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Quasiparticle calculations based on the GW approximation are enhanced by introducing an optimal basis set
for the polarization propagator, based on a Wannier representation of the one-electron wave functions, thus
allowing the treatment of substantially larger systems. Our method is validated by calculating the vertical
ionization energies of the benzene molecule and the band structure of bulk silicon. Its potentials are then
demonstrated by addressing the quasiparticle spectrum of a model structure of vitreous silica, as well as of the
tetraphenylporphyrin molecule.
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Density-functional theory �DFT� has grown into a power-
ful tool for the numerical simulation of matter at the nano-
scale, allowing one to study the structure and dynamics of
realistic models of materials consisting of up to a few thou-
sand atoms these days.1 The scope of standard DFT, how-
ever, is limited to those dynamical processes that do not in-
volve electronic excitations. The most elementary such
excitation is the removal/addition of an electron from a sys-
tem originally in its ground state. These processes are acces-
sible to direct/inverse photoemission spectroscopies and can
be described in terms of quasiparticle �QP� spectra.2 In in-
sulators, the energy difference between the lowest-lying
quasielectron state and the highest-lying quasihole state is
the QP band gap, a quantity that is severely �and to some
extent erratically� underestimated by DFT �Ref. 3�.

Many-body perturbation theory �MBPT�, in turn, provides
a general, though unwieldy, framework for QP and other
excitation �such as optical� spectra.2–5 A numerically viable
approach to QP energy levels �known as the GW approxima-
tion, GWA� was introduced in the 60s,6 but it took two de-
cades for a realistic application of it to appear,7 and even
today the numerical effort required by MBPT is such that its
scope is limited to systems of a few handfuls of atoms. Even
so, and in spite of the success met by MBPT in real
materials,8 the approximations made for the most demanding
of its applications are such as to shed some legitimate doubts
on their general applicability. This situation will be referred
to as the size gap of MBPT calculations.

In this Rapid Communication we present a strategy to
substantially reduce the size gap of MBPT, based on the
adoption of Wannier-type orbitals9–11 to represent the re-
sponse functions whose calculation is the main size-limiting
factor of MBPT. Although we focus on QP spectra within the
GWA, this strategy easily generalizes to optical spectra, as
calculated from the Bethe-Salpeter equation.12 Our method is
benchmarked by the calculation of the ionization potential of
the benzene molecule and of the band structure of bulk sili-
con and demonstrated by case calculations on vitreous silica
and on the free-base tetraphenylporphyrin molecule
�TPPH2�.

QP energies �QPE� are eigenvalues of a Schrödinger-type
equation �QPEq� for the so-called QP amplitudes �QPA�,
which is similar to the DFT Kohn-Sham equation with the
exchange-correlation potential, Vxc�r�, replaced by the non-

local, energy-dependent, and non-Hermitian self-energy op-

erator, �̃�r ,r� ,E� �a tilde indicates the Fourier transform of a

time-dependent function�. Setting �̃�r ,r� ;E�=− ��r,r��
�r−r��

�� be-
ing the one-particle density matrix� would turn the QPEq
into the Hartree-Fock equation. The next level of approxima-
tion is the GWA �Ref. 6� where � is the product of the
one-electron propagator, G, and of the dynamically screened
interaction, W:

�GW�r,r�;�� = iG�r,r�;��W�r,r�;�� , �1�

where �= t− t��0, W=v+v ·� ·v, ��r ,r� ; t− t���
�n�r,t�

�V�r�,t��
= �1− P ·v�−1 · P is the reducible electron polarization
propagator �polarizability�, P its irreducible counterpart,
v�r ,r� ; t− t��= 1

�r−r��
��t− t�� is the bare Coulomb interaction,

n and V are the electron density distribution and
external potential, respectively, and a dot indicates the
product of two operators, such as in v ·��r ,r� , t− t��
=�dr�dt�v�r ,r� ; t− t����r� ,r� ; t�− t��.

The GWA alone does not permit to solve the
QPEq, unless G and W are known, possibly depending
on the solution of the QPEq itself. One of the most
popular further approximations is the so-called G�W�

approximation �G�W�A�, where the one-electron propagator
is obtained from the QPEq using a model real and

energy-independent self-energy, such as �̃�=Vxc�r���r−r��,
and the irreducible polarizability is calculated in
the random-phase approximation �RPA�: G��r ,r� ;��
= i�v�v�r��v

��r��e−i	v�
�−��− i�c�c�r��c
��r��e−i	c�
��� �� and

	 are zeroth order QPAs and QPEs, referred to the Fermi
energy, v and c suffixes indicate states below and above the
Fermi energy, respectively, 
 is the Heaviside step function�,
and P��r ,r� ;��=−iG��r ,r� ;��G��r� ,r ;−��. To first order in
��=�G�W� −��, QPEs are given by the equation:

En � 	n + ��̃G�W��En��n − �VXC�n, �2�

where �A�n= ��n�A��n�.
The apparently simple G�W�A still involves severe diffi-

culties, mainly related to the calculation and manipulation of
the polarizability that enters the definition of W�. These dif-
ficulties are often addressed using the so-called plasmon-pole
approximation,7 which however introduces noticeable ambi-
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guities and inaccuracies when applied to inhomogeneous
systems.13 A well-established technique to address QP spec-
tra in real materials without any crude approximations on
response functions is the space-time method �STM� by
Godby et al.14 In the STM the time/energy dependence of the
G�W� operators is represented on the imaginary axis, thus
making them smooth �in the frequency domain� or exponen-
tially decaying �in the time domain�. The various operators
are represented on a real-space grid, a choice which is
straightforward, but impractical for systems larger than a few
handfuls of inequivalent atoms. In this Rapid Communica-
tion we combine the imaginary time/frequency approach of
the STM with a representation of the response functions,
based on localized Wannier-type orbitals, thus enhancing the
scope of MBPT calculations so as to embrace systems poten-
tially as large as a few hundred atoms.

In the STM, the self-energy expectation value in Eq. �2� is
obtained by analytically continuing to the real frequency axis
the Fourier transform of the expression

��G�W��i���n = � �
l

e	l� �	 �n�r��l�r��l�r���n�r��

�W�r,r�;i��drdr�, �3�

where the upper �lower� sign holds for positive �negative�
times, the sum extends below �above� the Fermi energy, and
QPAs are assumed to be real, because of time-reversal in-
variance. By substituting v for W, Eq. �3� yields the ex-
change self-energy, whereas v ·� ·v yields the correlation
contribution, �C, whose evaluation is the main size-limiting
step of GW calculations.

Suppose that a small, time-independent, basis set to rep-
resent the polarizability can be found: ��r ,r� , i��
��
��
��i���̄
�r��̄��r��. Equation �3� then gives

��C�i���n � � �
l
�

e	l��
��i��Snl,
Snl,�
�EC
1 − 	l� , �4�

where Snl,�=��n�r��l�r� 1
�r−r��

�̄��r��drdr� and EC
1 is an en-

ergy cutoff that limits the number of conduction states to be
used in the calculation of the self-energy. The existence of
such a basis for the representation of static dielectric matri-
ces has been demonstrated in Ref. 15. A convenient repre-
sentation of the polarizability would thus allow QPEs to be
calculated from Eq. �2�, by analytically continuing to the real
axis the Fourier transform of Eq. �4�. Such an optimal rep-
resentation is identified in two steps: �i� we first express the
Kohn-Sham orbitals, whose products enter the definition of
P�, in terms of localized, Wannier-type, orbitals; �ii� we then
construct a basis set of localized functions for the manifold
spanned by products of Wannier orbitals, such that their
norm is larger than a given threshold.

Let us start from the RPA irreducible polarizability:

P̃��r,r�;i�� = �
cv

�cv�r��cv�r���̃cv
� �i�� , �5�

where �̃cv
� �i��=2 Re� 1

i�−	c+	v
� and �cv�r�=�c�r��v�r�. We

express valence and conduction QPAs in terms of localized,
Wannier-type, orbitals:

us�r� = �
v

Usv
−1�v�r�
�− 	v� ,

vs�r� = �
c

Vsc
−1�c�r�
�	c�
�EC

2 − 	c� , �6�

where EC
2 �EC

1 is a second energy cutoff that limits a lower
conduction manifold �LCM� to be used in the construction of
the polarization basis. According to the choice of the U and V
matrices, the u’s and v’s can be either maximally
localized9,11 or nonorthogonal generalized16 Wannier func-
tions. We then reduce the number of product functions nec-
essary to represent the �’s from the product between the
number of valence and conduction states, which scales qua-
dratically with the system size, to a number that scales lin-
early. To this end, we express the �’s as approximate linear
combinations of products of the u’s v’s: �cv�r�
��rsOcv,rsWrs�r�
��Wrs�2−s1�, where Ocv,c�v�=Uvv�Vcc�,
Wrs�r�=ur�r�vs�r�, �Wrs� is the L2 norm of Wrs�r�, which is
arbitrarily small when the centers of the ur and vs functions
are sufficiently distant, and s1 is an appropriate cutoff. The
number of products can be further reduced on account of the
nonorthogonality and mutual linear dependence of
the W’s. To this end, let us define the overlap matrix: Q��

=�W��r�W��r�dr, where the � and � indices stand for pairs
of rs indices. The magnitude of the eigenvalues is a measure
of linear dependence, and an orthonormal basis can be ob-
tained by retaining only those eigenvectors U� whose eigen-

value, q�, is larger than a given threshold, s2: �̄��r�
� 1


q�
��U��W��r�, for q��s2. It can be demonstrated that the

manifold thus generated coincides with that spanned by the
eigenvectors of the polarizability, calculated at zero time,
corresponding to eigenvalues larger than the same
threshold.17

Once an optimal basis set has been thus identified, an
explicit representation for the irreducible polarizability,

P̃��r,r�,i�� = �

�

P̃
�
� �i���̄
�r��̄��r�� , �7�

is obtained. By equating Eq. �5� to Eq. �7� and taking into

account the orthonormality of the �̄’s, one obtains

P̃�

� �i�� = �

cv
Tcv,
Tcv,��̃cv

� �i��
�EC
1 − 	c� , �8�

where Tcv,
=��cv�r��̄
�r�dr. A representation for � is fi-
nally obtained by simple matrix manipulations.

Our scheme has been implemented in the QUANTUM

ESPRESSO density-functional package,18 for norm-conserving
�NC� as well as ultrasoft �US� pseudopotentials �PPs�, result-
ing in a new module called gww.x which uses a Gauss-
Legendre discretization of the imaginary time/frequencies
half-axes, and that is parallelized accordingly. We first illus-
trate our scheme by considering an isolated benzene mol-
ecule in a periodically repeated cubic cell with an edge of 20
a.u. using a first conduction energy cutoff EC

1 =56.7 eV, cor-
responding to 1000 conduction states, and a cutoff on the
norm of Wannier products s1=0.1 a.u. �Ref. 19�. In Fig. 1
we display the dependence of the calculated ionization po-
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tential �IP� on the second conduction energy cutoff used to
define the polarization basis, EC

2 , and on the cutoff on the
eigenvalues of the overlap matrix between Wannier products,
s2. Convergence within 0.01 eV is achieved with a conduc-
tion energy cutoff EC

2 of 29 eV �300 states� and a polarization
basis set of only �400 elements. The convergence of other
QPEs is similar. The inset of Fig. 1 shows the convergence of
the IP with respect to EC

1 , which turns out to be unexpectedly
slow. These data can be accurately fitted by the simple for-
mula IP�EC

1 �=IP���+A /EC
1 , resulting in a predicted ioniza-

tion potential IP���=9.1 eV, in good agreement with the
experimental value of 9.3 eV.20 The potential of our method
for large molecular system is illustrated by a calculation for
the TPPH2 molecule �C44H30N4� in a periodically repeated
orthorhombic supercell of 37.8�37.8�26.5 a.u..19 Using
values of 31.1, 40.5, and 48.1 eV for EC

1 �corresponding to
2000, 3000, and 4000 conduction states� and EC

2 =17.2 eV
�corresponding to 750 conduction states�, s1=1.5 and
s2=0.01 a.u., which lead to a basis of 2797 elements, yields
an extrapolated IP��� of 6.0 eV, in fair agreement with the
experimental value of 6.4 eV.21

In order to demonstrate our scheme for extended
systems,22 we consider bulk silicon treated using a 64-atom
cubic cell19 at the experimental lattice constant and sampling
the corresponding Brillouin zone �BZ� using the � point
only. This gives the same sampling of the electronic states as
would result from six points in the irreducible wedge of the
BZ of the elementary two-atom unit cell. Our calculations
were performed using EC

1 =94.6 eV �corresponding to 3200
conduction states� and EC

2 =33.8 eV �corresponding to 800
states in the LCM�, s1=1.0 a.u. and two distinct values for
s2 �0.01 and 0.001�. In Table I we summarize our results and
compare them with previous theoretical results, as well as
with experiments. An overall convergence within a few tens
meV is achieved with a s2 cutoff of 0.001 a.u., corresponding

to a polarization basis of �6500 elements. The residual
small discrepancy with respect to previous results14 is likely
due to our use of a 64-atom supercell, rather than the more
accurate k-point sampling used in previous work. Our ability
to treat large supercells gives us the possibility to deal with
disordered systems that could hardly be addressed using con-
ventional approaches. In Fig. 2 we show the QPE density of
states as calculated for a 72-atom model of vitreous
silica.19,23 We used EC

1 =48.8 eV �corresponding to 1000
conduction states�, EC

2 =30.2 eV �corresponding to 500
states in the LCM�, s1=1 a.u. and s2=0.1 a.u. �giving rise
to a polarization basis of 3152 elements�. We checked the
convergence respect to the polarization basis by considering
s2=0.01 a.u. which leads to a basis of 3933 elements. In-
deed, the calculated QPEs differ in average only 0.01 eV
with a maximum discrepancy of 0.07 eV.24 The quasiparticle
band gap resulting from our calculations is 8.5 eV, to be
compared with an experimental value of �9 eV �Ref. 25�
and with a significantly lower value given by DFT in the
local-density approximation �5.6 eV�.

For estimating the reduction of the polarization basis size
that can be achieved with our method, we start from the least
favorable case, i.e., when the localization of Wannier func-
tions is relatively poor, as in bulk Si. In Ref. 14, where a
plane-waves �PWs� basis was used, the number of PWs
yielding an accuracy of 0.05 eV was on the order of 400 for

TABLE I. QPEs �eV� calculated in bulk silicon and compared
with experimental �as quoted in Ref. 14� and previous theoretical
results �Ref. 14�. “Th1” and “Th2” indicate calculations made with
s2=0.01 and s2=0.001 a.u., respectively, while NP is the dimension
of the polarization basis.

Th1 Th2 Previous theor Expt.

NP 4847 6510

�1v −11.45 −11.49 −11.57 −12.5�0.6

X1v −7.56 −7.58 −7.67

X4v −2.79 −2.80 −2.80 −2.9, −3.3�0.2

�25c� 0. 0. 0. 0.

X1c 1.39 1.41 1.34 1.25

�15c� 3.22 3.24 3.24 3.40, 3.05

�2c� 3.87 3.89 3.94 4.23, 4.1
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FIG. 1. �Color online� Calculated ionization potential of the
benzene molecule �solid lines, left scale� and dimension of the po-
larization basis �dashed lines, right scale� versus the s2 cutoff. The
polarization basis has been constructed with a conduction energy
cutoff EC

2 =16.7 eV �light-gray �yellow�, 100 states
, EC
2 =28.6 eV

�gray �green�, 300 states
, and EC
2 =38.3 eV �black, 500 states
.

Inset: calculated ionization potential as a function of the overall
conduction energy cutoff, EC

1 . Black line: experimental value; light-
gray �yellow� line: fit to the calculated values �black triangles
; gray
�green� line extrapolated value. See text for more details.
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FIG. 2. Electronic density of states for a model of vitreous
silica: LDA �dashed line� and GW �solid line�. A Gaussian broad-
ening of 0.25 eV has been used.
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a two-atom unit cell. A same accuracy was achieved by the
present method using a basis of �6500 elements for a 64-
atom cell, corresponding to �200 elements in the two-atom
cell. We note that an equivalent PWs basis would require for
the TPPH2 system �28 000 elements while only 2787 are
required by our scheme.

In conclusion, we believe that expressing density response
functions in terms of optimal basis sets will permit to en-
hance the scope of many-body perturbation theory to large
models of molecular and extended, possibly disordered, sys-

tems. The extension of the methodology presented in this
Rapid Communication for quasiparticle spectra to optical
spectroscopies using the Bethe-Salpeter formalism is
straightforward and presently under way.
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