva-
tive is

U −
d

dl
TrhGG0−1jU

l=1
= 2T + Vne+E d3rnsrd

3Udwsr ;lRd
dl

U
l=1

. sA11d

Combining Eqs.sA3d, sA5d, sA7d, andsA11d yields

0 = 2T + Vne+ U0 + Uxc +E d3rnsrdUdwsr ;lRd
dl

U
l=1

.

sA12d

The electronic energyEel is calculated for nuclei in fixed
positions. The energy functionalfEq. sA3dg depends para-
metrically on the positionsR, and the first order variation in
the electronic energy can therefore be written as

dEel = SdV

dG
D

hRij
dG + o

i
S dV

dRi
D

G
dRi , sA13d

where we have used the fact in the zero-temperature limit
dV /dl=dEel/dl and dV /dRi =dEel/dRi. Because of the
variational propertyfEq. sA4dg, the first term on the right-
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hand side of Eq.sA13d disappears, and we only need to
consider the second term. In the energy functionalfEq.
sA3dg, the positions of the nuclei only enter as parameters in
the termG0−1, while the Green’s function is an independent
variable. This means, using Eq.sA13d, that

dEelslRd
dl

= −
d trhGG0−1j

dl
=E d3nsrd

dwsr ;lRd
dl

. sA14d

In equilibrium we havedEslRd /dl=0 at l=1. Since E
=Eel+1/2oio jÞiZiZj /Rij , whereRi j =Ri −R j, we obtain

SdEslRd
dl

D
l=1

= − Vnn +E d3rnsrdUdwsr ;lRd
dl

U
l=1

= 0.

sA15d

EquationsA12d then becomes

0 = 2T + Vne+ Vee+ Vnn, sA16d

which is exactly what we wanted to show: The energies cal-
culated from the Green’s function within a conserving ap-
proximation satisfy the virial theorem.

1Y. Xue, S. Datta, and M. A. Ratner, Chem. Phys.281, 151 s2002d.
2E. Runge and E. K. U. Gross, Phys. Rev. Lett.52, 997 s1984d.
3G. Stefanucci and C.-O. Almbladh, Phys. Rev. B69, 195318 s2004d;
Europhys. Lett.67, 14 s2004d.

4N. D. Lang, Phys. Rev. B52, 5335s1995d.
5L. V. Keldysh, Zh. Eksp. Teor. Fiz.47, 1515s1964d fSov. Phys. JETP20,
1018 s1965dg.

6A. L. Fetter and J. D. Walecka,Quantum Theory of Many-Particle Systems
sMcGraw-Hill, New York, 1971d.

7L. P. Kadanoff and G. Baym,Quantum Statistical MechanicssBenjamin,
New York, 1962d.

8P. Danielewicz, Ann. Phys.152, 239 s1984d.
9R. van Leeuwen, Phys. Rev. Lett.76, 3610s1996d.

10L. J. Sham and M. Schlüter, Phys. Rev. Lett.51, 1888s1983d; L. J. Sham,
Phys. Rev. B32, 3876s1985d.

11D. C. Langreth, Phys. Rev. Lett.52, 2317s1984d.

12R. van Leeuwen and N. E. Dahlen, inThe Electron Liquid Model in
Condensed Matter Physics, edited by G. F. Giuliani and G. VignalesIOS
Press, Amsterdam, 2004d.

13J. D. Doll and W. P. Reinhardt, J. Chem. Phys.57, 1169s1972d.
14J. Linderberg and Y. Öhrn,Propagators in Qantum ChemistrysAcademic,

London, 1973d.
15L. J. Holleboom and J. G. Snijders, J. Chem. Phys.93, 5826s1990d.
16L. S. Cederbaum and W. Domcke, Adv. Chem. Phys.36, 205 s1977d.
17J. V. Ortiz, J. Chem. Phys.103, 5630s1995d.
18G. Baym and L. P. Kadanoff, Phys. Rev.124, 287 s1961d.
19G. Baym, Phys. Rev.127, 1391s1962d.
20L. S. Cederbaum, G. Hohlneicher, and W. von Niessen, Chem. Phys. Lett.

18, 503 s1973d.
21B. Holm and U. von Barth, Phys. Rev. B57, 2108 s1998d; P. García-

González and R. W. Godby, Phys. Rev. B63, 075112s2001d.
22A. Schindlmayr, T. J. Pollehn, and R. W. Godby, Phys. Rev. B58, 12684

s1998d.
23W. Ku and A. G. Eguiluz, Phys. Rev. Lett.89, 126401s2002d.
24K. Delaney, P. García-González, A. Rubio, P. Rinke, and R. W. Godby,

Phys. Rev. Lett.93, 249701s2004d.
25D. W. Smith and O. W. Day, J. Chem. Phys.62, 113 s1975d.
26N. E. Dahlen, R. van Leeuwen, and U. von Barthsunpublishedd.
27P. C. Martin and J. Schwinger, Phys. Rev.115, 1342s1959d.
28L. Hedin, Phys. Rev.139, A796 s1965d.
29Details on the basis sets are given on request. The basis set used for He is

the same as the one used in Ref. 13.
30N. E. Dahlen and U. von Barth, J. Chem. Phys.120, 6826s2004d; N. E.

Dahlen, R. van Leeuwen, and U. von Barth, Int. J. Quantum Chem.101,
512 s2005d.

31J. M. Luttinger and J. C. Ward, Phys. Rev.118, 1417s1960d.
32N. E. Dahlen and U. von Barth, Phys. Rev. B69, 195102s2004d.
33O. Christiansen, J. Olsen, P. Jørgensen, H. Koch, and P.-Å. Malmqvist,

Chem. Phys. Lett.261, 369 s1996d.
34C. E. Moore,Atomic Energy Levels, Natl. Stand. Ref. Data Ser., NBS

Circular No. 467sU.S. GPO, Washington, DC, 1971d.
35K. P. Huber and G. Herzberg,Constants of Diatomic Molecules, Molecu-

lar Spectra and Molecular Structure, Vol. 4 sVan Nostrand Reinhold, New
York, 1979d.

36S. G. Lias, R. D. Levin, and S. A. Kafafi,Ion Energetics Datain NIST
Chemistry WebBook, NIST Standard Reference Database Number 69,
Eds. P. J. Linstrom and W. G. Mallard, March 2003, National Institute of
Standards and Technology, Gaithersburg MD, 20899shttp://
webbook.nist.govd.

164102-8 N. E. Dahlen and R. van Leeuwen J. Chem. Phys. 122, 164102 ~2005!


