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A new implementation of the second-order polarization propagator
approximation (SOPPA): The excitation spectra of benzene and naphthalene

Martin J. Packer,a) Erik K. Dalskov, Thomas Enevoldsen, Hans Jo”rgen Aa. Jensen,
and Jens Oddershede
Department of Chemistry, Odense University, DK-5230 Odense M, Denmark

~Received 4 October 1995; accepted 18 June 1996!

We present a new implementation of the second-order polarization propagator approximation
~SOPPA! using a direct linear transformation approach, in which the SOPPA equations are solved
iteratively. This approach has two important advantages over its predecessors. First, the direct linear
transformation allows for more efficient calculations for large two particle–two hole excitation
manifolds. Second, the operation count for SOPPA is lowered by one order, toN5. As an application
of the new implementation, we calculate the excitation energies and oscillator strengths of the
lowest singlet and triplet transitions for benzene and naphthalene. The results compare well with
experiment and CASPT2 values, calculated with identical basis sets and molecular geometries. This
indicates that SOPPA can provide reliable values for excitation energies and response properties for
relatively large molecular systems. ©1996 American Institute of Physics.
@S0021-9606~96!01436-5#

I. INTRODUCTION

The unquestionable success of second-order perturbation
theory, MP2, in electronic structure calculations has been
demonstrated in many applications in recent years. The com-
putational simplicity of the approach, combined with its
well-defined nature, makes it an attractive ‘‘first’’ choice for
including electron correlation. Both ground state properties,
such as dipole moments, and excited state properties, such as
the linear response, can be calculated with reasonable accu-
racy compared with more sophisticated approaches, e.g., like
MP41 or coupled cluster.2

However, the vast majority of MP2 response calcula-
tions have been performed on static molecular properties and
only recently has this method been extended to allow calcu-
lations of dynamic properties;3–6 in addition, these
derivative-based methods cannot give excitation energies or
oscillator strengths. The complete active space second-order
perturbation theory~CASPT2! approach7,8 and the second-
order polarization propagator approximation~SOPPA!,9,10on
the other hand, can give excitation energies based on the
MP2 wave function. It is interesting to note, for instance, that
the widespreadGAUSSIAN program system11 has MP2 geom-
etry optimization as a standard tool, but uses the more infe-
rior singly excited CI method for calculation of excited
states.

There thus appears to be a need for an easy to use MP2-
based method to calculate electronic excitation energies and
related properties. We assert that SOPPA9,10 represents such
a method. However, in order to fulfill this goal, it is neces-
sary to have a computationally efficient implementation, par-
allel in efficiency to that of MP2 energy calculations and
geometry optimizations. The current implementations of
SOPPA12,13need to be updated, in order to incorporate some

of the recent advances in computational methodologies. This
is the main aim of the present article.

We have expressed the propagator in an unpartitioned
form, which allows us to solve the eigenvalue problem by
means of a direct linear transformation technique, with trial
vectors of length equal to twice the sum of the number of
particle–hole (p–h) and two particle–two hole (2p–2h)
excitations. The benefit of this approach is that one needs not
store theA, B, andC matrices of SOPPA,9,10 since we di-
rectly form the product of the trial vector with these matri-
ces. This gives two main advantages over the previous
implementations:

~1! We can handle large 2p–2h excitation manifolds more
efficiently and thus do calculations of considerably
larger molecules than before.

~2! The operation count for the rate determining step is low-
ered fromN6 to N5.

Item ~1! follows from the fact that the method for con-
structing the 2p–2h corrections to theA andB matrices in
both RPAC13 andMUNICH14 ~the latter program system being
the original implementation of SOPPA15!, gave either a disk
or a time bottleneck for a large basis set or a large number of
electrons. The lowering of the operation count is achieved in
the construction of the second-order correction to theB ma-
trix. This formal simplification may not necessarily lead to a
computational saving if the number of iterations needed to
solve the eigenvalue problem is larger than the number of
occupied molecular orbitals~see Sec. II E!. Thus this factor
will be more important the larger the molecule becomes.

In addition to these benefits, the new SOPPA implemen-
tation has other positive side effects. It represents the first
step towards an atomic integral driven SOPPA program,
which eliminates the integral transformation and which also
makes a parallel implementation of SOPPA feasible. Both
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these steps would lead to even greater computational effi-
ciency.

The present work is aimed at constructing a SOPPA pro-
gram to calculate excitation energies and frequency-
dependent linear response properties. However, the approach
that will be outlined in the next section may be extended to
frequency-dependent quadratic response properties; that is,
for electric response properties, extending from the polariz-
ability, a~2vs ; v1!, to the first hyperpolarizability,b~2vs ;
v1, v2!, wherevs5(iv i . This would require us to use an
exponential formalism like the one employed by Olsen and
Jo”rgensen.16

In addition to the reformulation of the SOPPA equations
in unpartitioned form, we will also present results for the
singlet and triplet excitation spectra of benzene and naphtha-
lene. The results compare favourably with experiment for
both molecules. Furthermore, we compare our values with
results from Roos and co-workers, who have used the
CASPT2 approach17–19 to calculate these properties.

II. THEORY

A. Introduction

The fundamental philosophy of polarization propagator
methods is the formulation of methods aimed at direct cal-
culations, i.e., without knowing the individual states and
their energies, of excitation properties such as energy differ-
ences and frequency dependent second order electric and
magnetic properties. The tool is the formulation of equation
of motions for average values of operators rather than opera-
tors themselves, equations that are formally equivalent to the
usual quantum mechanical equation of motions.

The special feature of SOPPA is that we solve the result-
ing equation of motion for the average value of the observ-
able, typically the dipole moment, through second order in

perturbation theory requiring that the response itself, the en-
ergy differences and the transition moments are correct
through second order.9,10This procedure leads to an equation
for the response expressed in terms of matrices of the Hamil-
tonian between states involvingp–h and 2p–2h excitations
out of the Hartree–Fock ground state.

Even though the SOPPA equations have been derived
elsewhere9,10 we shall repeat some of the features of the
method here in order to make the presentation consistent and
in order to make clear where the differences lie between this
and earlier formulations. The previous implementations of
SOPPA12–15 made use of a partitioning technique.20 The
propagator matrix, in thep–h and 2p–2h manifolds, is re-
duced to the same dimension as the one appearing in the first
order polarization propagator or random phase approxima-
tion ~RPA!. This is achieved by folding the 2p–2h contri-
butions into thep–h space, using the Lo¨wdin20 partitioning
approach. However, if we do not invoke the partitioning
technique and thus retain the full propagator matrix it is pos-
sible to write the linear response as

^^P;Q&&v5~Puh!~huv1̂2Ĥuh!21~huQ! ~1!

5(
mn

~2Pm
@1#!~E@2#2vS@2#!mn

21Qn
@1# ~2!

5(
m

~2Pm
@1#!Nm

Q~v!. ~3!

In Eqs.~2! and ~3! we have expressed the original superop-
erator form of SOPPA9,10 @Eq. ~1!# in the notation of Olsen
and Jo”rgensen;16 this allows us to relate our equations to
previous implementations of the direct linear transforms for
SCF and MCSCF wave functions.21,22 The matrix,E@2#, can
be written in terms of the excitation and de-excitation opera-
tors as follows:

Emn
@2#52S $qm

† ,qn ,H%~2!

$Rm
† ,qn ,H%~1!

$qm ,qn ,H%~2!

$Rm ,qn ,H%~1!

$qm
† ,Rn ,H%~1!

$Rm
† ,Rn ,H%~0!

$qm ,Rn ,H%~1!

$Rm ,Rn ,H%~0!

$qm
† ,qn

† ,H%~2!

$Rm
† ,qn

† ,H%~1!

$qm ,qn
† ,H%~2!

$Rm ,qn
† ,H%~1!

$qm
† ,Rn

† ,H%~1!

$Rm
† ,Rn

† ,H%~0!

$qm ,Rn
† ,H%~1!

$Rm ,Rn
† ,H%~0!

D , ~4!

where we have used a shorthand notation for the expectation value of a double commutator,

$A,B,C%5^0u@A,@B,C##u0&. ~5!

The overlap matrix,S@2# is

Smn
@2#5S ^0u@qm

† ,qn#u0&~2!

^0u@Rm
† ,qn#u0&~1!

^0u@qm ,qn#u0&~2!

^0u@Rm ,qn#u0&~1!

^0u@qm
† ,Rn#u0&~1!

^0u@Rm
† ,Rn#u0&~0!

^0u@qm ,Rn#u0&~1!

^0u@Rm ,Rn#u0&~0!

^0u@qm
† ,qn

†#u0&~2!

^0u@Rm
† ,qn

†#u0&~1!

^0u@qm ,qn
†#u0&~2!

^0u@Rm ,qn
†#u0&~1!

^0u@qm
† ,Rn

†#u0&~1!

^0u@Rm
† ,Rn

†#u0&~0!

^0u@qm ,Rn
†#u0&~1!

^0u@Rm ,Rn
†#u0&~0!

D ~6!

and the transition moment vector,Pm
@1# , is given by

Pm
@1#5S ^0u@qm ,P#u0&~2!

^0u@Rm ,P#u0&~1!

^0u@qm
† ,P#u0&~2!

^0u@Rm
† ,P#u0&~1!

D . ~7!
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The $q,q†% and$R,R†% operators belong to a single (h–p,p–
h) and a multiple excitation~2h–2p,2p–2h, etc.! manifold,
respectively, which will be made more clear in Sec. II B.
Thus the subscriptsm,n are shorthand notations for general
excitation indices. The superscripts indicate the order to
which each term must be evaluated to fulfill the definition of
SOPPA:9

~1! The reference wave function,u0&, is expanded in a
Mo” ller–Plesset perturbation series.

~2! The full propagator~the linear response function! has to
be correct through second order in the fluctuation poten-
tial.

~3! The transition moment vectors,Pm
@1# , and the propagator

matrix, ~E@2#2vS@2#!, have to be correct through second
order in the fluctuation potential for single excitations,
but not for higher excitations.

We can thus calculate the response as a dot product be-
tween a transition moment vector,Pm

@1# , and a vector,Nm
Q~v!,

which is the solution to the set of linear equations

Nm
Q~v!5(

n
~E@2#2vS@2#!mn

21Qn
@1# . ~8!

Similarly, excitation energies are obtained as eigenvalues of
the equation

~E@2#2v lS
@2#!Xl50. ~9!

In order to solve Eqs.~8! and ~9!, we employ the iterative
technique previously used in the MCSCF linear response by
Jo”rgensen and co-workers,21,22 in which we need to consider
the direct linear transformations with the principal propaga-
tor, ~E@2#2vS@2#!. The basic idea is that we introduce an ap-
proximation,b, to N or X which is determined through an
iterative procedure~for more detail see Sec. II E!.

Using the unpartitioned form of the linear response func-
tion, we can identify the following block structure of the
principal propagator:9

E@2#5S A~0,1,2!

C~1!

B~1,2!

0

C̃~1!

D~0!

0
0

B~1,2!

0
A~0,1,2!

C~1!

0
0

C̃~1!

D~0!

D ~10!

and

S@2#5S S~0,2!

0
0
0

0
1
0
0

0
0

2S~0,2!

0

0
0
0

21
D . ~11!

Explicit expressions for the new matrices introduced in Eqs.
~10! and ~11!, in terms of two-electron integrals and orbital
energies, are given in Appendix C of Ref. 10.@Please ob-
serve that Eq.~C.16! of Ref. 10 has an incorrect sign.# The
structure of the transition moment vector,Pm

@1# , allows us to
introduce a trial vector for transforming the principal propa-
gator:

b5S bph~0,1,2!

bmultiple2ph~1!

bhp~0,1,2!

bmultiple2hp~1!

D . ~12!

Again, the orders of the terms are explicitly given and the
superscript ‘‘multiple’’ indicates a higher excitation~i.e., not
p–h or h–p!, which need not be specified at this stage.

In the remainder of this section, we will first consider the
definition of SOPPA, and the implications this has for the
size of the excitation manifold~Sec. II B!. We will then con-
sider the evaluation of the transition moment vectors,Pm

@1#

~Sec. II C!. The linear transformation with the principal
propagator is derived in two parts: for thep–h parts of the
trial vector~Sec. II D 1! and then for the multiple excitation
blocks of the trial vector~Sec. II D 2!. The first set of trans-
formations includes the random phase approximation,10

RPA, as well as higher RPA, originally defined by Rose,
Shibuya and McKoy.23,24 The second set includes the linear
transformation of theC andD matrices. The section is con-
cluded with discussion of the iterative algorithm used to
solve the eigenvalue problem~Sec. II E! and a comparison of
the partitioned and the unpartitioned forms of SOPPA~Sec.
II F!.

B. Operator manifold and order analysis

The complete excitation manifold consists of single,
double, triple, etc., excitations. It is convenient to separate
this manifold into the set of single excitations~the particle–
hole manifold! and the set of multiple excitations~the two
particle–two hole, three particle–three hole, etc., manifold!.
We can immediately identify thep–h operators,

qm
†5qai

† 5Eai
S 5aaa

† aia1Saab

† aib, ~13!

qm5qia5Eia
S , ~14!

whereES is the standard singlet~S51! or triplet ~S52!
orbital rotation operator. Throughout this communication the
notation will be thata,b,c,••• ~i , j ,k,•••! denote orbitals that
are unoccupied~occupied! in the Hartree–Fock ground state,
while p,q,r ,••• are used as unspecified orbital indices.

The RPA approach employs only thep–h manifold.
This gives the linear response properties of a one-electron
perturbation correct through first order in the fluctuation
potential.25 The SOPPA approach aims to extend RPA by
evaluating the response through second order. In order to do
this, it is necessary to include higher-order corrections to the
wave function@Item ~1! in Sec. II A# and to extend the ex-
citation manifold. Note, however, that for a two-electron per-
turbation neither RPA nor SOPPA will be correct through
first order. SOPPA will be correct through zeroth order,
though, while RPA will not.

The first-order correction to the MP wave function con-
sists of 2p–2h terms only. This implies that in the 2p–2h
and 3p–3h blocks of the transition moment vector@Eq. ~7!#,
the first nonzero contribution will be of first order. This will
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result from a combination of the excitation operator with the
first-order correction to the wave function. For the 4p–4h
and higher excitations, the transition moment is of at least
second order, so that we can immediately neglect these. The
transition moment will multiply onto the solution vector,
Nm
Q~v! @Eq. ~3!#. The order ofNm

Q~v! may be derived from
inspection of Eq.~8!; when the indexm refers to 2p–2h or
3p–3h operators, either:~i! n is also a 2p–2h index, in
which case the transition momentQn

@1# is of at least first order
or; ~ii ! n is a p–h index, in which case the leading term in
the inverse matrix is of first order. Thus the leading term in
Nm
Q~v! must be of first order, giving a response which is of at

least second order. This fulfills Item~1! of Sec. II A and
implies that we must include the 2p–2h and 3p–3h mani-
folds from the multiple excitations.

It has been shown by Nielsenet al.,9 however, that the
2p–2h excitations are sufficient to define the SOPPA re-
sponse. This was demonstrated by orthogonalizing the 3p–
3h manifold against thep–h excitations~which removes
any linear dependencies from the excitation manifold!. The
lowest nonvanishing term of the transition moment vectors is
then of second order.25 The same will be true for the princi-
pal propagator. This means that in the 3p–3h trial vectors,
there will only be terms of third order and above and so they
can be neglected. Reference 9 contains a more thorough dis-
cussion of these points. We therefore include only the 2p–
2h operators from the multiple excitation block. The basic
rules we have applied are that:~i! terms involving onlyp–h
operators must be evaluated to second order;~ii ! terms in-
volving both p–h and 2p–2h operators must be taken to
first order only;~iii ! and terms involving only 2p–2h opera-
tors must be of zeroth order.

Orthonormal singlet 2p–2h operators can be obtained
using the so-calledpp–hh coupling, where the two particle
operators and the two hole operators are spin coupled inde-
pendently to obtain the 2p–2h spin coupled excitation op-
erators. Using this procedure yields two singlet double exci-
tation operators,26 R†~1! which is singlet(pp) –singlet(hh)
coupled, andR†~2! which is triplet(pp) –triplet(hh) coupled.
Using thep–h operators given in Eqs.~13! and ~14! they
may be expressed as

Rm
† ~1!5Raib j

† ~1!5 1
2$~11dab!~11d i j !%

21/2

3~Eai
1Ebj

1 1Eaj
1Ebi

1!, ~15!

Rm
† ~2!5Raib j

† ~2!5
1

2)
~Eai

1Ebj
1 2Eaj

1Ebi
1!. ~16!

Similarly, one may show that there are three linearly
independent orthonormal triplet 2p–2h operators, which can
be expressed as10

Tm
† ~1!5Taib j

† ~1!5
1

2&
~12d i j !~12dab!

3~Eaj
1Ebi

21Ebi
1Eaj

2 !, ~17!

Tm
† ~2!5Taib j

† ~2!5 1
2~12d i j !~11dab!

21/2

3~Ebj
1Eai

21Eaj
1Ebi

2!, ~18!

Tm
† ~3!5Taib j

† ~3!5 1
2~12dab!~11d i j !

21/2

3~Ebj
1Eai

21Ebi
1Eaj

2 !. ~19!

C. Transition moment vectors

The transition moment vector,Pm
@1# , is given in Eq.~7!.

As discussed above, thep–h terms must be evaluated
through second order. Two second-order contributions can
be identified, one coming from the first-order corrections to
the wave function and the other from the second-order cor-
rections. Thus since the commutator [Epq

S ,Ers
s ] is indepen-

dent of S, both the singlet (P1) and triplet (P2) matrix
elements

^0~1!u@Eia
S ,PS#u0~1!&5(

j
Pa j
S r j i

~2!2(
b

rab
~2!Pbi

S ~20!

and

^HFu@Eia
S ,PS#u0~2!&5(

b
Pab
S rbi

~2!2(
j

ra j
~2!Pji

S , ~21!

wherer~2! is the second-order correction to the one-particle
density matrix,

rpq
~2!5^0uEpq

1 u0&~2!5^0~1!uEpq
1 u0~1!& ~22!

1^0~2!uEpq
1 uHF&1^HFuEpq

1 u0~2!&. ~23!

The first-order correction to the density matrix is zero, by
virtue of the Brillouin condition. Explicit expressions for the
correlated one-particle density matrix are given by Jensen
et al.27 Note that the occupied-virtual blocks ofr~2! are
equivalent to the Mo” ller–Plesset correlation coefficients,ki

a,
for the singly excited part of the second-order correction to
the wave function.10

The 2p–2h transition moments must be evaluated to
first order, following the discussion of Sec. II B. The expres-
sions will be identical to those given by Oddershedeet al.10

If P is a singlet property vector, therefore, the expressions
read

^0~1!u@Raib j
† ~ I !,P1#uHF&5N~ I !(

k
~Pik

1kk j
ab~ I !1Pjk

1k ik
ab~ I !!

2(
c

~Pca
1 k i j

cb~ I !1Pcb
1 k i j

ac~ I !!,

I51,2, ~24!

whereN(1)5„(11d i j )(11dab)…
21/2 andN(2)51. If P is

a triplet property vector we get
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^0~1!u@Taib j
† ~1!,P2#uHF&

5
&

)

F(
k

~Pik
2kk j

ba~2!2Pjk
2kki

ba~2!!

2(
c

~Pca
2 k j i

cb~2!2Pcb
2 k j i

ca~2!!G , ~25!

^0~1!u@Taib j
† ~2!,P#uHF&

5~11dab!
21/2F(

k
~Pikkk j

ba~1!2Pjkkki
ba~1!!

1
1

)

(
c

~Pcak j i
cb~2!1Pcbk j i

ca~2!!G ~26!

and

^0~1!u@Taib j
† ~3!,P#uHF&

5~11d i j !
21/2F2

1

)

(
k

~Pikkk j
ba~2!1Pjkkki

ba~2!!

2(
c

~Pcak j i
cb~1!2Pcbk j i

ca~1!!G . ~27!

In the above expressions, theki j
ab(I ), I51,2 elements are the

MP2 correlation coefficients, for the first-order correction to
the wave function, given by10

k i j
ab~ I !5~2I21!1/2

gaib j2~21! Iga jbi
e i1e j2ea2eb

, ~28!

wheregpqrs5(pqurs) is a two-electron integral in the Mul-
liken notation andei an SCF orbital energy.

D. Direct linear transformation with E [2] and S[2]

The direct linear transformation withE@2# on the trial
vector b @see the discussion preceding Eqs.~10! and ~11!#
can be shown to give

@E@2#b#m5(
n S Amnbn

ph1Bmnbn
hp

Cmnbn
ph

Amnbn
hp1Bmnbn

ph

Cmnbn
hp

D 1S C̃mnbn
2p2h

Dmnbn
2p2h

C̃mnbn
2h2p

Dmnbn
2h2p

D
52S ^0u@qm ,H

S~b!#u0&
^mSuHS~b!u0&

^0u@qm
† ,HS~b!#u0&

2^0uHS~b!umS&
D

2S ^0u@qm ,H#u0R&
^mSuHu0R&

^0Lu@qm
† ,H#u0&

2^0LuHumS&
D . ~29!

The HS(b) term is the one-index transformed
Hamiltonian16,21,22

HS~b!5F(
ia

baiEai
S 1biaEia

S ,HG
5F(

pq
bpqEpq

S ,HG5(
pq

hpq̃Epq
S

1
1

2 (
pqrs

~gpq̃rsepqrs
S,1 1gpqrs̃epqrs

1,S !, ~30!

where

epqrs
S1 ,S25Epq

S1Ers
S22dqrEps

S1•S2 ~31!

and the one-index transformed one- and two-electron inte-
grals are given by

hpq̃5(
o

~bpohoq2boqhpo! ~32!

and

gpq̃rs5(
o

~bpogoqrs2boqgpors!, ~33!

gpqrs̃5(
o

~brogpqos2bosgpqro!. ~34!

The trial vectorsb comprise both the excitation and de-
excitation blocks. We then have the conditions that,

bai5bai
ph ,

bia5bia
hp ,

bi j5bab50. ~35!

There are 2p–2h contributions in both terms of Eq.~29!,
sinceu0R& and ^0Lu are defined as

u0R&52 (
I51,2

(
a>b
i> j

baib j
2p2h~ I !Raib j

† ~ I !uHF&,

^0Lu5 (
I51,2

(
a>b
i> j

bia jb
2p2h~ I !^HFuRia jb~ I !, ~36!

in the singlet case and

u0R&52 (
I51,3

(
a>b
i> j

baib j
2p2h~ I !Taib j

† ~ I !uHF&,

^0Lu5 (
I51,3

(
a>b
i> j

bia jb
2p2h~ I !^HFuTia jb~ I ! ~37!

in the triplet case. Since we are using a spin coupled formal-
ism it is also necessary to have the 2p–2h trial vectors di-
vided up according to the extra spin quantum number intro-
duced in Eqs.~15!–~19!, that is, the indexI in Eqs.~36! and
~37!. This also means that the doubly excited stateumS& is a
vector defined as

S um1~1!&
um1~2!& D 5SRm

† ~1!uHF&
Rm
† ~2!uHF& D ~38!
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for singlet and

S um2~1!&
um2~2!&
um2~3!&

D 5S Tm
† ~1!uHF&

Tm
† ~2!uHF&

Tm
† ~3!uHF&

D ~39!

for triplet properties. In order to compare directly to higher
RPA ~HRPA!, we separate the linear transformation into two
parts. We first consider the contributions coming from the
p–h block of the trial vector and then the contributions from
the 2p–2h block.

1. Contributions from the p –h trial vector

In the second part of Eq.~29!, the terms containing aq
or q† operator can be compared directly to the expressions
obtained in HRPA, which arise when we consider the propa-
gator to second order in the fluctuation potential, but include
only thep–h operators. We therefore only need to consider
the transformation of thep–h block of the trial vector with
E@2#,

@E@2#bph#ai52S ^0u@qia ,HS~b!#u0&
^0u@qai

† ,HS~b!#u0& D . ~40!

The RPA equations are obtained by evaluating Eq.~40!
through first order, which gives

2S ^0u@qia ,HS~b!#u0&
^0u@qai

† ,HS~b!#u0& D 522S uai
S ~b!

2uia
S ~b! D , ~41!

whereuS(bph) is defined in the form of a Fock matrix16

uS~b!pq5hpq̃1(
j

$2gpq̃j j1~11S1!gpq j j̃2gp j̃ jq

2gp j jq̃%. ~42!

The remaining second-order terms, which define HRPA, are
obtained by introducing the first order correctionu0~1!&,

2S ^HFu@qia ,HS~b!#u0~1!&
^0~1!u@qai

† ,HS~b!#uHF& D 522S uai
S ~b!~2!

2uia
S ~b!~2!D ~43!

with

uai
1~b!~2!5(

dkc
~gad̃kc1gadkc̃!k ik

dc2(
lkc

~glĩ kc1glikc̃!k lk
ac

~44!

and

uia
1~b!~2!5(

dkc
~gdãck1gdack̃!k ik

dc

2(
lkc

~gil̃ ck1gilck̃!k ik
ac . ~45!

The triplet matrix elements are given by

uai
2~b!~2!5(

dkc
~gadkc̃

tkki
cd2gad̃kckki

cd!

2(
lkc

~glĩ kckkl
ca2glikc̃

tkkl
ca! ~46!

and

uia
2~b!~2!5(

dkc
~gdack̃

tk ik
dc2gdãckk ik

dc!2(
lkc

~gil̃ ckk lk
ac

2gilck̃
tk lk

ac!. ~47!

ki j
ab and tk i j

ab are two different combinations of the MP2 cor-
relation coefficients from Eq.~28!. They are given as

k i j
ab5k i j

ab~1!1)k i j
ab~2! ~48!

tk i j
ab5k i j

ab~1!2
1

)

k i j
ab~2!5

1

3
~k i j

ab12k i j
ba!. ~49!

Another second order contribution originates from tak-
ing two first order wave functions together with the Fock
operator,F. This contribution is very simple if one works
with canonical orbitals. In that case, the singlet and triplet
elements are the same

2^0~1!uFqia ,F(
b j

~bb j
phqb j

† 1bjb
hpqjb!,FG G u0~1!&

5(
b

~eb2e i !rba
~2!bbi

ph1(
j

~e j2ea!r i j
~2!ba j

ph , ~50!

2^0~1!uFqia† ,F(
b j

~bb j
phqb j

† 1bjb
hpqjb!,FG G u0~1!&

5(
b

~eb2e i !rab
~2!bib

hp1(
j

~e j2ea!r j i
~2!bja

hp . ~51!

The linear transformations with the overlap matrix,S@2#,
must also be taken through second order, and again the sin-
glet and triplet cases are the same

~S@2#b!ai5(
jb

S ^0~1!u[Eia
S , bb j

phEb j
S ] u0~1!&

^0~1!u[Eai
S , bjb

hpEjb
S ] u0~1!&

D 5S 1mai

2mia
D ~52!

where

1mai5(
j
ba j
phr i j

~2!2(
b

rba
~2!bbi

ph , ~53!

2mia5(
b

bib
hprab

~2!2(
j

r j i
~2!bja

hp . ~54!

We can see that the terms entering in the direct linear trans-
formation with the overlap matrix,S@2#, are very similar to
those encountered in Eqs.~50! and ~51! for the Fock opera-
tor. Equations~43!, ~50!, and~52! define the HRPA approxi-
mation. This is not a particularly accurate method. It gives
excitation energies which are generally too large and accord-
ingly underestimates response properties.28 These deficien-
cies arise from the absence of 2p–2h renormalization terms.
The wavefunction is extended to second order, as with
SOPPA, but the 2p–2h excitations are neglected. In order to
improve on this method, it is therefore necessary to introduce
renormalization via the 2p–2h manifold.
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The contributions to the 2p–2h block of E@2#b coming
from the first vector in Eq.~29! involve the doubly excited
statesumS&. They can be evaluated as

(
kc

S bckphCia jb,ck
S ~ I !

bkc
hpCaib j ,kc

S ~ I ! D 52S ^mS~ I !uHS~b!uHF&
2^HFuHS~b!umS~ I !& D , ~55!

where

2^m1~1!uH1~b!uHF&

5
1

A~11d i j !~11dab!
~giã jb1gia jb̃1gib̃ ja1gib jã!,

~56!

2^m1~2!uH1~b!uHF&

5)~giã jb1gia jb̃2gib̃ ja2gib jã!, ~57!

2^m2~1!uH2~b!uHF&

5)~giã jb1gia jb̃2gib̃ ja2gib jã!, ~58!

2^m2~2!uH2~b!uHF&

5
1

A11dab
~giã jb2gia jb̃1gib̃ ja2gib jã!, ~59!

2^m2~3!uH2~b!uHF&

5
1

A11d i j
~giã jb2gia jb̃2gib̃ ja1gib jã!, ~60!

where the transformed integrals are defined in Eqs.~33! and
~34!. The terms in the second line of Eq.~55! can be found
from the above by replacing allgpqrs with gqpsr , for ex-
ample

^HFuH1~b!um1~1!&5
1

A~11d i j !~11dab!
~gaĩb j1gaib j̃

1gbĩa j1gbia j̃!. ~61!

2. Contributions from the 2p –2h trial vector

The 2p–2h corrections are introduced via the trial vec-
tors b2p2h. Following the definition of SOPPA and the con-
clusions reached in Sec. II B, we evaluate terms involving
both p–h and 2p–2h excitations to first order and terms
involving only the 2p–2h excitations to zeroth order. Re-
turning to Eq.~29!, we are now interested in theE@2#b2p2h

transformation,

@E@2#b2p2h#m52S ^0u@qm ,H#u0R&
^mSuHu0R&

^0Lu@qm
† ,H#u0&

2^0LuHumS&
D . ~62!

The statesumS& and u0R&, ^0Lu are either singlet or triplet. The
first and third rows of this vector are very similar to the
expression in Eq.~43!. The correlation coefficients,k, are
replaced by a 2p–2h trial vector, and the one-index trans-
formed Hamiltonian is replaced by the normal Hamiltonian.
We therefore expect these terms to be very similar, and in-

deed they are. Note that in Eq.~48!, the correlation coeffi-
cients that are used are combinations of the singlet–singlet
and triplet–triplet spin-coupled singlet 2p–2h excitation op-
erators, which gives the simple expressions in Eqs.~44! and
~45!. In the singlet case we get

(
I51,2

(
a>b
i> j

S baib j2p2h~ I !Caib j ,kc
1 ~ I !

bia jb
2h2p~ I !Cia jb,ck

1 ~ I ! D
52S ^HFu@Ekc

1 ,H#u0R&
^0Lu@Eck

1 ,H#uHF& D ~63!

and in the triplet case

(
I51,3

(
a>b
i> j

S baib j2p2h~ I !Caib j ,kc
2 ~ I !

bia jb
2h2p~ I !Cia jb,ck

2 ~ I ! D
52S ^HFu@Ekc

2 ,H#u0R&
^0Lu@Eck

2 ,H#uHF& D . ~64!

The full expressions for theCS(I ) matrices can be found in
the Appendix. Using theC1 matrices of Eqs.~A1! and~A2!
the linear transformation reads

2^HFu@Ekc
1 ,H#u0R&

5 (
a>b
i> j

baib j
2p2h~1!

A~11d i j !~11dab!
~dki~gca jb1gcb ja!

1dk j~gcbia1gcaib!2dac~gik jb1gib jk!2dbc~gjkia

1gjaik!!1 (
a.b
i. j

)baib j
2p2h~2!~dki~gca jb2gcb ja!

1dk j~gcbia2gcaib!2dac~gik jb2gib jk!

2dbc~gjkia2gjaik!!

5(
b j

S (
a

sbakb j
2p2hgca jb2(

i

sbcib j
2p2hgik jbD , ~65!

where

sbaib j
2p2h5A~11d i j !~11dab!

sbaib j
2p2h~1!

1sgn~~a2b!~ i2 j !!) sbaib j
2p2h~2!. ~66!

The expression in Eq.~65! is obtained by changing the re-
stricted summation to a free summation over the involved
indices and using the symmetry in the trial vectors. We have
used the sign function, sgn(p), defined as

sgn~p!5H 1 if p.0
0 if p50

21 if p,0
. ~67!

Similarly using theC2 matrices of Eqs.~A3!–~A5! we ob-
tain
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2^HFu@Ekc
2 ,H#u0R&

5(
b j

S (
a

tbakb j
2p2hgca jb2(

i

tbcib j
2p2hgik jbD ~68!

with

tbaib j
2p2h5sgn~~a2b!~ i2 j !!&baib j

2p2h~1!

1sgn~ i2 j !A11dabbaib j
2p2h~2!

1sgn~a2b!A11d i j baib j
2p2h~3!. ~69!

The final two terms required in Eq.~62! are the linear
transformations with theD~0! matrix of SOPPA. This trans-
formation is straightforward, due to the simple diagonal form
of theD~0! matrix

Daib j ,aib j
~0! 52^HFu@Rm ,@Rm

† ,F##uHF&

5ea1eb2e i2e j , ~70!

which is the same for all singlet and triplet 2p–2h excita-
tions. Using the definitions of the doubly excited states, Eqs
~38! and ~39!, the transformation for both singlet and the
triplet cases can be seen to give

2S ^m~ I !uHu0R&
2^0LuHum~ I !& D 5S baib j2p2h~ I !~ea1eb2e i2e j !

bia jb
2h2p~ I !~ea1eb2e i2e j !

D .
~71!

Finally, the p–h – 2p–2h coupling block of the overlap
matrix, S@2#, is zero when evaluated through first order. The
diagonal elements of theS@2# matrix in the 2p–2h part
should be evaluated through zeroth order which gives simply
a unit matrix.

This concludes the description of the linear transforma-
tions with all the propagator matrices on the trial vectors in
Eq. ~12!. We have given sufficient details so that it should be
possible to follow all steps of the procedure. Further infor-
mation about the actual computational implementation may
be obtained from the authors.29

Before proceeding with a couple of numerical applica-
tions of these equations we will discuss the iterative tech-
nique needed to determine excitation energies and response
properties~Sec. II E! and we will also compare this imple-
mentation and the previous partitioned SOPPA method.

E. The iterative algorithm

One of the basic ideas of this implementation of the
SOPPA equations is the use of direct ‘‘matrix-times-trial-
vector technique’’ in order to avoid explicit constructions of
theE@2# andS@2# matrices. Because of the paired structure of
the matrices is the same in SOPPA and in the multiconfigu-
rational linear response~MCLR! method we can use the vari-
ant of the conjugate gradient method30 that was first applied
to the MCLR problem by Olsenet al.31 and Jo”rgensen
et al.21 The only modification of the equations that is needed
is the replacement of the configurational trial vectors with
the 2p–2h trial vectors.

We shall summarize the procedure in the case of the
determination of thek lowest excitation energies. They are
obtained from the solution of the equation

~E@2#2v lS
@2#!Xl50 ~ l51,2,•••k!. ~72!

We may recast this equation into an equivalent form

~E@2#2v lS
@2#!bb̃Xl50 ~73!

provided b is a matrix in which the columns form a real
orthonormal basis in the space spanning theph, hp, 2p2h,
2h2p, etc., excitations. Premultiplying this equation byb̃
shows that Eq.~73! is equivalent to solving the equation

~E@2#R2v lS
@2#R!Xl

R50, ~74!

where

E@2#R5b̃E@2#b5b̃uR, ~75!

S@2#R5b̃S@2#b5b̃mR, ~76!

and

Xl
R5b̃Xl . ~77!

The columns of theuR matrix correspond to the linear trans-
formed trial vectors of eitherp–h type, Eqs.~42!, ~44!–~47!,
~50!, ~51!, and ~56!–~61!, or 2p–2h type, Eqs.~65!–~69!,
and~71!, while the columns of themR matrix correspond to
the 1m and 2m matrices defined in Eqs.~53! and ~54! for
p–h type trial vectors and to the 2p–2h trial vectors in the
2p–2h subspace.

However, if the$bl% basis was incomplete then Eq.~73!
would not be fulfilled and the solutions of Eqs.~72! and~74!
would not be identical. The method of solution we apply
consists of choosing a successively largerb basis set, i.e.,
adding more columns tob, until Eqs. ~72! and ~74! are
equivalent to within a given tolerance. The procedure is it-
erative and has the following steps:

~1! The initial guess on the basis, or trial, vectorsb~0!

consists ofk columns where in each column all elements but
one in the particle–hole part are zero. The nonzero elements
are chosen such thatb~0! is the solution to Eq.~72! in a
diagonal approximation for thek lowest particle–hole exci-
tations.

~2! The two-electron integrals in the molecular orbital
basis are read into core serially as~** urs! distributions, and
the one-index transformed integrals are constructed accord-
ing to Eqs.~32!–~34!. The contributions touR requiring in-
tegrals@Eqs. ~42!, ~44!–~47!, ~56!–~61!, and ~65!–~69!# are
constructed on the fly. This step represents by far the most
time consuming part of the calculation. After all integrals
have been read the remaining contributions touR andmR are
constructed.

~3! E[2]R andS[2]R are determined according to Eqs.~75!
and~76!, Eq.~74! is solved to obtainXl

R(0) andvl
(0), andXl

(0)

is calculated from Eq.~77!.
~4! If Xl

(0) were the correct solution vector for thel th
eigenvector it would also satisfy Eq.~72!. However, if this is
not the case then
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Rl
~0!5~E@2#2v l

~0!S@2#!Xl
~0!Þ0 ~78!

or from Eq.~77! and the definition of theuR andmRmatrices

Rl
~0!5~u2v lm!Xl

R~0! . ~79!

~5! For eachRl
(0) larger than the specified tolerance we

add an extra trial vector to theb~0! matrix. The new basis
vector is obtained from a diagonal approximation to Eqs.
~72! and ~79!, that is

bk11
l 5~E@2#2v l

~0!S@2#!diag
21Rl

~0! ~80!

which is an estimate of the errorXl2Xl
(0). The new trial

vector is either of thep–h type or of the 2p–2h type and
we base the choice on the magnitude ofRl

(0) computed in the
two individual subspaces.

~6! Theb~1!5~b~0!,bk11,...,bk1p!, wherep<k, matrix is
now used as the next guess on the complete basis set and we
carry out the computational steps from~2!–~6! again. The
iterative process stops when allRl ’s l51,2,•••k are less than
the specified tolerance.

The calculations reported in this paper are carried out on
a Silicon Graphics Inc. INDIGO2 workstation. More detailed
informations on the benzene calculation is given in Table I.
We see that the number of iterations needed vary from 7 to
20 in the eightD2h irreducible representations. The largest
number of iterations is typically needed in cases where the
initial trial vectors do not include the most important excita-
tions for the lowest roots.

Table I illustrates the computational efforts involved in
determining four excitation energies~and oscillator strengths
for allowed transitions! of each symmetry. However, since
the extra basis vectors that are added to the basis set if a
given Rl is larger than the threshold not only benefit the
convergences in the space spanningXl but also the other
eigenvectors of the same symmetry we find that timing/root
will decrease as we determine more roots of the same sym-
metry.

We see from Table I the number of iterations needed to
converge the iterative procedure is larger than the number of
occupied orbitals for all symmetries. Since one of the differ-
ence between this implementation of SOPPA and the previ-
ous ones is a reduction of operation count byNO ~number of

occupied orbitals! we do not find any time saving for this test
example when going from anN6 to an iterativeN5 proce-
dure. However, the number of excitations is so large that it
would be impossible to construct the requisite matrices, es-
pecially those from the 2p–2h corrections, needed in the
partitioned SOPPA implementations and the benzene calcu-
lation could therefore not be carried with the previous ver-
sions of SOPPA programs. Another point in favor of the
present approach is that we can foresee thatNO becomes
larger than the number of iterations for larger molecules and
the present implementation will thus be computationally less
demanding for larger systems.

A note on the disk space required in the iterative calcu-
lation may be in place. A large fraction of the total number
of excitations are 2p2h excitations. In order avoid storing
too many of them on disk we only save the ones that are
needed in connection with two-electron integrals, i.e., in Eqs.
~65!–~69!. In the rest of the cases, see Eq.~71!, we construct
the elements as they are needed. The latter procedure is also
applied to the construction of themR matrix. As a result of
this strategy the calculation on benzene needed less than 600
MB of disk space.

F. Comparison with the partitioned version of SOPPA

It is worthwhile to stress the differences between this
and previous implementations of SOPPA. When calculating
the response through second order it is necessary, as dis-
cussed above, to include both thep–h and the 2p–2h ex-
citation operators. The practical effect of including the 2p–
2h manifold is to make the propagator matrix of very large
dimension, so that its explicit construction is not feasible.
The original derivation of SOPPA9 avoided this problem by
partitioning the propagator matrix. The 2p–2h contributions
were folded into thep–h manifold, so that the matrix was of
the same dimension as in RPA.

The partitioning gives a modifiedp–h block of the
propagator matrix. This partitionedp–h matrix can be given
as

P5M112M12M22
21M21, ~81!

TABLE I. Computational details of the calculations of the singlet spectrum of benzene.a

Symmetryb Ag B3u B2u B1g B1u B2g B3g Au

Occupied orbitals 6 5 4 3 1 1 1 0
Virtual orbitals 26 25 19 20 11 11 7 7
bph c 22 16 15 22 25 16 16 19
b2p2h c 21 16 16 21 19 12 12 17
Iterationsd 20 8 8 20 18 7 7 17
Excitationse 480 992 479 668 478 372 478 373 397 432 397 433 396 179 396 178
Total timingsf 4 142 2 053 1 940 4 140 3 674 1 490 1 601 2 934

aUsing the ANO basis set of Ref. 18 consisting of 147 CGTO’s. Four excitation energies are computed in each symmetry.
bIn D2h point group symmetry.
cNumber of trial vectors of particle–hole (bph) and two-particle, two-hole (b2p2h) type when the iteration process has converged.
dNumber of iterations before solution vectors converge to 1022 a.u., i.e., excitation energies to 1024 a.u.
eTotal number of excitations~ph and 2p2h!.
fTotal timing for the full iterative process on a Silicon Graphics Inc. INDIGO2 ~150 MHz, R4400, 96 MB memory! in CPU seconds.
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where the subscripts onM denotes the excitation level in
each term. ThusM11 corresponds to theA~0,1,2! and B~1,2!

matrices already defined, whileM12 andM21 correspond to
theC~1! matrices.M22

21 corresponds to the inverse of theD~0!

matrix. Nielsenet al.9 have shown that we need onlyP
through second order to obtain response properties to the
same order. This gives us another way of determining the
orders of the individual terms. IfP is to be correct through
second order, the same must be true forM11 and
M12M22

21M21. ThusM11 has to be correct through second
order by itself, which is what we already know from our
earlier order analysis. It is also clear that theM12 matrices
have to be correct through first order, while theM22 matrix
only has to be zeroth order. In the approach used here, the
same orders were assigned to theM matrices, even though
the partitioning is now unnecessary. Finally, theW4 matrix

10

which must be included in the response for the partitioned
approach is included implicitly in the direct linear transfor-
mations. The implementation of SOPPA we have outlined in
this paper gives response properties that are identical to those
obtained in the partitioned approach. The present approach
has two important advantages over the original implementa-
tion, however. The first is that the linear transforms allow for
much larger 2p–2h manifolds, since the propagator matrix
is never explicitly constructed and the second is that by using
the one-index transformed integrals the operation count is
decreased by one order toN5 @Eqs.~43!–~47!#. However, the
latter point will only be visible computationally when the
number of iterations needed to converge the eigenvalue
problem is less than the number of occupied orbitals.

III. RESULTS AND DISCUSSION

A prime motivation for this implementation is that it
enables us to study larger molecular systems than has been
previously possible. In this section we will therefore report
calculations on benzene and naphthalene. These molecules
have been widely studied using other methods, since they are
representative of a wide class of aromatic compounds. We
compare our results to those obtained using the CASPT2
method,7,8 for both singlet and triplet perturbations.18,19We
concentrate on the singlet and triplet excitation energies and
oscillator strengths, although the SOPPA implementation
also includes response properties, which will be reported
elsewhere.

It is appropriate to compare SOPPA and CASPT2, since
both methods include dynamic correlation effects via
second-order perturbation theory. CASPT2 also includes
nondynamic correlation through the multireference CAS
space; it is capable of producing very accurate excitation
spectra32 and oscillator strengths. Although we cannot expect
SOPPA to give such accurate results, given that it does not
incorporate nondynamic correlation, it should be capable of
giving consistent excitation spectra.

The CASPT2 approach has been shown to give excita-
tion energies of good accuracy for a number of aromatic
systems.32 This provides us with a set of benchmark results.
In order to facilitate the comparison, we have employed the

same basis sets and geometries as those used by Roos and
co-workers. In the case of benzene,18 the basis set is of ANO
type with C[4s3p1d]/H[2s1p], supplemented by
[1s1p1d] diffuse functions located at the center of the mol-
ecule. This gives a total of 147 CGTO’s. For naphthalene19

the basis set is also of ANO type, consisting of C[3s2p1d]/
H[2s], supplemented with [2s2p] functions located at the
center of the molecule; this gives a total of 164 CGTO’s.
This corresponds to the BS5 basis set defined by Rubio
et al.19 The diffuse orbitals at the molecular center are de-
signed to give a better description of Rydberg excitations;
these excitations typically have large contributions from the
diffuse virtual orbitals and this is how we have identified
them. However, in order to describe Rydberg excitations into
3d orbitals, it is necessary to include two diffused functions.
This then gives the BS6 basis set of Rubioet al.19 Thus
following these authors, we report BS5 basis set results for
all naphthalene excitations except 21B1u, 3

1B2u and 3
1B3u,

for which we use the BS6 basis set. The naphthalene basis
set is clearly inferior to that of benzene, which will be re-
flected in the results. The calculations were performed with
theHERMIT-SIRIUS-RESPONSprogram package.21,22,33,34These
programs including the SOPPA implementation described in
this paper will be part of the new quantum chemical program
DALTON, which is scheduled for release on 1/1/97.

There have been numerous experimental studies of the
excitation spectra of both benzene and naphthalene. We have
followed the assignments made by Lorentzonet al.18 for
benzene and by Rubioet al.19 for naphthalene. We therefore

TABLE II. Singlet excitation energies~eV! of benzene in ascending order
of SOPPA energies.

State
CASSCF
Ref. 18

CASPT2
Ref. 18

RPA SOPPA

Expt.gThis work

Valence1pp*
1 1B2u 4.80 4.84 5.82 4.69 4.90a

1 1B1u 7.32 6.30 5.88 6.01 6.20a

1 1E1u 8.53 7.03 7.50 6.75 6.94b

Rydberg1pp*
2 1E1u 6.46 7.16 7.16 7.03 7.41b

1 1E2g 7.09 7.77 7.80 7.55 7.81d

2 1A1g 7.14 7.74 7.77 7.56 7.81c

1 1A2g 7.08 7.81 7.85 7.59 7.81c

Rydberg1ps*
1 1E1g 6.26 6.38 6.54 6.18 6.33e

1 1A2u 6.66 6.86 6.94 6.70 6.93f

1 1E2u 6.74 6.91 7.11 6.76 6.95f

1 1A1u 6.82 6.99 7.28 6.83
2 1E1g 7.33 7.57 7.59 7.34 7.54d

1 1B2g 7.33 7.58 7.68 7.35 7.46c

1 1B1g 7.29 7.58 7.70 7.35 7.46c

3 1E1g 7.37 7.57 7.73 7.40

aReference 35.
bReference 36.
cReference 37.
dReference 38.
eReference 39.
fReference 40.
gExperimental assignments from Ref. 18.
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refer to these papers for details of the assignments and dis-
cussions of any uncertainties in the experimental data.

A. Benzene

The lowest 15 singlet–singlet excitation energies of ben-
zene are listed in Table II. They have been divided into three
groups, according to the designations of Lorentzonet al.18

The energies have been placed in ascending order with re-
spect to SOPPA, although only the CASSCF results show a
significantly different ordering. The largest difference be-
tween SOPPA and CASPT2 is 0.29 eV, for the 11B1u exci-
tation, with most being in much closer agreement. The agree-
ment between RPA and CASPT2 is similar to that for
SOPPA. However, the SOPPA values are all less than
CASPT2, while those from RPA are not.

The three valence1pp* excitations are given to within
0.21 eV of experiment by SOPPA, which is consistently bet-
ter than RPA. The 21E2g excitation is not included in Table
II. In CASPT2 this excitation is also predicted to be low-
lying with a value of 7.90 eV, while we obtain 10.35 eV in
RPA and 8.52 in SOPPA. Lorentzonet al.18 note that this
state has significant double excitation character, which ex-
plains why SOPPA fails to describe this excitation. CASPT2
performs better than SOPPA for these states, with errors of
no more than 0.1 eV. However, the SOPPA excitation ener-
gies are all below the experimental values, in contrast to
RPA or the two CAS methods. The poor performance of
CASSCF, especially for 11E1u and 1

1B1u, indicates the im-
portance of dynamic correlation effects in this system.

The 1pp* Rydberg excitations~2 1A1g, 1 1E2g, and
1 1A2g! are of similar energy. Both CASPT2 and RPA give
results in close agreement with experiment, while the
SOPPA values are again around 0.25 eV in error. The 21E1u
experimental excitation energy is significantly larger than
that given by either CASPT2 or SOPPA. For the Rydberg
1ps* excitations, CASPT2 is generally in excellent agree-
ment with experiment, while SOPPA and CASSCF are in
error by no more than 0.21 eV. SOPPA again consistently
underestimates the experimental values.

The CASSCF results show a much larger error for the
1pp* Rydberg states than the1ps* states. Lorentzonet al.18

suggest that this indicates a systematic difference in the dy-
namic correlation contribution to these states. We do not see
any evidence for this from SOPPA, however, since the dif-
ference between theory and experiment is around 0.2 eV for
all of these excitations.

The ANO basis set used for the Rydberg states is not
completely converged. A basis set investigation shows that
the remaining basis set effect increases the excitation energy
by around 0.2 eV for these states.41

The lowest 16 singlet–triplet excitation energies of ben-
zene are listed in Table III. They have again been divided
into three groups, although there are experimental values for
the valence excitations only. There is good agreement be-
tween experiment and both SOPPA and CASPT2, although
both give rather low estimates for the 13E1g excitation. The
SOPPA results are again consistently below the experimental
values. There is a large error in the CASSCF result for

1 3E2u, which has been related to the ionic nature of this
excitation.18 RPA has a triplet instability for the 13E1u ex-
citation; such instabilities are commonly encountered in this
method.10 No experimental values are available for the Ryd-

TABLE III. Singlet–triplet excitations of benzene~eV! in ascending order
of SOPPA energies.

State
CASSCF
Ref. 18

CASPT2
Ref. 18

RPA SOPPA

Expt.cThis work

Valence3pp*
1 3B1u 4.05 3.89 Instability 3.75 3.94a

1 3E1u 5.07 4.49 4.70 4.48 4.76a

1 3B2u 6.93 5.49 5.07 5.50 5.60a

1 3E2g 7.61 7.12 7.24 7.41 7.24–7.74b

Rydberg3pp*
2 3E1u 6.92 6.98 7.11 6.92
2 3E2g 7.44 7.55 7.85 7.57
1 3A2g 7.50 7.70 7.85 7.59
1 3A1g 7.42 7.62 7.64 7.50

Rydberg3ps*
1 3E1g 6.22 6.34 6.44 6.14
1 3A2u 6.61 6.80 6.82 6.64
1 3E2u 6.73 6.90 7.08 6.74
1 3A1u 6.83 7.00 7.28 6.84
2 3E1g 7.31 7.57 7.51 7.32
1 3B2g 7.27 7.53 7.65 7.33
1 3B1g 7.27 7.53 7.69 7.35
3 3E1g 7.36 7.56 7.71 7.38

aReference 42.
bSee Ref. 18.
cExperimental assignments from Ref. 18.

TABLE IV. Singlet excitations in naphthalene~eV!, in ascending order of
SOPPA energies. TheR in parenthesis indicates a Rydberg excitation.

State
CASSCF
Ref. 19

CASPT2
Ref. 19

RPA SOPPA

Expt.dThis work

1 1B3u 4.36 4.03 5.02 3.86 4.0a

1 1B2u 6.51 4.56 4.80 4.44 4.70a

1 1Au(R) 5.58 5.54 5.76 5.36 5.6a

2 1Ag 5.86 5.39 6.88 5.55 5.52b

1 1B1g 6.62 5.53 6.21 5.64 5.22b

2 1B3u 7.99 5.54 6.57 5.68 5.89a

1 1B2g(R) 5.88 5.94 6.13 5.78
1 1B3g(R) 5.94 5.98 6.20 5.81
2 1B2u 7.95 5.93 6.67 5.87 6.0a

1 1B1u(R) 5.90 6.03 6.45 5.97
2 1B1g 8.44 5.87 6.61 6.08 5.8c

3 1B1g(R) 6.04 6.08 7.14 6.34
2 1B2g(R) 6.26 6.45 6.86 6.38
2 1B1u(R) 6.37 6.50 6.73 6.39
2 1B3g(R) 6.25 6.48 6.95 6.42
3 1B2u(R) 7.26 6.67 6.84 6.55
2 1Au(R) 6.87 6.56
3 1B3u(R) 7.41 6.58 6.86 6.57
3 1Ag 7.05 6.04 7.15 6.63 6.05b

4 1Ag(R) 6.75 6.76 7.80 6.86
4 1B2u 10.23 7.16 8.77 7.71 7.6a

aReference 43.
bReference 44.
cReference 45.
dExperimental assignments from Ref. 19.
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berg excitations, but both SOPPA and RPA are within 0.2
eV of CASPT2 for all but two RPA values, so it is difficult
to say which performs better.

B. Naphthalene

The naphthalene singlet–singlet excitations are given in
Table IV. We have indicated the Rydberg excitations, which
generally correspond with those identified by Rubioet al.19

The excitations are again listed in ascending order for
SOPPA, but in contrast to benzene, there are several differ-
ences in the energy ordering in CASPT2 relative to SOPPA.
With the exception of two states, our SOPPA results are all
within 0.2 eV of CASPT2.

The two lowest excitations are of1B3u and
1B2u symme-

try and are described well in SOPPA, being within 0.14 and
0.24 eV of experiment, respectively. The CASSCF results
show a large error, so it is clear that dynamic correlation
effects are important for these states. The next SOPPA exci-
tation is the Rydberg 11Au . CASPT2, by contrast, predicts
that 21Ag is the third state. The reason for this reversal in the
1Ag and

1Au states in SOPPA is not clear. Since the 11Au is
a Rydberg excitation, it may be that the diffuse Rydberg
functions are inadequate to describe it properly. Certainly,
the RPA result is closer to the experimental value of 5.6 eV
than is SOPPA. The SOPPA valence 21Ag excitation, how-
ever, is very close to the experimental result.

The SOPPA 11B1g and 21B3u excitations are within
0.14 eV of the CASPT2 values, although both methods show
poor agreement with the experimental1B1g energy. The or-
derings of the six excitations between 11B2g(R) and
3 1B1g(R) vary for the different methods. Experimental val-
ues are available for the valence excitations, 21B2u and
2 1B1g, for which CASPT2 is less than 0.1 eV error, while
SOPPA is only within 0.3 eV of experiment. The 11B1u(R)
is a (1au→3s) Rydberg state, for which SOPPA and
CASPT2 are in close agreement. However, for the
(1au→3ps) Rydberg states, 11B2g(R) and 11B3g(R),
which are part of then53 Rydberg series, there is a system-
atic difference between SOPPA and CASPT2.

A further Rydberg series follows the 21B1g excitation.
These (1au→3pp) states @3 1B1g(R), 2 1B2g(R), and
2 1B3g(R)# are very close to one another in energy, but have
not been unambiguously identified in experimental spectra.19

In SOPPA there is then another Rydberg state@2 1Au(R)#,
which is not listed by Rubioet al.19 This is of (1au→3s)
type. The appearance of this excitation in the SOPPA spec-
trum mirrors that of the 11Au(R) state, which is also of
much lower energy than is found by CASPT2.

There is a large discrepancy between SOPPA and
CASPT2 for the 31Ag state. While CASPT2 gives 6.04 eV,
SOPPA has 6.63 eV~the experimental value is 6.05 eV!.
This is possibly due to the fact that the CASSCF 31Ag state
has equal single and double excitation character. Such states
cannot be described accurately within the SOPPA approxi-
mation. This point is further underlined by the 41Ag(R) ex-
citation, for which there is much closer agreement. The
3 1B2u(R) excitation involves the 3d diffuse orbitals. Its

SOPPA value is close to CASPT2. 41B2u is a valence state.
This can clearly be seen from the oscillator strengths~Table
VI !, which are 0.8 for CASPT2 and 0.3 for SOPPA.

The excitation spectra for SOPPA and CASPT2 clearly
do not agree as well as for benzene. As we have noted,
although the two lowest excitations are similar, the1Au(R)
states seem to be of much lower energy in SOPPA. Since
both involve excitations into the diffuses-type Rydberg or-
bitals, this inconsistency might be removed by using a larger
set of Rydberg basis functions.

The naphthalene singlet–triplet excitations are given in
Table V. Since SOPPA can give only the singlet–triplet
spectrum, the CASPT2, CASSCF, and experimental triplet–
triplet values have been corrected for the lowest singlet–
triplet excitation, which is given as 3.0 eV from experiment49

and 3.04 and 3.24 eV from CASPT2 and CASSCF,
respectively.19

There are two triplet instabilities in the RPA spectrum,
both of which are of3B2u symmetry. The SOPPA energies
are within 0.3 eV of the lowest three experimental energies,
with less good agreement for the 33Ag state. The agreement
between SOPPA and CASPT2 is also within 0.3 eV, except
for the 23Ag and 33Ag states. The discrepancy for the3Ag

states cannot be put down to their doubly-excited character,
since 23Ag is predominantly singly excited.

C. Oscillator strengths

The singlet dipole-allowed oscillator strengths for ben-
zene and naphthalene are listed in Table VI. We have given
only those results for which comparison can be made to ei-
ther CASPT2 or experiment. It is notable that for benzene,
the length and velocity representations give almost equal os-
cillator strengths, while for naphthalene this is not the case.
The two representations will give the same result for a com-
plete basis, so we appear to have a more complete set for
benzene than for naphthalene.

For benzene, the SOPPA 11E1u oscillator strength lies
at the lower end of the experimental range. There are no

TABLE V. Singlet–triplet excitations in naphthalene~eV! in ascending or-
der of SOPPA energies.

State
CASSCF
Ref. 19

CASPT2
Ref. 19

RPA SOPPA

Expt.dThis work

1 3B2u 3.24 3.04 Instability 2.77
1 3B3u 3.24 3.84 3.67 3.68
1 3B1g 4.49 4.18 2.32 4.02 4.33a

2 3B2u 4.59 4.24 Instability 4.12
2 3B3u 4.73 4.40 4.43 4.56
1 3Ag 5.64 5.22 4.57 4.97 5.25b

2 3B1g 8.04 5.65 6.26 5.86 6.12c,6.0a

3 3B1g 6.91 6.18 6.95 6.13
2 3Ag 8.15 5.77 6.39 6.14
3 3Ag 6.68 5.85 6.94 6.37 5.93b

aReference 46.
bReference 47.
cReference 48.
dExperimental assignments from Ref. 19.
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other experimental results available for benzene. The other
two SOPPA values listed are of the same order of magnitude
as for CASPT2. For naphthalene, the SOPPA 11B3u oscilla-
tor strength is an order of magnitude less than the experi-
mental and CASPT2 values, while for the 11B2u excitation,
only the length form agrees well with CASPT2. The SOPPA
length value for 21B3u lies within the experimental range.
The variation in the length and velocity values for naphtha-
lene indicates that the basis set is not saturated with respect
to these properties.

D. Summary

Our results indicate that SOPPA can provide excitation
energies which in most cases are within 0.2 eV of experi-
ment, for relatively large molecular systems such as benzene
and naphthalene. We have also seen that SOPPA can usually
give excitation energies which are within 0.2 eV of the
CASPT2 method, when using identical basis sets. We find
this encouraging, considering that CASPT2 is a multirefer-
ence second-order theory. In those cases where there is sig-
nificant disagreement between CASPT2 and SOPPA, the
problem can usually be traced to the doubly excited nature of
the excited state, which SOPPA is not able to treat ad-
equately. The oscillator strengths are of the same order of
magnitude in the two methods. In Figs. 1 and 2, we plot the
percentage deviation of the calculated singlet excitation en-
ergies from the experimental values, for benzene and naph-
thalene, respectively. These figures clearly demonstrate that
the trends in CASPT2 and SOPPA are similar, although
CASPT2 is rather more accurate. They also point up the
large variations which we see for CASSCF and RPA, par-
ticularly for the valence excitations.

Although the RPA Rydberg excitation energies are quite
accurate for benzene, there are many other cases where the

RPA result differs by over 1 eV from the correlated methods
or from experiment. However, the most serious problem with
RPA is encountered in the occasional appearance of triplet
instabilities, typically in aromatic and conjugated hydrocar-
bons. In addition to this, the excitation energies vary between
being greater than or less than experiment and so could not
be used with any confidence to assign a spectrum. A similar
observation applies to the CASSCF values which we have
quoted.18,19 The CASSCF results differ by up to 3 eV from
CASPT2. The overall performance of SOPPA, relative to
CASSCF, indicates clearly the importance of including dy-
namic correlation in order to describe excitation processes.

IV. CONCLUSIONS

We have reimplemented the SOPPA method, and
thereby obtained a program that is much more efficient than
the previous implementations,RPAC13 and MUNICH.14 We
have used a direct linear transformation approach, which
leads to a reduction in the operation count fromN6 to N5.
We are now able to use a much larger 2p–2h space so that
we can study larger molecular systems and use more ex-
tended basis sets. We have demonstrated the potential of this
implementation by applying it to singlet and triplet proper-
ties of benzene and naphthalene.

We can identify several advantages and disadvantages of
using CASPT2, rather than SOPPA, for the calculation of
excited state properties. Among the advantages are the inclu-
sion of nondynamic correlation and the ability to treat doubly
excited and open-shell states. Among the disadvantages are
its greater cost, since each excited state must be optimized
separately, and the presence of intruder states, especially for
Rydberg excitations.18 There is also the question of selecting
the CAS space. This provides flexibility for optimizing the
molecular wave function, but makes it difficult to apply to

TABLE VI. Oscillator strengths for singlet dipole-allowed transitions in benzene and naphthalene, in length~L!
and velocity~V! representations.

State

RPA SOPPA
CASSCF/CASPT2
Refs. 18 and 19

L Expt.d
This work

L V L V

Benzene
1 1E1u 0.61 0.63 0.51 0.61 0.82 0.6–1.1a

2 1E1u 0.11 0.12 0.11 0.14 0.058
1 1A2u 0.069 0.071 0.062 0.063 0.052

Naphthalene
1 1B3u 3.6•1025 5.1•1025 8.6•1026 2.6•1025 0.0004 0.002b

1 1B2u 0.041 0.048 0.055 0.100 0.0496 0.1b

2 1B3u 1.62 1.66 1.25 1.62 1.34 1.3b

2 1B2u 0.427 0.450 0.223 0.304 0.31
1 1B1u 0.023 0.019 0.016 0.014 0.003
2 1B1u 0.011 0.0062 0.013 0.0085 0.0069
3 1B2u 0.037 0.029 0.0058 0.0028 0.0017
3 1B3u 0.085 0.10 0.0048 0.010 0.0176
4 1B2u 0.124 0.092 0.309 0.313 0.8481 0.8c

aReference 18.
bReference 50.
cReference 51.
dExperimental assignments from Ref. 18~benzene! and Ref. 19~naphthalene!.
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general problems. In the case of benzene, for example, it was
necessary to define different active spaces for the three types
of excitations discussed.

Using the SOPPA approach, we cannot expect to obtain
results of the accuracy of a multireference second-order
method such as CASPT2. However, SOPPA has the advan-
tage over multireference methods that, once the basis set has
been selected, it is essentially a ‘‘black-box’’ approach. This
means that it could be practical for chemists who do not
specialize in theoretical methods. It will also give the entire
excitation spectrum in a single calculation, since there is no
need to optimize each excited state separately. An important
caveat is that SOPPA is not able to describe doubly excited
states. Therefore, if more accurate values are required for
specific excitations, one should use CASPT2 or coupled-
cluster based response methods. The SOPPA excitation spec-
trum, however, will generally be reliable; for the two mol-
ecules we have studied here, the excitation energies are
within 0.2 eV of experiment, except for those states with
appreciable doubly excited character. We would clearly need
to study a larger set of molecules to investigate whether
SOPPA can always give such agreement with experiment.

In this new implementation, the cost of a SOPPA calcu-
lation is comparable to that of an MP2 vibrational frequency
calculation. In general, if the geometry and vibrational fre-
quencies of a system can be obtained reliably at the MP2
level, one can expect that the excitation spectrum and re-
sponse properties will be given reliably by SOPPA. We
therefore recommend SOPPA as an accurate and efficient
way to predict molecular properties at reasonable computa-
tional cost, for closed-shell systems.
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APPENDIX A: THE CS MATRICES

TheC1 matrices, defined in Eq.~55!, are given by Eqs.
~C.16! and~C.17! of Ref. 10.@Equation~C.16! has an incor-
rect sign in Ref. 10.#

Cia jb,ck
1 ~1!5Caib j ,kc

1 ~1!

5
1

A~11d i j !~11dab!
~d ik~gca jb1gcb ja!

1dk j~gcbia1gcaib!2dac~gik jb1gib jk!

2dbc~gjkia1gjaik!! ~A1!

and

Cia jb,ck
1 ~2!5Caib j ,kc

1 ~2!

5)~d ik~gca jb2gcb ja!1dk j~gcbia2gcaib!

2dac~gik jb2gib jk!2dbc~gjkia2gjaik!!

~A2!

FIG. 1. Percentage deviation from experiment of the benzene singlet exci-
tation energies. Energies are arranged in the same order as Table I.

FIG. 2. Percentage deviation from experiment of the naphthalene singlet
excitation energies. Energies are arranged in the same order as Table III.
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and theC2 matrices by Eqs.~C.20!, ~C.21!, and ~C.22! of
Ref. 10

Cia jb,ck
2 ~1!5Caib j ,kc

2 ~1!

5&~d ik~gca jb2gcb ja!1dk j~gcbia2gcaib!

2dac~gik jb2gib jk!2dbc~gjkia2gjaik!!,

~A3!

Cia jb,ck
2 ~2!5Caib j ,kc

2 ~2!

5
1

A11dab
~d ik~gca jb1gcb ja!

1dk j~gcaib1gcbia!2dac~gik jb2gib jk!

2dbc~gjaik2gjkia!!, ~A4!

and

Cia jb,ck
2 ~3!5Caib j ,kc

2 ~3!

5
1

A11d i j
~d ik~gca jb2gcb ja!

1dk j~gcbia2gcaib!2dac~gik jb1gib jk!

2dbc~gjaik1gjkia!!. ~A5!

Due to our use of theEpq
S operators rather than the normal-

ized operators used in Ref. 10, these expressions are a factor
of & larger than the corresponding expressions in Ref. 10.
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