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An earlier proposed propagator method for the treatment of molecular ionization is tested in first
applications. The method referred to as the non-Dyson third-order algebraic-diagrammatic
construction �nD-ADC�3�� approximation for the electron propagator represents a computationally
promising alternative to the existing Dyson ADC�3� method. The advantage of the nD-ADC�3�
scheme is that the �N±1�-electronic parts of the one-particle Green’s function are decoupled from
each other and the corresponding equations can be solved separately. For a test of the method the
nD-ADC�3� results for the vertical ionization transitions in C2H4, CO, CS, F2, H2CO, H2O, HF, N2,
and Ne are compared with available experimental and theoretical data including results of full
configuration interaction �FCI� and coupled cluster computations. The mean error of the nD-ADC�3�
ionization energies relative to the experimental and FCI results is about 0.2 eV. The nD-ADC�3�
method, scaling as n5 with the number of orbitals, requires the solution of a relatively simple
Hermitian eigenvalue problem. The method renders access to ground-state properties such as dipole
moments. Moreover, also one-electron properties of �N±1� electron states can now be studied as a
consequence of a specific intermediate-state representation �ISR� formulation of the nD-ADC
approach. Corresponding second-order ISR equations are presented. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2047550�

I. INTRODUCTION

Computational methods derived from the one-particle
Green’s function �or electron propagator� theory1,2 have been
firmly established in the field of quantum chemistry as stan-
dard tools for the calculation of ionization and electron at-
tachment spectra.3–12 The well-known advantages of these
methods are the direct access to the properties of interest, a
balanced treatment of the initial and final states, and the in-
trinsic size consistency.

Most of the electron propagator methods make use of the
Dyson equation

G��� = G0��� + G0�������G��� �1�

which relates the exact one-particle Green’s function G���
to the so-called self-energy part ���� and the free �zeroth-
order� Green’s function G0���.1,2 A characteristic �and not
always desirable� feature of the Dyson methods is that in
these approaches, the �N±1�-particle parts of the one-particle
Green’s function �G+ and G−, respectively� are intercon-
nected, and the resulting equations are defined with respect
to configurational spaces comprising both �N−1�- and �N
+1�-electron configurations.

Examples of Dyson propagator methods are approxima-
tion schemes derived within the algebraic-diagrammatic

construction13,14 �ADC�, the equation-of-motion15,16 �EOM�
and the superoperator17–19 approaches. Also the outer-
valence Green’s function3,20 �OVGF� and the partial
third-order10 �P3� schemes are based on the perturbation ex-
pansions of the Dyson equation. Among these methods, a
most successful approach is the third-order Dyson ADC
scheme14,21 �ADC�3��, which has been used in numerous ap-
plications �see, for example, Refs. 9, 22, and 23 and works
cited therein�.

Recently, a third-order ADC approximation for the elec-
tron propagator has been proposed, which does not employ
the Dyson equation.24 This non-Dyson �nD� ADC�3� scheme
�nD-ADC�3�� has several important advantages over the pre-
vious Dyson ADC�3� scheme. The essential conceptual and
computational simplification in the nD-ADC�3� scheme is
achieved by the fact that the �N−1�- and �N+1�-electron
problems are no longer coupled and can be treated sepa-
rately. The nD-ADC�3� equations are thus defined with re-
spect to much smaller configurational spaces. Moreover, dis-
tinct acceleration of convergence is expected in the iterative
solution of the nD-ADC�3� secular equations, since the de-
sired eigenvalues reside here at the low-energy margin of the
spectrum, in contrast to the Dyson approach in which they
are located in the middle of the spectrum. The nD-ADC�3�
scheme scales as n5 with respect to the number of orbitals n
and can be considered as a useful alternative to the Dyson
ADC�3� in large-scale calculations.a�Electronic mail: h33@ix.urz.uni-heidelberg.de
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The nD-ADC approach may be seen in a wider context
comprising also the coupled-cluster �CC� methods for elec-
tron ionization based on the equation-of-motion25 and
linear-response26 �LR� approaches. As demonstrated in Refs.
27–30, both the CC and ADC schemes can be viewed as
specific intermediate-state representations �ISR� of the

�shifted� Hamiltonian Ĥ−E0. The central computational step
in these methods is the construction and diagonalization of a
secular matrix, defined with respect to singly �S� doubly �D�,
triply �T�, and higher excited �N−1�-electron configurations.
The resulting eigenvalues give the �vertical� ionization ener-
gies, while the eigenvectors enter the evaluation of the cor-
responding spectroscopic amplitudes. The hierarchies of the
ADC and CC approximations �ADC�n�, n=2,3 , . . ., and
CCSD, CCSDT, …� allow one to control the accuracy of the
results and the computational cost in a systematic manner.
All ADC and CC schemes are size consistent and can be
used as black-box computational tools.

The EOM-CCSD method for the calculation of ioniza-
tion potentials �IP� and the essentially equivalent symmetry-
adapted cluster configuration interaction �SAC-CI� method31

were frequently used in recent years �see, for example, Refs.
32 and 33, respectively�. Recently, also the implementation
and numerical test of the more accurate IP-EOM-CCSDT
scheme was reported.34 Some other schemes related to the
nD-ADC approximation are the Fock-space CC �FSCC�
method,35 the consistent operator expansions of the electron
propagator,36 the CC Green’s function approach37–39

�CCGF�, and the nh-�n±1�p configuration interaction �CI�
method.40

The objective of the present work is to test the perfor-
mance of the nD-ADC�3� scheme, to establish an accuracy
calibration, and to clarify certain theoretical aspects impor-
tant for further implementations and applications of the
method. The work aims at establishing nD-ADC�3� as an
efficient and practical tool for large-scale computations.
Since a calibration of any theoretical scheme can be made
most rigorously against the results of full CI �FCI�, we have
performed nD-ADC�3� calculations for the same systems as
in benchmark FCI calculations.41–43 Additionally, we com-
pare the nD-ADC�3� results to the experimental data for ion-
ization energies of C2H4, CO, CS, F2, H2CO, H2O, HF, N2,
and Ne,44–47 which allows us to get better statistics for the
performance of the nD-ADC�3� scheme. On the theoretical
side, we compare our results with the results of the IP-EOM-
CCSD and IP-EOM-CCSDT schemes.34

A less known application of the electron propagator
theory is the evaluation of ground-state �GS� expectation
values.1 Since the present nD-ADC formalism allows for a
direct access to the GS one-electron density matrix, compu-
tations of the one-electron properties can be easily imple-
mented. The quality of the corresponding third-order ap-
proximation scheme is studied in the present paper for the
example of ground-state dipole moments in CO, CS, H2CO,
H2O, and HF. The results obtained here are compared with
the available experimental data48–52 and results of benchmark
multireference CI calculations.

Finally, we discuss the possibility to evaluate expecta-
tion values and transition matrix elements for ionic

��N±1�-electronic� states, which is enabled by the recent ISR
formulation53 of the nD-ADC approach. The second-order
�ADC�2�� expressions required for ionic-state properties are
presented.

II. THEORY

A. Non-Dyson ADC„3… method for electron propagator

The non-Dyson ADC approximation schemes24 are ob-
tained by applying the ADC procedure13 separately to each
of the �N−1�- and �N+1�-particle parts of the electron propa-
gator G���:

G��� = G−��� + G+��� . �2�

Obviously, the G−��� part is required for the ionization prob-
lem. In the original Dyson-type ADC approach the self-
energy part ���� of the Dyson equation �Eq. �1�� was sub-
jected to the ADC treatment.14

The ADC technique13,14 has proved to be a very useful
tool for the derivation of the explicit ADC expressions. On
the other hand, the recently proposed fully equivalent ISR
approach offers a more direct and pedagogical way to the
nD-ADC theory without the need to know the diagrammatic
language.27,28 Therefore, we will rely on the ISR formulation
throughout this paper.

The nD-ADC method sets out from the general �nondi-
agonal� representation of G−���:

G−���t = f†�� − K − C�−1f , �2��

where the “effective interaction” matrix K+C is defined as a

representation of the shifted Hamiltonian Ĥ−E0 in terms of

the so-called “intermediate states” ��̃J
N−1� �Refs. 27 and 28�,

�K + C�IJ = −��̃I
N−1�Ĥ − E0��̃J

N−1� �3�

and the “effective transition moments” are defined as

f I,q = ��̃I
N−1�cq��0

N� . �4�

In Eqs. �2�–�4� ��0
N� and E0 denote the exact N-electron

ground state and the ground-state energy, respectively, and Ĥ
is the Hamiltonian of the system; cq�cq

†� denote destruction
�creation� operators associated with Hartree-Fock �HF� orbit-

als ��q�. The intermediate states ��̃J
N−1� are generated by a

specific orthonormalization procedure from the correlated
�N−1�-electron states

��J
#� = ĈJ��0

N� , �5�

where ĈJ denote operators generating one-hole �1h�, one-
particle–two-hole �1p-2h� , . . ., configurations:

�ĈJ	 = �ck,ca
†ckcl,ca

†cb
†ckclcm, . . . ;

a � b � . . . ;k � l � m � . . . 	 . �6�

Here and in the following the subscripts i , j ,k , . . ., and
a ,b ,c , . . ., refer to occupied and unoccupied orbitals, respec-
tively. The subscripts p ,q ,r , . . ., label both occupied and un-
occupied orbitals.

The intermediate states ��̃J
N−1� are related to the exact
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states ��m
N−1� via a transformation:

��m
N−1� = 


J

YJm��̃J
N−1� . �7�

In the basis of exact states ��m
N−1� Eq. �2� takes on the diag-

onal form, also known as spectral representation, in which
the physical contents of the electron propagator becomes ex-
plicit:

G−���t = x†�� − ��−1x . �8�

Here � denotes the diagonal matrix of �negative� vertical
ionization energies,

�mm = − �Em
N−1 − E0

N� �9�

and the vectors x denote spectroscopic amplitudes, related to
spectral intensities,

xmq = ��m
N−1�cq��0

N� . �10�

The simplest form of the �relative� photoelectron spectral
intensities Pm can be evaluated according to

Pm = 

q

�xm,q�2.

The transformation of G−��� from the ADC representa-
tion �Eq. �2��� to the spectral representation �Eq. �8�� is
equivalent to the solution of the Hermitian eigenvalue prob-
lem for the matrix K+C,

�K + C�Y = Y�, Y†Y = 1, �11�

where the Y denotes the matrix of eigenvectors. The eigen-
vectors of Y form the transformation matrix relating the in-
termediate states and exact states,

YJm = ��̃J
N−1��m

N−1� . �12�

The spectroscopic amplitudes x can be obtained from the
effective transition moments f according to

x = Y†f . �13�

The nD-ADC approximation schemes for G−��� �Eq.
�2��� are obtained by truncating the expansion manifold �Eq.
�7�� and by employing consistent perturbation expansions for
the matrix elements of the effective interaction and transition
moments:

K + C = K�0� + C�1� + C�2� + ¯ , �14a�

f = f�0� + f�1� + f�2� + ¯ . �14b�

The explicit expressions for the elements of K+C and f can
be derived using the Rayleigh-Schrödinger perturbation
theory �RSPT� for ��0

N� and E0 �Ref. 27�, or by the ADC
procedure operating with the diagrammatic perturbation ex-
pansion for G−���.24

In Fig. 1 we show schematically the block structure of
the K+C and f matrices and the required orders of perturba-
tion theory in the respective blocks for various nD-ADC
schemes. At second order, the K+C matrix comprises the
zeroth- and second-order 1h /1h block, the first-order
1h /1p-2h block, and the zeroth-order 1p-2h /1p-2h block. At
the ADC�3� level, the K+C matrix is extended by third-,

second- and first-order contributions to the 1h /1h, 1h /1p
-2h, and 1p-2h /1p-2h blocks, respectively. The extended
second-order scheme �nD-ADC�2�-E� improves the strict
nD-ADC�2� scheme by taking into account the first-order
matrix elements of the 1p-2h /1p-2h block.

The explicit nD-ADC expressions through third order
have been given in Appendix A of Ref. 24. In the present
work an equivalent �more symmetric� form of the third-order
contributions to the 1h diagonal blocks of K+C and f ma-
trices has been used, which is better adapted to the computer
implementation. The corresponding expressions are collected
and discussed in Appendix A.

The ADC method combines the eigenvalue problem of a
Hermitian secular matrix and perturbation theory for the
secular matrix elements. With respect to convergence, the
�finite� perturbation expansions used for the matrix elements
behave as the ground-state RSPT series. At the nD-ADC�3�
level, the 1h and 1p-2h ionization transitions are treated con-
sistently through third and first orders, respectively. In gen-
eral, the truncation error �for 1h configurations� due to re-
stricting the explicit nD-ADC configuration space to the �
lowest configuration classes 1h, 1p-2h , . . . , ��-1�p-�h is of
the order 2� �compactness property�. This is a consequence
of the “canonical” order relations28 holding for the ADC
secular matrices. Another basic property of ADC is the sepa-
rability of the secular matrices.54 This property guarantees
size-intensive ionization energies and transition amplitudes,
which is a crucial requirement for the application to large
systems.

B. Improved treatment of static self-energy and one-
particle densities

One of the issues to be discussed here is the choice of an
appropriate approximation for the so-called static self-energy
����, which contributes to the matrix elements C

kk�
�3� and fka

�3�:

FIG. 1. Block structure of the secular matrix K+C �a� and of the matrix of
transition amplitudes f �b�; order of perturbation-theoretical expansions for
the matrix elements at the nD-ADC�3� and lower nD-ADC levels �c�.
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Ckk�
�3� = Ckk�

�A� + Ckk�
�B� + Ckk�

�C� + Ckk�
�D� + �k�k

�3� ��� , �15�

fka
�3� =

1

	k − 	a
��ak

�3���� + Mak
�3�+�	k� + Mak

�3�−�	a�� . �16�

Here Mak
�3�±��� is the third-order dynamic self-energy

contributions,8 C
kk�
�A−D� are the contributions specified in Ref.

24, and 	q denotes HF orbital energies. As demonstrated in
Refs. 21, 30, and 55, a perturbative treatment of ���� is not
always satisfactory, and one has to go beyond the strict third-
order expressions in order to achieve a systematical improve-
ment. A general procedure for the evaluation of ����
through fourth order of the perturbation theory including in-
finite partial summations of higher-order terms, referred to as
the Dyson-expansion method �DEM�, was developed and
used in combination with the Dyson ADC�3� scheme.21 The
DEM for ���� can readily be adopted for the nD-ADC�3�
scheme. A disadvantage of the DEM, however, is that one
has to deal also with the 1h-2p states of N+1 electrons.
Clearly in the context of the nD-ADC method it would be
more appealing to have an approximation for ���� circum-
venting the necessity to take �N+1�-electron states into ac-
count. In the present work we study several such schemes for
���� with respect to accuracy, convergence properties, and
computational cost.

The matrix elements of the static self-energy can be writ-
ten as3

�pq��� = 

r,s

Vpr�qs�
sr
c , �17�

where


sr
c = ��0�cr

†cs��0� − ��0�cr
†cs��0� �18�

are the matrix elements of the correlation density, that is, the
difference �c=�−��0� between the exact GS one-particle
density matrix and the HF density matrix, 
rs

�0�=nr�rs, and
Vpr�qs�=Vprqs−Vprsq denote antisymmetrized Coulomb inte-
grals in the “1212” notation. As the zeroth- and first-order
contributions to �c vanish, the static self-energy matrix ele-
ments arise for the first time in third order being, however,
not well approximated at that level in general. It is therefore
advisable to replace the strict third-order expressions for
���� in Eqs. �15� and �16� by improved results. A fourth-
order approximation for ���� can be obtained by substitut-
ing a third-order expression for �c in Eq. �17�. The latter is
readily available at the nD-ADC�3� level because of the
relation24

� = f†f �19�

which follows from Eqs. �4� and �18�. Because the p-h ma-
trix elements of f�3� depend on ����, Eqs. �16�–�19� repre-
sent a set of linear inhomogeneous equations for the matrix
elements of ����. They can be solved by an iterative proce-
dure. This procedure, referred to as ��4+ � in the following,
can be viewed as a simplification of the DEM scheme: the
inhomogeneities, bpq, on the right-hand side of Eq. �25a� of
Ref. 21 are evaluated through fourth order of the perturba-
tion theory. The corresponding perturbational expressions

can readily be derived using the explicit third-order expan-
sions for the matrix elements of �c as given in Eqs. �A33�–
�A36� of Ref. 24. Here, for consistency, the perturbation ex-
pansions for �c �or bpq� should be truncated strictly at the
third �fourth� order. Without such a restriction, the evaluation
of � according to Eq. �19� at the nD-ADC�3� would lead to
contributions up to sixth order of perturbation theory �PT�.

For further reference we introduce here notations for the
����-approximation schemes: ��3�, ��4�, ��4+ �, and
��DEM� denote, respectively, the strict third-order, strict
third- plus-fourth-order, improved fourth-order �according to
Eqs. �16�–�19��, and the DEM �Ref. 21� schemes. Since the
DEM was established as a standard procedure, the notation
nD-ADC�3� will imply the DEM approximation unless oth-
erwise stated.

C. Ground-state one-electron properties

The easy access to the ground-state one-particle density
matrix in the nD-ADC method via Eq. �19� allows one to
compute in a standard manner the ground-state expectation

values �Â� of a one-particle operator

Â = 

r,s

Arscr
†cs �20�

according to

�Â� = Tr�A�� . �21�

Here A is the matrix of one-particle elements Ars= ��r�â��s�.
As an example, we will consider the dipole moment operator

D̂=
�D̂� �where index � runs over x-, y- and z-Cartesian
components� in Sec. III.

D. One-electron properties of molecules in ionic
states

The ISR formalism27,28 opens new possibilities unavail-
able in the conventional propagator approach. In particular,
the evaluation of one-electron properties of the final ionic
states becomes possible.53 Using Eq. �7�, transition matrix

elements Dmn of arbitrary one-particle operator D̂ can be
written as

Dmn = ��m
N±1�D̂��n

N±1�

= 

I,J

YmI
* ��̃I

N±1�D̂��̃J
N±1�YnJ = Ym

† D̃Yn, �22�

where the matrix D̃ with elements D̃IJ= ��̃I
N±1�D̂��̃J

N±1� is the

intermediate-state representation of the operator D̂ and Yn

are the eigenvectors of Eq. �11�.
The matrix D̃ has a similar block and order structure as

the K+C matrix and possesses all ADC/ISR properties dis-
cussed in Sec. II A. The explicit expressions for the matrix

elements D̃IJ can be obtained using perturbation theory. In

Ref. 53 the D̃IJ expressions for the excitation problem
�N-electron case� have been derived through second order of
PT. Here we present the corresponding second-order ISR ex-
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pressions for the ionic �N±1� electron states. The derivation
follows closely the procedure described in Ref. 53. The re-
sults are collected in Appendix B.

E. Comparison with coupled-cluster methods

As the nD-ADC schemes, the CC approach to electronic
ionization25,26,31 can be viewed as a specific intermediate-

state representations of the shifted Hamiltonian Ĥ−E0. In the
CC case two different sets of intermediate states are em-
ployed: the �N−1�-electronic excited states of the form

��� J
N−1�= ĈJe

T̂��0� and the corresponding biorthogonal states

��̆I
N−1�= ��0�ĈI

†e−T̂. Here ĈJ are operators defined by Eq. �6�
and eT̂��0� is the standard CC parameterization of the
N-electronic ground-state ��0

N� using the cluster operator of

the form T� =T�1+T�2+¯. The secular matrix of the resulting
biorthogonal coupled-cluster representation,

MIJ = ��̆I�Ĥ − E0��� J� , �23�

is non-Hermitian giving rise to a right- and left- hand eigen-
value problem,

MX = X�, Y†M = �Y†, Y†X = 1. �24�

The hierarchy of CC approximation schemes is obtained by
extending the �N−1�-electronic configuration space to S, SD,
SDT, …, configuration classes �here also denoted as 1h, 1p
-2h, 2p-3h , . . ., respectively� and by introducing approxima-
tions to the CC amplitudes �for the N-electronic ground state�
and the secular matrix elements.

The CCSD approximation employs an explicit configu-
ration space of 1h and 1p-2h configurations and the SD clus-
ter amplitudes �Table I�. This yields a consistent second-
order treatment of single-hole states and a first-order
treatment of 1p-2h states. The numerical cost of CCSD in-
volving the construction and solution of Eq. �24� is propor-
tional to n5. On the other hand, the solution of the CCSD
ground-state equations for the cluster amplitudes scales as
n6, so that the overall cost of the method is proportional to
n6. A comparable theoretical description of the 1h and 1p
-2h states is yielded by the nD-ADC�2�-E scheme for which
the computational cost is proportional to n5. The strict
second-order nD-ADC�2� scheme, treating the 1p-2h states
through zeroth order, scales even more favorably as n4.

As follows from the theoretical analysis in Ref. 28, the
CC configuration space must comprise the 2p-3h configura-
tions in order to have third-order consistency for single-hole
states. This is the case in the CCSDT method. The method
scales as n7 in the treatment of Eq. �24� and as n8 in the
solution of the ground-state CCSDT problem. The resulting
CCSDT computational costs are therefore proportional to n8.
The third-order consistency of the CCSDT model �for single-
hole states� is shared by the less expensive nD-ADC�3�
method, which scales only as n5. As a consequence of the
compactness property,28 the configuration space of the nD-
ADC�3� scheme does not include the 2p-3h configurations.
The explicit consideration of the 2p-3h configurations in the
CCSDT allows for a better, namely, consistent second-order
treatment of the 1p-2h states, which at the nD-ADC�3� level
are treated consistently through first order only. In view of
the importance of the admixture of 1p-2h configurations in
the single-hole states, the CCSDT results will, in general, be
more accurate than those of the nD-ADC�3� treatment.

III. COMPUTATIONS

The present prototypical nD-ADC�3� implementation
follows the conventional strategy in which one first com-
putes and stores the nonvanishing secular matrix elements
and then, in a second step, performs the �iterative� diagonal-
ization. This procedure has still an unfavorable scaling, but it
allows for a straightforward and utmost error-free implemen-
tation of the method, which was our main objective at the
present stage. The development of a code optimized with
respect to computational efficiency and exploiting the full n5

scaling potential of the nD-ADC�3� method will be the next
logical step. Here, the key point is a direct diagonalization
procedure in which �parts of� the secular matrix are recom-
puted as needed in performing the matrix-vector products,

ȲIn = 

J

�K + C�IJYJn, �25�

required in the iterative solution of Eq. �11�. As one can
easily check, all such products in the nD-ADC�3� scheme
can be broken down to utmost n5 steps by forming appropri-
ate intermediates �see Ref. 30 for a more detailed discussion
in the case of an ADC secular matrix and Ref. 56 for similar
techniques in the context of CC methods�. The scaling prop-
erties of the nD-ADC schemes in Table I refer to such a
direct diagonalization.

The explicit expressions for the nD-ADC�3� secular ma-
trix elements in Ref. 24 have been given in spin-orbital form.
For program implementation, the spin-free working equa-
tions for the final-state spin values S=1/2 and 3/2 have been
generated. Simultaneously, summations over spin variables
have been performed. More details of the procedure used at
this step can be found in Ref. 30. The present nD-ADC�3�
code was interfaced to the GAMESS �US� �Ref. 57� and MOL-

CAS �Refs. 58 and 59� program packages.
For comparison with the experimental data, the nD-ADC

calculations were performed for the following systems:
C2H4, CO, CS, F2, H2CO, H2O, HF, N2, and Ne. Experimen-
tal equilibrium ground-state geometrical parameters were

TABLE I. Characteristics of nD-ADC and CC methods �explicit configura-
tion space, perturbation-theoretical consistency for ionization energies ���,
and ground-state �E0� energies scaling�.

Method
Configuration

space

�

E0 Scalinga1h 2h-1p

ADC�2� 1h, 2h -1p 2 0 2 n4

ADC�2�-E 1h, 2h-1p 2 1 2 n5

CCSD 1h, 2h-1p 2 1 3 n6

ADC�3� 1h, 2h-1p 3 1 3 n5

CCSDT 1h, 2h-1p, 3h -2p 3 2 4 n8

aFor the CC schemes the scaling refers to the ground-state calculations,
which is the computationally most expensive step �see text for details�.
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used in the calculations. The CO, CS, F2, HF, and N2 inter-
nuclear distances �1.128, 1.535, 1.412, 0.917, and 1.098 Å,
respectively� were taken from Ref. 60. Geometries for C2H4

�RCC=1.33 Å, RCH=1.08 Å, �HCC=117.4°�, H2CO �RCO

=1.21 Å, RCH=1.12 Å, �HCH=116.5°�, and H2O �ROH

=0.96 Å, �HOH=104.5°� were taken from Refs. 61–63, re-
spectively. The aug-cc-pVTZ basis set64 was used for Ne.
For the other examples the aug-cc-pVDZ basis set was em-
ployed �exceptions are C2H4 and H2CO molecules, where
the cc-pVDZ basis was used for the hydrogen atoms�.64

Throughout, the Cartesian representation of the d- and
f-basis functions was used.

In order to study the accuracy of the nD-ADC ionization
energies with respect to FCI data, calculations were per-
formed for H2O, CH2, and F− for which FCI results are
available �Refs. 41–43, respectively�. The same set of
ground-state equilibrium geometrical parameters and basis
sets as in Refs. 41–43 was used in these calculations.

Comparison of the nD-ADC and IP-EOM-CC results
was done for the CO, F2, and N2 molecules. For these mol-
ecules IP-EOM-CC calculations have been reported in Ref.
34. The same set of the ground-state equilibrium geometries
and basis sets was employed in our nD-ADC calculations.

For a test of the nD-ADC�3� results for ground-state
one-electron properties, a series of molecules �CO, CS,
H2CO, H2O, and HF� possessing dipole moments was con-
sidered. The dipole moment calculations were performed us-
ing the same basis sets and geometrical parameters as in the
corresponding computations for the comparison with experi-
ment. To generate theoretical benchmarks for the GS dipole
moments, we have carried out multireference CI �MRCI� cal-
culations including all singly and doubly excited configura-
tions. In the MRCI calculations the C1s, O1s, F1s, S1s, S2s,
and S2p orbitals were kept frozen; the weight of the refer-
ence space was at least 0.9. The MRCI calculations
were performed using the direct CI program65 from the
GAMESS-UK package.66

Benchmark curves for the dependence of the diagonal
components of the static self-energy on the internuclear dis-
tance in CO were generated using the single, double, triple,
and quadruple configuration interactions �SDTQ-CI� method
as implemented in the MOLCAS package.58 Here the
�9s5p� /4s2p DZ basis set of Dunning and co-worker67 was
used. An additional code for the evaluation of the self-energy
components from the SDTQ-CI one-electron densities ac-
cording to Eq. �17� was employed.68 In these calculations,
the C1s and O1s orbitals were kept frozen. Calculations
were performed for nine points in the range of the internu-
clear distances from 0.928 to 1.328 Å with the step of
0.05 Å.

For the conversion of units the factor 1 hartree
=27.211 606 eV was used.

IV. RESULTS AND DISCUSSION

A. nD-ADC„3… ionization energies

1. Comparison with experimental data

In Table II we compare the HF �Koopmans�, nD-
ADC�2�, and nD-ADC�3� results for the lowest vertical ion-

ization transitions in C2H4, CO, CS, F2, H2CO, H2O, HF, N2,
and Ne with experimental data.44–47 The results of the origi-
nal Dyson ADC�3� scheme14,21,69 are also shown for com-
parison. Typically, the results of the Dyson and non-Dyson
ADC�3� versions differ by less than 0.1 eV. Therefore, the
accuracy calibration given here for the nD-ADC�3� method
applies also to the Dyson ADC�3� version, and we may drop
the distinction between the two variants whenever unessen-
tial. For the evaluation of mean and maximum errors we
select 25 transitions with P0.65, that is, ionic states of
dominant single-hole character. Here a remark concerning
the comparison of theoretical and experimental ionization
potentials is appropriate. As is well known, the vertical ion-
ization energies obtained from the electronic computations
cannot directly be measured. Usually, the centroid of an ex-
perimental band is assigned to the corresponding vertical IP.
But this is an approximation, and the centroids may deviate
from the “true” vertical IP by up to 0.3 eV in unfavorable
cases. �The true vertical IP can be extracted from experiment
only by an analysis of the vibrational structure based on a
suitable �theoretical� model of the vibrational excitation.� For
the mean deviation between theory and experiment the errors
in the experimental vertical IPs will average out to a certain
extent so that this quantity is significant. The maximal devia-
tions, on the other hand, must be relativized because here
also the experimental uncertainties will play a role.

The second-order �nD-ADC�2�� method provides some
improvement with respect to the HF level. In particular, it
restores the correct order of energy levels, when they are
incorrectly predicted at the HF level �e.g., the 7�−1 and 2�−1

transitions in CS molecule�. However, the average error here,
0.9 eV, is still quite large. The nD-ADC�2� scheme does not
take into account the mutual interaction of 1p-2h states �Fig.
1�. Thus, ionic states with dominant 1p-2h character cannot
be recovered �e.g., satellites accompanying the 1b3u

−1 and 2bu
−1

transitions in C2H4, the 6�−1 transition in CS, and the 1b2
−1

transition in H2CO�.
The results are distinctly improved at the nD-ADC�3�

level, where the average error reduces to 0.23 eV and the
maximal error is 0.65 eV. The maximal deviation arises for
the 1b2

−1 transition of H2O, other large deviations are seen for
the 4� ionization in CO, and the 1b2u and 3ag ionization in
C2H4. It should be noted that the generally accepted experi-
mental values listed in Table II correspond partly to the
maxima of the respective bands rather than to the centroids.
As an inspection of the experimental spectra indicates, the
centroids would clearly lie at higher energy in the case of
H2O and CO and at lower energy in C2H4. This means that
the actual discrepancies between the ADC�3� results and the
experimental vertical ionization energies should be less dra-
matic than those displayed in Table II. In the case of the 1b2

−1

ionization of H2O this expectation is supported by the excel-
lent agreement between the nD-ADC�3� and the FCI result
�see below�.

The accuracy of the nD-ADC�3� with respect to transi-
tions with increased 1p-2h character is less satisfactory.
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Since the 1p-2h configurations are treated consistently
through first order only, the error increases when the role of
such configurations in the final state grows. Examples are the
6�−1 transition in CS and the 1b2

−1 transition in H2CO for
which an error of 0.6–0.7 eV is found.

2. Comparison with FCI results

Of course, the ultimate accuracy test for a computational
method is the comparison with FCI. Unfortunately, only few
FCI calculations of ionic states are available in the literature.

TABLE II. Vertical ionization energies ��eV� and spectroscopic factors P obtained using HF �Koopmans�,
nD-ADC�2�, nD-ADC�3�, and Dyson ADC�3� methods. The last two lines give the mean absolute error �̄abs and
the maximum absolute error �max relative to the experimental data �eV�.

System, 1h
configuration

HF
�

nD-ADC�2� nD-ADC�3� Dyson ADC�3�

Expt.a

�� P � P � P

C2H4

1b2u 10.25 10.15 0.90 10.46 0.91 10.52 0.91 10.95
1b2g 14.03 12.79 0.91 13.19 0.91 13.26 0.91 12.95
3ag 15.46 13.79 0.89 14.36 0.91 14.43 0.91 14.88
1b3u 17.96 16.13 0.87 16.49 0.79 16.56 0.79 16.34

18.12 0.06 18.12 0.06 17.8
2b1u 21.32 18.96 0.86 19.00 0.64 19.06 0.62 19.40

20.02 0.16 20.03 0.17 20.45

CO
5� 15.08 13.78 0.91 13.80 0.89 13.94 0.89 14.01
1� 17.43 16.23 0.89 16.88 0.90 16.98 0.90 16.91
4� 21.99 18.30 0.85 20.10 0.79 20.19 0.78 19.72

CS
7� 12.85 11.00 0.86 11.33 0.85 11.51 0.85 11.4
2� 12.64 12.84 0.91 12.66 0.90 12.74 0.90 13.0
6� 18.89 16.89 0.85 15.51 0.19 15.54 0.18 16.1

17.94 0.68 18.02 0.69 18.05

F2

1�g 18.19 13.88 0.87 15.87 0.90 15.97 0.90 15.83
1�u 22.13 17.03 0.84 19.11 0.81 19.23 0.81 18.8
3�g 20.59 20.24 0.89 21.01 0.88 21.13 0.88 21.1

H2CO
2b2 11.99 9.33 0.87 10.87 0.91 10.97 0.91 10.88
1b1 14.53 13.71 0.88 14.30 0.88 14.43 0.88 14.5
5a1 17.48 14.45 0.86 16.20 0.90 16.28 0.90 16.0
1b2 19.09 17.00 0.88 17.32 0.65 17.39 0.62 16.6

18.37 0.21 18.39 0.24

H2O
1b1 13.85 11.22 0.88 12.78 0.92 12.86 0.93 12.62
3a1 15.91 13.53 0.89 15.08 0.93 15.15 0.93 14.74
1b2 19.52 17.95 0.90 19.16 0.93 19.21 0.93 18.51

HF
1� 17.69 14.39 0.89 16.41 0.93 16.48 0.93 16.05
3� 20.97 18.67 0.90 20.30 0.94 20.36 0.94 20.0

N2

3�g 17.25 14.79 0.88 15.60 0.91 15.72 0.91 15.60
1�u 16.74 16.99 0.91 16.77 0.92 16.85 0.92 16.98
2�u 21.25 17.99 0.85 18.93 0.82 19.06 0.81 18.78

Ne
2p 23.15 20.07 0.91 21.84 0.94 21.88 0.94 21.60

�̄abs
b 1.39 0.91 0.23 0.26

�max
b 3.33 1.95 0.65 0.70

aExperimental vertical ionization energies for C2H4, CS, and Ne are from Refs. 44–46, respectively; the
remaining data are from Ref. 47.
bOnly transitions with P0.65 are taken into account.
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FCI results for H2O,41 CH2,42 and F− �Ref. 43� are compared
in Table III with nD-ADC results obtained using the same
basis sets and geometries.

Whereas the H2O molecule is a standard example, CH2

and F− are difficult cases. The CH2 molecule is of quasi-
open-shell type, lacking a distinct energy gap between occu-
pied and virtual orbitals. Its ground state cannot be ad-
equately treated in terms of RSPT, so that also the
applicability of the ADC methods is affected. Also, in our
calculations, we had to use the closed-shell 1 1A1 state as the
reference state, since the true ground state of CH2 �1 3B1� has
open-shell configuration. Also F− is a difficult task for the
ADC method which is reflected by the large energy oscilla-
tions between the HF, ADC�2�, and ADC�3� results.

As seen in Table III, the performance of the nD-ADC�3�
method for H2O is very good. The mean and maximum error
is 0.14 and 0.22 eV, respectively. The ionization energy of
18.65 eV obtained for the 1b2

−1 transition, which differed so
distinctly from the experimental IP in Table II, is now in
excellent agreement with the FCI value of 18.60 eV. Despite
the complex electronic structure of the CH2 system, the nD-
ADC�3� performs here nearly as well as in H2O �the mean
and maximum error is 0.15 and 0.31 eV, respectively�. Al-
ready the nD-ADC�2� results for CH2 are not too bad �the
mean and maximum error is 0.37 and 0.57 eV, respectively�.

In the case of F−, following Ref. 43 we compare results
for the 2P ionization potential obtained using three basis sets
of improving quality: �4s3p1d�, �4s3p2d�, and �5s4p2d�.
The discrepancies between the ADC�3� and FCI results are in

the range of 0.6 eV, quite independent of the basis sets. The
distinct oscillatory convergence pattern of the HF, ADC�2�,
and ADC�3� results suggests that a more precise IP can only
be expected at the next higher level of theory, that is,
ADC�4�.

3. Comparison with CC results

In Table IV we compare the vertical ionization energies
of CO, F2, and N2 computed using the nD-ADC�3� scheme
with IP-EOM-CCSD and IP-EOM-CCSDT results34 and ex-
perimental data from Ref. 47.

The mean error of the nD-ADC�3� scheme relative to
experiment is 0.17 eV, which is consistent with the findings
in Table II. The IP-EOM-CCSD results, the mean error being
0.13 eV, appear to be slightly more accurate. It should be
noted that the better performance of the IP-EOM-CCSD
method here may not reflect a systematic trend because in
contrast to the ADC�3� scheme, that CC scheme is not a
consistent third-order method. Moreover one should recall
that computationally the IP-EOM-CCSD method is by an
order of magnitude more expensive than the nD-ADC�3�
�see Table I�.

The IP-EOM-CCSDT treats single-hole states consis-
tently through third order. Clearly, this scheme provides dis-
tinctly more accurate results than the nD-ADC�3� method.
The superior performance of the IP-EOM-CCSDT is obvi-
ously related to the fact that it goes in many respects beyond
the nD-ADC�3� level; the ground state here is treated
through fourth order and the 1p-2h configurations �often
playing important role in the final states� are treated through
second order. However, the computational costs of the IP-
EOM-CCSDT are also much higher than in the nD-ADC�3�
�Table I�.

TABLE III. Comparison of vertical ionization energies �eV� obtained using
HF �Koopmans�, nD-ADC�2�, and nD-ADC�3� schemes with the results of

FCI. �̄abs and �max are the mean and the maximum absolute errors, respec-
tively, relative to FCI �eV�.

System, 1h
configuration HF nD-ADC�2� nD-ADC�3� FCIa

H2O
1b1 13.32 10.83 12.06 11.84
3a1 14.74 12.92 14.01 13.85
1b2 18.51 17.94 18.65 18.60

�̄abs
0.82 0.87 0.14

�max 1.48 1.01 0.22

CH2

3a1 10.66 9.86 9.95 10.26
1b2 15.29 14.71 14.80 14.85
2a1 24.18 22.71 22.22 22.14

�̄abs
0.96 0.37 0.15

�max 2.04 0.57 0.31

F−

2Pb 4.82 0.71 3.49 2.90
2Pc 4.82 0.80 3.52 3.03
2Pd 4.83 0.98 3.64 3.04

�̄abs
1.83 2.16 0.56

�max 1.92 2.23 0.60

aThe FCI results for H2O, CH2, and F− are from Refs. 41–43, respectively.
b�4s3p1d� basis Ref. 43.
c�4s3p2d� basis Ref. 43.
d�5s4p2d� basis Ref. 43.

TABLE IV. Comparison of vertical ionization energies �eV� obtained using
the nD-ADC�3� scheme with IP-EOM-CC results. Equilibrium ground-state
geometrical parameters and basis sets from Ref. 34. The last two lines give

the mean absolute error �̄abs and the maximum absolute error �max relative
to the experimental data �eV�.

System, 1h
configuration HF nD-ADC�3� CCSDa CCSDTa Expt.b

CO
5� 15.10 13.99 14.19 13.95 14.01
1� 17.43 17.02 17.10 17.03 16.91
4� 21.90 20.17 19.80 19.60 19.72

F2

1�g 18.16 16.04 15.63 15.69 15.83
1�u 22.10 19.23 18.97 18.89 18.8
3�g 20.49 20.97 21.19 21.11 21.1

N2

3�g 17.27 15.79 15.66 15.54 15.60
1�u 16.72 16.90 17.27 16.99 16.98
2�u 21.22 19.07 18.91 18.74 18.78

�̄abs
1.31 0.17 0.13 0.06

�max 3.30 0.45 0.29 0.14

aIP-EOM-CC results for aug-cc-pVTZ basis set Ref. 34.
bExperimental vertical ionization energies from Ref. 47.
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B. Comparison of various ADC schemes

In this section we discuss in more detail the nD-ADC�2�
and nD-ADC�3� schemes and some variants concerning the
treatment of the constant self-energy contributions. In Table
V the vertical ionization energies of C2H4, CO, F2, HF, and
N2 obtained at various ADC levels are compared with each
other and with the experimental data.

As seen from Table V, both the strict and the extended
nD-ADC�2� schemes yield a similar level of accuracy for the
single-hole states. The mean absolute error here is
0.9–1.0 eV, but maximum errors up to 2.0 eV can occur.
The advantage of the extended �nD-ADC�2�-E� scheme be-
comes apparent for the transitions with dominant 1p-2h char-
acter �e.g., transitions of C2H4 with the experimental ener-
gies of 17.8 and 20.45 eV�. Transitions of this type, being
only poorly described at the strict nD-ADC�2� level, are
much better represented by the nD-ADC�2�-E scheme.

The ionization energies of nD-ADC�3� variants associ-
ated with different treatments of ���� differ from each other
in the order of the typical third-order error ��0.2–0.3 eV�.
The largest differences here can be seen between the third-

and the improved fourth-order treatments. Whereas the aver-
age error of the ��3� scheme is about 0.4 eV, it is reduced to
0.2–0.3 eV, when a ���� treatment beyond third order is
employed. An important observation is that the ��DEM� and
��4+ � schemes yield virtually identical results. The maximal
differences between the individual ionization energies of
these methods is only 0.06 eV. This suggests that the
��4+ � approximation can successfully substitute the compu-
tationally more involved ��DEM� treatment.

C. Static self-energy

In view of the importance of ���� for the overall accu-
racy of the nD-ADC�3� scheme, it is useful to take a direct
look to this quantity and the results of its various approxi-
mations. The results in Table VI demonstrate a considerable
magnitude of many diagonal �kk��� terms. Especially large
values are found in CO, CS, F2, HF, and H2CO reflecting
large differences between the HF and the correlated ground-

TABLE V. Comparison of vertical ionization energies �eV� obtained using various second- and third-order

nD-ADC schemes. The last two lines give the mean absolute error �̄abs and the maximum absolute error �max

relative to the experimental data �eV�.

System, 1h
configuration ADC�2� ADC�2�-E

ADC�3�a

Expt.b��3� ��4� ��4+ � ��DEM�

C2H4

1b2u 10.15 10.09 10.45 10.51 10.49 10.46 10.95
1b2g 12.79 12.57 13.21 13.23 13.20 13.19 12.95
3ag 13.79 13.67 14.33 14.40 14.37 14.36 14.88
1b3u 16.13 15.61 16.50 16.52 16.50 16.49 16.34

18.08 18.12 18.12 18.12 18.12 17.8
2b1u 18.96 18.08 19.00 19.02 19.01 19.00 19.4

19.92 20.02 20.02 20.02 20.02 20.45

CO
5� 13.78 13.43 13.58 14.04 13.87 13.80 14.01
1� 16.23 16.30 17.12 16.59 16.88 16.88 16.91
4� 18.30 18.42 20.45 19.69 20.09 20.10 19.72

F2

1�g 13.88 13.97 16.00 15.80 15.86 15.87 15.8
1�u 17.03 16.84 19.23 19.05 19.09 19.11 18.8
3�g 20.24 20.48 21.22 20.98 21.03 21.01 21.1

HF
1� 14.39 14.93 16.77 16.17 16.39 16.41 16.1
3� 18.67 19.11 20.63 20.09 20.28 20.30 20.0

N2

3�g 14.79 14.72 15.41 15.68 15.62 15.60 15.60
1�u 16.99 16.90 16.57 16.85 16.79 16.77 16.98
2�u 17.99 17.62 18.80 19.00 18.95 18.93 18.78

�̄abs
c 0.89 0.97 0.37 0.20 0.23 0.24

�max
c 1.95 1.96 0.73 0.48 0.51 0.52

anD-ADC�3� schemes differing by the treatment of the self-energy ���� contributions �see text for details�.
bExperimental vertical ionization energies for C2H4 are from Ref. 44; the remaining data are from Ref. 47.
cOnly transitions with dominant single-hole character are taken into account �i.e., transitions of C2H4 with
experimental ionization energies 17.8 and 20.45 eV are omitted�.
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state electron density in these systems. The third-order
�kk��� values, for example, amount in some case to 1 eV
�2�−1 transition of CS�.

The individual �kk��� values change substantially when
going from the third- to the fourth-order level. Here changes
up to 1 eV �4�−1 transition of CO� and even alternations of
the sign can be seen. The results of the fourth-order schemes
including the DEM scheme are more consistent with each
other. Here the changes of individual �kk��� values do not
exceed 0.5 eV.

To assess the performance of various ���� treatments
we compare in Table VI the corresponding results to the
results of the DEM, which is viewed as the best available
treatment. From this analysis it is evident that the ��4+ �
scheme is an excellent approximation to the DE method.
According to the present statistics, comprising 27 transitions
in 9 systems, the mean and maximum error of the ��4+ �
scheme relative to the ��DEM� scheme is 0.02 and 0.07 eV,
respectively. The strict third- and third-plus-fourth-order
treatments, ��3� and ��4�, show distinctly larger errors.

The results of Table VI do not allow to assess the abso-
lute accuracy of the ���� treatments being compared. The
latter can be established only through comparison with the
results of suitable benchmark calculations. To obtain such
���� benchmarks, we performed CI calculations including
all single, double, triple, and quadruple excitations �SDTQ-
CI� for CO. The corresponding one-particle density matrices
were employed in Eq. �17� to evaluate ����. To make this
accuracy test more informative, we consider in Fig. 2 these
results as a function of the internuclear separations. The out-
ermost molecular orbitals �MO� 5�, 1�, and 4� of CO are
considered.

As seen from Fig. 2, the �kk��� curves of the DEM
scheme are closely parallel to the SDTQ-CI curves. The
DEM error increases slightly with the internuclear separation
amounting to 0.2–0.3 eV at the end of the considered range.
The ��4+ � curve, not shown in Fig. 2, nearly coincides with

TABLE VI. Results for diagonal static self-energy �kk��� �eV� contribu-
tions at different levels of theory. The last two lines give the mean absolute

error �̄abs and the maximum absolute error �max relative to the Dyson-
expansion method ��DEM�. See Sec. II B for details. Computational frame-
work as in the case of Table II.

System,
orbital ��3� ��4� ��4+ � ��DEM�

C2H4

1b2u 0.34 0.28 0.30 0.34
1b2g 0.29 0.27 0.30 0.32
3ag 0.39 0.31 0.35 0.36
1b3u 0.26 0.23 0.25 0.27

CO
5� 0.88 0.38 0.58 0.65
1� −0.21 0.37 0.06 0.05
4� −0.54 0.35 −0.11 −0.13

CS
7� 0.26 0.29 0.26 0.26
2� 1.12 0.36 0.73 0.79
6� 0.27 0.35 0.29 0.30

F2

1�g −0.19 0.03 −0.03 −0.05
1�u −0.14 0.13 0.07 0.10
3�g −0.21 0.01 −0.05 −0.07

H2CO
2b2 −0.15 0.23 0.02 0.02
1b1 −0.11 0.22 0.07 0.07
5a1 −0.21 0.20 −0.03 −0.05
1b2 0.21 0.21 0.22 0.22

H2O
1b1 −0.27 0.05 −0.05 −0.07
3a1 −0.29 0.02 −0.08 −0.10
1b2 −0.27 0.00 −0.09 −0.10

HF
1� −0.68 −0.05 −0.28 −0.30
3� −0.59 −0.04 −0.24 −0.26

N2

3�g 0.60 0.31 0.37 0.39
1�u 0.70 0.41 0.47 0.50
2�u 0.59 0.35 0.40 0.42

Ne
2p −0.38 −0.06 −0.15 −0.16

�̄abs
0.17 0.14 0.02

�max 0.41 0.48 0.07

FIG. 2. Diagonal elements �kk��� of the static-self energy in CO as a func-
tion of the internuclear distance at various approximate levels �see text for
details�.
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the ��DEM� curve. Clearly, the ��3� and ��4� curves depart
considerably from the SDTQ-CI curve especially at larger
CO distances. The strongest divergence is observed in case
of the 1� MO amounting to 1.1 eV. Interestingly, the strict
third-plus-fourth-order treatment ��4� does not yield an im-
provement with respect to the third-order scheme, inverting
only the error sign relative to SDTQ-CI.

The conclusion to be drawn from this discussion is that
the ��4+ � approximation is an excellent surrogate for the
computationally much more expensive DEM procedure. The
��4+ � scheme uses only computational input provided any-
way at the nD-ADC�3� level and does not require one to deal
with the 2p-1h configurations of N+1 electrons. This quali-
fies the ��4+ � approximation as the natural ingredient of the
nD-ADC�3� method.

D. Basis set effect on third-order ionization energies

In Table VII we study the basis set effect on the nD-
ADC�3� ionization energies. The results obtained using the
cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ �Ref.
64� basis sets of improving quality are compared.

As seen from Table VII, there is a distinct improvement
of the results between the cc-pVDZ and aug-cc-pVDZ levels.
Only for the 4�−1 transition in the CO the agreement with
experiment becomes somewhat worse. The ionization ener-
gies change on the average by about 0.4 eV from the cc-
pVDZ to the aug-cc-pVDZ basis. Similar changes can be
seen when going from the cc-pVDZ to cc-pVTZ basis. The
accuracy of the results at the aug-cc-pVDZ and cc-pVTZ
levels is nearly the same �the average and maximum error in
both cases is 0.2 and 0.4 eV, respectively� and distinctly bet-
ter than at the cc-pVDZ level �the average and maximum
error is 0.3 and 0.6 eV, respectively�.

A further extension of the basis set from the cc-pVTZ to
the aug-cc-pVTZ level improves the results only rather se-
lectively. The ionization energies change on the average by
0.1 eV, that is, much less than at the previous step. The
observed changes are comparable to �or even less than� the
error of the nD-ADC�3� scheme itself. It is clear that one
cannot expect the basis set to improve the results beyond the
intrinsic ADC�3� error of about 0.2 eV.

E. Ground-state properties: Dipole moments

The dipole moment is a convenient example for the dis-
cussion of one-electron GS properties. The experimental di-
pole moments are known to good accuracy for many mol-
ecules. They can also routinely be calculated using standard
quantum chemical methods. In the latter case, usually the
evaluation of the GS one-particle density matrix is presup-
posed. The dipole moments are then computed according to
Eq. �21�. The same approach is also used in the present case
where the density matrix is given by Eq. �19�. �As in the
treatment of the static self-energy part ����, there are sev-
eral options for the evaluation of � at the ADC�3� level re-
ferred to as ��3�, ��4�, ��4+ �, and ��DEM�.� In Table VIII
we show the present nD-ADC�2� and nD-ADC�3� GS dipole
moments for five molecules in comparison with the MRCI
results �see Sec. III� and experimental data.48–52 The nD-

TABLE VII. Comparison of vertical ionization energies �eV� obtained using
nD-ADC�3� scheme and various basis sets. Equilibrium ground-state geom-
etry and calculations for CO, N2, and F2 as in Ref. 34, for HF as in Table II.
Only transitions with dominant single-hole character are shown. The last

two lines give the mean absolute error �̄abs and the maximum absolute error
�max relative to the experimental data �eV�.

System, 1h
configuration cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ Expt.a

CO
5� 13.59 13.79 13.92 13.99 14.01
1� 16.67 16.90 16.94 17.02 16.91
4� 19.89 20.10 20.10 20.17 19.72

N2

3�g 15.31 15.59 15.70 15.79 15.60
1�u 16.56 16.79 16.80 16.90 16.98
2�u 18.68 18.91 18.98 19.07 18.78

F2

1�g 15.45 15.89 15.87 16.03 15.83
1�u 18.64 19.12 19.05 19.23 18.8
3�g 20.50 21.03 20.79 20.97 21.1

HF
1� 15.68 16.41 16.31 16.55 16.05
3� 19.58 20.30 20.07 20.32 20.0

�̄abs
0.32 0.19 0.17 0.25

�max 0.60 0.38 0.38 0.50

aExperimental vertical ionization energies from Ref. 47.

TABLE VIII. Ground-state dipole moments �D� obtained using HF, various nD-ADC schemes, and the MRCI

methods �z component�. The last two lines gives the mean absolute error �̄abs and the maximum absolute error
�max relative to MRCI.

Molecule HF ADC�2�

ADC�3�

MRCI Expt.a��3� ��4� ��4+ � ��DEM�

CO −0.26 0.45 −0.16 0.27 0.07 0.06 0.12 0.11
CS 1.55 2.47 1.42 2.41 1.96 1.95 1.96 1.97

H2CO 2.81 2.21 2.58 2.31 2.40 2.41 2.38 2.33
H2O 2.00 1.83 1.90 1.87 1.88 1.88 1.87 1.85
HF 1.93 1.76 1.85 1.80 1.82 1.82 1.80 1.84

�̄abs
0.30 0.22 0.22 0.13 0.02 0.03

�max 0.43 0.51 0.54 0.45 0.05 0.06

aExperimental data: CO �Ref. 48�, CS �Ref. 49�, H2CO �Ref. 50�, H2O �Ref. 51�, and HF �Ref. 52�.
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ADC�2� scheme allows one to obtain the second-order den-
sity matrix. This is the first nontrivial approximation for �,
which, as seen from Table VIII, provides almost no improve-
ment for the calculated GS dipole moments with respect to
the HF level. The situation is not improved by the nD-
ADC�3� scheme using ��3�. Some improvement is obtained
when the strict third-plus-fourth-order treatment of
���� ,��4�, is employed. An oscillatory behavior of the �
values with respect to the order of ���� treatment can be
noted for molecules with strong GS electron correlation ef-
fects such as CO, CS, and H2CO. The agreement with MRCI
and experimental data improves considerably at the extended
fourth-order ��4+ � and ��DEM� levels. The differences be-
tween the latter two schemes are negligible. The agreement
with MRCI and experiment at this stage is very good for all
molecules. These examples indicate that the ground-state
density 
, as ����, has often slow and oscillating conver-
gence so that treatments beyond third order have to be used
in order to ensure meaningful results for one-electron prop-
erties.

V. SUMMARY AND CONCLUSIONS

The comprehensive numerical tests performed in the
present work for the non-Dyson �nD� electron propagator
ADC�3� method24 have shown that this method represents a
useful alternative to the original Dyson ADC�3� method.14,21

Whereas the nD-ADC�3� and Dyson ADC�3� methods are
nearly identical with respect to numeric results, the former
method has the advantage that the �N±1�-electron parts of
one-particle Green’s function are decoupled from each other,
and the corresponding equations can be solved separately.
This enables a very efficient computer implementation of the
method, which scales as n5 with respect to the number of
molecular orbitals n and ensures fast convergence of the it-
erative �Davidson or Lanczos� diagonalization techniques to
the lowest ionization energies. This is because the corre-
sponding eigenvalues are no longer “buried” in the middle of
the spectrum, as in the Dyson ADC�3� case, but located
within the more easily accessible margin region.

The nD-ADC�3� method combines diagonalization of a
Hermitian secular matrix with perturbation theory for the
matrix elements. The explicit configuration space here is
spanned by 1h and 1p-2h configurations. As a consequence
of the so-called compactness property, the nD-ADC�3� re-
sults for the single-hole ionization are consistent through
third order in the residual electronic repulsion. The nD-
ADC�3� secular matrix is separable, which leads to size-
intensive results both for ionization energies and correspond-
ing spectroscopic factors. Like the CC methods the nD-
ADC�3� allows for “black-box computations.”

As established in the present study, the absolute accuracy
of the nD-ADC�3� vertical ionization energies associated
with single-hole ionization processes is 0.2–0.3 eV with re-
spect to both experimental and FCI results. The comparison
with FCI yields somewhat better accuracy estimates, which
reflects difficulties with the experimental determination of
vertical ionization energies. In some cases errors up to
0.5–0.7 eV were found, mainly in systems where difficulties

arise in the perturbative treatment of the electronic ground
state. The accuracy of the nD-ADC�3� is comparable to that
of the IP-EOM-CCSD.34 The IP-EOM-CCSD, however, is
not a consistent third-order method and has scaling proper-
ties one order of magnitude worse than the nD-ADC�3�.

The strict and extended second-order �nD-ADC�2��
schemes were tested as well. Here, the accuracy of single-
hole ionization energies is about 0.9–1.0 eV. In general, the
nD-ADC�2� and nD-ADC�2�-E schemes improve the HF re-
sults, but their accuracy is still insufficient for most spectro-
scopic applications. The second-order schemes can be rec-
ommended for qualitative studies especially of the larger
systems.

An essential factor for the performance of the nD-
ADC�3� method is the improved treatment of contributions
arising from the so-called static self-energy ���� part. The
best available treatment of ���� is the Dyson-expansion
method,21 which provides a consistent fourth-order descrip-
tion of ���� with additional partial infinite summation of
higher-order terms. The DEM treatment of ���� can readily
be adopted for the nD-ADC�3� scheme, but, as has been
shown in the present work, it is preferable both from a com-
putational and methodological point of view to employ in-
stead the ��4+ � approach based on the Eqs. �17�–�19�. The
latter approach, staying strictly within the nD concept, pro-
vides an improved fourth-order treatment of ���� and yields
results which are very similar to those of the DE method.

The nD-ADC formalism allows for a direct access to the
one-particle GS density matrix � according to Eq. �19�,
which can be used to compute ground-state one-electron
properties in a standard way. As has been demonstrated in
the present work for the GS dipole moments, this procedure
leads to excellent results, when an extended fourth-order
treatment of ���� is employed.

In contrast to other propagator methods, the nD-ADC
approach is not restricted to the treatment of GS properties.
The ISR formulation, as outlined in Sec. III D, allows one to
exploit the full potential of a wave-function approach: the
method can readily be extended to the computation of ionic-
state one-particle properties and transition moments.53 The
required ISR equations, derived in this work, are presented in
Appendix B. It should be noted that first applications of these
ISR ionic-state properties have been reported in Ref. 70.

The nD-ADC�3� is thus a versatile and computationally
practical method having several important advantages over
the previous Dyson ADC version. It is to be expected that the
nD-ADC�3� scheme will become a standard computational
tool in the near future replacing the original ADC�3� method.
An efficient implementation fully exploiting the n5 potential
should enable applications to rather large systems. As a step
in this direction, a more advanced version of the nD-ADC�3�
code �yet being organized conventionally� has already been
written71 and is presently tested in medium size applications
�e.g., SiF4 molecule using the aug-cc-pVTZ basis�.72 The
calculations confirm the superior efficiency of the nD-
ADC�3� method with respect to the Dyson ADC�3�, in par-
ticular, in the diagonalization step.

The transparent computational scheme of the nD-ADC
method is very appealing for various theoretical extensions.
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One of such extensions is the adoption of the nD-ADC
schemes for Dirac-Fock relativistic calculations.73 Another
interesting possibility concerns applications of the present
intermediate-state representation of one-particle operators.
As discussed in Ref. 53, this enables an elegant ADC treat-
ment of Hamiltonians including various one-particle pertur-
bation operators. In this way, for example, a complex absorp-
tion potential �CAP� used for the evaluation of lifetimes of
electronic states74 can easily be incorporated into the present
nD-ADC electron propagator formalism.
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APPENDIX A: EXPLICIT ADC„3… EXPRESSIONS

In the following we collect the expressions for the ele-
ments of the effective interaction matrix K+C and the ma-
trix of effective transition moments, f. As mentioned in Sec.
II A, the third-order ADC expressions can be written in a
symmetric form, namely, so that the 1h block of f is Hermit-
ian. �Note that the secular matrix K+C is always Hermitian.�
This follows from the ADC procedure, which allows one to
shift any anti-Hermitian contributions in the 1h block of f
into nondiagonal contributions of the 1h /1h block of C.24

The Hermitian-f expressions presented here are as legitimate
as the original nD-ADC�3� expressions derived in Ref. 24.
The single-hole ionization energies of the two forms differ
by sixth-order contributions. In the present computations the
numerical differences never exceeded 0.01 eV. Due to their
higher symmetry with respect to the one-particle indices, the
Hermitian-f expressions are more advantageous in the com-
puter implementation. Only matrix elements C

pp�
�3� and f

pp�
�3�

differing from those in Ref. 24 are given below. For brevity
we use the notation

�pqrs =
Vpq�rs�

	�pqrs�
, �A1�

where Vpq�rs�=Vpqrs−Vpqsr denote antisymmetrized Coulomb
integrals in 1212 notation and 	�pqrs�=	p+	q−	r−	s de-
note combinations of the HF orbital energies. As before, the
subscripts i , j ,k , . . ., and a ,b ,c , . . ., refer to occupied and un-
occupied orbitals, respectively. The subscript p ,q ,r , . . ., label
both occupied and unoccupied orbitals.

1. The „N−1…-electron case

a. Effective interaction

Ckk�
�3� = Ckk�

�A� + Ckk�
�B� + Ckk�

�C� + Ckk�
�D� + �k�k

�3� ��� , �A2�

where

Ckk�
�A� =

1

8 

a,b,c,d

l

Vab�kl�Vcd�k�l�
*

Vcd�ab�� 1

	�ablk�	�cdlk�

+
1

	�ablk��	�cdlk��
� , �A3�

Ckk�
�B� =

1

2 

a,b,c
l,m

Vab�kl�Vac�k�m�
*

Vlc�bm�� 1

	�ablk�	�acmk�

+
1

	�ablk��	�acmk��
� , �A4�

Ckk�
�C� =

1

4 

a,b

l,m,j

�ablm�abjk�
* Vlm�jk�

��	a + 	b − 	 j − �1/2�	k − �1/2�	k�

	�abjk�
� + h.c., �A5�

Ckk�
�D� = 


a,b,c
l,m

�ablm�bck�m
* Vlc�ka�	b + 	c − 	m −

1

2
	k −

1

2
	k�

	�bcmk�
�

+ h.c. �A6�

The self-energy part �
k�k
�3� ��� is obtained as described in Ref.

24.

b. Effective transition moments

fkk�
�3� = fkk�

�A� + fkk�
�B� + fkk�

�C� + fkk�
�D�, �A7�

where

fkk�
�A� =

1

8 

a,b,c,d

l

�abkl�cdk�l
* Vcd�ab�� 1

	�ablk��
+

1

	�cdlk�
� ,

�A8�

fkk�
�B� =

1

2 

a,b,c
l,m

�abkl�ack�m
* Vlc�bm�� 1

	�ablk��
+

1

	�acmk�
� ,

�A9�

fkk�
�C� =

1

8 

a,b

l,m,j

�ablm�abjk�
* Vlm�jk�

1

	�abjk�
+ h.c., �A10�

fkk�
�D� =

1

2 

a,b,c
l,m

�ablm�bck�m
* Vlc�ka�

1

	�bcmk�
+ h.c. �A11�

2. The „N+1…-electron case

The Hermitian-f expressions for the matrix elements of
the effective interaction matrix K+C and the matrix of ef-
fective transition moments, f, for the G+��� or
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�N+1�-electron part of the one-particle Green’s function can
be obtained from the above expressions using the rules de-
scribed in Appendix B of Ref. 24.

APPENDIX B: SECOND-ORDER „N±1…-ELECTRON
INTERMEDIATE-STATE REPRESENTATION OF
ONE-PARTICLE OPERATORS

In the following we collect the explicit expressions for
the matrix elements of a general one-particle operator

D̂ = 

r,s

drscr
†cs �B1�

with respect to the second-order �N±1�-electronic intermedi-

ate states ��̃J
N±1�:27,28,53

D̃IJ = ��̃I
N±1�D̂��̃J

N±1� . �B2�

The same notations as in Appendix A are used.

1. The „N−1…-electron case

a. h /h diagonal block

D̃i,i� = �ii�D0�2� − di�i − 

c

�
ic
�2�di�c + 
ci�

�2�dci� + 

�=1

3

D̃i,i�
�2,��,

�B3�

where the contributions D̃
i,i�
�2,�� are given by

D̃i,i�
�2,1� = − 


n
b,f ,g

� fbi�n
*

� fgindbg, �B4�

D̃i,i�
�2,2� =

1

2

n,j
f ,g

� fgi�j
*

� fgindnj , �B5�

D̃i,i�
�2,3� = −

1

4

n,j
f ,g

� fgnj
* � fgindi�j + h.c. �B6�

b. h /1p-2h coupling block

D̃i,a�i�j� = �ij�di�a� − �ii�dj�a� + �ii�

ck

�ca�kj�
* dck

− �ij�

ck

�ca�ki�
* dck − 


c

�ca�i�j�
* dci. �B7�

c. 1p-2h /1p-2h diagonal block

D̃aij,a�i�j� = �aa��ii�� j j�D0�0� + �ii�� j j�daa� − �aa��ii�dj�j

+ �aa��ij�di�j − �aa�� j j�di�i + �aa�� ji�dj�i. �B8�

2. The „N+1…-electron case

a. p /p diagonal block

D̃a,a� = �aa�D0�2� + daa� − 

l

�
la
�2�dla� + 
a�l

�2�dal�

+ 

�=1

3

D̃a,a�
�2,��, �B9�

where the contributions D̃
a,a�
�2,�� are given by

D̃a,a�
�2,1� = 


m,n,k
g

�a�gkn
*

�agmndmk, �B10�

D̃a,a�
�2,2� =

1

2 

m,n
c,g

�ca�mn
*

�agmndcg, �B11�

D̃a,a�
�2,3� = −

1

4 

m,n
c,g

�cgmn
* �agmndca� + h.c. �B12�

b. p /2p-1h coupling block

D̃a,a�b�i� = �aa�di�b� − �ab�di�a� − �aa�

ck

�cb�ki�
* dck

+ �ab�

ck

�ca�ki�
* dck + 


k

�a�b�ki�
* dak. �B13�

c. 2p-1h /2p-1h diagonal block

D̃abi,a�b�i� = �aa��bb��ii�D0�0� − �aa��bb�di�i + �bb��ii�daa�

− �ba��ii�dab� + �aa��ii�dbb� − �ab��ii�dba�.

�B14�

In the above expressions, D0�2� and D0�0� denote the
ground-state dipole moment consistent through second and
zeroth orders of perturbation theory, respectively; 
ic

�2� de-
notes second-order contributions to the one-particle density-
matrix elements.
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