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Abstract

Random-phase approximation (RPA) methods are rapidly emerging as cost-
effective validation tools for semilocal density functional computations. We
present the theoretical background of RPA in an intuitive rather than formal
fashion, focusing on the physical picture of screening and simple diagram-
matic analysis. A new decomposition of the RPA correlation energy into
plasmonic modes leads to an appealing visualization of electron correlation
in terms of charge density fluctuations. Recent developments in the areas of
beyond-RPA methods, RPA correlation potentials, and efficient algorithms
for RPA energy and property calculations are reviewed. The ability of RPA
to approximately capture static correlation in molecules is quantified by an
analysis of RPA natural occupation numbers. We illustrate the use of RPA
methods in applications to small-gap systems such as open-shell d- and f -
element compounds, radicals, and weakly bound complexes, where semilocal
density functional results exhibit strong functional dependence.
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1. INTRODUCTION

Density functional theory (DFT) using semilocal and hybrid functionals is the electronic structure
method of choice in most areas of chemistry, solid-state physics, and materials science (1). Despite
its popularity, semilocal DFT is increasingly facing a crisis of functional inflation: For example,
the latest release of the LIBXC functional library (2) contains well over 300 semilocal density func-
tionals. Functional inflation is, to a large extent, caused by the high sensitivity of semilocal DFT
results to the parameterization of the underlying approximate functional, confounding the user
and severely limiting predictive power. Parameterized functionals can be surprisingly accurate for
certain types of compounds and properties, but fail for others, including a property as basic as the
electron density itself (3). Despite recent efforts to consolidate the number of empirical parameters
(4), functional inflation remains a vexing problem for many important applications to small-gap
compounds such as open-shell d- and f -element complexes (5) or to charge-transfer excitation
energies in larger systems (6), where experimental data are scarce and few or no alternatives to
semilocal DFT exist.

In the past decade, electronic structure methods based on the random-phase approximation
(RPA; see the sidebar titled One Name, Many Methods) have emerged as a possible solution to the
functional inflation crisis. RPA methods include part of the electron correlation energy explicitly
to capture important physical effects without excessively increasing the computational cost. For
example, RPA is the lowest level of theory that correctly describes screening as well as mid- and
long-range dispersion interactions without empirical corrections. Unlike single-reference meth-
ods based on Hartree–Fock (HF) theory such as second-order Møller–Plesset (MP2) perturbation
theory, RPA is insensitive to the size of the noninteracting gap and can even be applied to metallic
systems (13). In the context of DFT, RPA may be viewed as the fifth rung on Jacob’s ladder of
density functional approximations (14), but it is also closely related to coupled-cluster (CC) the-
ory (15), many-body Green’s function or propagator methods (16, 17), and time-dependent DFT
(TDDFT) (18).

The aim of this review is to introduce RPA methods to newcomers following an intuitive
approach. We emphasize physical principles and visualization over formal derivations. Readers
interested in the latter are referred to more specialized reviews (19–22). Section 2 outlines the
adiabatic-connection fluctuation–dissipation-theorem approach to correlation energy. We then

ONE NAME, MANY METHODS

The term random-phase approximation was first introduced by Bohm & Pines (7) in the context of plasma theory.
This approximation was a key step in the transformation from the many-electron Hamiltonian of a uniform electron
gas to a simpler Hamiltonian of quasi-electrons with a short-range interaction plus a coupled harmonic oscillator
Hamiltonian describing plasma oscillations. Gell-Mann & Brueckner (8) showed in 1957 that in the limit of high
electron density, the Bohm–Pines ground-state energy is equivalent to the sum of all ring diagrams in many-body
perturbation theory; hence the name ring approximation, which is synonymous with random-phase approxima-
tion (RPA). Unlike the Bohm–Pines approach, Gell-Mann & Brueckner’s definition of RPA is easily extended to
nonuniform systems. In the early 1960s, chemists started to use the term RPA synonymously with time-dependent
Hartree–Fock (TDHF) theory, which includes additional ladder diagrams (9, 10). However, unlike the original
RPA, the resulting RPA with exchange (RPAX) suffers from instabilities of the HF reference and never thrived as a
method for computing ground-state correlation energies (11). To distinguish it from RPAX, RPA is still sometimes
called direct or bare RPA. In 1975, Langreth & Perdew (12) introduced RPA in the context of adiabatic connection
density functional theory, which remains the most concise and widely accepted definition to date.
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introduce RPA from three different perspectives in Section 3. We review recent developments
in beyond-RPA corrections, RPA correlation potentials, and efficient RPA energy and analytic
gradient implementations in Sections 4 and 5. Section 6 provides examples of possible areas where
RPA methods could be applied.

This review is not intended to be exhaustive. Many other advances in electronic structure
theory inspired by RPA are not covered herein, including particle–particle or ladder RPA (23–26),
range-separation methods (27, 28) and RPA hybrids (29, 30), distinguishable cluster methods (31,
32), many-body dispersion methods (33), and quantum Drude models (34).

2. THEORY

2.1. Adiabatic Connection

The adiabatic connection (AC) uses a single coupling strength parameter α to switch continuously
from the noninteracting Kohn–Sham (KS) system (35) (α = 0) to the physical many-electron
system of interest (α = 1). A key aspect of the AC that distinguishes it from other deformations
of the physical system is the constraint that the ground-state density be equal to the physical
ground-state density ρ for all α. The AC Hamiltonian is thus (12, 36)

Ĥ α[ρ] = T̂e + V̂ne + V̂ α[ρ] + αV̂ee, 1.

where T̂e is the kinetic energy operator, V̂ne is the nucleus–electron attraction operator, V̂α[ρ]
is a one-electron local potential operator uniquely determined (up to a constant) by the density
constraint (37), and V̂ee is the operator of the electron–electron Coulomb interaction; atomic
(hartree) units are used throughout this review, i.e., the electron mass, elementary charge, and
reduced Planck’s constant are set to unity. By construction, V̂α[ρ] turns into the Hartree, exchange,
and correlation (HXC) potential for α = 0, and the ground-state wavefunction �α becomes the
KS determinant �.

The energy of the physical ground state E is the sum of the energy expectation value of the
KS determinant and the correlation energy,

E = 〈�|Ĥ |�〉 + EC. 2.

This definition of the correlation energy is appropriate in a density functional context, whereas
the traditional definition in wavefunction theory uses the HF determinant (38).

Using the density constraint, the AC correlation energy may be recast as a coupling strength
integral (12, 36):

EC[ρ] =
∫ 1

0
dα
(
〈�α[ρ] | V̂ee | �α[ρ]〉 − 〈�[ρ] | V̂ee | �[ρ]〉

)
. 3.

Equation 3 expresses the correlation energy entirely as an expectation value of the electron–
electron Coulomb repulsion V̂ee; the coupling strength integration automatically takes care of the
kinetic correlation energy.

2.2. Fluctuation–Dissipation Theorem

The zero-temperature fluctuation–dissipation theorem (FDT) relates ground-state fluctuations
to dissipation in the linear response regime (39). Because electron correlation is related to
ground-state density fluctuations (20), the FDT may be used to express the correlation energy as
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(12, 40)

EC[ρ] = − 1
2π

∫ 1

0
dα Im

∫ ∞

0
dω

∫
dx dx′ χα(x, x′, ω) − χ0(x, x′, ω)

|r − r′| . 4.

Here, the frequency-dependent linear density–density response function

χα(ω, x, x′) = δρ(ω, x)
δvα(ω, x′)

∣∣∣∣
vα=0

5.

has been introduced, where ω denotes frequency and x = (r, σ ) denotes space–spin coordinates.
The frequency dependence may be imagined to arise from a frequency-dependent external
potential vext(ω, x′) perturbing the ground state of Ĥ α ; vα(ω, x′) is the sum of vext(ω, x′) and a
time-dependent local potential that arises from the constraint of the time-dependent density to
its value at α = 1 (41).

A striking feature of Equation 4 is that the correlation energy is expressed in terms of one-
electron linear response properties, which are accessible from time-dependent perturbation theory
and have been well studied because of their importance, e.g., for spectroscopy.

2.3. Time-Dependent Density Functional Theory

Computing the ground-state correlation energy from the FDT still requires knowledge of the
density–density response function at each coupling strength 0 � α � 1. TDDFT (41, 42) provides
a conceptually and computationally simple avenue: χα may be obtained from the time-dependent
KS (TDKS) system instead of the interacting system because their time-dependent densities are
the same by construction. Thus, χα(ω, x1, x2) is the diagonal of the TDKS density-matrix–density-
matrix response function �s

α(ω, x1, x′
1, x2, x′

2) in real space,

χα(ω, x1, x2) = �s
α(ω, x1, x1, x2, x2), 6.

just as the interacting time-dependent density is the diagonal of the TDKS (one-electron) density
matrix.

The TDKS density-matrix–density-matrix response function, or retarded polarization prop-
agator, may be represented by a supermatrix (i.e., a matrix of matrices) (43) of dimension
2N ph × 2N ph, where N ph is the dimension of the particle–hole (ph) space. A weak external
perturbation may excite an electron from some KS occupied orbital φi to some virtual orbital φa .
In the particle–hole picture, the electron is excited from the KS reference state, or Fermi vacuum,
leaving behind a positively charged hole below the Fermi level and creating a negatively charged
electron or particle above the Fermi level. The resulting KS particle–hole pair is described by the
orbital product φi (x)φa (x′), whose diagonal integrates to zero because the excitation conserves the
total electron number. Throughout this review, indices i , j , . . . denote occupied (hole), a , b , . . .
virtual (particle), and p , q , . . . general KS molecular orbitals. All orbitals are assumed to be real.

Density-matrix response theory yields an expression for the TDKS polarization propagator
familiar from TDHF theory (44–46):

�s
α(ω) = −

[(
Aα(ω) Bα(ω)
Bα(ω) Aα(ω)

)
− (ω + iη)

(
1 0
0 −1

)]−1

. 7.

The iη contour distortion makes �s
α analytic in the upper half of the complex frequency plane and

thus guarantees causality (47); the limit η → 0+ is taken after a possible frequency integration. Aα

and Bα are the TDKS orbital rotation Hessians,

(Aα + Bα)ia j b (ω) = (εa − εi )δi j δab + 2αBH
ia j b + 2(BXC

α )ia j b (ω), 8.
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(Aα − Bα)ia j b (ω) = (εa − εi )δi j δab , 9.

where εi and εa are KS orbital energies,

BH
ia j b = (i j |ab) =

∫
dx1 dx2 φi (x1)φa (x1)

1
|r1 − r2|φ j (x2)φb (x2) 10.

is a four-center electron repulsion integral in Mulliken notation, and

(BXC
α )ia j b (ω) =

∫
dx1 dx2 φi (x1)φa (x1) f XC

α (ω, x1, x2)φ j (x2)φb (x2) 11.

is a frequency-dependent matrix element of the exchange-correlation (XC) kernel at coupling
strength α.

Equation 7 may be written in different forms emphasizing different physical aspects. Defining
the supermatrices of the bare Coulomb or Hartree interaction and of the XC kernel, respectively,
as

V =
(

BH BH

BH BH

)
, FXC

α (ω) =
(

BXC
α (ω) BXC

α (ω)
BXC

α (ω) BXC
α (ω)

)
, 12.

we arrive at the Bethe–Salpeter equation (BSE) for �s
α (17, 48):

�s
α(ω) = �0(ω) + �0(ω)

(
αV + FXC

α (ω)
)
�s

α(ω), 13.

where the bare KS polarization propagator �0 equals �s
α at zero coupling strength. This form

emphasizes the screening of �0 resulting from Hartree and XC interactions. Alternatively, one
may focus on the poles of �s

α , which occur at excitation energies of the α-coupled interacting
system. At these excitation energies, the inverse of �s

α becomes singular, leading to the TDKS
eigenvalue problem:[(

Aα(�αn) Bα(�αn)
Bα(�αn) Aα(�αn)

)
− �αn

(
1 0
0 −1

)](
Xαn

Yαn

)
= 0, XT

αnXαn − YT
αnYαn = 1. 14.

For α = 1, the eigenvalues equal electronic excitation energies of the physical system, and the
eigenvectors yield the corresponding transition densities, which is key for TDDFT applications
to electronic spectroscopy (42).

Finally, the correlation energy may be expressed in terms of �s
α ,

EC = − 1
2π

∫ 1

0
dα Im

∫ ∞

0
dω
〈
V
(
�s

α(ω) − �0(ω)
)〉

, 15.

where angle brackets denote the trace operation. However, computation of �s
α requires knowledge

of the XC kernel. As explained below, Equation 15 is more than a complicated reformulation of
the problem that shifts the difficulty from the XC energy to the kernel.

3. RANDOM-PHASE APPROXIMATION

3.1. Time-Dependent Density Functional Theory Perspective

Within RPA, the XC kernel in Equation 13 is entirely neglected; this is equivalent to the time-
dependent Hartree approximation. Thus, �s

α is approximated by

�RPA
α (ω) = �0(ω) + α�0(ω)V�RPA

α (ω). 16.
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Defining the dimensionless generalized dielectric function (47) within RPA as κRPA
α (ω) = 1 −

α�0(ω)V, the BSE for �RPA
α (Equation 16) becomes

�RPA
α (ω) =

(
κRPA

α (ω)
)−1

�0(ω). 17.

This affords an appealing physical interpretation: κRPA
α (ω) accounts for screening of bare KS

particle–hole pairs resulting from other induced particle–hole pairs, i.e., polarization, through the
Hartree interaction. In other words, �RPA

α is dressed or renormalized by the interaction between
particle–hole pairs. Alternatively, the effect of screening may be illustrated by defining the RPA
effective interaction

VRPA
α (ω) = V + αV�0(ω)VRPA

α (ω) = V
(
κRPA

α (ω)
)−1

. 18.

Without screening, κRPA
0 = 0, and VRPA

α (ω) reduces to the Hartree interaction, which is instan-
taneous. However, for finite α, VRPA

α (ω) acquires frequency dependence because of screening by
induced particle–hole pairs.

To avoid singularities of the polarization propagators near the real axis, we may perform the
frequency integration in Equation 15 along the imaginary axis using Cauchy’s integral theorem
(49). Analytically integrating over the coupling strength then yields an expression for the RPA
correlation energy solely in terms of the KS polarization propagator and the Hartree interaction
(40):

EC RPA = 1
2π

∫ ∞

0
dω
〈
ln
(
1 − �0(iω)V

)
+ �0(iω)V

〉
. 19.

For closed-shell systems at large separation, Equation 19 correctly accounts for dispersion interac-
tions at the coupled-monomer level, thereby providing a generalization of dispersion interactions
for systems of finite size (see References 22, 50 and the sidebar titled Dispersion Forces).

3.2. Plasmon Perspective

A particularly simple representation of the RPA correlation energy results from performing both
the frequency and coupling strength integrations in Equation 15 analytically (54),

EC RPA = 1
2

∑
n

(
�RPA

n − �RPA1
n

)
; 20.

here �RPA
n and �RPA1

n are the RPA electronic excitation energies and those to first order in α,
respectively, and the summation includes all excitations. In the spirit of Bohm & Pines’s work, the
plasmon formula (Equation 20) states that the RPA correlation energy is the difference between

DISPERSION FORCES

Dispersion interactions arise from long-range interactions between spontaneous dipole moment fluctuations of
monomers. RPA provides a seamless generalization of this physical picture to electron interactions at finite range
(22, 50) because it is based on correlated fluctuations of the entire electron density (Equation 19) rather than
monomer multipoles. Thus, RPA may be applied to systems with strong intramolecular dispersion interactions, such
as sterically crowded compounds, transition states, and molecular crystals. By contrast, dispersion methods based
on intermolecular perturbation theory, such as corrections using uncoupled dispersion coefficients or symmetry
adapted perturbation theory (51–53), may diverge for these systems.
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the zero-point oscillation energies of electronic excitations at full coupling and those to first order
in the electron interaction. In this picture, each excitation represents one harmonic degree of
freedom. The sum in Equation 20 is dominated by excitations whose energies change most as the
interaction is turned on; this is a key characteristic of plasmons (55). Plasmons are long-wavelength
oscillations of an electron gas and are highly collective, i.e., they involve oscillations of the entire
electron gas and cannot be described by single KS particle–hole pairs or single-electron excitations.

The connection between the RPA correlation energy and collective excitations becomes espe-
cially clear by further rewriting Equation 20 as

EC RPA = −1
2

∑
n

�p
n, 21.

where �
p
n are the eigenvalues of Wp, the sum of the second- and higher-order terms of −(MRPA

α )1/2

with respect to α, and MRPA
α is the reduced RPA orbital rotation Hessian (56),

MRPA
α =

(
ARPA

α − BRPA
α

)1/2 (
ARPA

α + BRPA
α

)(
ARPA

α − BRPA
α

)1/2
. 22.

Wp can be shown to be positive definite. Typically, a few large eigenvalues of Wp dominate the
RPA correlation energy, and the corresponding eigenvectors may be interpreted as plasmonic
modes describing collective excitations of the electrons that give rise to large zero-point energies.

We illustrate the plasmonic mode analysis of the RPA correlation energy for the tetrahedral
Ag20 cluster (57) in Table 1 and Figure 1. The modes with the largest 10 eigenvalues make up
over 90% of the total RPA correlation energy in a split valence plus polarization (SVP) atomic
orbital (AO) basis (see Table 1). Visualization of the modes (see Figure 1) shows that those
with the largest contributions to the correlation energy are highly collective, i.e., they involve
oscillations of the entire electron cloud of the cluster. These collective modes have few nodes,
in accord with the notion that plasmons are low-wavelength excitations. The plasmonic modes
are poorly described by either KS single-orbital or RPA excitations, but they provide an efficient
representation of the RPA correlation energy.

Table 1 Plasmonic modes of Ag20 with the 10 largest
eigenvalues and their percentage contribution to EC RPA

Mode Eigenvalue (hartree) % of EC RPA

1A1 0.2070 11.5

2A1 0.1836 10.2

3A1 0.1612 8.9

4A1 0.1118 6.6

1E 0.1702 9.4

1T1 0.1658 9.2

1T2 0.1728 9.6

2T2 0.1666 9.2

3T2 0.1338 9.1

4T2 0.1467 8.1

Here, the def2-SVP basis set (58) and scalar relativistic small-core
pseudopotentials (59) were used; orbitals were generated using the
TPSS functional (60) and quadrature grids of size m5 (61).
Abbreviations: TPSS, Tao–Perdew–Staroverov–Scuseria;
EC RPA, random-phase approximation correlation energy.
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1A1 2A1 3A1 4A1 1E

1T1 1T2 2T2 3T2 4T2

Figure 1
Contour plots of the 10 dominant plasmonic modes of Ag20. Contour values of 0.001 (red ) and −0.001 (blue) were used; only one
column is shown for degenerate modes. For further details, see Table 1.

3.3. Diagrammatic Perspective

An alternative approach to the density–density response function χα uses the interacting polariza-
tion propagator �α (43). Although both �α and the TDKS polarization propagator �s

α yield the
same density–density response function and thus the same correlation energy through the FDT,
the two are not equal (62). �α satisfies its own BSE (63),

�α(ω) = �0(ω) + �0(ω)
(
αV + Kα(ω)

)
�α(ω), 23.

where Kα is a frequency-dependent kernel accessible, e.g., through many-body perturbation theory
and Green’s function methods (17, 47). In this many-body theory approach, RPA amounts to
neglecting Kα .

In keeping with the Goldstone approach to diagrammatic perturbation theory (64–66), polar-
ization propagators and the Hartree interaction are represented by pairs of arrowed lines and by
wiggly lines, respectively (see Figure 2a), and the BSE within the RPA takes the form shown in
Figure 2b. The RPA correlation energy can be represented by the bubble diagrams in Figure 2c,
again suggesting a physical picture of vacuum fluctuations giving rise to correlation. Substituting
Figure 2b into Figure 2c, integrating over coupling strength, and collecting equivalent diagrams
produces the series of ring diagrams first identified by Gell-Mann & Brueckner (8) (see Figure 2d).

4. IMPROVEMENTS AND EXTENSIONS

4.1. Kernel Corrections

The RPA is equivalent to the Hartree approximation for the TDDFT and BSE kernels, and thus
lacks any second- or higher-order exchange. As a result, same-spin particle–hole pairs do not
experience Pauli repulsion and are screened as much as opposite-spin particle–hole pairs. This
makes the RPA on-top correlation hole too negative and leads to overcorrelation of electrons at
short interelectron distances (67). In other words, RPA contains spurious self-correlation error,

428 Chen et al.

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

01
7.

68
:4

21
-4

45
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

Id
ah

o 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
04

/1
5/

19
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



PC68CH20-Furche ARI 8 April 2017 9:55

d

b
= + α

c
− )∫0

1  dα  (

a

i(Πα
RPA)pqrs =; ; ;

p q

r s

i(Πα)pqrs =

p q

r s
p q

r s

–iVpqrs =i(Π0)pqrs =

p q

r s

+ + + + + …

Figure 2
Goldstone diagrams for (a) noninteracting and interacting polarization propagators and the bare Coulomb
interaction, (b) the BSE for �RPA

α , and (c,d ) the RPA correlation energy (c) before and (d ) after coupling
strength integration. For illustrative purposes, we use blue and black double lines to indicate RPA and exact
renormalization, respectively; a pair of disconnected double lines should not be understood as a product of
single-particle quantities. Abbreviations: BSE, Bethe–Salpeter equation; RPA, random-phase approximation.

which underlies, e.g., its failure to correctly dissociate odd-electron systems such as H2
+ (25,

68). The unphysical short-range behavior of RPA also explains its relatively poor accuracy for
nonisogyric processes, such as atomization, ionization, and spin-flip processes, which break up
electron pairs and lead to large changes in the short-range correlation energy (20).

The second-order screened exchange (SOSEX) method by Freeman & Kresse (69, 70) com-
pletely eliminates self-correlation error for one-electron systems. The AC-SOSEX beyond-RPA
correlation energy (71) is

�EC AC-SOSEX = − 1
2π

∫ 1

0
dα · α Im

∫ ∞

0
dω
〈
V�RPA

α (ω)K�0(ω)
〉
, 24.

where

K =
(

BX BX

BX BX

)
25.

is an approximation to the first-order exchange kernel and BX
ia j b = −(ib | j a) is the correspond-

ing particle–hole exchange integral. SOSEX partially screens the second-order exchange (see
Figure 3b), and is thus useful for small-gap systems and even metals, as opposed to unscreened
perturbation theory (69, 72). However, SOSEX does not consistently improve RPA atomiza-
tion energies, and it worsens the description of reaction barriers and systems with strong static
correlation compared to RPA (68).

Systematic improvement is possible by RPA-renormalized many-body perturbation theory
(68). The key idea is to expand the exact polarization propagator in terms of the RPA polarization
propagator

�α(ω) = �RPA
α (ω) + �RPA

α (ω)Kα(ω)�α(ω), 26.

diagrammatically represented in Figure 3d. Because RPA is well-behaved for small-gap sys-
tems, this expansion avoids the instabilities of conventional many-body perturbation theory by
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b

∫0

1  dα • α

c

∫0

1  dα • α

a

d

Kα (ω)= +

+

2

Figure 3
Goldstone diagrams for (a) bare second-order exchange energy, (b) AC-SOSEX beyond-RPA correlation
energy, (c) AXK beyond-RPA correlation energy, and (d ) RPA-renormalized BSE. Abbreviations: AC,
adiabatic connection; AXK, approximate exchange kernel; BSE, Bethe–Salpeter equation; RPA, random-
phase approximation; SOSEX, second-order screened exchange.

RPA-renormalizing all particle–hole pairs. Using a frequency-independent approximate exchange
kernel (AXK), KAXK

α = αK, we obtain the AXK second-order beyond-RPA correlation energy
(see Figure 3c):

�EC AXK = − 1
2π

∫ 1

0
dα · α Im

∫ ∞

0
dω
〈
V�RPA

α (ω)K�RPA
α (ω)

〉
. 27.

Although AXK still contains some self-correlation error, it dissociates covalent bonds correctly
and consistently improves upon RPA (68).

4.2. Exchange-Correlation Potentials from the Random-Phase Approximation

The RPA correlation energy (Equation 19) is a functional of the noninteracting KS orbitals and
orbital energies. For wavefunction methods, such reference-state dependence is undesirable, as
the exact ground-state energy is invariant under any orbital rotations (73). In DFT, by contrast,
the KS determinant is unique in the sense that it yields the correct density (given that the density
is pure-state noninteracting v-representable). Thus, the problem shifts from achieving reference-
state independence to approximating the exact KS potential as accurately as possible.

In the optimized effective potential (OEP) approach (74), a functional of the KS orbitals is
minimized under the constraint that the orbitals solve KS equations with a local one-electron
potential; this is equivalent to minimization with respect to a one-electron density. Applying the
functional derivative chain rule, the local RPA correlation potential is obtained by differentiating
the RPA energy functional with respect to the density (75).

RPA correlation potentials of noble gas atoms are more accurate than second-order Görling–
Levy (76), local density approximation, or generalized gradient approximation (77) potentials.
RPA-OEP misses the derivative discontinuity at odd-integer particle numbers but cancels the
fractional spin error in the exchange-only functional (78). In addition, the highest occupied molec-
ular orbital (HOMO) energies, obtained using RPA-OEP, agree well with the exact ionization
potentials (79). The OEP methodology has been extended to nonzero kernel corrections beyond
RPA (80). However, OEP can be considered an inverse problem and, in conjunction with finite
basis sets, has been hampered by numerical instability (81–83). Despite recent attempts to ad-
dress this issue (84, 85), applications of the RPA-OEP method to large molecular systems remain
challenging.
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5. IMPLEMENTATIONS

5.1. Random-Phase Approximation Energy Computations

Brute-force computation of the RPA correlation energy using the plasmon formula (Equation 20)
requires diagonalization of the Nph × N ph matrix MRPA (56). Because both the number of particle
(unoccupied) orbitals and the number of hole (occupied) orbitals increase linearly with the system
size N in a finite basis set, the operation count of this approach scales as O(N 6) and quickly
becomes prohibitive. Alternatively, the RPA correlation energy may be obtained by retaining
only ring contractions in a coupled-cluster doubles (CCD) implementation (15), which scales as
O(N 6) in each CCD iteration.

Low-scaling algorithms are achievable by use of the resolution-of-the-identity (RI) approxi-
mation (86) to factorize the electron repulsion integrals (ERIs) according to

BH
ia j b = (ia | j b) =

∑
P Q

(ia | P )(U−1)P Q(Q | j b), 28.

where UP Q = (P |Q) is a two-center ERI. This factorization states that the KS particle–hole
transition densities may be represented by (nonorthonormal) auxiliary basis functions P, Q, . . .
using the inner product defined by ERIs. With finite auxiliary basis, Equation 28 is equivalent
to the so-called density fitting in the Coulomb metric or the least-squares fitting of electro-
static fields generated by particle–hole pairs (87). The RI approximation can be highly accurate
with atom-centered auxiliary basis sets ∼3–5 times the size of the corresponding AO basis sets.
Auxiliary basis sets optimized for RI-MP2 energies (88) lead to errors on the order of 10 µHa
per atom in RPA calculations, which is below the inherent method error in typical applications
(89).

With the RI approximation, the scaling of ring-CCD calculations may be reduced to O(N 4)
(90), but the solution is obtained using iterative methods and requires storage of large cubic-
scaling arrays. Alternatively, the RI approximation may be applied to the RPA correlation energy
(Equation 19 or 20) along with numerical frequency integration (89):

EC RI-RPA = 1
2π

∫ ∞

0
dω〈ln(1 + Q(ω)) − Q(ω)〉, 29.

where Q is represented in an auxiliary basis and corresponds to the bare KS polarization propa-
gator dressed by the Hartree interaction. Using a Clenshaw–Curtis quadrature for the numerical
integration (91), the evaluation of the RI-RPA correlation energy scales as O(N 4). If a system-
independent energy error is desired, e.g., for reaction energy calculations, finer quadratures are
required for larger systems, introducing an extra O(ln N ) scaling factor. In practice, however, a
quadrature of ≤100 points is adequate for most small and medium-sized molecules.

Further lowering of the computational complexity has been achieved by factorization of �0

using Laplace transform (92, 93) and frequency-domain (94) techniques with density fitting in
the least-squares (or overlap) metric (95) or tensor hypercontraction (96), and by local-domain
coupled-cluster methods (97). These algorithms scale favorably for very large systems, but come
at the cost of larger prefactors compared to higher-scaling approaches and, in some cases, addi-
tional parameters. Thus, the quartic scaling algorithm may be more efficient than lower-scaling
alternatives up to well above 100 atoms in typical applications. Figure 4 displays timings for large
organic molecules from the S12L test set (98) using the RI-RPA implementation available in
Turbomole V7.0; the effective scaling is subquartic.
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Figure 4
Wall times in hours for single-point RI-RPA energy calculations on S12L test set (98) plotted versus system
size. The PBE functional (99, 100) and the def2-TZVP basis set (58) were used to generate the KS reference;
100 quadrature points were used for numerical frequency integration. All RI-RPA calculations were
performed with 5,000 MiB reserved memory on one core of a Xeon E5-2680 v2 2.8-GHz processor. The
largest system contains 158 atoms. Timings include the cost of calculating the exact exchange energy. The
slope of the regression line is 3.49. Abbreviations: KS, Kohn–Sham; PBE, Perdew–Burke–Ernzerhof; TZVP,
triple-zeta valence plus polarization; RI-RPA, resolution-of-the-identity random-phase approximation.

5.2. Analytic Gradients Within the Random-Phase Approximation

Analytic energy gradients are a prerequisite for molecular structure optimization and property
calculations (101). For energies that are variationally determined, their gradients can be efficiently
evaluated by virtue of the Hellmann–Feynman theorem. Although the RPA energy functional
ERPA is not variational, a Lagrangian can be constructed for computing energy gradients without
solving for perturbed KS orbitals (102, 103):

LRPA(C, ε, D�, W | h, v, VXC, S) = ERPA(C, ε | h, v) 30.

+
〈
D�(CTFC − ε)

〉
−
〈
W(CTSC − 1)

〉
.

This RPA Lagrangian depends on orbital coefficients C and a matrix ε that reduces to the diagonal
matrix of orbital energies for the input KS solution, as well as on the Lagrange multipliers D�

and W; additionally, LRPA depends parametrically on the one- and two-electron integrals h and
v, the ground-state XC potential matrix VXC, and the overlap matrix S, all in an AO basis (104).
The Fock matrix F is the effective one-electron KS Hamiltonian and can be expressed in terms of
h, v, and VXC.

By construction, the correct RPA energy for given KS orbitals and orbital energies is attained
by unconstrained optimization of the RPA Lagrangian. The variation with respect to D� enforces
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Figure 5
Natural orbital occupation numbers of the HONO and LUNO of ground-state H2 using spin-restricted
RPA with a PBE reference and CCSD as a function of interatomic distance. The aug-cc-pV5Z basis set
(108) was used. An orbital is considered occupied if the occupation is >1, and unoccupied if the occupation is
<1. Abbreviations: CCSD, coupled-cluster singles and doubles; HONO, highest occupied natural orbital;
LUNO, lowest unoccupied natural orbital; PBE, Perdew–Burke–Ernzerhof; RPA, random-phase
approximation.

that C and ε satisfy the KS equations

CTFC = ε, 31.

and the variation with respect to W recovers the orthonormality constraint

CTSC = 1. 32.

The corresponding constraint terms in LRPA may be viewed as energetic penalties for violat-
ing the constraints, and they both vanish at the stationary point. The total differential of LRPA

reveals the physical meaning of the Lagrange multipliers (104): D� corresponds to a correction to
the KS density matrix DKS due to correlation and orbital relaxation, and W is the energy weighted
density matrix (105). The RPA density matrix

DRPA = dERPA

dh
= DKS + CD�CT 33.

facilitates the analysis of RPA calculations in terms of natural orbitals and occupation numbers.
Within a spin-restricted formalism, the RPA natural orbitals of stretched H2 exhibits significant
fractional occupation, which resembles the exact solution from coupled-cluster singles and doubles
(CCSD) (see Figure 5). This result agrees with prior observations that RPA is capable of partially
capturing static correlation (56, 106, 107).

The stationarity of the Lagrangian ensures that the orbitals and orbital energies satisfy Wigner’s
2n + 1 rule, and the Lagrange multipliers satisfy a stronger 2n + 2 rule (103). Thus, it is not
necessary to solve coupled perturbed KS (CPKS) equations for each perturbation; instead, the
Lagrange multipliers can be determined by solving a single set of CPKS equations. With the
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RI approximation, numerical frequency integration, ERI prescreening techniques, and iterative
subspace methods (109, 110), the RPA energy gradient implementation in Turbomole has achieved
the same O(N 4 ln N ) scaling as single-point RPA energy calculations. In a typical application, the
computational cost for a gradient vector with respect to all nuclear displacements is ∼5 times that
for the corresponding RPA energy. Routine RPA molecular structure optimizations are feasible
for systems with ∼100 atoms using triple- or quadruple-zeta basis sets on single workstation
computers (104).

Other recent implementations of RPA analytic gradients (111, 112) are based on the ring-
CCD formulation with a HF reference and scale as O(N 6). Analytic energy gradients were also
implemented for range-separated hybrid functionals with short-range semilocal approximation
and long-range RPA (112).

6. APPLICATIONS

6.1. Gold Clusters

Despite the chemical inertness of bulk gold (113), small gold clusters supported on a metal oxide
surface are excellent catalysts (114, 115), and their activity is believed to be related to the dimen-
sionality of their structures, which changes from two-dimensional (2D) to three-dimensional (3D)
with increasing cluster size (116). The 2D–3D crossover points of gold cluster cations and anions
are well established to occur at cluster sizes of 8 atoms (117) and 12 atoms (118), respectively.
For neutral clusters, experimental studies suggest that Au7 and Au8 are still planar (118a, 119);
theoretical estimates for the 2D–3D crossover point range from 7 to 14 atoms (119a–122).

To obtain an accurate estimate of the 2D–3D crossover point for neutral gold clusters, a genetic
algorithm (123) based on TPSS (60) potential energy surfaces was used to identify low-energy
isomers (124). Relative energies of these isomers were determined by single-point calculations
using revTPSS (125) and RPA; the latter is well suited for gold clusters, where the noninteracting
gap is small and dispersion interactions may be important. Thermal, scalar relativistic, and spin-
orbit corrections were included. The methodology was validated for the known crossover points
of gold cluster anions and cations. Isomers III (2D) and I (3D) of Au11 (see Figure 6) were found to
be almost isoenergetic; clusters with up to 10 atoms are 2D, whereas clusters larger than 11 atoms
are manifestly 3D. The unusually large size for 2D–3D crossover in Au clusters compared to Cu
and Ag clusters has been attributed to relativistic effects (126).

6.2. Lanthanide and Actinide Complexes

Lanthanides (Ln) form ionic bonds due to the limited radial extension of 4 f orbitals; thus, the
coordination number largely depends on the ionic radius. However, recent experiments on Ln/Ln′

heterobimetallic tuck-over hydride complexes (Figure 7) (127) suggested that the smaller metal
ion in these complexes is located in the eight-coordinate site rather than the seven-coordinate site.
Although semilocal DFT calculations supported this observation for the Y/Lu–Lu/Y mixture, they
failed to reproduce the experimental metal ion configurations for the Y/La and Lu/La complexes.
Including Grimme’s dispersion correction (D3) (128) overcorrected the energy differences be-
tween the Ln/Ln′ and Ln′/Ln complexes, whereas RPA correctly reflected the experimental trend
(127).

Semilocal and hybrid DFT, RPA, and AXK calculations on the uranium complex [(C5H5)3U]−

suggested a quintet 5f 36d 1 ground-state configuration (Table 2), corroborating the semilocal
DFT calculations on [(C5H4SiMe2)3U]−, which is the first isolable U(II) complex (129, 130).
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Au11–I

3D structure

Au11–II

2D structure

Au11–III Au11–IV

Figure 6
The low-energy two- and three-dimensional (2D and 3D) structures of Au11. Figure adapted from
Reference 124 with permission. Copyright 2014 American Chemical Society.

Although both semilocal DFT and RPA methods gave the same trend for the stability of spin
states, the semilocal DFT triplet–quintet energy difference varies considerably with the choice of
functionals, e.g., 8.5 kcal/mol for TPSS (0% exact exchange) and 12.7 kcal/mol for B3LYP (20%
exact exchange) (131, 132). This study illustrates the use of RPA methods for calibrating semilocal
DFT results for new compounds for which no precedent or empirical calibration exists.

Y/Lu Lu/Y Y/Y

H
Y1 Lu2

H
Lu1 Y2

H
Y1 Y2

Figure 7
Ln/Ln′ heterobimetallic tuck-over hydride complexes Cp∗

2Ln(μ-H)(μ-η1:η5-CH2C5Me4)Ln′Cp∗, where
Cp∗ = C5Me5. Figure adapted from Reference 127 with permission. Copyright 2014 American Chemical
Society.
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Table 2 Energy difference between triplet and quintet states of [(C5H5)3U]− using the
def2-TZVP basis set

TPSS TPSSh B3LYP RPA AXK

�E 8.5 10.4 12.7 5.5 5.7

Abbreviations: AXK, approximate exchange kernel; RPA, random-phase approximation; TPSS, Tao–Perdew–Staroverov–
Scuseria; TPSSh, Tao–Perdew–Staroverov–Scuseria hybrid; B3LYP, Becke 3-parameter Lee–Yang–Parr.

6.3. Stereoselective Transition States

Diastereoselective reactions are an important class of reactions in the synthesis of natural products
that involve multiple stereocenters. In these reactions, one diastereomer is formed selectively over
the other because of a difference in the free energy of the transition states. RPA and semilocal
DFT were used to study the diastereoselectivity of radical coupling reactions of acetonide
radicals and electrophilic alkenes (133) (see Figure 8). Similar reactions are encountered in
the total synthesis of (−)-chromodorolide B (133a), a rearranged spongian diterpenoid with 10
contiguous stereocenters. Simple rules of steric hindrance fail to predict the relative free energies
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Figure 8
(a) TS models for anti (TS-anti ) and syn (TS-syn) additions of trisubstituted acetonide radicals to alkenes.
The arrows indicate noncovalent interactions, which dictate the stereoselectivity. (b) Correlation plot of
experimental and computed diastereoselectivities (using RPA, TPSS, TPSS-D3, and TPSSh-D3) of the
reaction of trisubstituted acetonide radicals and methoxybutenolide. The structures were optimized using
TPSS-D3/def2-TZVP. Abbreviations: RPA, random-phase approximation; TS, transition state; TPSS,
Tao–Perdew–Staroverov–Scuseria; TPSSh, Tao–Perdew–Staroverov–Scuseria hybrid; TZVP, triple-zeta
valence plus polarization. Figure adapted from Reference 133 with permission. Copyright 2016 John Wiley
and Sons, Inc.
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of the transition states; instead, it is essential to account for a delicate balance between weak
repulsive and attractive interactions within these systems. As shown in Figure 8, the experimental
diastereoselectivity closely correlates with theoretical predictions using RPA and the dispersion-
corrected TPSS-D3 and TPSSh-D3 functionals (134). The correlation worsens considerably
in the absence of dispersion corrections, which underlines the importance of noncovalent
interactions for diastereoselectivity in large, crowded systems.

Cave and coworkers (135) studied activation energies in Claisen rearrangements using semilocal
and hybrid density functionals, MP2, and RPA. Although all methods yielded similar trends in
relative reactivity, the RPA results showed the best agreement with the experimental data.

6.4. Molecular Properties of Closed-Shell Molecules and Radicals

Burow et al. (104) investigated the performance of RPA for molecular properties such as equilib-
rium structures, dipole moments, and vibrational frequencies of closed-shell systems. As shown in
Figure 9, RPA generally outperforms PBE and MP2; moreover, similar to MP2, RPA is able to
describe intermonomer noncovalent interactions. Using KS references is important for obtaining
accurate RPA properties; for example, for the equilibrium bond distances of a set of 17 small
molecules, RPA with HF references lead to a mean absolute error (MAE) over three times larger
than the MAE obtained from RPA calculations with PBE references (104).

To further assess the accuracy of RPA, we report the equilibrium structures of a variety of
small radicals calculated within RPA for the first time (see Table 3). These molecules were se-
lected because accurate experimental bond lengths were available in the literature. Radicals are
usually short-lived and experimentally elusive intermediates, for which single-reference meth-
ods are often unsuitable because of spin contamination and instabilities (136–138). However,
RPA structures agree well with experiment, with errors comparable to closed-shell species (see
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Table 3 Deviations of computed equilibrium bond lengths (in picometers) of small radicals from
experimental reference values; MAEs are also provided

Parameter Reference value RPA (TPSS) RPA (PBE)

OH O–H 96.97a 0.16 0.27

H2O+ O–H 100.1a 0.02 0.10

HF+ H–F 100.1b 0.40 0.47

NH+ N–H 107.0c 0.28 0.16

HCP+ H–C 107.3b 0.20 0.37

CH3 C–H 107.67b −0.37 −0.19

N2
+ N–N 111.642a −0.35 −0.26

CO+ C–O 112.83a −0.95 −0.82

NO N–O 115.08a 0.42 0.57

CN C–N 117.18a 0.12 0.23

CO2
+ C–O 117.682b −0.07 0.023

BO B–O 120.5a 0.18 0.31

CF C–F 127.2a 0.44 0.66

F2
+ F–F 130.5d 3.27 3.66

HCP+ C–P 160.0b −0.39 −0.28

MAE NA NA 0.51 0.56

Here, the aug-cc-pV5Z basis set (108) was used. Abbreviations: MAE, mean absolute error; NA, not applicable; PBE,
Perdew–Burke–Ernzerhof; RPA, random-phase approximation; TPSS, Tao–Perdew–Staroverov–Scuseria.
aReference 139.
bReference 140.
cReference 141.
dReference 142.

Figure 9). The dependence on the semilocal functional used to generate the KS orbitals is weak,
with MAEs of 0.51 pm and 0.56 pm for TPSS and PBE, respectively. The results suggest that
RPA is a viable approach for computing structures of open-shell species.

7. CONCLUSIONS

RPA methods encapsulate essential electron correlation effects such as screening, mid- and long-
range interactions, and some static correlation even at the level of the bare Coulomb interaction
kernel. These effects are largely absent in the description provided by semilocal density functionals,
especially for inhomogeneous systems. While semilocal functionals may be empirically adjusted to
partially recover the missing effects for certain systems, methods based on RPA offer an appealing
alternative that is systematic and widely applicable. Moreover, the sound physical foundation
of RPA may guide future method development and provide insight into computational studies,
suggesting a possibility to alleviate the functional inflation crisis for both developers and users of
DFT.

In computational applications, RPA methods provide a route to assess results from semilocal
DFT calculations and even refine them in many cases. These methods are particularly useful for
small-gap systems such as metal nanoclusters, d- and f -element compounds, radicals, and weakly
bound complexes, where semilocal DFT results using different functionals typically show wide
disparities. Other strengths of RPA methods include the prediction of barrier heights, isogyric
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reaction energies, relative energies of conformers, and the description of systems with significant
noncovalent interactions. However, processes involving a large change in short-range correlation,
such as bond breaking or ionization, require the inclusion of second- and higher-order exchange
effects for accurate results. The AXK method efficiently accomplishes this task and greatly reduces
self-correlation error in odd-electron systems.

The computational cost of RPA is currently one order of magnitude greater than that of a hybrid
DFT calculation. This is already a significant improvement compared to just a few years ago, and
with the development of low-scaling algorithms, further reduction of the cost seems possible.
RPA methods also require larger basis sets than semilocal DFT for converged results (143). Is this
additional cost for an RPA calculation justified? Probably, if the goal of the computational study
is to interpret existing results and provide additional evidence for them; certainly, if the goal is to
predict the energetics and properties for systems that are difficult or impossible to tackle by other
means.

SUMMARY POINTS

1. RPA methods capture screening physics and long-range correlation effects not included
in semilocal density functional approximations.

2. RPA methods provide a simple and appealing interpretation of electron correlation in
terms of collective charge density fluctuations or plasmonic modes.

3. RPA methods are most accurate for barrier heights, isogyric reaction energies, and sys-
tems with significant noncovalent interactions; processes involving bond breaking, spin
flipping, or ionization require second- or higher-order exchange to account for short-
range correlation effects, e.g., using the AXK approach.

4. The computational cost of an RPA calculation has shrunk to approximately one order of
magnitude above that of a semilocal hybrid DFT calculation.

5. RPA methods are particularly useful for small-gap systems such as open-shell d- and
f -element compounds and reactive intermediates, where semilocal DFT results exhibit
strong functional dependence.

DISCLOSURE STATEMENT

Principal Investigator Filipp Furche has an equity interest in Turbomole GmbH. The terms of
this arrangement have been reviewed and approved by the University of California, Irvine, in
accordance with its conflict of interest policies.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under CHE-
1213382 and CHE-1464828. G.P.C. is grateful to Dr. Mikko Muuronen for helpful discussions.

LITERATURE CITED

1. Pribram-Jones A, Gross DA, Burke K. 2015. DFT: a theory full of holes? Annu. Rev. Phys. Chem.
66:283–304

www.annualreviews.org • Random-Phase Approximation Methods 439

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

01
7.

68
:4

21
-4

45
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

Id
ah

o 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
04

/1
5/

19
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



PC68CH20-Furche ARI 8 April 2017 9:55

2. Marques MAL, Oliveira MJT, Burnus T. 2012. LIBXC: a library of exchange and correlation functionals
for density functional theory. Comput. Phys. Commun. 183:2272–81

3. Medvedev MG, Bushmarinov IS, Sun J, Perdew JP, Lyssenko KA. 2017. Density functional theory is
straying from the path toward the exact functional. Science 355:49–52

4. Mardirossian N, Pestana LR, Womack JC, Skylaris C-K, Head-Gordon T, Head-Gordon M. 2017.
Use of the rVV10 nonlocal correlation functional in the B97M-V density functional: defining B97-rV
and related functionals. J. Phys. Chem. Lett. 8:35–40

5. Furche F, Perdew JP. 2006. The performance of semilocal and hybrid density functionals in 3D
transition-metal chemistry. J. Chem. Phys. 124:044103

6. Dreuw A, Weisman JL, Head-Gordon M. 2003. Long-range charge-transfer excited states in time-
dependent density functional theory require non-local exchange. J. Chem. Phys. 119:2943–46

7. Bohm D, Pines D. 1953. A collective description of electron interactions: III. Coulomb interactions in
a degenerate electron gas. Phys. Rev. 92:609–25

8. Gell-Mann M, Brueckner KA. 1957. Correlation energy of an electron gas at high density. Phys. Rev.
106:364–68

9. McLachlan A, Ball M. 1964. Time-dependent Hartree–Fock theory for molecules. Rev. Mod. Phys.
36:844–55

10. Oddershede J. 1978. Polarization propagator calculations. Adv. Quantum Chem. 11:275–352
11. Szabo A, Ostlund NS. 1977. The correlation energy in the random phase approximation: intermolecular

forces between closed-shell systems. J. Chem. Phys. 67:4351–60
12. Langreth DC, Perdew JP. 1975. The exchange-correlation energy of a metallic surface. Solid State

Commun. 17:1425–29
13. Harl J, Kresse G. 2009. Accurate bulk properties from approximate many-body techniques. Phys. Rev.

Lett. 103:056401
14. Perdew JP, Schmidt K. 2001. Jacob’s ladder of density functional approximations for the exchange-

correlation energy. AIP Conf. Proc. 577:1–20
15. Scuseria GE, Henderson TM, Sorensen DC. 2008. The ground state correlation energy of the random

phase approximation from a ring coupled cluster doubles approach. J. Chem. Phys. 129:231101
16. Oddershede J. 1987. Propagator methods. In Advances in Chemical Physics: Ab Initio Methods in Quantum

Chemistry II, ed. KP Lawley, pp. 201–39. New York: Wiley
17. Onida G, Reining L, Rubio A. 2002. Electronic excitations: density-functional versus many-body

Green’s-function approaches. Rev. Mod. Phys. 74:601–59
18. Dobson JF. 2012. Dispersion (van der Waals) forces and TDDFT. In Fundamentals of Time-Dependent

Density Functional Theory, ed. MAL Marques, NT Maitra, FMS Nogueira, EKU Gross, A Rubio,
pp. 417–41. Berlin: Springer

19. Heßelmann A, Görling A. 2011. Random-phase approximation correlation methods for molecules and
solids. Mol. Phys. 109:2473–500

20. Eshuis H, Bates JE, Furche F. 2012. Electron correlation methods based on the random phase approx-
imation. Theor. Chem. Acc. 131:1084

21. Ren X, Rinke P, Joas C, Scheffler M. 2012. Random-phase approximation and its applications in com-
putational chemistry and materials science. J. Mater. Sci. 47:7447–71

22. Dobson JF, Gould T. 2012. Calculation of dispersion energies. J. Phys. Condens. Matter 24:073201
23. Scuseria GE, Henderson TM, Bulik IW. 2013. Particle-particle and quasiparticle random phase ap-

proximations: connections to coupled cluster theory. J. Chem. Phys. 139:104113
24. Shepherd JJ, Henderson TM, Scuseria GE. 2014. Coupled cluster channels in the homogeneous elec-

tron gas. J. Chem. Phys. 140:124102
25. van Aggelen H, Yang Y, Yang W. 2014. Exchange-correlation energy from pairing matrix fluctuation

and the particle–particle random phase approximation. J. Chem. Phys. 140:18A511
26. Shenvi N, van Aggelen H, Yang Y, Yang W. 2014. Tensor hypercontracted ppRPA: reducing the cost

of the particle–particle random phase approximation from O(r6) to O(r4). J. Chem. Phys. 141:024119
27. Janesko BG, Henderson TM, Scuseria GE. 2009. Long-range-corrected hybrid density functionals

including random phase approximation correlation: application to noncovalent interactions. J. Chem.
Phys. 131:034110

440 Chen et al.

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

01
7.

68
:4

21
-4

45
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

Id
ah

o 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
04

/1
5/

19
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



PC68CH20-Furche ARI 8 April 2017 9:55
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69. Grüneis A, Marsman M, Harl J, Schimka L, Kresse G. 2009. Making the random phase approximation

to electronic correlation accurate. J. Chem. Phys. 131:154115
70. Freeman DL. 1977. Coupled-cluster expansion applied to the electron gas: inclusion of ring and ex-

change effects. Phys. Rev. B 15:5512–21
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