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A stochastic method is proposed that evaluates the second-order perturbation corrections to the
Dyson self-energies of a molecule (i.e., quasiparticle energies or correlated ionization potentials and
electron affinities) directly and not as small differences between two large, noisy quantities. With the
aid of a Laplace transform, the usual sum-of-integral expressions of the second-order self-energy in
many-body Green’s function theory are rewritten into a sum of just four 13-dimensional integrals, 12-
dimensional parts of which are evaluated by Monte Carlo integration. Efficient importance sampling
is achieved with the Metropolis algorithm and a 12-dimensional weight function that is analytically
integrable, is positive everywhere, and cancels all the singularities in the integrands exactly and an-
alytically. The quasiparticle energies of small molecules have been reproduced within a few mEh of
the correct values with 108 Monte Carlo steps. Linear-to-quadratic scaling of the size dependence
of computational cost is demonstrated even for these small molecules. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4801862]

I. INTRODUCTION

Recently, we proposed a stochastic method of evaluat-
ing the second-order Møller–Plesset perturbation (MP2) cor-
rection to the Hartree–Fock (HF) energy of a molecule.1 The
MP2 energy has two diagrammatic contributions (Fig. 1),

E(2) = E(A) + E(B), (1)

each of which is the fourfold summation of products of two
6-dimensional integrals,

E(A) = 2
occ.∑
i,j

vir.∑
a,b

〈ij |ab〉〈ab|ij 〉
εi + εj − εa − εb

, (2)

E(B) = −
occ.∑
i,j

vir.∑
a,b

〈ij |ab〉〈ab|ji〉
εi + εj − εa − εb

, (3)

where εp is the pth orbital energy of the HF theory and 〈ij|ab〉
is a two-electron integral2 over occupied (labeled by i and j)
and virtual (a and b) molecular orbitals (MO’s),

〈ij |ab〉 =
∫

d r1

∫
d r2

ϕ∗
i (r1)ϕ∗

j (r2)ϕa(r1)ϕb(r2)

r12
, (4)

with r12 = |r1 − r2|. Using a Laplace transform,3

1

εi + εj − εa − εb

= −
∫ ∞

0
dτ exp{(εi + εj − εa − εb)τ },

(5)

a)sohirata@illinois.edu

the above canonical expressions are converted into single
13-dimensional integrals,

E(A) = −2
∫

d r1

∫
d r2

∫
d r3

∫
d r4

∫ ∞

0
dτ

×o(r1, r3, τ )o(r2, r4, τ )v(r1, r3, τ )v(r2, r4, τ )

r12r34
,

(6)

E(B) =
∫

d r1

∫
d r2

∫
d r3

∫
d r4

∫ ∞

0
dτ

×o(r1, r4, τ )o(r2, r3, τ )v(r1, r3, τ )v(r2, r4, τ )

r12r34
,

(7)

with

o(r1, r3, τ ) =
occ.∑
i

ϕ∗
i (r1)ϕi(r3) exp(εiτ ), (8)

v(r1, r3, τ ) =
vir.∑
a

ϕa(r1)ϕ∗
a (r3) exp(−εaτ ), (9)

where ϕp is the pth HF MO. In our Monte Carlo MP2 (MC-
MP2), the 12-dimensional parts (r1, r2, r3, and r4) of Eqs. (6)
and (7) are evaluated by MC integration using four-electron
walkers wandering in 12-dimensional real space. Importance
sampling is essential.1

As compared to the conventional implementations of
MP2, MC-MP2 has a vastly lower scaling of cost with
system size and a far smaller memory requirement.1 The
price one pays is the introduction of statistical errors, which
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FIG. 1. Goldstone diagrams for the second-order corrections to the energy
(A and B) and self-energy (C through F).

decay as the inverse square root of the number of MC steps.
This method is also expected to be easily extensible to
more complex theories, such as explicitly correlated MP2
(Refs. 4 and 5) and higher-order perturbation corrections, and
well suited to massive parallelism. Regarding the latter issue,
the architectures of modern supercomputers with hundreds
of thousands or even millions of processors are forcing the
conventional algorithms of many-body theories (which are
dominated by matrix algebra and, therefore, fundamentally
nonscalable) to be redesigned into forms that are naturally
parallel. MC-MP2 is an example of such redesign.

MC-MP2 can also be viewed as a new branch of quan-
tum Monte Carlo (QMC).6–12 It has a number of character-
istics not seen in any existing incarnations of QMC. (1) MC-
MP2 directly computes correlation energies, leaving the much
greater HF contribution to the usual deterministic algorithm.
This is in contrast to most QMC methods, which usually must
compute the whole energy by stochastic algorithms with con-
comitant errors, the majority of which are associated with the
HF part. (2) It does not suffer from the fixed-node errors of
diffusion MC and is guaranteed to converge at the exact MP2
energy. (3) It is also distinguished from the stochastic pertur-
bation theory of Thom and Alavi13 or the fast stochastic MP2
of Neuhauser et al.14 In the former, walkers explore high-
dimensional Hilbert space with the assumption that MO in-
tegrals, 〈ij|ab〉, are readily available. In the latter, (imaginary)
time-dependent orbitals are introduced, which are generated
by a stochastic algorithm. However, the evaluation of the two-
electron integrals for these orbitals seems to be done by the
conventional way; in Ref. 14, semi-empirical approximations
to these integrals have been used. With the ab initio Hamil-
tonian, there is hardly any computational advantage in these
methods over the conventional MP2 because the transforma-
tion and storage of these integrals are the operation and mem-
ory hotspots. In MC-MP2, in contrast, both are completely
eliminated.1

Another important expected advantage of MC-MP2
over other QMC methods is that (4) properties other than
the total ground-state energies can be evaluated directly and
neither as small differences between two large quantities
with statistical errors nor as numerical derivatives of noisy
functions. The objective of this study is to demonstrate this
advantage in the case of second-order Dyson self-energy in
many-body Green’s function theory.15–17 The self-energy
gives correlated one-electron energies (ionization potentials
and electron affinities) in a molecule and quasiparticle energy
bands in a crystalline solid.18–25 The significance of accurate
one-electron energies and energy bands needs no explanation,
but the perturbation expansion of the self-energy, which can
systematically improve these quantities, does not easily lend
itself to usual QMC treatments. Here, we show that MC-MP2

can compute them in a molecule stochastically, efficiently,
and accurately.

II. THEORY

The second-order Dyson self-energy has four diagram-
matic contributions (Fig. 1). In the diagonal approximation,16

the correlated one-electron energy of the pth orbital is
given by

ε(2)
p = εp + �(C)

p (εp) + �(D)
p (εp) + �(E)

p (εp) + �(F)
p (εp),

(10)

with

�(C)
p (ω) = 2

occ.∑
j

vir.∑
a,b

〈pj |ab〉〈ab|pj 〉
ω + εj − εa − εb

, (11)

�(D)
p (ω) = −

occ.∑
j

vir.∑
a,b

〈jp|ab〉〈ab|pj 〉
ω + εj − εa − εb

, (12)

�(E)
p (ω) = −2

occ.∑
i,j

vir.∑
b

〈ij |pb〉〈pb|ij 〉
εi + εj − ω − εb

, (13)

�(F)
p (ω) =

occ.∑
i,j

vir.∑
b

〈ji|pb〉〈pb|ij 〉
εi + εj − ω − εb

, (14)

where ω is approximated by εp in Eq. (10). Using the Laplace
transform [Eq. (5)], which allows the order of summation
and integration to be changed, we can rewrite these sum-of-
integral expressions into single 13-dimensional integrals,

�(C)
p (ω) = −2

∫
d r1

∫
d r2

∫
d r3

∫
d r4

∫ ∞

0
dτ

× p(r1, r3, τ )o(r2, r4, τ )v(r1, r3, τ )v(r2, r4, τ )

r12r34
,

(15)

�(D)
p (ω) =

∫
d r1

∫
d r2

∫
d r3

∫
d r4

∫ ∞

0
dτ

× o(r1, r4, τ )p(r2, r3, τ )v(r1, r3, τ )v(r2, r4, τ )

r12r34
,

(16)

�(E)
p (ω) = 2

∫
d r1

∫
d r2

∫
d r3

∫
d r4

∫ ∞

0
dτ

× o(r1, r3, τ )o(r2, r4, τ )p̃(r1, r3, τ )v(r2, r4, τ )

r12r34
,

(17)

�(F)
p (ω) = −

∫
d r1

∫
d r2

∫
d r3

∫
d r4

∫ ∞

0
dτ

× o(r1, r4, τ )o(r2, r3, τ )p̃(r1, r3, τ )v(r2, r4, τ )

r12r34
,

(18)
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with

p(r1, r3, τ ) = ϕ∗
p(r1)ϕp(r3) exp(ωτ ), (19)

p̃(r1, r3, τ ) = ϕp(r1)ϕ∗
p(r3) exp(−ωτ ). (20)

Note that the Laplace-transformed expressions of Eqs. (11)–
(14) can be obtained, alternatively and directly, by applying
the interpretation rules of time-domain Green’s functions15 to
the open diagrams in Fig. 1.

In this work, we evaluate the 12-dimensional integration
over four electron coordinates (r1 through r4) in Eqs. (15)–
(18) using MC. The remaining one-dimensional integration
over τ is done with a 21-point Gauss–Kronrod quadrature.1, 26

This scheme, therefore, inherits all the aforementioned advan-
tages and disadvantages of MC-MP2 for energies.

The MC integration27 of each of Eqs. (15)–(18) can be
understood in a unified way as the following approximation:

I =
∫

d r1

∫
d r2

∫
d r3

∫
d r4

∫ ∞

0
dτ

×f (r1, r2, r3, r4, τ ) (21)

≈ 1

N

N∑
n=1

21∑
q=1

wqf
(
r [n]

1 , r [n]
2 , r [n]

3 , r [n]
4 , τq

)
w

(
r [n]

1 , r [n]
2 , r [n]

3 , r [n]
4

) , (22)

where N is the number of MC steps or sampling points of
four-electron walkers, whose positions in the real space are
given by (r [n]

1 , r [n]
2 , r [n]

3 , r [n]
4 ), and τ q and wq are Gauss–

Kronrod quadrature points and weights,1 respectively. The
sampling points are distributed randomly but according to
the 12-dimensional weight function w(r1, r2, r3, r4) and
this distribution is achieved by the Metropolis–Rosenbluth–
Rosenbluth–Teller–Teller algorithm.28

The key to high efficiency in MC integrations lies in find-
ing a suitable weight function,27 in this case, w(r1, r2, r3, r4).
It must be analytically integrable,∫

d r1

∫
d r2

∫
d r3

∫
d r4w(r1, r2, r3, r4) = 1, (23)

be positive everywhere,

w(r1, r2, r3, r4) > 0, (24)

cancel all singularities in the integrands exactly and analyti-
cally, ∣∣∣∣f (r1, r2, r3, r4, τq)

w(r1, r2, r3, r4)

∣∣∣∣ < ∞ (25)

and generally behave like f (r1, r2, r3, r4, τq) so that the quo-
tient f/w is a smooth function throughout the domain of inte-
gration. Note that all of the integrands in Eqs. (15)–(18) have
singularities at r12 = 0 and r34 = 0, i.e., everywhere in the
12-dimensional real space.

We use the following weight function, which has been
successful for MC-MP2 for energies:1

w(r1, r2, r3, r4) = 1

E2
g

g(r1)g(r2)g(r3)g(r4)

r12r34
, (26)

where g(r) is a sum of s-type Gaussian functions centered at
constituent atoms and

Eg =
∫

d r1

∫
d r2

g(r1)g(r2)

r12
. (27)

The right-hand side can be evaluated analytically.29

In MC-MP2, sampling points (r [n]
1 , r [n]

2 , r [n]
3 , r [n]

4 ) with
n = 1, . . . , N are generated according to this weight
function by the Metropolis algorithm. At each point, we
evaluate the values of o(r i , rj , τq) [Eq. (8)], v(r i , rj , τq)
[Eq. (9)], p(r i , rj , τq) [Eq. (19)], and p̃(r i , rj , τq) [Eq. (20)]
at all τ q’s (q = 1, . . . , 21) as well as the weight function
w(r1, r2, r3, r4). Using them, we add contributions from the
point to the approximate values of the right-hand sides of
Eqs. (15)–(18). Hence, a single MC run informs all four dia-
grammatic contributions at all 21 grid points, {τ q}. For a fixed
value of N, the cost of MC-MP2 is determined by that of eval-
uating all MO amplitudes at a sampling point, which in turn
consists in calculating all atomic orbital (AO) amplitudes and
summing them to obtain MO amplitudes. The cost is, there-
fore, proportional to the number of MO’s (m) times the num-
ber of AO’s (m) and grows quadratically with size [O(m2)]. In
practice, since calculating AO amplitudes is far more expen-
sive than summing them, the actual cost is expected to display
near-linear [O(m)] size dependence. This superior cost scaling
of MC-MP2 comes with inevitable statistical errors.

III. RESULTS AND DISCUSSION

Table I compares the second-order Dyson self-energies
(i.e., the correlation corrections to one-electron energies) for
the highest occupied MO’s (HOMO’s) and lowest unoccupied
MO’s (LUMO’s) of N2, O2, H2O, CH4, and C2H6 obtained
by MC-MP2 and conventional MP2. With either method,
the inverse Dyson equation was not solved self-consistently;
the self-energies were evaluated with ω = εp.16 As
seen, the MC algorithm can reproduce the correct values
within a few mEh after 108 steps. These statistical errors
are smaller than both the magnitudes of the correlation

TABLE I. The second-order Dyson self-energies (in Eh) for HOMO and
LUMO of various molecules evaluated by the conventional and MC methods
of MP2/6-31G** (frozen core).

Molecule Method HOMO LUMO

N2
a MP2 (conventional) − 0.0721 0.0005

N2
a MC-MP2 (N = 108) − 0.0725 0.0006

O2
b MP2 (conventional) 0.1287 − 0.0360

O2
b MC-MP2 (N = 108) 0.1291 − 0.0335

H2Oc MP2 (conventional) 0.1036 − 0.0230
H2Oc MC-MP2 (N = 108) 0.1051 − 0.0236
CH4

d MP2 (conventional) 0.0330 − 0.0311
CH4

d MC-MP2 (N = 108) 0.0339 − 0.0340
C2H6

e MP2 (conventional) 0.0367 − 0.0357
C2H6

e MC-MP2 (N = 108) 0.0377 − 0.0446

aNN distance: 1.420 Å.
bOO distance: 1.200 Å.
cOH distance: 0.961 Å; HOH angle: 103.826◦.
dCH distance: 1.087 Å.
eCC distance: 1.523 Å; CH distance: 1.089 Å; HCC angle: 111.189◦ .
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FIG. 2. The errors in ε
(2)
p (in mEh) for HOMO and LUMO of N2 evaluated

by MC-MP2/6-31G** (frozen core) as a function of the number of MC steps.

corrections and typical precisions (0.1 eV) of measurements
of such quantities. Figure 2 shows the convergence of these re-
sults with the MC steps for N2. Note that ε(2)

p plotted here are
integrated quantities [Eq. (22)] and not some instantaneous
quantities calculable with just the existing walkers at a given
MC step.

For these calculations, we have used the following weight
functions:

gN2 (r) =
2∑

N=1

gN(r), (28)

gO2 (r) =
2∑

O=1

gO(r), (29)

gH2O(r) = 6gO(r) +
2∑

H=1

gH(r), (30)

gCnHm (r) =
n∑

C=1

4gC(r) +
m∑

H=1

gH(r), (31)

with

gA(r) = exp
(−ζ1r

2
A

) + 0.1 exp
(−ζ2r

2
A

)
, (32)

where rA is the distance from atom A and (ζ 1, ζ 2) = (0.6,
0.15) for H, (0.5, 0.1) for C, (0.6, 0.1) for N, and (0.8, 0.2)
for O. The prefactors of 6 and 4 in Eqs. (30) and (31) are the
numbers of valence electrons in the respective atoms.

0 2 4 6 8 10

MC steps / 107

−0.5

−0.45

−0.4

−0.35

(2
)

p
/

E
h

p = 4
p = 5

FIG. 3. ε
(2)
p (in Eh) of occupied orbitals of H2O evaluated by MC-MP2/6-

31G** (frozen core) as a function of the number of MC steps.

0 2 4 6 8 10

MC steps / 107

0.15

0.2

0.25

0.3

(2
)

p
/
E

h

p = 6
p = 7

FIG. 4. The same as Fig. 3, but for virtual orbitals.

The correlation corrections to the orbital energies of
HOMO (LUMO) can in principle be calculated by existing
QMC methods by taking differences in correlated total en-
ergy between the neutral and cation (anion) species, which
need to be separately evaluated. We have already mentioned
that MC-MP2 has the distinct advantage over such a scheme
by being able to compute those quantities directly not as small
differences of large, noisy quantities. In addition, MC-MP2
for self-energies is not limited to HOMO or LUMO; it can
yield correlated one-electron energies of all orbitals or any
subset thereof (some of which are subject to instabilities24, 25

unrelated to the algorithm itself) from a single MC run.
Figures 3 and 4 plot the correlated one-electron energies, ε(2)

p ,
for p = 4 through 7 of H2O (p = 5 and 6 are HOMO and
LUMO, respectively) as a function of the number of MC
steps. They also underscore the rapid convergence and small-
ness of the statistical errors relative to the absolute values of
the orbital energies. The plot suggests that MC-MP2 is suffi-
ciently reliable with a tenth of the number of MC steps carried
out for these plots.

Figure 5 plots the operation cost of the MC-MP2 self-
energy calculations of four orbitals of each of the five
molecules in Table I as a function of the number of MO’s
(m). The measured cost displays the size dependence in

0 10 20 30 40 50 60

Number of orbitals

H2O N2 CH4 C2H6

0

1000

2000

3000

4000

5000

C
P

U
ti

m
e

/
se

c.

FIG. 5. The CPU time (in s) spent by the MC-MP2 (N = 108) calculations
as a function of the number of MO’s (m). The dashed line and curve are
linear and quadratic functions of m to guide the eyes. The plot for O2 is
indistinguishable from that of N2.
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between linear and quadratic, as anticipated from the forego-
ing discussion on the algorithms. This may be contrasted with
the O(m5) dependence of the cost of conventional MP2 for en-
ergies or self-energies. Even though the prefactor multiplying
the cost function is still large in MC-MP2, considering the
near-linear scaling of cost increase with size, the negligibly
small memory requirement, and the naturally parallel algo-
rithm with virtually no interprocessor communication needs,
we believe that MC-MP2 is the future of MP2.
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