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Diagonal Padé approximant of the one-body Green’s function: A study on Hubbard rings
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Padé approximants to the many-body Green’s function can be built by rearranging terms of its perturbative
expansion. The hypothesis that the best use of a finite number of terms of such an expansion is given by the
subclass of diagonal Padé approximants is here tested, and largely confirmed, on a solvable model system,
namely the Hubbard ring for a variety of site numbers, fillings, and interaction strengths.
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I. INTRODUCTION

In the context of quantum field theory, perturbation theory
allows us to derive a formal series for the interacting one-body
Green’s function in terms of the corresponding noninteracting
one. In an oversimplified notation this reads

G = G0 + G0vG0G0 + G0vG0G0vG0G0 + ..., (1)

where v denotes the interaction between the particles. Con-
vergence properties of this series depend on the specific
Hamiltonian one starts from; for most interesting cases the
series is suspected to be, however, either divergent or merely
slowly convergent. A way to overcome this limit is to sum up
an infinite subset of terms, which is commonly achieved by
recasting the calculation of G in the form of a Dyson equation:

G = G0 + G0�G, (2)

where �, the so-called self-energy of the system, has itself a
(simpler) perturbative expansion in terms of G0 and v, which
leads to the following expansion of the Green’s function:

G = (
G−1

0 − vG0 − vG0vG0G0 − ...
)−1

. (3)

A finite number of terms of the expansion of � results in an
infinity of terms for the corresponding approximate G and
it usually greatly improves over the approximation provided
by (1). Such an expansion is at the heart of state-of-the-
art methods used nowadays for the estimate of G for real
systems [1].

One way to explain this success is to interpret the approach
in terms of Padé approximants [2]. Given a certain function
f (z), if we only know the first n + 1 coefficients of its Taylor
expansion f (z) = c0 + c1z + c2z2 + ... + cnzn + ..., we can
approximate the function with a power series that gives rise
to the same expansion, which is trivially the nth order trunca-
tion of the Taylor series itself, f (z) ≈ c0 + c1z + c2z2 + ... +
cnzn. This is what standard perturbation theory does. Alterna-
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tively, we can use the rational function

a0 + a1z + a2z2 + ... + apzp

1 + b1z + b2z2 + ... + bqzq
(4)

whose coefficients are determined by the same condition,
namely that (4) gives rise to the same Taylor expansion of f (z)
up to the nth order. For given n this criterion identifies not just
one but a set of rational functions obtained for different values
of p and q with the constrain p + q = n; these functions are
called ‘Padé approximants’ of order p and q and denoted
by [p/q] f (z), or, in short, [p/q]. The special case p = q is
called diagonal Padé approximant. The approximant [n/0] is
the truncated Taylor series itself, hence the series of Padé
approximants can be considered as a way to generalize the
Taylor series. For many functions, Padé approximants are
found to represent better approximations than truncations
of the Taylor series [3]. Perhaps not surprisingly, this is
particularly true when the series diverges: A divergence in
the Taylor expansion of a function reflects the presence of
singularities over the complex plane z ∈ Z which a power
series representation is incapable to describe; a rational func-
tion, on the other hand, has singularities of its own which
can be ‘tuned’ to fit those of the function to approximate. If
the Green’s function was simply a function of v, the series
generated by perturbation theory (1) would amount to its
Taylor expansion, or, in terms of Padé approximants, [n/0],
while solving the Dyson equation with the nth truncation
of the perturbative expansion of � would represent a Padé
approximant [0/n] (the fact that the Green’s function in facts
depends on spin/space/time variables makes the definition of
Padé approximants less obvious than its Taylor expansion, as
we shall later see). From this perspective, it is then natural
to expect that, if the perturbative series for the actual Green’s
function seems to diverge, solving the Dyson equation with a
perturbative self-energy may then give rise to a sequence of
approximations with better convergence properties, as it turns
out to be in many cases of interest.

In fact, one can go one step farther. As mentioned, for a
given order of truncation of the Taylor expansion there is a
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variety of Padé approximants, according to the order of the
numerator and denominator. For instance, given the fourth
order one can build [4/0] (the truncated Taylor expansion
itself), [0/4] (equivalent to take � up to fourth order) but
also [1/3], [2/2], and [3/1]. A priori, there is no way to
know which one would provide the best approximation. A
large amount of evidence from numerical experiments and
various applications in physics had led, however, to conjecture
that, whenever no information on the function to approxi-
mate other than its truncated Taylor expansion is given, the
best approximation is most likely obtained by the diagonal
approximant [n/n] [2]. This raises the question: Would the
equivalent of a diagonal Padé approximant work better than
(3) in approximating the Green’s function?

Obviously, such a question is too vague to admit a neat
answer. ‘What are the criteria to say that an approxima-
tion is “better” than another?’, ‘what fields and interactions
are we considering and what is the value of the coupling
constants?’ are just examples of questions one should first
clarify. Moreover, even if the question was formulated with
sufficient precision, practical obstacles, such as the increasing
complexity of terms of perturbation theory and the scarcity of
exactly known Green’s functions to use as test bench, would
set severe limits to our capability to give a definite answer.
Nonetheless, it does make sense to consider the possibility
that diagonal Padé approximants may be a valuable tool for
developing approximations of the Green’s function of real
systems, for which a very limited number of terms of the
expansion (1) are computationally accessible and one wishes
to make the best use of them. In this paper we report a
preliminary study on such a possibility.

We here focus on the simplest, nontrivial diagonal approxi-
mant, namely [1/1], and perform a systematic study on a set of
models, zero-temperature Hubbard rings, that are numerically
solvable, in the attempt to understand whether the diagonal
Padé may offer a better approximation than (1) or (3). More
specifically, in Sec. II, we set the theoretical framework: We
first derive a general expression of such an approximant for
the Green’s function in terms of the expansion of the self-
energy; we then simplify that expression in the case of a
two-body interaction for zero temperature Green’s function
in the Lehmann representation projected on a basis; finally
we explain how these formulas are modified to avoid double
counting when the starting point of the expansion G0 is not
the completely free Green’s function but comes from a mean
field approximation, like Hartree or density functional theory
(DFT). We therefore arrive to an expression for [1/1] for the
Green’s function that can be readily used for model as well as
for real systems. In Sec. III, we perform a systematic study
of this approximation on zero-temperature Hubbard rings.
We compare the relative error of the approximate spectral
functions arising from the three approaches: straightforward
perturbation theory of Eq. (1) (G-PT, henceforth), perturba-

tion theory applied to the Dyson Eq. (3) (�-PT) and the set of
diagonal Padé approximants (dP-PT), for a variety of number
of sites (L = 2, 4, 6, 8, 10), fillings (N = 2, . . . , 2L − 2), and
strengths of interaction (U/t = 0.1, 1, 10). This allows us to
attempt to extrapolate the convergence properties of the three
series. We then focus on the direct comparison between �-PT
and dP-PT and, finally, we discuss the advantages of building
the series on top of a mean-field approximation and the effects
of a long-range interaction. Conclusions are drawn at the end.

II. FIRST ORDER DIAGONAL PADÉ APPROXIMANT
FOR GREEN’S FUNCTIONS

For a scalar function f (z) with Taylor expansion
∑∞

i=0 cizi,
the first (nontrivial) diagonal Padé approximant is the rational
function (here conveniently arranged in the form of a trun-
cated continued fraction):

[1/1] f (z) = c0

1 − z c1c−1
0

1+z
(

c1c−1
0 −c2c−1

1

) (5)

whose Taylor expansion correctly matches that of f (z) for the
first 1 + 1 + 1 = 3 terms: [1/1] f (z) = c0 + c1z + c2z2 + ....
In order to generalize this formula to cases in which the
coefficients ci are not just numbers, but more complex objects
like matrices or functions, as the one we are interested in, we
follow Sec. 8.2 of [2]. As one should expect when dealing
with matrices, the generalization of (5) is not unique, due to
the fact that a simple product of two scalar coefficients cic j

can correspond to either CiCj or CjCi if the two matrices Ci

and Cj do not commute. The criterion we shall adopt here is
that the resulting series of approximant of the Green’s function
([0/0], [0/1], [0/2], . . .) must correspond to the series �-PT
given by (3). This unambiguously identifies a Padé general-
ization of standard many-body perturbation theory. We then
proceed as follows.

First, suppose ci is a N × N complex matrix; we can define
the reciprocal of the series

∑∞
i=0 cizi as

∑∞
j=0 d jz j with:

d0 = c−1
0 and d j = −c−1

0

j∑
i=1

cid j−i, (6)

for which we can formally write⎛
⎝ ∞∑

j=0

d jz
j

⎞
⎠( ∞∑

i=0

ciz
i

)
=

( ∞∑
i=0

ciz
i

)⎛
⎝ ∞∑

j=0

d jz
j

⎞
⎠ = I (7)

with I the N × N identity, which is a well-defined order-
by-order equality. Then, if we consider the matrix G with
perturbative expansion in the parameter λ

G = G0 + λG1 + λ2G2 + ... (8)

we can write

G = (
I + λG1G−1

0 + λ2G2G−1
0 + ...

)
G0 (9)

= (
I − λG1G−1

0 + λ2
(
G1G−1

0 G1G−1
0 − G2G−1

0

) + ...
)−1

G0 (10)
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= (
I − λ

(
G1G−1

0 − λ
(
G1G−1

0 G1G−1
0 − G2G−1

0

) + ...
))−1

G0 (11)

= (
I − λ

(
G0G−1

1 + λ
(
I − G0G−1

1 G2G−1
1

) + ...
)−1)−1

G0 (12)

where we inverted series between parenthesis twice; a truncation of the series in the last line yields

G ≈ (
I − λ

(
G0G−1

1 + λ
(
I − G0G−1

1 G2G−1
1

))−1)−1
G0 (13)

which is a generalization of (5) for the matrix G. If G is written in terms of a Dyson equation G = G0 + G0�G, with � =
λ�1 + λ2�2 + ..., the above procedure leads to

� ≈ λ
(
�−1

1 − λ�−1
1 �2�

−1
1

)−1
. (14)

Actual Green’s functions depend on two spin-space-time coordinates rather than just two discrete, finite indices, but the
generalization of the above is straightforward:

G(1, 2) ≈
(

G−1
0 (1, 2) −

(
�−1

1 (1, 2) −
∫

d3d4 �−1
1 (1, 3)�2(3, 4)�−1

1 (4, 2)

)−1
)−1

:= P[1/1][G0(1, 2)] (15)

or, equivalently,

�(1, 2) ≈
(

�−1
1 (1, 2) −

∫
d3d4 �−1

1 (1, 3)�2(3, 4)�−1
1 (4, 2)

)−1

(16)

where G is the Green’s function, G0 its noninteracting counterpart, � the self-energy, �1, �2, being the first terms of its perturba-
tive expansion of order 1 and 2, and the notation 1,2,... shorthands their spin/space-time dependence (σ1, r1, t1), (σ2, r2, t2), .... A
specific symbol for the approximant [1/1] as functional of the noninteracting Green’s function, P[1/1][G0], has been introduced.
More precisely, this is equivalent to [1/1]G[λ] with λ, the parameter that in G-PT is formally introduced to derive the equivalent
of (8), set to 1. This notation emphasizes the fact that we start from a given noninteracting Green’s function G0 (which encodes
the information of the parameter λ via limλ→0 G = G0). Since in the calculation of electronic structures it is customary to build
perturbative approximations upon mean-field ones, like Hartree, Hartree-Fock or DFT, this notation allows us to clearly specify
which noninteracting Green’s function we start from (for instance P[1/1][G

(0)
0 ], P[1/1][GH], or P[1/1][GLDA] for a completely free,

a Hartree, or a DFT Green’s function in the local density approximation, respectively). The choice of G0 also determines the
exact forms of �1 and �2. If G0 is the Green’s function corresponding to the Hamiltonian H0 = T + Vext + Vm. f ., where T is the
kinetic term, and Vext and Vm. f . are the terms that couple the electronic field to the external and the mean-field potential, vext (�r)
and vm. f .(�r), respectively, �1 and �2 are given, diagrammatically, by

Σ1 = + + and Σ2 = + + + + + + + ,

(17)

where straight lines represent G0, wiggly lines the two-body interaction v(�r1,�r2), and dashed lines the one-body mean-field
potential vm. f .(�r). Explicit formulas are provided in Appendix A.

It should be noticed that, in order to have a nontrivial P[1/1][G0], we must have �1 �= 0, otherwise P[1/1][G0] = G0. This is the
case, for instance, of the self-consistent Hartree-Fock Green’s function GHF, for which higher order Padé approximants must be
considered in order to have a nontrivial correction to GHF.

The Green’s function of real systems is often calculated on a truncated orbital basis {uiσ (�r)} and Fourier transformed to
frequency space. If such a basis diagonalizes the matrix H0 = T + Vext + Vm. f ., then G0 can be expressed as a diagonal matrix
whose components are

gi j (ω) = δi j

{
1

ω−iη+(ε j−ε0 ) j ∈ O
1

ω+iη−(ε j−ε0 ) j ∈ U , (18)

where O denotes the set of occupied orbitals, while U the set of unoccupied ones, ε0 the ground-state energy, and ε j the energy
of the jth orbital; the above diagrammatic expression (17) then reduces to

�
(1)
i j =

∑
k∈O

(vikk j − vik jk ) − iδi jv
m. f .
ii (19)
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�
(2)
i j (ω) =

∑
o,q,r

Oq

( OoUr

εo + εr
+ OrUo

εr + εo

)
(viojr − vior j )(vqroq − vqrqo)

+
∑
nps

visnp(vnp js − vnps j )

( OsUnUp

ω + iη − εs − εn − εp
+ OnOpUs

ω − iη + εp + εn + εs

)

+
∑
n,p

(−i)

( OnUp

εn + εp
+ OpUn

εp + εn

)
(vin j p − vinp j )v

m. f .
pn (20)

where Oi (Ui) is 1 if i ∈ O (i ∈ U ) or 0 otherwise, vi jkl is
defined by∫

d�rd�r′u∗
iσ (�r)u∗

lλ(�r′)v(|�r −�r′|)umμ(�r′)unν (�r) = vilmnδλμδσν

(21)

for which v jilm = vi jml and∫
d�ru∗

iσ (�r)vm. f .(�r)u jρ (�r) = v
m. f .
i j δσρ (22)

defines v
m. f .
i j . By switching to the matrix notation

{Gi j (ω)} → G, {gi j (ω)} → G0,
{
�

(1)
i j (ω)

} → �1,{
�

(2)
i j (ω)

} → �2 (23)

one can readily apply formula (14) to calculate the finite
version of (15) in frequency domain.

We notice that the writing (15) suggests that such an
approximation can be cast in terms of two Dyson equations.
Suppose we write

G(1, 2) = G0(1, 2) +
∫

d3d4 G0(1, 3)�(3, 4)G(4, 2)

�(1, 2) = �1(1, 2) +
∫

d3d4 �1(1, 3)�(3, 4)�(4, 2).

(24)

The approximant P[1/1][G0] is then obtained by approximating
the kernel � with

�(1, 2) ≈
∫

d3d4 �−1
1 (1, 3)�2(3, 4)�−1

1 (4, 2). (25)

More generally, the approximant [n/n] can be expressed as the
solution of a set of n + 1 Dyson-like equations. For n → ∞
the solution of such a hierarchy of Dyson equations can be
regarded as a continued fraction representation of the Green’s
function.

When solved by iteration, the second equation of (24)
with the approximation (25) gives rise to the approximate
expansion for the self-energy:

� ≈ �1 + �2
(
�−1

1 �2 + �−1
1 �2�

−1
1 �2

+�−1
1 �2�

−1
1 �2�

−1
1 �2 + ...

)
. (26)

Although each term is of well defined order in λ, the formal
parameter introduced to generate the perturbative expansion
as in (8), they do not correspond to specific diagrams. More
generally, kernels of the hierarchy of Dyson equations will
always be combinations of terms of the perturbative expansion

of the self-energy, but, while the latter can be expressed
diagrammatically, the former cannot. As we can see already in
(25), this is due to the fact that, although products of diagrams
are diagrams themselves, not all products of diagrams and
inverse of diagrams are always expressible as diagrams too.
The standard diagrammatic picture is therefore unsuitable to
give a physical interpretation to such approximations.

Finally, we would like to comment about the computa-
tional cost of (15) and compare it with that of higher order
approximants. We observe that the calculation of the first
nontrivial order P[1/1][G0] for a real system requires: (i) the
calculation of a truncated basis set, (ii) the calculation of
vi jkl given in (21), (iii) the calculation of �

(1)
i j and �

(2)
i j via

formulas (19) and (20), (iv) the calculation of (14) and then
of G using the Dyson equation, or, equivalently, of (13).
Usually the first step, if numerical, is performed by modern
codes quite efficiently even for large basis sets; numerical
computation and storage of vi jkl , which involves a double
integration on coordinate space for each element of a four-
index tensor, can, on the other hand, be quite demanding;
once that is available, computation and storage of �

(1)
i j and

�
(2)
i j is less expensive, while the last step, which involves a

matrix inversion, can also be an onerous task, according to the
size of the basis set required for convergence. Now, suppose
you want to calculate the next order P[2/2][G0]. Assuming
that the basis set is already sufficiently large, the cost of the
second and forth points remains unaltered for the greatest
part [the only difference being an undramatic extension of
(14) or (13)]. The main difference is calculating higher orders
of the expansion of the self-energy, which requires more
diagrams that those contained in expressions (19) and (20).
Such a number increases exponentially, which means that
at a certain point it will overcome the computational cost
of (ii) and (iv). However, for sufficiently low orders, this is
still accessible (see for instance [4] and references therein),
making approximants like P[2/2][G0] probably still at hand.

III. PERFORMANCE ON HUBBARD RINGS

A. The model

The Hubbard model [5], with its many incarnations and
variants, is widely used in condensed matter physics for being
a sufficiently simple model and yet reflecting many properties
of real materials. Its relevance for this work stems from the
fact that in some simplified setups it can be exactly solved (at
least numerically) while still representing a nontrivial many-
body problem. Here we consider L number of contiguous sites
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FIG. 1. The spectral function of the Green’s function is a collection of infinite peaks, here pictorially depicted in the first panel. When
the η parameter is considered finite, one has a sum of Lorentzian functions in the upper (‘removal peaks’) and the lower half plane (‘addition
peaks’), as in the second panel. The smoothed spectral function, for which also addition peaks lie on the upper half plane, is depicted in the
last panel. The absolute scale of these spectral functions is irrelevant, as it depends on the unphysical η parameter, and from here on values on
the y axis will always be omitted.

filled with N � 2L − 2 particles subject to the Hamiltonian:

H = −t
∑

〈i, j〉,σ
ĉ†

iσ ĉ jσ + U
∑

i

ĉ†
i↑ĉi↑ĉ†

i↓ĉi↓, (27)

where ĉ(†)
i,σ is an annihilation (creation) operator of a fermion

of spin σ on a site i and 〈i, j〉 denotes the sum over contiguous
sites (two per site, in our one-dimensional setting), with
periodic boundary conditions (which make it a so-called
‘Hubbard ring’). Each site can accommodate up to two par-
ticles of opposite spin; particles can hop to neighboring sites
with an energy gain of −t , while double occupancy of a
site is disfavored by a repulsive on-site interaction U. The
zero-temperature Green’s function of the model can be written
as

Giσ jρ (ω)

:= 〈GS|ĉiσ (ω + iη − (Ĥ − 〈GS|Ĥ |GS〉))−1ĉ†
jρ |GS〉

+ 〈GS|ĉ†
jρ (ω − iη + (Ĥ − 〈GS|Ĥ |GS〉))−1ĉiσ |GS〉,

(28)

while the noninteracting one G0 is defined as limU→0 G.
For a sufficiently low number of sites L, the function

(28) can be calculated numerically. In particular, we used
a code [6,7] that relies on the Lanczos algorithm [8] for
L = 4, 6, 8, 10 and N = 2, 4, ..., 2L − 2. The choice of hav-
ing only states with an even number of particles, which in
their lowest energy configuration distribute in an unpolar-
ized configuration for which Gi↑ j↓(ω) = Gi↑ j↓(ω) = 0 and
Gi↑ j↑(ω) = Gi↓ j↓(ω) := Gi j (ω), has the purpose of avoiding
possible additional features due to spin polarization.

B. Goodness criterion

To establish the goodness of an approximation to G we
adopt a quantitative criterion based on the error in estimating
the corresponding spectral function A, defined as:

A(ω) := 2

π

∣∣∣∣∣Im
[∑

i

Gii(ω)

]∣∣∣∣∣. (29)

Strictly speaking, the Green’s function in the spectral repre-
sentation, Gi j (ω), is a distribution represented by a series of
so-called ‘addition’ (+) and ‘removal’ (−) poles

α

ω − ω0 ± iη
(30)

with some real α and ω and an infinitesimal positive parameter
η that serves as a reminder of the position of the pole in
the complex plane when integrating over the frequency ω. In
order to have integrals over smooth functions we: (i) consider
a finite value of η, for definiteness η = 0.1, which makes finite
the height and width of the peak and (ii) switch all poles
to the upper part of the complex plane, by setting α/(ω −
ω0 − iη) → α/(ω − ω0 + iη), which makes all peaks positive
avoiding the derivative discontinuity that we would have had
if we had simply taken the absolute value. This procedure,
illustrated in Fig. 1, allows us to define the ‘smoothed’ spectral
function

A(ω) := 2

π
Im

[∑
i

Gii(ω)

]∣∣∣∣∣
−iη→+iη

(31)

with η = 0.1. From that, we define the average absolute
deviation σ as follows:

σ :=
∫

dω|Aexact (ω) − Aapprox(ω)|∫
dω|Aexact (ω)| . (32)

This will be used as a parameter to quantify the goodness of an
approximation: the higher is σ , the worst will be considered
the corresponding approximation. In Fig. 2 we report a par-
ticularly neat example, the case with L = 6, N = 2, U/t = 4
that illustrates the connection between the parameter σ and
the intuitive notion of ‘good approximate spectral function,’
also providing a visual scale of reference for some repre-
sentative values of σ . The criterion is obviously somehow
arbitrary, for certain details of the spectral function (position
of the quasiparticle peaks, existence of satellites,...) may be
of greater importance in certain situations; nonetheless it is
general enough to provide an indication of the behavior of the
three approaches under study under generic circumstances.

Concerning the calculation of the approximate spectral
functions, two remarks are in order. First, G-PT leads to
approximate Green’s functions that cannot be written in terms
of poles [9], while �-PT and dP-PT always lead to approxi-
mations that can be reduced to the sum of poles, even though
we do not always do it in practice, the effects being negligible
[10]. Second, in case of degeneracy, the expression (20) can be
divergent, but we found that introducing a simple cutoff ε in
formula (20) as (ε+ − ε−) → (ε+ − ε− + ε) and setting it to
zero after the calculation of the Green’s function is sufficient
to always get a finite result [11].
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FIG. 2. The function A(ω) is here plotted for different approximations in the case L = 6, N = 2, U/t = 4.

C. Choice of the basis

The Green’s function of the Hubbard model (28) has been
here defined in the so-called ‘site’ basis. Any Bogolioubov
transformation of the ladder operators induces a new basis,
which results in a rotation of the matrix {Gi j (ω)}. The choice
of the basis does not affect the spectral function, which is
calculated from the trace of the Green’s function. However,
Padé approximants built in different basis are inequivalent.
This raises the question: Is there a basis in which Padé ap-
proximants (not necessarily diagonal ones but also G-PT and
�-PT) work better? To attempt to reply to this question, we
looked at the case of L = 2, also known as Hubbard ‘dimer.’

For two sites the model is simple enough to admit an
analytic solution and in Appendix B we show the ground
states, labeled by the number of particles 〈N̂〉 and, in case
of degeneracy, the spin polarization 〈Ŝz〉. Padé approximants
can be calculated directly from the expression of G one
obtains simplifying (28) with those ground states rather than
using many-body perturbation theory (1). This allows us to
easily calculate approximants of very high order. Moreover,
approximants in a different basis can be calculated by consid-
ering rotations of G. A simple Bogolioubov transformation,
reported in Appendix B, is sufficient to make G diagonal,
independently of the number of particles and interaction
strength. The fact that such a transformation does not depend
on U implies that also G0 is diagonal in this basis.

Such a specific basis is particularly relevant because we
found that, in the case of the dimer, while G-PT is not
affected by a change of basis, both �-PT and dP-PT work
better in this basis than any other. In fact, dP-PT converged
to the exact result in only one step, namely P[1/1][G0] = G,
for L = 2, N = 0, 1, 2, 3, 4, as shown in Appendix B for the
representative case N = 2. Such a remarkable property of
this basis for the case L = 2 suggested us to formulate the
following conjecture: Padé approximants work best in the
basis in which the noninteracting Green’s function is diagonal,

irrespective of the number of sites or particles. From now on,
we shall assume that and all calculations for L > 2 will be
shown only in the basis in which G0 is diagonal.

D. Approximations comparison

Combining formulas ((14), (19), (20), (23)) with v
m. f .
i j = 0

we have an explicit expression for the functional P[1/1] that
also applies to the Hubbard model. Such an approximant
is made with the same amount of information (i.e., same
diagrams) contained in the second order expansion of � or G,
denoted by [0/2] and [2/0] in the Padé notation. To compare
the behavior of the different expansions G-PT, �-PT, and
dP-PT we shall then consider the following sequences:

(i) ([0/0], [1/0], [2/0]) for G-PT,
(ii) ([0/0], [0/1], [0/2]) for �-PT,
(iii) and ([0/0], [1/1]) for dP-PT.
We have calculated the deviation σ , as defined in (32), for

the spectral functions arising from the corresponding approxi-
mations to the Green’s function, for all rings (L = 4, 6, 8, 10)
and fillings (N = 2, 4, ..., 2L − 2), in three different regimes
of interaction: a weak, U = 0.1, an intermediate, U = 1,
and a strong coupling, U = 10, in units of t . For a given
approximation [n/m] and interaction strength U , the values of
σ for different sites and particles are here plotted on a single
panel, arranged as reported in Fig. 3. This allows us to get
an idea of a specific approximation for a given interaction
strength for all systems considered at a glance. Panels are
then grouped for sequence of approximations, G-PT in Fig. 4,
�-PT in Fig. 5, and dP-PT in Fig. 6. Numerical values are
explicitly reported in Appendix C.

Recalling that the closer to 0 (blue in plots) the better is the
approximation, we recognize the following trends:

(i) all approximations deteriorate with increasing U ;
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FIG. 3. Legend for the panels in the following figures. L denotes
the number of sites, while N the number of particles.

(ii) varying the number of sites L does not seem to change
the quality of the approximations; a higher number of sites
only seems to increase the ‘definition’ of the plots;

(iii) almost all approximations deteriorate when approach-
ing the half-filling case;

(iv) G-PT leads to meaningful results only in the weakly
coupling regime, while �-PT and dP-PT lead to sensible
approximations also in the intermediate and strong one;

(v) �-PT seems to have a slow convergence rate; namely
the term [0/2] does not improve over [0/1] as much as [0/1]
does over [0/0];

(vi) dP-PT seems to have a higher rate of convergence
(even when compared with the sequence ([0/0], [0/2])), es-
pecially in the low filling cases (N < L);

(vii) the higher the U the better is dP-PT over �-PT.
A more direct comparison of �-PT and dP-PT is re-

ported in Fig. 7, top panel. As anticipated, �-PT is gener-
ally worse than dP-PT, especially for low fillings and high
values of U . The cases in which �-PT is better are only
a few and the improvement is not as much as that of dP-

FIG. 4. Average absolute deviation for G-PT approximations.

FIG. 5. Average absolute deviation for �-PT approximation.

PT in other cases, as exemplified in the bottom panels of
Fig. 7.

In absolute terms, [1/1] leads to a decent approximation in
most cases (as seen in Figs. 2 and 7), but, like all other approx-
imations here considered, has serious problems in capturing
the half-filling case, as one can see by comparing the first two
top curves of Fig. 8. Even though the purpose of our study
is to compare dP-PT to other perturbative approaches and not
necessarily to provide precise estimates in absolute terms, we
would like to focus a bit more on the half-filling case which in
general (i.e., not just rings) bares special physical relevance

FIG. 6. Average absolute deviation for dP-PT approximations.
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FIG. 7. Top panel. The ratio σ[1/1]/σ[0/2] is plotted. For most cases this is less than one (green to blue color), indicating that [1/1] provides
a better estimate of the exact function than [0/2]. Bottom panel. The spectral functions A(ω) in two cases representative of the situations
σ[1/1]/σ[0/2] < 1 and σ[1/1]/σ[0/2] > 1 are plotted, for a better visual reference of the approximations.

[12]. For instance, for L = N = 4, the gap, defined as the
energy difference between first addition and last removal

FIG. 8. Various approximated spectral functions are compared to
the exact one in the case L = N = U/t = 4. To distinguish addition
from removal peaks, the former are plotted in dashed lines in the
lower half of the plane.

peaks, is zero for U = 0 but positive for U > 0, which can
be regarded as a sign of strong correlation. In such a case,
shown in Fig. 8 for U/t = 4, the approximant P[1/1][G0] does
not capture the (anti)symmetry of the exact spectrum, nor the
fact that addition and removal peaks are well separated by
the gap, leading to a spectral function that one may deem
as quite far from the exact one. It is legitimate to expect
that higher order dP-PT approximants correct these problems
and converge towards the exact function, even though we
have no elements to actually prove that and, even then, that
convergence is practically achievable. On the other hand, for
all half-filled systems here considered, we did notice that
a sensible improvement comes already from considering a
starting point for P[1/1] different from the pure noninteracting
Green’s function. By taking GH , defined as solution to the
equation

GH = G0 + G0�H [GH ]GH (33)

with

�
(H )
i j [g] := −

∑
kl

dω′

2π
igkl (ω

′)vilk j (34)

and building P[1/1][GH ] using formulas ((14), (19), (20), (23))
with v

m. f .
i j = vH

i j = −iδi j�
(H )
i j [g], one gets to a spectral func-

tion that partially restores the (anti)symmetry of the spectral
function and correctly opens a gap between addition and
removal peaks, as one can see in the penultimate (from top)
curve of Fig. 8. Finally, an overall shift with no physical
significance can be tuned to give rise to what we would deem
as quite a decent approximation to the exact function. By
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FIG. 9. Effects of a long-range interaction parametrized by α. Top, performance of [1/1] approximant for increasingly stronger interaction.
Bottom, comparison between dP-PT ([1/1]) and �-PT ([0/2]).

comparing P[1/1][GH ] to P[0/0][GH ], which is simply GH (third
curve in the plot), it seems then reasonable to expect that of
P[n/n][GH ] for n > 1 would provide even better approxima-
tions to the exact G.

E. Beyond the Hubbard model

In view of applications to real systems, the model consid-
ered so far represents a good test case for it carries the com-
plexity of the full many-body problem. This, however, is only
one of the many ingredients that characterize physical sys-
tems. In particular, the on-site interaction of (27) completely
neglects any long-range effects of the Coulomb interaction. To
move one step closer to real systems, we also considered an
off-site interaction by adding to (27) the following term:

V = α U
L−1∑
i=1

c†
i cic

†
i+1ci+1 (35)

which introduces a long-range interaction limited to contigu-
ous sites. The open source SNEG code [13,14] for Mathe-
matica [15] was used to create a matrix representation of the
new Hamiltonian for L = 4, which allowed us to calculate the
exact Green’s functions via (28) for N = 2, 4, 6, U/t = 4 and
various values of the parameter α. A higher number of sites
were computationally too demanding, but we deem L = 4 as
a mild restriction, for we have seen in the previous section
that changing the number of sites does not seem to affect
the quality of the approximations. In Fig. 9 we present the
average absolute deviation of the [1/1] approximant and its
comparison with [0/2] for the three representative values of
α: 0, i.e., only on-site interaction, 1/10, and 1/3, a perturbing
and a strong off-site interaction, respectively [16]. We can see
that in absolute terms the approximation rapidly deteriorates,
as soon as the long-range interaction is switched on. In relative
terms, however, even though the gap between [1/1] and [0/2]
tends to close, [1/1] remains overall a better approximation.

IV. CONCLUSIONS

Padé approximants have proved to be an effective tool
to get estimates of unknown functions in many fields of
physics and mathematics [2,17]. Their use in the calculation
of electronic properties has been only partially explored, and

in particular in the calculation of Green’s functions it has been
limited so far as ancillary tool, like for the analytic continua-
tion of the Matsubara Green’s functions, or to model systems
(see, for instance, Refs. [18–20] and references therein.)

We have here presented a way to build Padé approximants
of Green’s functions that generalize the standard approxi-
mations based on the perturbative expansion of G or the
self-energy � and provides a general framework suitable for
model as well as for real systems. Moreover, we put forth
the conjecture that, among all possible Padé approximants
[p/q] of given order p + q of the Green’s function, diagonal
ones, p = q, offer the best approximation. As a preliminary
test, we compared diagonal Padé approximants of order [1/1]
against approximations arising from direct perturbative ex-
pansion of G and perturbative expansion of the self-energy
of equivalent order for a series of solvable models, namely
Hubbard rings with a various number of sites, fillings, and
interaction strength, whose exact Green’s functions are (nu-
merically) known. Based on a measure of likeness of spectral
functions, we found indeed that in general the diagonal Padé
approximant offered the most reliable approximation. In the
great majority of cases it overcomes the other approximations,
for all remaining cases still being quite close to the best
(second-order �-PT). Particularly good results were obtained
for high values of the interaction U 
 t and low fillings
N < L, irrespectively of the number L of sites. We also
presented a case of physical relevance (L = N = U/t = 4) in
which the approximant [1/1] built on a mean field, rather than
completely noninteracting, Green’s function greatly improves
the otherwise not so good, in absolute terms, approximation.
Finally, to get a better idea on the transferability of these
results to real systems, we also performed a study on a
simple system in which a long-range interaction was added
to the Hubbard on-site one. Performances of dP-PT and
�-PT on such a system confirm the superiority of the former
over the latter and suggest that, in absolute terms, dP-PT
may work better on systems with strong on-site interaction,
like solids composed of atoms with very localized outer
electrons.

Diagonal Padé approximants of the Green’s function were
not directly built on some physical principle and in fact their
physical interpretation as a resummation of certain terms of
the perturbative series needs further investigation. On one
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hand this might make uncomfortable those who would try
to anticipate its behavior on a specific system. On the other
hand one can say, in a rather optimistic attitude, that there is
great potential in an approximation that is not designed around
specific features of a class of systems. The performance of
[1/1] on the model studied in this work is a first proof of that.

A more tangible advantage of diagonal Padé approximants
[n/n] is that they are systematically improvable by increasing
the order n. In this regard, we also argued that the computa-
tional cost increase implied by the rising of the order n would
probably remain moderate for a few orders. This is of capital
importance in view of having a reliable, predictive tool.

In fact, the spreading of approximations based on the
second-order expansion of the self-energy for a wide range of
applications (from nuclear [21] to molecular [22] to periodic
systems [23]) suggests that already P[1/1], which in our study
improves on [0/2] almost in all cases, may already provide a
competitive approximation, in all those situations and beyond
[24].

In conclusion, we believe that diagonal Padé approximants
certainly deserve more attention in the study of the many-
body problem, as they may provide an effective new route
for designing reliable, systematic approximations within the
framework of standard perturbation theory.

APPENDIX: A

When projected on a basis and Fourier transformed to frequency space, diagrams (17) can be written as:

�
(1)
i j ≡ + + =

∑
kl

dω′

2π
igkl (ω

′)(vil jk − vilk j ) − iδi jv
m. f .
i j (A1)

and

�
(2)
i j (ω) ≡ �

(2.1)
i j + �

(2.2)
i j + �

(2.3)
i j + �

(2.4)
i j (ω) + �

(2.5)
i j + �

(2.6)
i j (ω) + �

(2.7)
i j + �

(2.8)
i j (A2)

�
(2.1)
i j ≡ = −

∑
nopqrs

dω′dω′′

4π2
gno(ω′)gpq(ω′′)grs(ω

′)vior jvqsnp (A3)

�
(2.2)
i j ≡ =

∑
nopqrs

dω′dω′′

4π2
gno(ω′)gpq(ω′′)grs(ω

′)viojrvqsnp (A4)

�
(2.3)
i j ≡ =

∑
nopqrs

dω′dω′′

4π2
gno(ω′)gpq(ω′′)grs(ω

′′)viqr jvosnp (A5)

�
(2.4)
i j (ω) ≡ = −

∑
nopqrs

dω′dω′′

4π2
gno(ω + ω′ − ω′′)gpq(ω′′)grs(ω

′)visnpvoqr j (A6)

�
(2.5)
i j ≡ = −

∑
nopqrs

dω′dω′′

4π2
gno(ω′)gpq(ω′′)grs(ω

′′)viq jrvosnp (A7)

�
(2.6)
i j (ω) ≡ =

∑
nopqrs

dω′dω′′

4π2
gno(ω + ω′ − ω′′)gpq(ω′′)grs(ω

′)visnpvoq jr (A8)

�
(2.7)
i j ≡ =

∑
nopq

dω′

2π
gno(ω′)gpq(ω′)vioj pv

m. f .
qn (A9)

�
(2.8)
i j ≡ = −

∑
nopq

dω′

2π
gno(ω′)gpq(ω′)viop jv

m. f .
qn (A10)

where gi j (ω) is the (Fourier-transformed i j component of) noninteracting Green’s function, vioj p and v
m. f .
i j are defined via (21),

(22), and the integral is taken over a closed anticlockwise contour large enough to include all poles of the integrand on the
upper half of the complex plane. When gi j (ω) is written as in (18) those expressions simplify to (19) and (20) by means of the
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TABLE I. Groundstates of the Hubbard dimer, categorized by number of particles (〈N̂〉), spin polarization (〈Ŝz〉), and energy (〈Ĥ〉).

〈N̂〉 〈Ŝz〉 〈Ĥ〉 |GS〉
0 0 0 |0〉
1 1

2 cos(2φ) −t 1√
2
(cos(φ)(ĉ†

1↑ + ĉ†
2↑) + sin(φ)(ĉ†

1↓ + ĉ†
2↓))|0〉

2 0 1
2 (U − √

16t2 + U 2) 1
2 (

√
1 − U√

16t2+U 2
(ĉ†

1↑ĉ†
1↓ + ĉ†

2↑ĉ†
2↓) +

√
1 + U√

16t2+U 2
(ĉ†

1↑ĉ†
2↓ + ĉ†

2↑ĉ†
1↓))|0〉

3 1
2 cos(2φ) −t + U 1

2 (cos(φ)(ĉ†
1↑ĉ†

2↑ĉ†
2↓ − ĉ†

1↑ĉ†
1↓ĉ†

2↑) + sin(φ)(ĉ†
1↓ĉ†

2↑ĉ†
2↓ − ĉ†

1↑ĉ†
1↓ĉ†

2↓))|0〉
4 0 2U ĉ†

1↑ĉ†
1↓ĉ†

2↑ĉ†
2↓|0〉

following identities:

dω

2π i
g j j (ω) =

{
1 j ∈ O
0 j ∈ U (A11)

dω

2π i
gpp(ω)gqq(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
ε−

p +ε+
q

p ∈ O
q ∈ U

− 1
ε−

q +ε+
p

q ∈ O
p ∈ U

0 otherwise

(A12)

and

dω′

2π i
gpp(ω′ − ω)gqq(ω′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
ω−iη+ε−

q +ε+
p

p ∈ U
q ∈ O

1
ω+iη−ε−

p −ε+
q

q ∈ U
p ∈ O

0 otherwise

(A13)

which comes from

dω′

2π i

(
α+

1

ω′ − ω + iη + ω+
1

+ α−
1

ω′ − ω − iη + ω−
1

)(
α+

2

ω′ + iη + ω+
2

+ α−
2

ω′ − iη + ω−
2

)

= α−
1 α+

2

ω + iη − ω−
1 + ω+

2

− α+
1 α−

2

ω − iη + ω−
2 − ω+

1

. (A14)

APPENDIX: B

In the case L = 2 the Hamiltonian (27) reduces to

Ĥ = −t
∑

σ=↑,↓
(ĉ†

1σ ĉ2σ + ĉ†
2σ ĉ1σ ) + U

∑
i=1,2

(ĉ†
i↓ĉi↓ĉ†

i↑ĉi↑). (B1)

whose ground states are reported in Table I.
From those one can calculate the Green’s function from the definition

Gi jσρ (ω) = 〈ĉiσ (ω + iη − (Ĥ − 〈Ĥ〉))−1ĉ†
jρ〉 + 〈ĉ†

jρ (ω − iη + (Ĥ − 〈Ĥ〉))−1ĉiσ 〉. (B2)
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If this is performed in the basis i, j = a, b, and σ, ρ = h, g, defined by the transformation

ĉ1↑ =
(

cos
(

φ

2

) + sin
(

φ

2

))(
cos

(
φ

2

)
(ĉah + ĉbh) − sin

(
φ

2

)(
ĉag + ĉbg

))
√

2
√

sin(φ) + 1

ĉ1↓ =
(

cos
(

φ

2

) + sin
(

φ

2

))(
cos

(
φ

2

)
(ĉag + ĉbg) + sin

(
φ

2

)
(ĉah + ĉbh)

)
√

2
√

sin(φ) + 1

ĉ2↑ = −
(

cos
(

φ

2

) + sin
(

φ

2

))(
sin

(
φ

2

)
(ĉbg − ĉag) + cos

(
φ

2

)
(ĉah − ĉbh)

)
√

2
√

sin(φ) + 1

ĉ2↓ = −
(

cos
(

φ

2

) + sin
(

φ

2

))(
cos

(
φ

2

)(
ĉag − ĉbg

) + sin
(

φ

2

)
(ĉah − ĉbh))√

2
√

sin(φ) + 1
(B3)

then Gi jσρ = δi jδσρGi jσρ . In particular, for N = 2 one has

Gaahh =
1
2 − 2t√

16t2+U 2

1
2 (2t − U + √

16t2 + U 2) − iη + ω
+

2t√
16t2+U 2 + 1

2

1
2 (2t − U − √

16t2 + U 2) + iη + ω
(B4)

Gbbhh =
1
2 − 2t√

16t2+U 2

1
2 (−2t − U − √

16t2 + U 2) + iη + ω
+

2t√
16t2+U 2 + 1

2

1
2 (−2t − U + √

16t2 + U 2) − iη + ω
(B5)

Gaagg = Gaahh and Gbbgg = Ggghh. (B6)

To construct P[1/1][G0] we can use (14) in the Dyson equation G = G0 + G0�G, where G0 = G|U→0. Provided with the exact
functional dependence of the Green’s function on the interaction parameter U one can build �1 and �2 either via (A1) and
subsequent formulas or, equivalently, directly expanding in Taylor series the function G−1

0 − G−1. Upon appropriate rescaling
of the infinitesimal parameter η, the two procedures lead to the same results:

�1 =

⎛
⎜⎜⎝

U
2 0 0 0
0 U

2 0 0
0 0 U

2 0
0 0 0 U

2

⎞
⎟⎟⎠ �2 =

⎛
⎜⎜⎜⎜⎝

U 2

4
1

ω−iη+3t 0 0 0

0 U 2

4
1

ω+iη−3t 0 0

0 0 U 2

4
1

ω−iη+3t 0

0 0 0 U 2

4
1

ω+iη−3t

⎞
⎟⎟⎟⎟⎠ (B7)

and

(
�−1

1 − �−1
1 �2�

−1
1

)−1

=

⎛
⎜⎜⎜⎜⎜⎝

U
2 + U 2

4( 1
2 (6t−U )−iη+ω) 0 0 0

0 U
2 + U 2

4( 1
2 (−6t−U )+iη+ω) 0 0

0 0 U
2 + U 2

4( 1
2 (6t−U )−iη+ω) 0

0 0 0 U
2 + U 2

4( 1
2 (−6t−U )+iη+ω)

⎞
⎟⎟⎟⎟⎟⎠ (B8)

which turns out to be the exact self-energy.

APPENDIX: C

We here report the values, rounded to the second decimal, of the average absolute deviation σ plotted in Figs. 4–7, and 9. See
Tables II–VI.
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TABLE II. Numerical values plotted in Fig. 4.
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TABLE III. Numerical values plotted in Fig. 5.
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TABLE IV. Numerical values plotted in Fig. 6.
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TABLE V. Numerical values plotted in Fig. 7.

TABLE VI. Numerical values plotted in Fig. 9.
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