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Abstract

The study of two-dimensional electronic systems has revealed a host of new and startling phenomena, such as the quantum Hall effect.
Although effort has gone into studying the effects of confinement in two-dimensional systems, the effects of surface curvature remain relatively
unexplored. Nevertheless, curvature and surface topology are expected to have a profound influence: for example, on a sphere it is not possible to
have a non-trivial current field that has no vortex structure in it. The spherical geometry also influences lattices in that topological lattice defects
are always present.

In this report, we present results and recent insights into the physics of electrons on spherical surfaces. In particular, we investigate the case
of multielectron bubbles. Multielectron bubbles are (micron sized) cavities inside liquid helium, containing electrons that collect in a nanometer
thin film on the surface of the bubble and form a spherical two-dimensional electronic system. Different phases are identified and investigated: the
electron fluid, the Wigner lattice, and the pair-correlated “superconducting” state. Uniaxial external magnetic fields (normal to the surface at the
poles of the sphere, and tangential to the surface at the equator) influence the different phases and give rise to textures on the surface. In discussing
the properties of the spherical electron system under various conditions, we identify the differences between flat surfaces and spherical surfaces.

The theoretical framework presented here is focused on the case of electrons on the spherical surface of a bubble in helium. We discuss
how the theory can straightforwardly be generalized to investigate the case of (finite thickness) metallic nanoshells. Nanoshells consist of a non-
conducting nanograin covered by a few atomic layers of metal. The physiologically compatible size and unique optical properties of these objects
have led to applications in diagnostics and directed therapeutics of cancer and drug delivery. These successful biomedical applications underline
the increasing interest in curved-surface electron systems treated in this report, and the necessity to supply a theoretical framework for these
systems. Multielectron bubbles and nanoshells are structures that are realizable in nature. We begin this report by discussing the experimental
developments and progress in producing these entities in a useful manner that allows them to be studied and utilized.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Overview

In this review we present recent developments in the study
of a two-dimensional electron structure on a curved surface.
In particular we investigate surfaces that are spherical in static
equilibrium. The electrons on this surface are free to move in
directions parallel to the surface, but are strongly bound in the
directions perpendicular to the surface. On a sphere, this means
that the full (three-dimensional) wave function describing such
electrons should be factorizable in a function depending only
on the angles and a function depending only on the radial
distance. The system can be considered two-dimensional if all
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the electrons have the same radial dependence of their wave
function, and if the energy required to change the radial mode
is much larger than the other relevant energy scales involved.
If the energy scale is such that several radial modes (be it
still a limited number) participate, the system is quasi-two-
dimensional.

Flat, two-dimensional systems are realized with electrons on
helium and in solid state systems (such as quantum wells or
surface layers). Similarly, curved two-dimensional systems can
be created both with electrons on helium and with solid state
systems. The former case is that of the multielectron bubble
in liquid helium, and an example of the latter are metallic
nanoshells. In this review we will mostly focus on multielectron
bubbles (MEBs), since it is a closer realization of a two-
dimensional spherical 2D electron gas, whereas thin nanoshells
are better described as quasi-2D systems.

We shall start with a simple qualitative picture of the
multielectron bubble and later develop these ideas analytically.
The electrons in a multielectron bubble are confined to a narrow
shell in space at the surface of the sphere; the electrons form
a gas or liquid, free to move along the surface in angular
momentum states or localized as a Wigner crystal of electrons.
MEBs have a number of fascinating properties. They contain
a countable number of electrons, N , and certain properties can
have important differences for odd or even numbers, even if
N is large. The range of N is of order tens to billions and
the spherical radius is of order nanometers to millimeters for
this range. The lone single-electron bubble (SEB) in helium is
also an important entity and has an experimentally determined
diameter of 34.4 Å [1]. The single electron is in an s-state
spread out over the volume of the bubble. The large diameter
of the SEB is due to the large zero-point energy of the electron,
confined or limited in volume by the surface tension of the wall
of the confining helium bubble.

In the MEB formed in liquid helium, electrons repel each
other due to Coulomb forces; their energy is minimized if
they move off to infinity. The liquid helium surface presents a
potential barrier of ∼1 eV [2,3], preventing the electrons from
entering the liquid. A bubble of helium vapor will collapse
to zero radius to minimize surface energy. The energy of the
MEB is minimized when the electron Coulomb repulsion and
helium surface tension forces are balanced in a spherical bubble
with the electrons residing on the surface in a thin layer about
a nanometer thick. For 104 electrons the classical equilibrium
radius, called the Coulomb radius RC , is about 1.06 microns
and scales as N 2/3. Fig. 1 visualizes an SEB and an MEB in
liquid helium.

Waves on a flat helium surface are called ripplons.
The surface of an MEB can have both radial and angular
deformations; the radial deformations or waves are called
spherical ripplons. These deformations were originally studied
by Lord Rayleigh [4] for spherical droplets and play an
important role in the dynamics and other properties of MEBs.
Electrons are in single-particle angular momentum states. For a
rigid sphere of radius R, the energy of a single electron confined
Fig. 1. Schematic representation of a multielectron bubble in liquid helium.
The electrons are not smeared out over the entire bubble volume, but form a
spherical film on the inner bubble surface.

to the surface is

E` =
h̄2 `(`+ 1)

2me R2 (1)

where ` is the angular momentum, me the mass of the electron,
and h̄ is Planck’s constant. The electrons in the MEB interact
with each other, the helium, and the ripplons. Generally, the
helium vapor inside of the bubble is ignored and at very low
temperatures the helium vapor density becomes negligible.
MEBs can be formed in helium I or helium II, i.e., normal or
superfluid helium. At the current stage of study, the properties
of He II are not involved in the bubble properties and the main
advantage of superfluid helium is that a more robust film of
helium covers the walls of an enclosing cell. These He walls
act as a barrier to the electrons, whereas electrons would rapidly
disappear into bare metallic surfaces.

A number of properties of electrons on a spherical surface
will be treated in this review. In Chapter 2 (and this chapter)
we shall discuss some of the experimental observations, the
stability of MEBs and bubble dynamics, as well as other
realizations such as metal nanoshells. In Chapter 3 we set
up and discuss the formalism for analyzing the Hamiltonian
and excitations on a curved, mainly spherical surface. In flat
space the Hamiltonian in second quantization is expressed in
terms of creation annihilation operators of momentum states.
In spherical space the Hamiltonian is expanded in terms of the
more complicated creation annihilation operators of the angular
momentum states. This formalism will be utilized throughout
the remainder of this review. In this chapter we then consider
the many-body problem, the dielectric response, plasmons, and
magnetic properties, including magnetic ordering due to two-
particle electron exchange and the interaction with a magnetic
field to form Landau bands. The interaction of electrons with
ripplons leads to polarons, which will be treated in Chapter
4, along with considerations of the Wigner lattice of electrons
on a sphere. The electron–ripplon interaction is attractive, just
as the electron–phonon interaction, which leads to pairing and
superconductivity in metals. Chapter 5 treats ripplon mediated
pairing and BCS superconductivity in MEBs. This chapter also
considers superconducting vortices and superconductivity in
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nanoshells. In the remainder of this chapter we present a short
historical review and discuss some properties that will be useful
in the later chapters.

1.2. Historical

MEBs were first observed by Volodin, Khaikin, and
Edel’man in 1977 [5]. Studies of the electron–liquid helium
system had already started more than a decade earlier. In 1971
Crandall and Williams [6] noted that electrons at a sufficiently
high density should undergo Wigner crystallization [7] on a
helium surface, later observed by Grimes and Adams [8].
Electrons could be created using a hot tungsten filament, a
field emission tip, or a glow discharge, all at low temperature
in a vessel containing liquid helium with a flat liquid surface
(with helium covered walls). Using a various electrodes
configurations the electrons could be found to dress the
surface of the helium [9]. The electrons are attracted to the
surface by their image charge. Cole and Cohen [10] calculated
the attractive binding energy due to the electron’s Coulomb
interaction with its image charge. For 4He, with dielectric
constant ε = 1.057 at a distance 2z between the charge and
its image, the potential is

V (z) = −
e2

4πεv

ε − 1
ε + 1

1
2z
. (2)

where εv is the vacuum permittivity. The binding energy has a
value of ∼8 K.

Without an applied electric field the electron surface density
is quite low. In order to increase the electron density an
electrode with a positive potential could be placed under the
helium surface. Already in 1964 Sommer [2] noted that a
high electric field would produce a hydrodynamic instability
so that the surface charge would be dumped to the submerged
electrode. Gor’kov and Chernikova studied the instability
theoretically [11]. At high fields the surface of the helium
is visibly deformed [9]; an instability develops for a field
of ∼4000 V/cm and for an electron surface density of 2 ×

109/cm2. This is the maximum density that can be achieved
on a bulk 4He surface. Volodin et al. [5] observed the instability
at the values predicted by Gor’kov and Chernikova, observing
the formation of MEBs containing ∼107 to 108 electrons with
diameters of 50–300 microns. The smaller MEBs moved to
the submerged electrode in less than a millisecond where they
were annihilated, while larger bubbles could float back up to
the surface in a millisecond. A decade later, Albrecht and
Leiderer [12] used high speed video photography to observe
bubbles with up to 107 electrons. They measured bubble
velocities of ∼10 cm/s and could observe bubble oscillations
and fissioning of the bubbles. In both of these photographic
measurements, the bubbles were far from an expected spherical
shape due to their rather violent birth and short life, so
that they did not have time to relax to their lowest energy
shape. To study the equilibrium properties of MEBs in long-
lived states, Albrecht and Leiderer suggested trapping them in
electromagnetic or acoustic fields, but did not succeed in an
attempt with EM fields.
A clear picture of the equilibrium properties of an MEB was
developed by Shikin [13]. To calculate the equilibrium radius,
the total energy was minimized. The main energy terms are the
surface tension of the bubble and the Coulomb repulsion, the
first and second terms in Eq. (3), below

Etot = 4πR2σ +
N 2e2

8πε0ε(R − d)
+ γ N

h̄2

2med2

+ p
4π
3

R3
+ exchange terms. (3)

Here R is the radius of the bubble, σ = 3.6 × 10−4 J/m2 is
the surface tension of helium. The third term is the localization
energy, where the electron film is located at a radial distance
d. Typically this is of the order of (a few) nanometers; γ is
a geometrical factor of order 1. We have include a pV term
as the fourth term, with pressure p. The Coulomb repulsion
energy is (Ne)2/[4πεv(R − d)]. Adding in the polarization
energy omitted by Shikin, (1−ε)(Ne)2/[4πεεv(R−d)], yields
the second term. The image energy of the electrons, and the
exchange energy in the electron film, are omitted. For large
bubbles with p = 0, the localization energy can be ignored
after which d � R can be set equal to zero in the Coulomb
term. This yields RC , the Coulomb radius

RC = N 2/3
(

e2/(4πεv)
16πεσ

)1/3

= 1.064
(

N

104

)2/3

microns. (4)

The leading correction to the equilibrium radius is

R3
= R3

C (1 + ∆) with

∆ =
4
3

(
γ εa0

4N RC

)1/3

. (5)

This small correction, an expansion of the bubble, is important
for considerations of stability of a charged bubble; here a0
is the Bohr radius. Minimizing the energy with respect to d,
one finds d to be of order a few nanometers. Salomaa and
Williams [14] studied the structure of the MEB using density
functional theory and found the (radial) width of the density
distribution of the electron film to be somewhat smaller.

In addition to the direct Coulomb interaction there is an
electron exchange term contributing to the energy that will be
important for small bubbles. Shung and Lin [15] studied the
effect on MEBs using density functional theory; their results
can be accurately represented by

Eexch = −0.3176
e2 N 4/3

4πεvε(R2d)1/3
. (6)

This leads to about a 1% reduction in RC for small bubbles.
Artem’ev, Khrapak, and Yakubov [16] have refined Shikin’s
theory with a more fully quantum mechanical approach and find
that the bubble radius is reduced from the Coulomb radius.
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Fig. 2. The surface density of MEBs as a function of pressure p and number of
electrons N . The maximum pressure taken is ∼25 bar, where helium solidifies.

1.3. Surface density tunability

Here in this introduction we discuss a few more properties
of MEBs that will be useful in the later chapters. One of the
important properties of the MEB is that it can have an enormous
range of electron surface density. At zero pressure we have

ns =
N

4πR2
C

= 1.514 × 1012 N−1/3 cm−2.

For MEBs with N varying from 102 to 109 electrons, this results
in surface electron densities of 3.25×1013 to 1.51×109 cm−2,
varying by more than four orders of magnitude. Exchange
corrections should be taken into account when the number of
electrons is below 103. The result is a reduction of the density
(and an increase of the radius) for these small bubbles. When
pressure is applied [17], the equilibrium density is found by
minimizing Eq. (3) (including Eq. (6)). Results are shown in
Fig. 2.

The bubbles are also highly compressible as shown by
Tempere, Silvera, and Devreese [17]. In Fig. 3 we show the
variation of the bubble radius with pressure for several values
of N . Here the pressure can take on small negative values until
the bubble explodes. Negative pressures up to ∼9 bar can be
achieved in helium [18].

One of the driving motivations for studying the electron–
helium system has been the observation of the Wigner crystal or
more specifically, the melting line between the electron liquid
and the two-dimensional electron solid. In two dimensions on
a flat surface, electrons crystallize in a hexagonal (triangular)
lattice. Melting is qualitatively different in 2D than in 3D,
thus there has been a great theoretical and experimental effort
to understand this system. There are two regimes of melting:
the classical and the quantum regimes [19,20]. The transition
region is usually characterized by the plasma parameter Γ , the
ratio of the potential energy to the kinetic energy. A 2D gas or
Fig. 3. The variation of a bubble’s radius for modest pressures up to 100 mbar,
including negative pressures. Negative pressures can provide stability to the
bubble as will be discussed in Chapter 2. The inset shows the variation of d as
a function of pressure.

liquid has a small plasma parameter and the more correlated
liquid or solid, a large value, Γ > 100.

The localizing potential for the Wigner solid is the Coulomb
potential, 〈V 〉 = e2/r0 = e2π1/2n1/2

s , while in the classical
regime the kinetic energy is kBT , so

Γcl = e2π1/2n1/2
s /(kBT ). (7)

The conditions are often given in terms of rs = r0/a0, the ratio
of a radius of an area containing 1 electron, r0 = 1/

√
πns , to

the Bohr radius a0. At 1 K with ns = 109 cm−2 the calculated
value of the plasma parameter is 94. In the experimentally
observed melting line of the Wigner lattice on a flat surface,
Grimes and Adams [8] found Γ = 135 ± 15. A number of
experimental measurements scatter around this value [21]. In
the classical regime, as the density is increased the melting
temperature increases.

In the quantum regime for a 2DEG the kinetic energy at
T = 0 is 〈K 〉 = π h̄2 ns/me, so that

Γquant =
mee2

π1/2 h̄2 ns
= 1/(a0n1/2

s ).

As ns increases at low temperature a transition is made to the
quantum regime. With increasing ns the melting temperature
decreases until the solid melts at zero kelvins.

Quantum melting is well known in 3D, with the example of
helium where the zero-point motion of the atoms is so large that
liquid helium, in equilibrium with its vapor pressure, remains a
liquid to T = 0 K and only solidifies under a pressure of ∼25
bar. This is often discussed in terms of a quantum Lindemann
melting criterion, that the solid melts when the rms deviation of
an atom relative to the lattice constant r0,

δ =

√
|r − r0|

2/r0 (8)

exceeds a critical value of 0.1–0.3. In an infinite 2D system
δ diverges; however in a finite system such as a bubble the
infrared divergence in no longer present. Bedanov et al. [22]
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introduced a modification of this criterion (also valid for infinite
2D systems) that considers fluctuations of the average distance
between neighbors, and performed a simulation to find 0.3 for
quantum melting in 2D. Thus, as the electron density increases,
the rms deviation increases until the lattice melts.

If we set Γquant = 137, we find ns = 6 × 1011 cm−2; this
corresponds to the density at which the melting temperature
goes to T = 0 K, or quantum melting. After the observation
of the Wigner lattice on a flat surface in the classical regime,
efforts were made to observe quantum melting. These were
thwarted by the surface instability for high coverage, limiting
the density to ∼2 × 109 cm−2. However, the MEB was born
of this instability and it can have very high surface coverages.
Wigner crystallization and quantum melting are transitions that
can be attained and studied on the MEB.

The criterion or condition for quantum melting of the Wigner
crystal is different for the flat surface and the spherical surface.
Not only are they different, but localization of the electrons can
occur due to different mechanisms. In a curved 2D electron
gas, the Coulomb interactions give rise not only to a mean-
field electric field confining an electron laterally, but also to
a pressing field. The Coulomb energy per particle 〈V 〉 =

Ne2/(8πεvεRC ) depends on N and on R, affecting the relevant
plasma parameter for melting in a non-trivial way. The plasma
parameter will increase as RC is decreased (either by decreasing
the number of electrons in the bubble, or by increasing the
pressure), so that a quantum melting transition can be expected
when the bubble is compressed. However, as RC is decreased
the pressing field is increased, favoring again a localization
and the Wigner lattice. When the pressing field is strong
enough the resulting electron–ripplon leads to the formation
of a Wigner lattice of ripplonic polarons, distinct from the
Coulombic Wigner lattice.

In Chapter 4 a variational model is introduced to describe the
melting of the ripplopolaronic lattice, and to derive the phase
diagram for the ripplopolaron Wigner lattice. This scheme can
be extrapolated to the region where the Coulomb interaction
dominates the electron–ripplon interaction, in an attempt to
find also the phase transition line for the Coulombic Wigner
lattice on the sphere. However, a point to note is that when
the Coulomb interaction dominates over the electron–ripplon
interaction the variational model of Chapter 4 which is geared
towards the ripplopolarons will not be a suitable variational
trial model. Indeed, when the electron–ripplon model system is
used to estimate the density at which quantum melting occurs
in a bubble at p = 0, with Lindemann criterion δ = 0.13,
a critical density ∼109 is found, much lower than the flat-
surface critical density of ∼1011 cm−2. The motivation for this
particular choice of the Lindemann criterion will be discussed
in Section 4.4.3. The melting line of the Coulombic Wigner
lattice depends strongly on the Lindemann criterion in this
scheme — the critical density in this model can be increased
up to 1011 cm−2 by using a Lindemann criterion of δ ≈

0.23. An observation of quantum melting, through capacitance
spectroscopy of lattice phonons, as in the original experiment
of Grimes and Adams [8], is still lacking for spherical systems,
as is an experimental estimate of δ for these systems.
2. Physical realizations of curved 2D electron systems

2.1. Multielectron bubbles in liquid helium

What are the states and shapes of multielectron bubbles
and their properties? Can MEBs be prepared in long-lived
equilibrium states and studied to understand their properties?
Under what conditions do we expect an MEB to be stable
in liquid helium? How can MEBs be observed? What is the
response of an MEB to a pressure shock? What are other
realizations of electrons confined to a curved surface? Answers
to these questions will be discussed in this chapter.

In the following chapters we shall discuss the possible
phases of MEBs, which may depend on subtle values in the
interaction energies, bubble size, pressure, and temperature.
On the one hand, in all of our considerations we consider the
electrons to be in a single layer confined to the surface of
the bubble; that is, there is no layering of the electrons. For
an electron density ∼1010 cm−2 the average spacing between
electrons is very large, ∼50 nm. On the other hand, if very high
densities could be achieved, the electrons might achieve a lower
energy by layering, as observed in simulations of electrons
confined on a flat surface by a hard wall [23].

2.1.1. Equilibrium structures and observations
As was discussed in the previous chapter the MEB in

equilibrium in a gravity free region is expected from energy
considerations to be spherical and have a radius given by
Eq. (4) for the Coulomb radius, ignoring smaller terms. If the
diameter of the MEB is larger than the wavelength of optical
light one can make an image and study the bubble visually.
Since liquid helium has an index of refraction of about 1.03 and
the interior of the bubble is vacuum (or a very low density of He
gas) with index of refraction 1, there is sufficient contrast of the
light due to refraction and reflection to form an image. Smaller
bubbles should also be detectable and quantitative data could
be obtained, for example, by light scattering or measurement
of charge. If the bubble is in a gravitational field then this
potential will distort it from spherical symmetry if the potential
is comparable to the surface tension energy. Shikin [13] has
shown that gravity tends to flatten the bubble unless the radius
satisfies

R 6
√

3σ/ρg ∼ 10 µm

where ρ is the helium density and g = 9.81 m/s2. A second
deformational effect can occur if the bubble is sessile, i.e. due to
buoyancy the bubble is pushed up against a surface, deforming
at the interface. In the following we shall continue to consider
the bubble as spherical. There are also local deformations due
to dimpling under the electrons. On a flat surface the bound
electrons are about ∼100 Å from the surface. The attraction
of an electron by its image force, or aided by an external
electric field leads to a local deformation of the lattice under the
electron. However, in the absence of external fields the depth of
the dimple is only ∼10−2 Å [24]. In an MEB the electron not
only feels its image force, but the Coulomb force of the electric
field due to all of the other electrons, directed into the surface.



J. Tempere et al. / Surface Science Reports 62 (2007) 159–217 165
Fig. 4. The classical Wigner lattice on a spherical surface. Locally the lattice
is triangular with each electron having six neighbors. The 5 and 7 neighbor
defects are shown by dark spots. From Ref. [25].

This electric field can be very significant, ∼105 V/cm, and lead
to deep dimpling of the surface under the electron.

One of the important phases and areas of study of the
MEB may be the Wigner lattice and quantum melting. The
ground state triangular Wigner lattice of the flat surface should
be the lowest energy structure for a large diameter bubble.
However, the hexagonal lattice does not map onto a spherical
surface. In the perfect lattice each electron has six neighbors;
to fit on the spherical surface there must be defects with 5
or 7 nearest neighbors, existing in the ground state. Due to
topological constraints, there has to be an excess of twelve
5-fold defects. Additional defects occur in pairs of 5- and 7-
defects. These defects can be locally bound to each other; or
the 5- and 7-defects can unbind. Correspondingly, additional
nematic phases can be identified in the Wigner lattice state [25,
26]. A visualization of the nematic phase is shown in Fig. 4. In
Chapter 4 we shall discuss this and a new mechanism due to the
electron–ripplon polaron that leads to Wigner localization of the
electrons onto a lattice, with deep dimples under each electron.

One of the important questions concerning MEBs is “can
they be experimentally produced in long-lived states so that
they can be studied in detail?” We have already seen that MEBs
can be made by an instability in a flat surface in which millions
of electrons are subsumed in a bubble. However, the MEB
made in this manner only exists for milliseconds and is in a
highly deformed excited state due to its violent chaotic creation
and has no time to relax to its ground state before annihilation
occurs. There have been no extended attempts to produce and
trap MEBs with electromagnetic or acoustic fields.

An experimental effort is underway by collaborators of this
review, following a proposal for a new approach for producing
an MEB in a stable long-lived state [27]. The geometry is
shown in Fig. 5. A cylindrical cell with a dome shaped roof
is partially filled with liquid helium in the superfluid phase. A
source of electrons, either a field emission tip or a tungsten
filament, is in the vapor phase region and can be actuated to
load the cell with electrons. Since the helium is superfluid, a
reasonably robust film of helium covers all surfaces above the
Fig. 5. A schematic of a cell for producing long-lived MEBs, described in the
text. In (b) a fiber optic for illuminating the MEB from below is not shown.

bulk liquid helium. This is very important because if a metallic
surface is locally denuded of helium, the electrons can enter
the metal and exit the vapor region of the cell. The helium film
thickness is d f =

√
α/(ρgh) (where α is the Van der Waals

coefficient, ρ is the helium density, and h is the height above the
bulk helium surface) is of the order a few hundred angstroms
thick, depending on h and α. Although the equilibrium state
of a chamber with any bulk liquid and a vapor phase region
should have a film coverage, the surfaces are usually denuded.
For normal fluids with gas phase density or rate of evaporation
depending exponentially on temperature, small thermal
fluctuations of the surface lead to evaporation of the film and
its local destruction. For superfluid helium, a film flows to
warmer areas and thus levels out thermal gradients to maintain
a uniform chemical potential. The film is particularly robust at
subkelvin temperatures when the vapor pressure is low. As a
consequence of the bulk helium, the film on all surfaces, and
the barrier for helium to enter the liquid through the surface, the
electrons are confined to the surfaces and the vapor phase. The
cell is designed with a mechanism for raising or lowering the
helium surface, shown schematically in the figure as a bellows.
As the helium level is raised the electrons are confined to an
ever-decreasing volume. When the level reaches the top of the
dome, the volume containing the electrons form a minimum
energy surface, or a sessile MEB that in principle should be
in a long-lived state that can be studied by various techniques.
Raising the liquid helium level above the top of the dome
hydrostatically pressurizes the MEB by the liquid pressure
head. By making the dome transparent (i.e., a concave lens) the
bubble can be illuminated and imaged. One implementation is
to use a low temperature microscope and image the bubble on
a coherent fiber optic to transfer the image out of the cryostat.
A number of other possibilities exist for studying properties of
the bubble, but these will not be discussed here.

This new approach has been implemented and at this writing
has not produced MEBs localized in the top of the dome. Very
large bubbles with diameters >1 mm, containing billions of
electrons have been produced and viewed for times ∼1 s, but
these move across the field of view and are not localized in the
top of the dome, as expected. Furthermore, if the helium level
is lowered and again raised the bubble is not seen. A possible
explanation will be discussed ahead.
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2.1.2. Stability with respect to electron tunneling
We first discuss the stability of electrons in a cell with

bulk liquid helium and walls covered by a superfluid film. The
primary question is whether the electrons produced in a cell
surrounded by helium surfaces remain on the surface or in the
vapor phase, or escape into the underlying walls. A number of
studies discuss the rapid or slow decay of the electron density
in such a cell. Sommer [2] reported that when electrons are
produced in the vapor phase, and an electrode (with a potential
negative relative to an electrode above in the vapor phase)
initially covered by bulk helium was exposed to the vapor
phase, a negative current pulse was observed and the electrons
disappeared from the cell. If the voltage difference was reduced
to zero and then turned back on, there was no pulse, implying
that the electrons had already disappeared. In most experiments
a submerged electrode with a positive potential is used to hold
electrons on a surface; this charged surface is very stable.
Brown and Grimes [28] reported stability of the electrons
in their cell; if the holding field was lowered to release
electrons and raised again, they would recover approximately
the same electron density. Etz et al. [29] directly studied the
stability of electrons on a flat surface, either dielectric or
conducting, covered with a superfluid film whose thickness
could be measured by ellipsometry. The helium surface could
be charged with electrons held by an electric field and the
charge density measured as a function of time, after turning off
the electron source. The surface charge slowly decayed. When
the holding potential was turned off so that the electrons on
the helium should leave, a residual charge of order 1011 cm−2

remained if the surface was a dielectric. This was interpreted
as electrons that had penetrated the He film, by tunneling.
The helium film was thinned due to the image forces of the
electrons attracted to the substrate, by about a factor of 2 for
insulating substrates and 5 for conducting substrates. The film
thickness when charged was about 100 Å. This seems to be
too thick for electrons to tunnel through, but tunneling could
occur at rough regions where the helium might be thinned [30].
Electrons become trapped on the dielectric substrates but flow
away when the substrate is conducting. These measurements
provide interesting insight into the behavior and distribution of
electrons in a cell made of conducting and insulating materials
filled with bulk helium, a film, and a vapor phase.

We now consider the thinning of films above an MEB such
as in Fig. 6. If the film becomes very thin then the electrons
can tunnel into the surface and rapidly deflate or annihilate
the MEB. An interesting property for dielectric surfaces, also
observed for flat surfaces, is that the tunneling and trapping
of electrons in the surface is limited as the trapped electrons
repel surface electrons on the helium; this is not the case for
conducting surfaces.

For a sessile MEB there are three forces that affect the
thickness of the helium film above it: the image force, as
considered for a flat surface, the polarization force (due to
replacing a sphere of helium atoms by a void), and the buoyancy
force. To determine the film thickness we shall write down the
energy and minimize it with respect to thickness. Consider the
Fig. 6. A sessile bubble in helium. Various dimensions are defined in this figure
for the theoretical determination of the film thickness.

Fig. 7. Thickness of the film above a sessile bubble, for two types of glass
characterized by a different ε and α. To allow for electron tunneling out into
the wall, the film thickness should be 10 Å or less.

geometry of Fig. 6, where d is the thickness of the film on an
insulating surface.

The depth of the bubble center is d + R, where we ignore
the thickness of the 2DEG. The image potential for an electron
at orthogonal distance z from the surface is −λ/z with

λ =
e2

4πεv

ε − 1
ε + 1

1
2

(9)

for a dielectric surface as seen from (2); and λ = e2/(8πεv) for
a conducting surface. The potential energy of the image charges
is

Vimage = −R2
∫ π

0
dθ
∫ 2π

0
dφ sin θ

nsλ

D + R cos θ

= 2πRnsλ log
(

D + R
D − R

)
. (10)

The polarization energy is the increase of energy that occurs
because the bubble volume is vacuum rather than helium. If α
is the Van der Waals coefficient (9.5 × 10−23 for He on glass),
then

Vvdw = −

∫ R

0
dr
∫ π

0
dθ
∫ 2π

0
dφr2 sin θ

α

(D + r cos θ)3

= πα

[
1

(D/R)2 − 1
+ log

(
D + R
D − R

)]
. (11)
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Fig. 8. The configuration for calculating the stability of an N electron MEB
against boil-off of a single electron.

The third term is the buoyancy, important for large bubbles,

Vbuoy =
4π
3

R3ρgD. (12)

The total energy Vimage+Vvdw+Vbuoy is minimized with respect
to d , the film thickness above the sessile bubble. Both buoyancy
and image charges pull the bubble towards the wall, whereas
the Van der Waals attraction between helium atoms and the
wall tends to push the bubble away from the wall. The resulting
equilibrium distance is shown in Fig. 7. There is a bubble size
of roughly 1–2 million electrons where the film thickness is
maximal. Typically, it is more than 10 Å, which should prevent
electron tunneling through the film.

2.1.3. Stability with respect to electron boil-off
Is a multielectron bubble stable? We first note that a bubble

can lower its energy by splitting in two. From Eq. (3) the energy
of a p = 0 bubble behaves as Etot ∝ N 4/3. If a bubble
splits up into two bubbles, each with N/2 electrons, then the
energy is lowered to 0.79Etot for infinite separation, or the
MEB is at best metastable. Dexter and Fowler [31] performed
a quantum mechanical study and found that the two-electron
bubble should be unstable against decay to two single-electron
bubbles by ∼0.5 eV in energy. By fissioning, the reduction in
Coulomb repulsion energy more than offsets increased surface
area energy [32].

One can now extend this to larger N and ask if an MEB is
unstable to single-electron boil-off. Salomaa and Williams [33]
first considered this problem with a semi-classical model
and found the transition to stability for N ' 15. Silvera,
Blanchfield, and Tempere [34] reconsidered this problem
including exchange and other factors and found the crossover
to stability at N ' 100. The energy for the N electron bubble
is given by Eq. (3), including the exchange, Eq. (6).

For the configuration on the left in Fig. 8, with an N − 1
electron MEB, there is an additional term due to the repulsion
of the N−1 electron bubble and the single-electron bubble (N−

1)e2/(2ε(RN−1 − r0)) where r0 is the radius of the SEB, while
the energy of the SEB is 4πr2

0σ + h̄2 /(2mr2
0 ) + p(4πr3

0/3).
The difference in energy of these two configurations changes
sign for 100 electrons (at zero pressure) indicating a transition
to stability.

When pressure is taken into account the interesting phase
diagram shown in Fig. 9 is found. Increasing the pressure
Fig. 9. The phase diagram for stability against single-electron split-off of an
MEB. Here the stability fields are plotted as a function of pressure and N .

destabilizes the MEB, moving the crossover to stability to larger
N . Liquid helium can support a negative pressure [35]. As shall
be discussed ahead, a negative pressure can stabilize an MEB
against splitting in two, and here it also increases the stability
to smaller N . However, if the pressure is made too negative
the MEB radius explodes, the critical pressure depending on
the radius, or N . The results including this second boundary
for stability are shown in Fig. 9. We point out that the analysis
does not consider the possibility of a potential barrier that could
inhibit single electron boil-off.

2.1.4. Deformation instability
The instability of a spherical drop with a charged surface

was studied by Lord Rayleigh [4]; Shikin [24] pointed out
that RC is the radius of instability. The instability is a
result of the competition between the surface tension that is
minimized by having a spherical surface and the Coulomb
repulsion, which lowers its energy if the bubble undergoes an
angular deformation to an ellipsoidal shape that grows until the
bubble fissions in two. (Recall, after Eq. (4), that in Shikin’s
approximation the radius is slightly larger than RC , which
might be important for stability, whereas Artem’ev et al. found
a reduction from RC ).

We shall show in Section 4 that frequencies of the angular
modes (spherical ripplons) can be calculated in the harmonic
approximation by expanding the deformations in spherical
harmonics, Y`m(Ω). Tempere, Silvera, and Devreese [17]
calculated the frequencies of these modes, including the effect
of pressure. These modes have frequencies characterized by
the angular momentum quantum numbers {`,m} and are
degenerate in m,

ωr (`) =

√
1

M`

[
σ(`2 + `+ 1)+ 2pRC −

(Ne)2

4πεRC
`

]
(13)

where M` = ρR3
C/(` + 1) is a mass term. Evaluating the

` = 2 quadrupole ripplon mode gives frequency 0, or there is
no restoring force for this mode. Tempere et al. pointed out that
a small negative pressure stabilizes the bubble; this results in a
finite restoring force or frequency (the bubble radius expands
to be greater than RC ). However, as the pressure increases



168 J. Tempere et al. / Surface Science Reports 62 (2007) 159–217
Fig. 10. A generalized shape composed of spheroids and hyperboloids to
describe the fissioning of an MEB in cylindrical coordinates. The parameters ai
and bi are the squares of the semi-major axes and the deformation parameter,
respectively; the fi define the centers of the spheroids.

the mode frequencies for ` > 2 are sequentially driven to
zero, the pressure for each mode instability depending on RC
(see Fig. 29, ahead in Chapter 4). Thus, in this approximation
pressure can both stabilize and destabilize the bubble.

Earlier, Salomaa and Williams [14] considered the bubble
at zero pressure and found a window of stability due to the
coupling between the ripplon modes and the radial oscillation
modes of the bubble, solving the Rayleigh–Plesset equations for
the bubble dynamics. (These equations will be shown ahead).
This results in a time averaged radius that is larger than RC ,
depending on the oscillation amplitudes of the modes, and
thus a finite restoring force to stabilize the bubble. If R(t)
grows larger than ∼6% of the equilibrium value the MEB
becomes unstable and the amplitude of the Y`m mode grows
without limit. Hannahs, Williams, and Salomaa [36] extended
this analysis and found that although the ` = 2 mode has a
region of stabilization, with this non-linear coupling the ` = 3
becomes unstable first, at a lower value of the mode amplitude.

The above discussion of instability considers the small am-
plitude normal modes of oscillation of the bubble and their
coupling. The Bohr–Wheeler model [37] was developed to de-
scribe the fissioning of nuclei, treated as charged liquid drops.
This model, whose validity is not limited to small amplitude
oscillations was applied to MEBs by Tempere, Silvera, and De-
vreese [38] and overcomes limitations of the harmonic approx-
imation and the Rayleigh–Plesset approach. Amongst other im-
portant results, the model shows that for zero pressure there is
an energy barrier that stabilizes the MEB from bifurcation. This
barrier arises from the increase of surface energy and Coulomb
repulsion that accrues as a bubble is deformed from an ellip-
soidal shape to two spherical bubbles.

A generalized surface, shown in Fig. 10, can be described
by three quadratic forms, two spheroids connected by
a hyperboloid. This corresponds to a limited number of
variational parameters describing the surface. The total energy
consisting of the surface tension, the pressure term, and the
electrostatic term (ignoring exchange and smaller quantum
localization terms) Etot = σ S + pV + EC can be written
in terms of the generalized surface S and the volume V . The
Fig. 11. The energy as a function of an interpolation parameter that traces out
a trajectory starting with 0 for a distorted but unsplit bubble and ending at 1
when the bubble is split. This is for an MEB with 104 electrons.

energy is then minimized as a function of shape for a given
elongation de = z3 − z0 starting with an equilibrium bubble
diameter for N electrons, z3 − z0 = 2RC . The 11 variables
defined in the figure are reduced in number by constraints, such
as continuity, fixing the origin, etc.; the volume and surface
area are unconstrained and the surface density of electrons is
homogeneous and maintained as N/S.

The stability of MEBs was studied as a function of pressure.
The result of minimization procedure for zero pressure is
shown in Fig. 11 for a bubble with 104 electrons. For small
deformations there is no barrier, but as the deformation
increases a barrier height 0.2 eV/electron develops. From a
normal mode point of view, the necking down that is required
for the splitting of the bubble requires higher `modes and these
are more energetic, giving rise to the barrier. Splintering into
more than two pieces would involve an even higher barrier and
be much less likely.

For negative pressures the barrier remains but there is a finite
restoring force for small distortions. For positive pressure the
barrier against bifurcation is suppressed, so that the bubble
should be unstable. Recall that pressure drives the higher `
modes to zero frequency. In this case the deformation involves
both ` = 2 and 3 modes with mode 3 being driven to zero at a
pressure of 3 mbar for 104 electrons. (Modes are driven to zero
at the pressure p = σ(`2

− 2)/(2RC )). Thus, the deformation
in terms of these modes does not require high energy and at a
certain pressure the barrier is suppressed. When the pressure is
raised to make a bubble with N electrons unstable, the resulting
fission products with N/2 electrons may still be metastable
since the critical pressure for driving a mode to zero increases as
the bubble radius decreases. To fission the daughter fragments
the pressure needs to be raised further. One might expect that
with increasing pressure MEBs will break up into smaller and
smaller bubbles, that is a froth of bubbles. If a froth is produced
and the pressure then released or even made negative, it is not
expected that the froth will coalesce into a large bubble again,
as there will be a barrier preventing this.

We summarize the results. An MEB at zero pressure should
be stable. Negative pressures increase the stability until the
radius explodes. Positive pressures lead to bifurcation; the
smaller the bubble the higher the pressure required for splitting.
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It would be extremely interesting to experimentally test these
conclusions.

2.1.5. Dynamics of the bubble surface
At this point in the discussion we consider the affect of

an external force driving the MEB and its response. One can
consider various external probes: electromagnetic, acoustic, or
pressure. Actually an acoustic wave in helium corresponds to
a time varying pressure. Here we consider the response of the
bubble to a pressure step [39]; we consider the affect on both
a spherical and an angularly deformed bubble. If pRb/σ � 1
(where Rb is the pressurized bubble radius), then the Rb scales
as p−1/4, which follows from the equilibrium equation

(eN )2

4πεR3
b

= 2pRb + 4σ. (14)

The result is that the highly compressible MEB undergoes a
collapse from a pressure step, or a large rapid reduction in
radius, followed by re-expansion and high frequency oscilla-
tions. The oscillations also correspond to large accelerations of
the electrons that result in pulses of electromagnetic radiation
or sonoluminescence. Under certain conditions the bubble be-
comes unstable after collapse and the deformation amplitude
rapidly grows.

In order to describe the dynamics we require the Rayleigh
equation of motion for the radial component. A point on the
bubble surface relative to the center can be described by

R(θ, φ, t) = Rb(t)+

∞∑
`=1

∑̀
m=−`

a`mY`m(θ, φ). (15)

A rather complex set of equations follow from the Lagrangian
equations of motion:

3
2

(
Ṙb

Rb

)2

+
R̈b

Rb
= −

1
ρR4

b

(
2σ Rb + pR2

b −
(Ne)2

8πεR2
b

)

+
3

8πRb

∑
`,m

|a`m |
2

`+ 1

−
1

4πρR4
b

∑
`,m

(
p −

3(Ne)2

8πεR4
b
`

)
|a`m |

2 (16)

and

ä`m + 3
Ṙb

Rb
ȧ`m

= −
`+ 1

ρR3
b

[
σ(`2

+ `+ 1)+ 2pRC −
(Ne)2

4πεRC
`

]
a`m . (17)

The first equation is the Rayleigh equation, with an additional
electronic term and the second, for the deformation, is similar to
the Plesset–Prosperetti equation [40,41] for the deformational
amplitudes. For the response of a spherical undeformed bubble
(a`,m = 0) Eq. (16) is solved for pressure steps of 1, 2, and
3 kPa, shown in Fig. 12. Details are given in Ref. [39].

With increasing pressure step, the amplitude of the collapse
increases and is cyclic as there is no damping in the equations.
Fig. 12. The response of an MEB in helium with N = 104 electrons initially
at zero pressure to the pressure steps shown in the top panel. The second panel
shows the oscillation of the radius. The initial radius is 1.06 microns so the
collapse is seen to be substantial. The third panel shows the radial velocity of
the surface, and the fourth the radial acceleration. The quantities are cyclic as
there is no damping in the equations. The time axis is scaled to the period of
the oscillations with T = 0.795, 0.570, and 0.462 µs for the 1, 2, and 3 kPa
pressure steps, respectively.

The radial acceleration is very sharp and peaked at the time
when the bubble radius is at its minimum. The response times
are less than a microsecond. The peaked acceleration is quite
large, substantially greater than 106 m/s2.

For angularly deformed bubbles (in the initial state) we
expect stable or unstable modes, depending on the pressure step
and the mode. The behavior is found by solving Eq. (17). To
study a stable situation, a higher mode, ` = 25, is chosen so
that with the pressure step the ripplon frequency remains non-
zero. The calculated behavior is shown in Fig. 13. For a mode
with unstable conditions, i.e. the pressure step is sufficient to
drive an (`,m) mode to zero frequency, the mode amplitude
grows larger than the bubble diameter after collapse and is non-
oscillatory.

2.2. Metal nanoshells

2.2.1. Nanoshell fabrication
Metal nanoshells are composite nanoparticles consisting of

dielectric (mostly silica glass) core and a thin metal (mostly
gold, sometimes silver) shell [42]. The preparation technique
is based on the principles of molecular self-assembly and
reduction chemistry of metal colloid synthesis. First silica
nanoparticles dispersed in solution are grown. Then very small
(1–2 nm in diameter) metal colloid particles are attached to the
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Fig. 13. The response of an MEB which initially has a ripplon mode amplitude.
The bubble radius collapses and there is a high frequency oscillation of with an
envelope that oscillates with the same period as the radius (dashed curve).

surface of the nanoparticles via molecular linkages, resulting
in a discontinuous metal colloid layer. Additional metal is
grown onto the metal colloid adsorbates via chemical reduction
in solution. The different steps in the growth can be seen in
the Fig. 14. Sometimes, mainly for in vivo applications, the
surface is coated by a poly(ethylene glycol) layer to enhance
biocompatibility [43,44]. The thinnest shell that is possible
to prepare nowadays with the above mentioned technique is
∼5 nm. The typical shell thickness varies 5–20 nm, whereas
the inner radius typically varies between 60–210 nm.

The interest in nanoshells follows in part from their optical
properties [45,46] and their biocompatibility. The optical prop-
erties are governed by strong surface plasmon resonance. Sur-
face plasmons can be excited on both (inner and outer) surfaces
of the metal shell and because of the small distance between
them, they couple strongly [47]. The resulting resonance fre-
quency depends strongly on the ratio of the inner and the outer
radius of the shell, and can be used for surface enhanced Raman
scattering [48]. Thanks to the wide tunability of their absorption
and scattering resonance in the infrared and visual spectral re-
gion, metal nanoshells are very promising in cancer research
and treatment. Human tissue is most transparent in the region
650–900 nm, slightly dependent on the kind of tissue. Metal
nanoshells conjugated with antibodies or proteins specifically
sensitive to the substances on the surface of cancer cells can by
transported by blood circulation to the tumor location, where
they bind to the cells. The metal nanoshells can serve both for
the imaging and the thermal ablation of the cancer cells [49] as
they both scatter and strongly absorb the light.

2.2.2. Quasi-2D shell as a multilayer system
With respect to the Wigner–Seitz radius of the multielectron

bubbles described earlier, the Wigner–Seitz radius of the
nanoshell system is much smaller. Whereas in MEBs a single
radial mode is occupied, in nanoshells more than one band can
be occupied. If we consider the radial confinement as a square
well potential with thickness d, the bottom of the bands are
given by

En =
h̄2 π2

2med2 n2.

Within one band, we have the usual angular momentum
spectrum, so that

En,`,m =
h̄2 π2

2med2 n2
+

h̄2

2me R2 `(`+ 1). (18)

How many of the bands with different n will be occupied for
total number of electrons N? For every level n we fill the (`,m)
levels up to Fermi energy EF , corresponding to the orbital
angular momentum L(n)F . The number of electrons sitting in
this nth band is (the approximation might not be valid in some
Fig. 14. Transmission electron microscope images of nanoshells in various states of formation, from Ref. [43].
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bands, if L(n)F is not large enough).

N (n)
= 2(L(n)F + 1)2 ≈ 2(L(n)F )2.

L(n)F should be such that EF is the same over all n bands. Thus:

EF =
h̄2 π2

2med2 n2
+

h̄2 L(n)F (L(n)F + 1)
2me R2

⇒ L(n)F ≈

√
2me R2

h̄2 EF −
π2 R2

d2 n2.

The total number of electrons in the nanoshell will be:

N =

nF∑
n=0

N (n)
= 2

nF∑
n=0

(
2m R2

h̄2 EF −
π2 R2

d2 n2
)

= nF
2m R2

h̄2 EF −
2π2 R2

d2
1
6

(
2n3

F + 3n2
F + nF

)
here nF is the highest occupied band at zero temperature, so it
corresponds to the number of occupied bands. The relationship
between EF and nF is

EF =
h̄2 π2

2m

(
n2

F
d2 +

L(nF )
F (L(nF )

F + 1)
π2 R2

)
≈

h̄2 π2

2md2 n2
F .

If we neglect the second term in parentheses, we can make
an error in nF of at most 1. For large nF we also neglect the
quadratic and linear term in expression for N ,

N ≈ nF
2m R2

h̄2
h̄2 π2

2md2 n2
F −

2π2 R2

d2
1
6

2n3
F

⇒ nF ≈
3

√
3d2 N
π2 R2 . (19)

The amount of free electrons in a shell of thickness d and radius
R is

N = nu4π2 R2d
a3

where nu is the number of atoms per unit cell and a is the size
of the unit cell. Then we simplify the expression:

nF ≈
3

√
3d2nu · 4d

a3 =
3
√

12nu
d
a
.

Both gold and silver have 1s electron in the valence band and
crystallize in the fcc crystal structure, with nu = 2 atoms per
unit cell. The values of unit cell vectors are aAu = 0.40782 nm
and aAg = 0.40853 nm. In a gold shell with R = 60 nm and
d = 5 nm there are 2.2 107 electrons. In this case nF = 36
different radial states will be occupied. For d = 0.5 nm nF = 4
radial states are occupied and for d = 20 nm 145 states with
different n will be used.

A first approximation to metal nanoshells, by Prodan and
Nordlander [50], takes into account only the (coupled) surface
plasmon branches of the inner and outer surface of the
nanoshell. The optical response of the nanoshell is shown by
Prodan et al. [47] to be determined by the interaction of the
plasmons on these surfaces, leading to mixing, splitting and
shifts of the plasmon energies for single spherical surfaces.

In the next section we review the dielectric response
(including plasmons) for a single spherical, two-dimensional
electron gas and the magnetic field effects on these. Multilayer
surfaces, such as a four-layer concentric nanoshell can be
described by the interaction of independent layers.

3. Electric properties of the spherical two-dimensional
electron system

3.1. Basic properties and phases

Nano-objects of a spherical shape are the subject of intense
experimental and theoretical work. In particular, metallic
shell structures and multielectron bubbles are of considerable
theoretical and experimental interest because of their interesting
electronic and optical properties. In recent years, it has
been possible to manufacture spherical shaped nanostructures
ranging from fullerene size to nanosized objects such as
SiO2 balls in opals [51], nanoshells [42] and multielectron
bubbles [5,12]. For multielectron bubbles, the electrons move
freely in the direction tangential to the spherical helium
surface. The electrons therefore effectively form a spherical
two-dimensional electron gas (S2DEG). Also, a S2DEG can be
realized in charged droplets [52] and in doped semiconductor
particles if carriers accumulate in a surface layer [53].

Density functional calculations for the multielectron
bubbles [14,15] indicate that the electrons inside the bubble are
not spread out homogeneously, but instead form a thin spherical
layer with thickness δ � R and radius about R − δ, anchored
to the surface of the helium, with a binding energy of the order
of several kelvins [14,54]. The electrons are free to move in
the directions tangential to the spherical helium surface, so that
in effect they form a spherical two-dimensional electron gas
(S2DEG).

Our present analysis of the spherical two-dimensional
electron gas, albeit motivated by the study of multielectron
bubbles, is equally relevant from a fundamental point of view:
it is the logical next step to take after analysis of the flat two-
dimensional electron gas, a topic that keeps drawing renewed
attention.

To describe the electrons on a sphere, it is natural to use
spherical coordinates r = {r, θ, φ}. We will assume that the
electrons are strongly confined along the radial direction, but
free to move along the directions tangential to the surface.
This corresponds to the assumption that the single-particle wave
function describing a free electron can be factorized in a radial
wave function and an angular part. The radial wave function
is strongly localized in a shell of thickness d around r = R
where R is the radius of the two-dimensional shell. As long
as d � R, the assumption that the radial part of the wave
function can be factored out of the total wave function is good.
For multielectron bubbles, typically R ∼ 1 µm while d ∼ 1 nm.

All the electrons on the shell have the same radial wave
function, and will differ only in the angular part. If we neglect
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interaction (to be included in the next section), the angular wave
functions have to be eigenfunctions of

∆Ω =
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2 (20)

the angular part of the Laplacian in spherical coordinates. These
eigenfunctions are the spherical harmonics, and we get for the
single-particle wave functions

−
h̄2

2me R2 ∆ΩY`m(Ω) = E`mY`m(Ω) (21)

with

E`m =
h̄2 `(`+ 1)

2me R2 . (22)

The single-particle basis is characterized by the angular
momentum quantum numbers {`,m}. Note that for a flat
two-dimensional electron gas, the single-particle electron
wave functions would be plane waves ϕk(Ω) = eik·r/

√
L

characterized by the quantum numbers k = {kx , ky} with
kx , ky = nπ/L where L is the length of the system and n is
an integer. For the sphere, the (non-interacting) single-particle
wave functions ϕ`,m(Ω) = Y`,m(Ω) are labeled by the quantum
numbers {`,m} where ` is a non-negative integer and m is an
integer in the range {−`, . . . , `}. These single-particle energy
levels are degenerate for ` > 0, and have a degeneracy of 2`+1.
For a very large bubble, large ` modes can be easily populated.
Spherical harmonics with large ` are locally isomorphic with
plane waves with k = `/R, so that in the limit R → ∞ we
retrieve the flat 2DEG result for the energy of the single-particle
levels, (h̄k)2/(2me).

An ideal (non-interacting) electron gas on a sphere can be
described by a Fermi sea where the eigenfunctions are spherical
harmonics Y`m . The N electrons fill up the single-particle levels
up to a Fermi level L F that satisfies

N = 2
L F∑
`=1

(2`+ 1) = 2(L F + 1)2 (23)

→ L F =

⌈√
N/2 − 1

⌉
. (24)

where dxe means the smallest integer larger than or equal to x .
The factor 2 comes from the spin up/spin down degeneracy for
the electrons. For electron bubbles with 106–108 electrons, this
means L F ≈ 103–104. An interesting property of the S2DEG is
its Fermi energy EF as a function of the number of particles. As
the number of particles increases, more single-particle energy
levels have to be filled up (increasing EF ), but at the same time
the bubble radius will also increase (decreasing EF ). The Fermi
energy is (for

√
N/2 � 1),

EF =
h̄2 L F (L F + 1)

2me R2 (25)

=
h̄2 N
4me

1
4

3

√
N 2e2

π2εvεσ

−2
= N−1/3 4 h̄2

me

(
π2εvεσ

e2

)2/3

. (26)

This rather surprising result shows that the increase of bubble
radius with increasing N wins over the level filling, so that the
Fermi energy in this system actually decreases with increasing
N . Putting in the parameters, we arrive at

EF = N−1/3
× 2.29 × 10−20J = N−1/3

× 143 meV. (27)

For N = 106 the Fermi energy is 16 K, for N = 108

we find EF = 3.57 K. This means that smaller bubbles
(106–107 electrons) will be in the degenerate Fermi gas
regime. Intermediate bubbles (108 electrons) will be around
the quantum degeneracy point, and for large bubbles (109

electrons) the quantum degeneracy will have been partially
lifted. This is in contrast with metals at room temperature,
which are deep in the quantum degenerate regime.

Different phases of the electronic system are possible due to

• the Coulomb interaction and to
• the interaction of the electrons with modes of oscillation

such as ripplons in multielectron bubbles or (interface)
phonons in nanoshells.

On a flat helium surface, the Coulomb interaction can lead
to the formation of a Wigner lattice of electrons rather than a
2D electron gas [8]. This phase can also appear for a spherical
system, but the topology introduces defects in the lattice.
Whereas on a flat surface, a defect free triangular lattice can be
formed where every electron has six neighbors, on a spherical
surface there need to be exactly twelve sites where electrons
have only five neighbors. More defects can be formed, but
for every additional electron with only five neighbors, another
electron will have seven neighbors. The fivefold and sevenfold
site defects can either be bound together, or hop around freely
— this additional order parameter introduces nematic phases
that can be distinguished in the Wigner lattice on a spherical
surface [25,55].

The electron–ripplon interaction (or electron phonon
interaction) leads to polaron formation when the electron
and the local deformation of the helium surface (or the
crystal lattice) together form a quasiparticle [56,57]. The
electron–ripplon coupling on a curved surface can be much
stronger than on a flat helium surface, and this can strongly
localize the electron wave function in a self-induced trapping
potential, leading to the formation of a Wigner lattice of
ripplonic polarons [58]. Finally, the exchange of ripplons
(similar to the exchange of phonons) between electrons leads
to an attractive effective interaction that may result in strong
pairing correlations and superconductivity [59].

In the remainder of this review, we will investigate these
different phases and how they differ from the analogous phases
on the flat surface. Of course, the electron liquid is still a
possible phase, too. It competes with the Wigner crystallized
phase, and can be described in second quantization based
on the spherical harmonics, which are introduced in the next
subsection (cf. Ref. [60]).
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3.2. Green’s function formalism for a sphere

The many-body theory, and especially the second quanti-
zation formalism, commonly treats flat spaces of one, two or
three dimensions, using decompositions in plane waves. For
a spherical surface the spherical harmonics are better suited.
First, some notation conventions are listed. Each time, also the
familiar plane wave counterpart is listed.

• The position operators r j = {x j , y j } ( j = 1, . . . , N ) are
replaced by the spherical angle operator Ω j = {θ j , φ j }

giving the position on the spherical surface.
• The unitary operator in flat space can be decomposed as 1 =∫

dr |r〉 〈r| where 〈r|ϕ〉 = ϕ(r); whereas on the spherical
surface the unitary operator can be decomposed as

1 =

∫
dΩ |Ω〉 〈Ω | =

∫ π

0
dθ
∫ 2π

0
dφ sin θ |Ω〉 〈Ω | , (28)

where 〈Ω |ϕ〉 = Y`m(Ω).
• The second-quantized operators ĉ+

`,m and ĉ`,m are intro-
duced; they respectively create and annihilate an elec-
tron in the single-particle state with wave function Y`m .
These operators satisfy Fermionic anticommutation rela-
tions

[̂
c`,m, ĉ+

`′,m′

]
+

= δ`,`′δm,m′ and are the spherical coun-

terparts of the plane wave operators ĉ+

k and ĉk which respec-
tively create and annihilate an electron in the single-particle
state ϕk.

3.2.1. Kinetic energy
A one-particle operator on the many-body system is an

operator can be written as:

Â =

N∑
j=1

Â(Ω j ). (29)

In second quantization based on a set of single-particle wave
functions ϕ`m(Ω), this operator can be written as

Â =

∞∑
`=0

∑̀
m=−`

∞∑
`′=0

∑̀
m′=−`

〈
`m

∣∣ Â∣∣ `′m′
〉
ĉ+

`m ĉ`′m′ . (30)

This can be applied to the kinetic energy operator T̂

T̂ =

N∑
j=1

− h̄2

2me R2 ∆Ω j . (31)

Its expectation value with respect to spherical harmonics is

〈
`m

∣∣T̂ ∣∣ `′m′
〉
=

∫
dΩY ∗

`m(Ω)
− h̄2

2me R2 ∆ΩY`′m′(Ω) (32)

=
h̄2 `(`+ 1)

2me R2

∫
dΩY`m(Ω)Y`′m′(Ω) (33)

=
h̄2 `(`+ 1)

2me R2 δ`,`′δm,m′ . (34)

So that its second-quantized form is
T̂ =

∞∑
`=0

∑̀
m=−`

h̄2 `(`+ 1)
2me R2 ĉ+

`m ĉ`m . (35)

3.2.2. Coulomb interaction
In first quantization, the Coulomb interaction can be written

as

Ĥcoul =
1
2

N∑
j=1

N∑
j ′ 6= j=1

e2

4πε
1

|̂r j − r̂ j ′ |
, (36)

where r j and r j ′ are the position operators of electrons j and
j ′ — the electrons are restricted to a spherical shell of radius R
and negligible width. The Coulomb interaction is ideally suited
to rewrite in spherical harmonics:

Ĥcoul =
1
2

N∑
j=1

N∑
j ′ 6= j=1

e2

4πε
1
R

∞∑
`=0

∑̀
m=−`

4π
2`+ 1

× Y`,m(Ω̂ j )Y ∗

`,m(Ω̂ j ′). (37)

The advantage of the Coulomb interaction in the spherical
representation is that the Ω̂ j and Ω̂ j ′ are factorized. The
standard second-quantized form of this operator is

Ĥcoul =

∑
`1,m1

∑
`2,m2

∑
`3,m3

∑
`4,m4

〈V2〉 ĉ+

`4,m4
ĉ+

`3,m3
ĉ`2,m2 ĉ`1,m1 (38)

with 〈V2〉

=
e2

2ε
1
R

∞∑
`=0

∑̀
m=−`

∫
dΩ

∫
dΩ ′Y ∗

`4,m4
(Ω)Y ∗

`3,m3
(Ω ′)

×
Y`,m(Ω)Y ∗

`,m(Ω
′)

2`+ 1
Y`2,m2(Ω

′)Y`1,m1(Ω). (39)

The double integration can be factorized:

〈V2〉 =
e2

2ε
1
R

∞∑
`=0

∑̀
m=−`

1
2`+ 1

×

[∫
dΩY ∗

`4,m4
(Ω)Y`,m(Ω)Y`1,m1(Ω)

]
×

[∫
dΩ ′Y ∗

`3,m3
(Ω ′)Y ∗

`,m(Ω
′)Y`2,m2(Ω

′)

]
, (40)

so that the Coulomb part of the Hamiltonian can be written as

Ĥcoul =
e2

2εR

∑
`1,m1

∑
`2,m2

∞∑
`=0

∑̀
m=−`

1
2`+ 1

×

∑
`4,m4

∫
dΩY ∗

`4,m4
(Ω)Y`,m(Ω)Y`1,m1(Ω )̂c

+

`4,m4

×

∑
`3,m3

∫
dΩ ′Y ∗

`3,m3
(Ω ′)Y ∗

`,m(Ω
′)Y`2,m2(Ω

′)̂c+

`3,m3

× ĉ`2,m2 ĉ`1,m1 . (41)

Integrals over triple products of spherical harmonics appear
in this expression. A double product would be easy to integrate
with the orthonormality relation
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∫
dΩY j,m(Ω)Y ∗

j ′,m′(Ω) = δ j, j ′δm,m′ . (42)

Reducing the triple product to a double product relies on the
addition of angular momenta. Two spherical harmonics can be
combined into a sum of spherical harmonics through:

Y j1,m1(Ω)Y j2,m2(Ω)

=

j1+ j2∑
j=| j1− j2|

j∑
m=− j

√
(2 j1 + 1)(2 j2 + 1)

4π(2 j + 1)
〈 j1, 0; j2, 0| j, 0〉

× 〈 j1,m1; j2,m2| j,m〉 Y j,m(Ω). (43)

From this, it also follows that Y ∗

j1,m1
(Ω)Y j2,m2(Ω) = (−1)m1

Y j1,−m1(Ω)Y j2,m2(Ω). In expression (43), 〈 j1,m1; j2,m2| j,m〉

is the Clebsch–Gordan coefficient for combining the an-
gular momentum states | j1,m1〉 and | j2,m2〉 into the
angular momentum state | j,m〉, sometimes denoted as
C( j1,m1; j2,m2| j,m). The complex conjugate expression can
be found by replacing all Y ’s by Y ∗ since the Clebsch–Gordan
coefficients are real. The addition rule of spherical harmonics
is more restrictive than the addition rule of angular momenta: it
contains the extra coefficient 〈 j1, 0; j2, 0| j, 0〉 which is differ-
ent from zero only if j1 + j2 − j is even. The combination of an-
gular momenta of magnitude j1 and j2 can lead to all values of
angular momentum between | j1 − j2| and j1 + j2, but the prod-
uct of spherical harmonics of order j1 and j2 lead to spherical
harmonics of order j1+ j2, j1+ j2−2, j1+ j2−4, . . . , | j1− j2|.
This insures that the parity of all terms on the right hand
side (−1) j equals the parity of all terms on the left hand side
(−1) j1+ j2 . The addition rule (43) allows to perform the integral
of the triple product of Y ’s, combining the ` and `1 spherical
harmonics.∫

dΩY`,m(Ω)Y ∗

`2,m2
(Ω)Y`1,m1(Ω)

=

`+`1∑
`′=|`−`1|

`′∑
m′=−`′

√
(2`+ 1)(2`1 + 1)

4π(2`′ + 1)

×
〈
`, 0; `1, 0|`′, 0

〉 〈
`,m; `1,m1|`

′,m′
〉

×

∫
dΩY`′,m′(Ω)Y ∗

`2,m2
(Ω). (44)

The remaining integral over the spherical angle Ω gives
δ`′,`2δm′,m2 .

To draw the analogy with the plane wave density operator,
we introduce the following notation:

ĉ+

(`1,m1)⊗(`,m)
=

`+`1∑
`′=|`−`1|

`′∑
m′=−`′

√
(2`+ 1)(2`1 + 1)

4π(2`′ + 1)

×
〈
`, 0; `1, 0|`′, 0

〉
×
〈
`,m; `1,m1|`

′,m′
〉
ĉ+

`′m′ . (45)

The operator ĉ+

(`1,m1)⊗(`,m)
creates an electron in a state which

results from the combination of a spherical (`1,m1) state and a
spherical (`,m) state, as governed by the spherical harmonics
addition formula (43).
Fig. 15. The physical process described by Ĥcoul (from Ref. [60]).

Now we return to (41). We combine (44) and (45) to find∑
`4,m4

∫
dΩY ∗

`4,m4
(Ω)Y`,m(Ω)Y`1,m1(Ω )̂c

+

`4,m4

= ĉ+

(`,m)⊗(`1,m1)
. (46)

and∑
`3,m3

∫
dΩ ′Y ∗

`3,m3
(Ω ′)Y ∗

`,m(Ω
′)Y`2,m2(Ω

′)̂c+

`3,m3

= (−1)m ĉ+

(`,−m)⊗(`2,m2)
. (47)

The notation for the creation operator of a combination of
spherical states is simplifying the expression. We find for the
Coulomb part of the Hamiltonian

Ĥcoul =
e2

2εR

∑
`1,m1

∑
`2,m2

∑
`,m

(−1)m

2`+ 1

× ĉ+

(`1,m1)⊗(`,m)
ĉ+

(`2,m2)⊗(`,−m)ĉ`2,m2 ĉ`1,m1 . (48)

There is a nice analogy with the plane wave expansion

Ĥplane wave
coul =

∑
k1

∑
k2

∑
q
v(q)̂c+

k1+qĉ+

k2−qĉk2 ĉk1 , (49)

where v(q) is the (ill-behaved) Fourier transform of the
Coulomb interaction. The analogy is illustrated in Fig. 15. The
electrons interact through the exchange of a virtual photon,
which for a flat surface transfers momentum q and on a sphere
transfers angular momentum j .

3.2.3. Electron Green’s function
The one-fermion propagator; or Green’s function is defined

at T = 0 through

G
(
`′,m′

; t |`,m, 0
)

= −i
〈
Ψ0
∣∣T [{c`′m′(t)c+

`m(0)
}]∣∣Ψ0

〉
. (50)

For t > 0 this is the amplitude (with respect to the ground state)
to create a single-particle excitation in state `m at time 0, and
detect it in state `′m′ at time t . In this expression T is the time
ordering operator which puts the operator acting at the later
times to the left. The ground state of the system is represented
by the many-body wave function |Ψ0〉.
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The calculation is straightforward and gives

iG0
(
`′,m′

; t |`,m, 0
)

= δ`,`′δm,m′ exp(−iE`m t/h̄)

×

[
θ(` > L F )θ(t > 0)

−θ(` 6 L F )θ(t < 0)

]
. (51)

The frequency dependent Green’s function is found after
Fourier transformation:

G0
(
`′,m′

; `,m|ω
)

=

∫
∞

−∞

eiωt G
(
`′,m′

; t |`,m, 0
)

dt (52)

= δ`,`′δm,m′

{
1 − n(`m)
ω − E`m + iη

+
n(`m)

ω − E`m − iη

}
. (53)

Here η is an infinitesimal positive quantity and

n(`,m) =
1

1 + exp[(E`m − µ)/(kBT )]
, (54)

is the Fermi–Dirac distribution where µ is the chemical
potential, fixed by the condition

∑
`,m n(`,m) = N where N

is the number of electrons in the bubble. As discussed earlier,
it might be necessary to consider temperatures comparable or
larger than the Fermi temperature, a regime that is usually not
accessible in bulk metals.

3.3. Hartree–Fock treatment

We described the spherical 2D electron gas (S2DEG) using
a second quantization operator formalism where the operators
ĉ+

`m and ĉ`m create and annihilate an electron in the single-
particle state given by the spherical harmonic Y`m(Ω).

For the spin mixture, we use operators ĉ+

`m,σ and ĉ`m,σ that
create and annihilate an electron in the single-particle state
given by Y`m(Ω)η(σ ) where η is the spinor for spin up σ = ↑

or spin down σ = ↓. The Hamiltonian of the electron gas is in
that case given by

Ĥ =

∞∑
`=0

∑̀
m=−`

∑
σ

h̄2 `(`+ 1)
2me R2 ĉ+

`m,σ ĉ`m,σ

+
e2

2εvR

∑
`,m

(−1)m

2`+ 1

×

∑
`1,m1,σ

∑
`2,m2,σ

ĉ+

(`1,m1)⊗(`,m),σ
ĉ+

(`2,m2)⊗(`,−m),σ ′

× ĉ(`2,m2),σ ′ ĉ(`1,m1),σ , (55)

where

ĉ+

(`1,m1)⊗(`,m),σ

=

∞∑
`′=0

`′∑
m′=−`′

[∫
dΩY`,m(Ω)Y ∗

`′,m′(Ω)Y`1,m1(Ω)
]

ĉ+

(`′m′),σ

(56)

=

`+`1∑
`′=|`−`1|

`′∑
m′=−`′

√
(2`+ 1)(2`1 + 1)

4π(2`′ + 1)

〈
`, 0; `1, 0|`′, 0

〉
×
〈
`,m; `1,m1|`

′,m′
〉
ĉ+

(`′,m′),σ
(57)
creates an electron in the single-particle state resulting from
the multiplication of the angular momentum states (`1,m1) and
(`,m).

3.3.1. Kinetic energy
We now assume that the ground state

∣∣N↑N↓

〉
consists of

a Fermi triangle filled up to the Fermi levels L↑ for the spin
ups and L↓ for the spin downs. The number of spin up and
spin down electrons fix these levels: N↑,↓ =

(
L↑,↓ + 1

)2. Then
we evaluate the energy of this system by treating the Coulomb
interaction as a perturbation. The zeroth-order contribution is

E0 = Ekin

=
h̄2

2me R2


L F,↑∑
`=0

∑̀
m=−`

`(`+ 1)+

L F,↓∑
`=0

∑̀
m=−`

`(`+ 1)


=

h̄
2me R2

×

{
L↑

(
L↑ + 2

) (
L↑ + 1

)2
2

+
L↓

(
L↓ + 2

) (
L↓ + 1

)2
2

}
. (58)

For N � 1 we have

E0 ≈
h̄2

4me R2 (N
2
↑

+ N 2
↓
). (59)

When the kinetic energy dominates, it is energetically
advantageous to have an equal number of spin up and spin down
electrons

3.3.2. Direct Coulomb energy
The first-order correction due to the Coulomb interaction is

E1 =
e2

2εvR

∑
`,m

(−1)m

2`+ 1

∑
`1,m1,σ

∑
`2,m2,σ ′

×
〈
N↑N↓

∣∣ ĉ+

(`1,m1)⊗(`,m),σ
ĉ+

(`2,m2)⊗(`,−m),σ ′

× ĉ(`2,m2),σ ′ ĉ(`1,m1),σ

∣∣N↑N↓

〉
. (60)

The expectation value will differ from zero only when the
creation/annihilation operators are paired up. There are two
ways of pairing up the operators, giving two terms, E1 =

ED + EX . We obtain the direct Coulomb contribution (the
Hartree term) by pairing up as follows:

ED =
e2

2εvR

∑
`,m

1
2`+ 1

∑
`1,m1,σ

∑
`2,m2,σ ′

×

〈
N↑N↓

∣∣∣ĉ+

(`1,m1)⊗(`,m),σ
ĉ(`1,m1),σ

∣∣∣ N↑N↓

〉
(61)

×

〈
N↑N↓

∣∣∣(−1)m ĉ+

(`2,m2)⊗(`,−m),σ ′ ĉ(`2,m2),σ ′

∣∣∣ N↑N↓

〉
.

(62)

Filling in expression for the creation operator, we find for the
first factor
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〈
N↑N↓

∣∣∣ĉ+

(`1,m1)⊗(`,m),σ
ĉ(`1,m1),σ

∣∣∣ N↑N↓

〉
=

∞∑
`′=0

`′∑
m′=−`′

[∫
dΩY`,m(Ω)Y ∗

`′,m′(Ω)Y`1,m1(Ω)
]

×

〈
N↑N↓

∣∣∣̂c+

(`′m′),σ
ĉ(`1,m1),σ

∣∣∣ N↑N↓

〉
, (63)

which will differ from zero only if (`′,m′) = (`1,m1) and
`1 6 Lσ . Hence we have〈
N↑N↓

∣∣∣ĉ+

(`1,m1)⊗(`,m),σ
ĉ(`1,m1),σ

∣∣∣ N↑N↓

〉
= Θ(`1 6 Lσ )×

∫
dΩY`,m(Ω)Y ∗

`1,m1
(Ω)Y`1,m1(Ω),

and analogously for the second factor〈
N↑N↓

∣∣∣(−1)m ĉ+

(`2,m2)⊗(`,−m),σ ′ ĉ(`2,m2),σ ′

∣∣∣ N↑N↓

〉
= Θ(`2 6 Lσ ′)×

∫
dΩ Y ∗

`,m(Ω)Y
∗

`2,m2
(Ω)Y`2,m2(Ω). (64)

so that

ED =
e2

2εvR

∑
`,m

1
2`+ 1

∑
σ,σ ′

∑
`16Lσ ,m1

∑
`26Lσ ′ ,m2

×

∫
dΩY`,m(Ω)Y ∗

`1,m1
(Ω)Y`1,m1(Ω)

×

∫
dΩ ′Y ∗

`,m(Ω
′)Y ∗

`2,m2
(Ω ′)Y`2,m2(Ω

′). (65)

The first integral is∫
dΩY`,m(Ω)Y`1,m1(Ω)Y

∗

`1,m1
(Ω)

=

√
2`+ 1

4π
〈`, 0; `1, 0|`1, 0〉 〈`,m; `1,m1|`1,m1〉 . (66)

The Clebsch–Gordan coefficients can only be satisfied for m =

0. We then obtain for the direct contribution:

ED =
e2

8πεvR

∑
σ,σ ′

×

∑
`16Lσ ,m1

∑
`26Lσ ′ ,m2

×

∑
`>0

{〈`, 0; `1, 0|`1, 0〉 〈`, 0; `1,m1|`1,m1〉

× 〈`, 0; `2, 0|`2, 0〉 〈`, 0; `2,m2|`2,m2〉} . (67)

The sum over ` is restricted to ` < max[2`1, 2`2] and ` > 0.
Some discussion is in order. In the flat electron gas, the

direct Coulomb contribution is characterized by a transferred
momentum that changes wave vector k into itself. The only
value of the transferred momentum with which this can be
achieved is obviously q = 0, since only with this choice we
can satisfy k + q = k. However, the q = 0 contribution
is completely compensated by the positive background in the
jellium model, and one is left with only exchange.

In the S2DEG, the direct Coulomb contribution is
characterized by a transferred angular momentum that changes
angular momentum state |`,m〉 into itself. So, we look
for the angular momentum states

∣∣`′,m′
〉

that can satisfy
〈
(`,m)⊗ (`′,m′)|`,m

〉
6= 0. Any angular momentum state∣∣`′, 0

〉
(with m′

= 0 and `′ 6 2`) can satisfy this relation, not
only the |0, 0〉 state! Indeed, after adding together an angular
momentum state |`,m〉 with

∣∣`′, 0
〉

the resulting state will for
any value `′ have a non-zero amplitude in the original state
|`,m〉.

What takes on the role of the jellium in the S2DEG? There
is no positive background any more, but nevertheless, the
contribution of the transfer of angular momentum |0, 0〉 will
not appear in the sum. This particular mode is the s-wave
contribution to the direct Coulomb interaction (the part of the
Coulomb interaction energy that only depends on R) and that
is precisely counteracted by the surface tension term in order
to achieve an equilibrium radius for the MEB.

We note that for the S2DEG, there are still terms left in the
direct Coulomb interaction after the removal of the `′ = 0 mode
by the background (the surface tension term): namely the term
involving a transfer of momentum

∣∣`′, 0
〉
with 0 < `′ < 2`. But,

we can use that

∀`′ 6= 0 :

∑̀
m=−`

〈
`′, 0; `,m|`,m

〉
= 0 (68)

to prove that nevertheless the direct Coulomb term vanishes.
Indeed, the remaining terms have Clebsch–Gordan coefficients
that cancel each other out. Just as was the case for the flat
2DEG, we find that in the S2DEG there is no direct Coulomb
contribution.

3.3.3. Exchange energy
The exchange contribution (the Fock term) arises from the

second way of pairing up the electrons, namely as

EX = −
e2

2εvR

∑
`,m

1
2`+ 1

×

∑
`1,m1,σ

∑
`2,m2,σ ′

〈
N↑N↓

∣∣∣ĉ+

(`1,m1)⊗(`,m),σ
ĉ(`2,m2),σ ′

∣∣∣ N↑N↓

〉
×

〈
N↑N↓

∣∣∣(−1)m ĉ+

(`2,m2)⊗(`,−m),σ ′ ĉ(`1,m1),σ

∣∣∣ N↑N↓

〉
.

(69)

The minus sign appears because of the reordering of the
fermionic operators. The first factor is〈

N↑N↓

∣∣∣ĉ+

(`1,m1)⊗(`,m),σ
ĉ(`2,m2),σ ′

∣∣∣ N↑N↓

〉
=

∞∑
`′=0

`′∑
m′=−`′

[∫
dΩY`,m(Ω)Y ∗

`′,m′(Ω)Y`1,m1(Ω)
]

×

〈
N↑N↓

∣∣∣̂c+

(`′m′),σ
ĉ(`2,m2),σ ′

∣∣∣ N↑N↓

〉
δσσ ′ . (70)

The expectation value in the right hand side of the above ex-
pression is zero unless `′ = `2 6 Lσ and m′

= m2. So we find〈
N↑N↓

∣∣∣ĉ+

(`1,m1)⊗(`,m),σ
ĉ(`2,m2),σ ′

∣∣∣ N↑N↓

〉
= δσσ ′

∫
dΩY`,m(Ω)Y ∗

`2,m2
(Ω)Y`1,m1(Ω)Θ(`2 6 Lσ ).

(71)
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Similarly, for the second factor we have〈
N↑N↓

∣∣∣(−1)m ĉ+

(`2,m2)⊗(`,−m),σ ′ ĉ(`1,m1),σ

∣∣∣ N↑N↓

〉
=

∞∑
`′=0

`′∑
m′=−`′

[∫
dΩ ′Y ∗

`′,m′(Ω ′)Y ∗

`,m(Ω
′)Y`2,m2(Ω

′)

]
×

〈
N↑N↓

∣∣∣̂c+

`′,m′ ĉ(`1,m1),σ

∣∣∣ N↑N↓

〉
δσσ ′ (72)

= δσσ ′

∫
dΩ ′Y ∗

`1,m1
(Ω ′)Y ∗

`,m(Ω
′)

× Y`2,m2(Ω
′)Θ(`1 6 Lσ ). (73)

Thus,

EX = −
e2

2εvR

∑
`

1
2`+ 1

∑
σ

∑
`1,m1

∑
`2,m2

∣∣∣∣∫ dΩY`,m2−m1(Ω)

× Y ∗

`2,m2
(Ω)Y`1,m1(Ω)

∣∣∣∣2 . (74)

The integrations yield Clebsch–Gordan coefficients:

EX = −
e2

8πεvR

×

∑
`>0

∑
σ

∑
`16Lσ ,m1

∑
`26Lσ ,m2

2`1 + 1
2`2 + 1

|〈`, 0; `1, 0|`2, 0〉

× 〈`,m2 − m1; `1,m1|`2,m2〉|
2. (75)

Hence, we have for the total energy the expression

E =
h̄2

2me R2

∑
σ

Lσ (Lσ + 2) (Lσ + 1)2

2

−
e2

8πεvR

∑
σ

∑
`>0

`16Lσ∑
`1,m1

`26Lσ∑
`2,m2

2`1 + 1
2`2 + 1

|〈`, 0; `1, 0|`2, 0〉

× 〈`,m2 − m1; `1,m1|`2,m2〉|
2. (76)

3.3.4. Total energy
Define

ΓX (L F ) =

`16L F∑
`1,m1

`26L F∑
`2,m2

∑
`>0

2`1 + 1
2`2 + 1

× |〈`, 0; `1, 0|`2, 0〉

× 〈`,m2 − m1; `1,m1|`2,m2〉|
2 (77)

and

ΓK(L F ) =
L F (L F + 2) (L F + 1)2

2
. (78)

Using these ‘geometrical’ functions, which depend only on the
Fermi levels of spin up and spin down electrons and are given
by a sum over a bunch of Clebsch–Gordan coefficients, we can
write the energy as

E =
h̄2

2me R2

[
ΓK(L↑)+ ΓK(L↓)

]

−
e2

8πεvR

[
ΓX (L↑)+ ΓX (L↓)

]
. (79)

We can now proceed to express the energy as a function only
of the Fermi levels and one dimensionless parameter which
expresses the bubble radius in units of the Bohr radius. We find

E(r, L↑, L↓) =
h̄2

2me R2

×

{
ΓK(L↑)+ ΓK(L↓)−

R
aB

[
ΓX (L↑)+ ΓX (L↓)

]}
. (80)

Thus, in expression (80) the energy is given in units
h̄2 /(2me R2), and is fully determined by R and the Fermi lev-
els. Both ΓK and ΓX increase monotonically and concavely as
a function of their argument Lσ . The geometric factor for the
kinetic energy is larger than that for the exchange contribution,
but after multiplication with R, the exchange contribution factor
can become stronger. Indeed, the kinetic energy rises as L4

σ /2
whereas the exchange contribution rises as λL3

σ . This is consis-
tent with the limit of a flat two-dimensional electron gas, where
the kinetic energy rises as k4

F and the exchange energy rises as
k3

F . It is also clear that ΓK/ΓX increases with increasing Lσ .
When the exchange contribution dominates and spin flip

transitions are possible, the electron system on the sphere will
tend to polarize. Since the electrons carry a magnetic moment
through their spin, this will magnetize the electron system —
it is the analogue of the Bloch instability in three dimensions.
This instability may be removed or shifted when the magnetic
field is taken into account properly, which we will do in
Section 3.5.

3.4. Dielectric response

We want to find the response of the electron gas on a probe
that couples to the density. For this purpose, we introduce the
density operator in its spherical decomposition:

ρ̂e(`,m) =

∫
dΩY`,m(Ω )̂ne(Ω) (81)

with

n̂e(Ω) =

N∑
j=1

δ(Ω − Ω̂ j ),

where Ω̂ j is the position operator of electron j . In second
quantization, this becomes

n̂e(Ω) =

∑
`,m

∑
`′,m′

Y ∗

`′,m′(Ω)Y`,m(Ω )̂c+

`′m′ ĉ`m . (82)

so that

ρ̂e(`,m) =

∑
`1,m1

∑
`2,m2

[∫
dΩY`,m(Ω)

× Y ∗

`2,m2
(Ω)Y`1,m1(Ω)

]
ĉ+

`2m2
ĉ`1m1 . (83)
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Again we encounter the triple product of operators (44), so that
with (45):

ρ̂e(`,m) =

∞∑
`′=0

`′∑
m′=−`′

ĉ+

(`′,m′)⊗(`,m)ĉ`′,m′ . (84)

This allows to rewrite the Hamiltonian of the electron gas as

Ĥ =

∞∑
`=0

∑̀
m=−`

h̄2 `(`+ 1)
2me R2 ĉ+

`m ĉ`m

+
e2

2εR

∞∑
`=0

∑̀
m=−`

1
2`+ 1

×
[
ρ̂e(`,m)ρ̂+

e (`,m)−Aδ(` = 0)
]

(85)

with

A =

L F∑
`1=0

`1∑
m1=−`1

2`1∑
`=0

[〈`, 0; `1, 0|`1, 0〉

× 〈`, 0; `1,m1|`1,m1〉]2 . (86)

The Coulomb part, rewritten with the density operator, is again
analogous to the result for a flat two-dimensional electron gas:

Ĥplane wave
coul =

∑
k1

∑
k2

∑
q
v(q)

[
ρ̂qρ̂

+
q − Nδ(q = 0)

]
. (87)

To investigate the response of this system, we introduce an
external charge density (e.g. from an ion) in the S2DEG. On the
spherical surface, this external charge can be decomposed as

ρext(Ω , t) =

∫
∞

−∞

dω
∑
`,m

ρext(`,m;ω)Y ∗

`m(Ω)e
−iωt . (88)

The Coulomb interaction between the external charge and the
S2DEG can be calculated analogously to our previous analysis:

Ĥperturb(t) =

∞∑
`=0

∑̀
m=−`

V`ρ̂e(`,m; t)ρ∗
ext(`,m; t)+ c.c. (89)

with V` =
e2

2εR
1

2`+ 1
. (90)

The perturbation Hamiltonian is Hermitian by virtue of the
complex conjugate term. In linear response theory (valid for
a weak perturbation), each spherical component of this prob-
lem can be treated separately. To get the general result we can
suffice by studying the effect of

Ĥ`m,ω
perturb(t) = V`ρ∗

ext(`,m;ω)eiωt eδt × ρ̂e(`,m; t)+ c.c. (91)

The factor eδ|t | has been added to switch on the perturbation
adiabatically. Note that this form of the perturbation Hamilto-
nian is generic for perturbations which couple to the density of
the electrons in the S2DEG.

In equilibrium, the expectation value for the density operator
is supposed to be homogeneous; i.e. 〈ρ̂e(`,m; t)〉 = 0 for
`,m 6= 0. When a perturbation coupling to the density is
present, it will induce a redistribution of the electron density,
and lead to a non-zero expectation value for ρ̂e, the induced
density

ρind(`,m; t) = 〈ρ̂e(`,m; t)〉 − 〈ρ̂e(`,m; −∞)〉 . (92)

Here 〈ρ̂e(`,m; −∞)〉 is the equilibrium density since we
switched on the perturbation adiabatically. The familiar
definition of the dielectric function is then

ε(`,m;ω) =
ρext(`,m;ω)

ρext(`,m;ω)− ρind(`,m;ω)
. (93)

or

1
ε(`,m;ω)

= 1 −
ρind(`,m;ω)

ρext(`,m;ω)
. (94)

In the next subsection, linear response theory is used to express
ρind as a function of the microscopic density–density Green’s
function of the system. Then, the density–density Green’s
function is calculated diagrammatically to lowest order, and
finally a Dyson resummation is used to provide the RPA result
for the dielectric function.

3.4.1. Linear response
The main question of response theory is: how will the

electron density ρ̂e evolve in time due to a perturbation? To
find the answer, Kubo’s formalism can be used. However, in
the spherical case, this poses a problem since the commutator
relations for the density operator are complicated (because
addition of two angular momenta leads to a set of possible
angular momenta, whereas addition of two momenta leads to
one total momentum). To avoid this complication, let’s try
resorting to standard time dependent perturbation theory.

The many-body wave function of the S2DEG can be written
as a linear superposition of many-body eigenkets |Ψn〉 of the
unperturbed Hamiltonian Ĥ, Eq. (85):

Ψ(t) =

∑
n

|Ψn〉 e−iEn t/h̄an(t). (95)

In this expression, En denotes the energy of the many-
body eigenket |Ψn〉. The corresponding eigenfunction is
〈r1, r2, r3, . . . , rN |Ψn〉 = Ψn(r1, r2, r3, . . . , rN ). Let |Ψ0〉

correspond to the ground state, and E0 to the ground state
energy. The initial condition on the coefficients an is that
an(t → −∞) = 1 for n = 0 and an(t → −∞) = 0 for
n > 0. This affirms that without the perturbation of the external
charge, the S2DEG is in its ground state. To first order in the
perturbation, the coefficients an(t) are given by

a0(t) = 1 −
i
h̄

∫ t

−∞

〈
Ψ0

∣∣∣Ĥ`m,ω
perturb(t

′)

∣∣∣Ψ0

〉
dt ′ (96)

an 6=0(t) = −
i
h̄

∫ t

−∞

〈
Ψn

∣∣∣Ĥ`m,ω
perturb(t

′)

∣∣∣Ψ0

〉
dt ′. (97)

The time dependence of the expectation value of the spherical
components of the density is given by

ρe(`,m; t) = 〈Ψ(t) |ρ̂e(`,m)|Ψ(t)〉 (98)

=

∑
n,m

〈Ψn |ρ̂e(`,m)|Ψm〉 e−i(Em−En)t/h̄am(t)a∗
n(t). (99)
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Substituting (96) and (97) in (99) to first order in the
perturbation, we find

ρe(`,m; t) ≈ ρe(`,m; −∞)

+

∑
n 6=0

〈Ψn |ρ̂e(`,m)|Ψ0〉 e−i(E0−En)t/h̄a∗
n(t)

+

∑
n 6=0

〈Ψ0 |ρ̂e(`,m)|Ψn〉 ei(E0−En)t/h̄an(t).

(100)

The shorthand notation (En − E0)/h̄ = ωn0 will be used. To
proceed further, the coefficients an 6=0(t) must be evaluated:

an 6=0(t)

= −
V`
h̄

[
ρ∗

ext(`,m;ω) 〈Ψn |ρ̂e(`,m)|Ψ0〉 ei(ωn0+ω−iδ)t

ωn0 + ω − iδ

+
ρext(`,m;ω)

〈
Ψn

∣∣ρ̂+
e (`,m)

∣∣Ψ0
〉
ei(ωn0−ω−iδ)t

ωn0 − ω − iδ

]
, (101)

where V` = V ∗

` was used (expression (90)). The (101) for the
coefficients an 6=0 is substituted in (100), resulting in

ρe(`,m; t) = ρe(`,m; −∞)−
V`ρext(`,m;ω)

h̄
e−iωt+δt

×

∑
n

[
|〈Ψn |ρ̂e(`,m)|Ψ0〉|

2

ωn0 − ω − iδ

+

∣∣〈Ψ0
∣∣ρ̂+

e (`,m)
∣∣Ψn

〉∣∣2
ωn0 + ω + iδ

]
. (102)

The term ρe(`,m; −∞) is the unperturbed charge density. The
remaining terms represent the charge density induced by the
presence of the external charge. This induced charge density
screens the external field. Let’s denote this induced charge den-
sity ρind(`,m; t) = ρe(`,m; t)− ρe(`,m; −∞). It is given by

ρind(`,m; t) =
V`
h̄
ρext(`,m;ω)e−iωt+δtDR(`,m;ω), (103)

with

DR(`,m;ω)

=

∑
n

[
|〈Ψn |ρ̂ind(`,m)|Ψ0〉|

2

ω − ωn0 + iδ
−

|〈Ψ0 |ρ̂ind(`,m)|Ψn〉|
2

ωn0 + ω + iδ

]
.

(104)

The reason for introducing the notation DR is that we relate the
dielectric response to the density–density Green’s function D.

D(`,m; t) = −i
〈
Ψ0
∣∣T {ρ̂ind(`,m; t)ρ̂+

ind(`,m; 0)
}∣∣Ψ0

〉
.

(105)

This is the amplitude that a density fluctuation, created at time
t = 0, will be present at a later time t . Then the retarded
density–density Green’s function is

DR(`,m; t)

=

{
−i
〈
Ψ0
∣∣[ρ̂ind(`,m; t), ρ̂+

ind(`,m; 0)
]∣∣Ψ0

〉
t > 0

0 t < 0.
(106)
Its time Fourier transform is exactly expression (104) obtained
in our study of the response of the density to an external probe
charge. The density–density Green’s function also allows to de-
fine the structure factor of the S2DEG as

S(`,m;ω) =

∑
n

|〈Ψ0 |ρ̂ind(`,m; 0)|Ψn〉|
2 δ(ω − ωn0), (107)

so that

DR(`,m;ω) =

∫
dω′S(`,m;ω′)

×

(
1

ω − ω′ + iδ
−

1
ω + ω′ + iδ

)
. (108)

Substituting this (108) into the expression (103) for the induced
charge density yields

ρind(`,m; t) =
V`
h̄
ρext(`,m;ω)e−iωt

∫
dω′

×

(
S(`,m;ω′)

ω − ω′ + iδ
−

S(`,m;ω′)

ω + ω′ + iδ

)
. (109)

Using Plemelj’s identity 1/(x ± iε) = P(1/x) ∓ iπδ(x) we
find the spherical electron gas version of the important relation
between the dielectric function and the structure factor:

Im
[

ρind(`,m; t)
ρext(`,m;ω)e−iωt

]
= −

V`
h̄
π S(`,m;ω) (110)

⇒ Im
[

1
ε(k, ω)

]
= −

πe2

2εvach̄ R
S(`,m;ω)

2`+ 1
. (111)

An expression for the dielectric function can be derived
from (103) and (94):

1
ε(`,m;ω)

= 1 +
V`
h̄
DR(`,m;ω), (112)

so that

1
ε(`,m;ω)

= 1 +
e2

2εvach̄ R
1

2`+ 1
DR(`,m;ω), (113)

with εvac the permittivity of vacuum, and DR given by expres-
sion (104).

3.4.2. Random phase approximation
The response properties are governed by the density–density

fluctuations, through the Green’s function

D(`,m; t)

= −i
〈
Ψ0
∣∣T {ρ̂ind(`,m; t)ρ̂+

ind(`,m; 0)
}∣∣Ψ0

〉
. (114)

This expectation value (114) in the interacting system can be
written as a sum of Feynman diagrams, resulting from the
expansion of the exponentials in the time dependent operator

ρ̂ind(`,m; t) = eiĤt/h̄ ρ̂ind(`,m; 0)e−iĤt/h̄ . (115)

Let’s start with the lowest order diagram, resulting in D0.
Expanding the densities again, we find

ρ̂ind(`,m; t)ρ̂+

ind(`,m; 0)
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=

∑
`1,m1

ĉ+

(`1,m1)⊗(`,m)
(t )̂c`1,m1(t)

×

∑
`2,m2

(−1)m ĉ+

(`2,m2)⊗(`,−m)(0)̂c`2,m2(0). (116)

Writing out the creation operators:〈
Ψ0
∣∣T {ρ̂ind(`,m; t)ρ̂+

ind(`,m; 0)
}∣∣Ψ0

〉
=

∑
`1,m1

∑
`2,m2

∑
`3,m3

∑
`4,m4

∫
dΩ

∫
dΩ ′

× (−1)m[Y`,m(Ω ′)Y ∗

`3,m3
(Ω ′)Y`1,m1(Ω

′)]

× [Y`,−m(Ω)Y ∗

`4,m4
(Ω)Y`2,m2(Ω)]

× 〈Ψ0|T {̂c+

`3m3
(t )̂c`1,m1(t )̂c

+

`4m4
(0)̂c`2,m2(0)}|Ψ0〉. (117)

The expectation value of the time ordered product of four
operators can be decomposed in product of single-particle
Green’s functions using Wick’s theorem:

(Wick :)
〈
Ψ0

∣∣∣T {̂c+

`3m3
(t )̂c`1,m1(t )̂c

+

`4m4
(0)̂c`2,m2(0)

}∣∣∣Ψ0

〉
=

〈
Ψ0

∣∣∣T {̂c`1,m1(t )̂c
+

`3m3
(t)
}∣∣∣Ψ0

〉
×

〈
Ψ0

∣∣∣T {̂c`2,m2(0)̂c
+

`4m4
(0)
}∣∣∣Ψ0

〉
−

〈
Ψ0

∣∣∣T {̂c`2,m2(0)̂c
+

`3m3
(t)
}∣∣∣Ψ0

〉
×

〈
Ψ0

∣∣∣T {̂c`1,m1(t )̂c
+

`4m4
(0)
}∣∣∣Ψ0

〉
.

The factors can be identified as single-particle Green’s
functions, so that〈
Ψ0

∣∣∣T {̂c+

`3m3
(t )̂c`1,m1(t )̂c

+

`4m4
(0)̂c`2,m2(0)

}∣∣∣Ψ0

〉
= −G0 (`3,m3; 0|`1,m1, 0)G0 (`4,m4; 0|`2,m2, 0)

+ G0 (`3,m3; t |`2,m2, 0)G0 (`4,m4; −t |`1,m1, 0) .
(118)

The first line is time independent, and will only contribute a
ω = 0 term to the frequency dependence of the response. We
will omit it from further considerations, keeping in mind that
the ω = 0 response is a special case. We find:

D0(`,m; t) = −i
∑
`1,m1

∑
`2,m2

∑
`3,m3

∑
`4,m4

∫
dΩ

∫
dΩ ′(−1)m

× [Y`,m(Ω ′)Y ∗

`3,m3
(Ω ′)Y`1,m1(Ω

′)]

×
[
Y`,−m(Ω)Y ∗

`4,m4
(Ω)Y`2,m2(Ω)

]
× iG0 (`3,m3; t |`2,m2, 0)
× iG0 (`4,m4; −t |`1,m1, 0) . (119)

The frequency dependent case is

D0(`,m;ω) = i
∑
`1,m1

∑
`2,m2

∑
`3,m3

∑
`4,m4

∫
dΩ

∫
dΩ ′(−1)m

×

[
Y`,m(Ω ′)Y ∗

`3,m3
(Ω ′)Y`1,m1(Ω

′)
]

×
[
Y`,−m(Ω)Y ∗

`4,m4
(Ω)Y`2,m2(Ω)

]
×

∫
dteiωt G0 (`3,m3; t |`2,m2, 0)
Fig. 16. The polarization diagram (also called the ‘bubble’ diagram) on a
spherical surface.

× G0 (`4,m4; −t |`1,m1, 0) . (120)

The interpretation of this function is shown in Fig. 16. The two
Green’s functions form a polarization diagram, analogous to the
polarization diagrams in the treatment of the flat electron gas.
Let’s focus on the integral in the last line of expression (120)

J =

∫
dteiωt G0 (`3,m3; t |`2,m2, 0)

× G0 (`4,m4; −t |`1,m1, 0)

=

∫
dω′

2π
G0(`3,m3; `2,m2|ω

′)G0(`4,m4; `1,m1|ω
′
− ω).

In this expression, we can substitute the result for the zeroth-
order Green’s function G0,

G0(`
′,m′

; `,m|ω)

= δ`,`′δm,m′

{
1 − n(`m)
ω − E`m + iε

+
n(`m)

ω − E`m − iε

}
, (121)

so that, omitting the delta functions δ`1,`4δm1,m4 ×δ`2,`3δm2,m3 ,
one finds the factor:

J =

∫
dω′

2π

{
1 − n(`2m2)

ω′ − E`2m2 + iε
+

n(`2m2)

ω′ − E`2m2 − iε

}
×

{
1 − n(`1m1)

ω′ − ω − E`1m1 + iε
+

n(`1m1)

ω′ − ω − E`1m1 − iε

}
.

(122)

We close the contour in the upper half complex plane so that
only the contributions with poles in that half plane count.

J =

∫
dω′

2π

{
n(`2m2)

ω′ − E`2m2 − iε
1 − n(`1m1)

ω′ − ω − E`1m1 + iε

+
1 − n(`2m2)

ω′ − E`2m2 + iε
n(`1m1)

ω′ − ω − E`1m1 − iε

+
n(`2m2)

ω′ − E`2m2 − iε
n(`1m1)

ω′ − ω − E`1m1 − iε

}
. (123)

The first term is∫
dω′

2π
n(`2m2)

ω′ − E`2m2 − iε
1 − n(`1m1)

ω′ − ω − E`1m1 + iε

=
n(`2m2)[1 − n(`1m1)]

E`2m2 − ω − E`1m1 + 2iε
. (124)

The second term is∫
dω′

2π
1 − n(`2m2)

ω′ − E`2m2 + iε
n(`1m1)

ω′ − ω − E`1m1 − iε

=
[1 − n(`2m2)]n(`1m1)

ω + E`1m1 − E`2m2 + 2iε
. (125)
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The third term is, in the case ω 6= E`2m2 − E`1m1∫
dω′

2π
n(`2m2)

ω′ − E`2m2 − iε
n(`1m1)

ω′ − ω − E`1m1 − iε
(126)

=
n(`2m2)n(`1m1)

ω + E`1m1 − E`2m2

+
n(`2m2)n(`1m1)

E`2m2 − ω − E`1m1

= 0. (127)

If ω = E`2m2 − E`1m1 , then∫
dω′

2π
n(`2m2)n(`1m1)

(ω′ − E`2m2 − iε)2
= 0. (128)

This is zero since the second-order pole has a residue
proportional to d[n(`2m2)n(`1m1)]/dω = 0. Another reason is
that we could have chosen to close the contour along the lower
half of the complex plane and then both poles of this last term
would lie on the same (upper) half. We have, in total

J =
[1 − n(`2m2)]n(`1m1)

ω + E`1m1 − E`2m2 + iη
−

n(`2m2)[1 − n(`1m1)]

ω + E`1m1 − E`2m2 − iη
(129)

where η = 2ε is just another infinitesimal number. Remember
that for the response we will need the retarded density–density
Green’s function DR . However, since DR = Re[D] +

isgn(ω)Im[D] (see e.g. Ref. [61], p. 176), so that

J =
[1 − n(`2m2)]n(`1m1)

ω + E`1m1 − E`2m2 + iη

−
n(`2m2)[1 − n(`1m1)]

ω + E`1m1 − E`2m2 + iη
(130)

= −
n(`2m2)− n(`1m1)

ω − (E`2m2 − E`1m1)+ iη
. (131)

We find

DR,0(`,m;ω) =

∑
`1,m1

∑
`2,m2

∑
`3,m3

∑
`4,m4

δ`1,`4δm1,m4δ`2,`3δm2,m3

×

∫
dΩ

∫
dΩ ′(−1)m

× [Y`,m(Ω ′)Y ∗

`3,m3
(Ω ′)Y`1,m1(Ω

′)]

×
[
Y`,−m(Ω)Y ∗

`4,m4
(Ω)Y`2,m2(Ω)

]
×

n(`2m2)− n(`1m1)

ω − (E`2m2 − E`1m1)+ iη
. (132)

The delta functions enable the performance of some of the
summations:

DR,0(`,m;ω) =

∑
`1,m1

∑
`2,m2

∫
dΩ(−1)m

×
[
Y`,−m(Ω)Y ∗

`1,m1
(Ω)Y`2,m2(Ω)

]
×

∫
dΩ ′

[
Y`,m(Ω ′)Y ∗

`2,m2
(Ω ′)Y`1,m1(Ω

′)
]

×
n(`2,m2)− n(`1,m1)

ω − (E`2,m2 − E`1,m1)+ iη
. (133)

The Ω ′-integration means that (`2,m2) must result from
the addition of the angular moment (`1,m1) and (`,m).
The Ω -integration means that (`1,m1) must result from the
addition of (`2,m2) and (`,−m). This imposes the conditions
m2 = m1 + m, |`− `1| 6 `2 and `2 6 `+ `1. The final result
for the lowest order retarded density–density Green’s function
is

DR,0(`,m;ω)

=

∑
`1,m1

`+`1∑
`2=|`−`1|

(2`1 + 1)(2`+ 1)
4π(2`2 + 1)

|〈`, 0; `1, 0|`2, 0〉|
2

× |〈`, 0; `1,m1|`2,m2〉|
2

×
n(`2,m1 + m)− n(`1,m1)

ω − (E`2,m1+m − E`1,m1)+ iη
. (134)

As usual we make the comparison with the plane wave result

DR,0(q,ω) =

∑
k

n(k + q)− n(k)
ω − (Ek+q − Ek)+ iη

. (135)

The analogy, replacing wave vector addition with angular
momentum addition, is again obvious; as is the appearance
of Clebsch–Gordan coefficients tackling the summation of the
angular momenta.

3.4.3. RPA dielectric function
The RPA dielectric function on the sphere can then be

derived from the result for the zeroth-order density–density
Green’s function DR,0, expression (134) and with E`m =

h̄2 `(` + 1)/(2me R2). The spherical decomposition of the
Coulomb interaction can be denoted by

U0(`) =
e2

2εvach̄ R
1

2`+ 1
.

Using the zeroth-order result DR,0 in the dielectric function
(113) would give

εHartree–Fock(`,m;ω) =
[
1 + U0(`)DR,0(`,m;ω)

]−1
. (136)

This result is known as the Hartree–Fock approximation to the
dielectric function.

The Random Phase Approximation (RPA) is an approxima-
tion to the sum over all Feynman diagrams needed to calculate
the density–density Green’s function DR . The approximation
consists in only summing a subset of those diagrams, which
can be summed analytically. This subset leads to

DR ≈ DR,0 +DR,0U0DR,0 +DR,0U0DR,0U0DR,0 + · · ·

(137)

= DR,0[1 + U0DR,0 + (U0DR,0)
2
+ · · ·] (138)

=
DR,0

1 − U0DR,0
. (139)

Using this, we find for the dielectric function

1
εRPA(`,m;ω)

= 1 + U0DR = 1 +
U0DR,0

1 − U0DR,0

=
1

1 − U0DR,0
(140)
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Fig. 17. Single-particle excitations and the Fermi sea of a S2DEG (from Ref. [60]).
⇒ εRPA(`,m;ω)

= 1 − U0(`)DR,0(`,m;ω), (141)

which leads to

εRPA(`,m;ω) = 1 −
e2

2εvach̄ R
1

2`+ 1
DR,0(`,m;ω) (142)

with DR,0 given by (134).
The interpretation of this result is found by considering

Plemelj’s rule:

Im
1

ω − (EL ,m+m′ − E`′,m′)+ iη

= −iπδ[ω − (EL ,m+m′ − E`′,m′)] (143)

Re
1

ω − (EL ,m+m′ − E`′,m′)+ iη

= P
[

1
ω − (EL ,m+m′ − E`′,m′)

]
(144)

where P means the prime value integral. The imaginary part
becomes

Im εRPA(`,m;ω)

= πU0(`)
∑
`′m′

`+`′∑
L=|`−`′|

(2`+ 1)(2`′ + 1)
4π(2L + 1)

n(`′m′)

× [1 − n(L ,m + m′)]

×
∣∣〈`, 0; `′, 0|L , 0

〉∣∣2 ∣∣〈`,m; `′,m′
|L ,m + m′

〉∣∣2
× δ[ω − (EL ,m+m′ − E`′,m′)]. (145)

From (111), we know that the structure factor is given by

S(`,m;ω) = −
1

πU0(`)

Im[ε]

(Re[ε])2 + (Im[ε])2
. (146)

The structure factor S(`,m;ω) can be interpreted as a
probability function. It is the probability that an excitation
can be created in the interacting electron system so that this
excitation has angular momentum (`,m) and energy h̄ω [62].
We find that S(`,m;ω) is zero, unless adding the angular
momentum (`,m) can excite a single electron from an occupied
state n(`′m′) into an unoccupied state 1 − n(L ,m + m′).
These are the single-particle excitations (called the “Landau
Continuum” in the case of the flat electron gas). Fig. 17
illustrate the concept of single-particle excitations.

For angular momentum transfers smaller than L F , not all
the final states can be reached, since some of the final states
are Pauli blocked. In the example of the left panel of Fig. 17 the
open circles and squares show the collection of states which can
result from adding the angular momentum (2, 1) to the Fermi
sea (filled circles), filled up to L F = 3. The transfer of angular
momentum (2, 1) is prohibited for final occupied states (open
circles). The electrons which can participate in the exchange of
angular momentum are close to the Fermi level (in fact, those
from level L F − ` up to L F ).

An example of angular momentum transfers between L F
and 2L F is shown in the middle panel of Fig. 17 for transfers
of (`,m) = (4,−3). All the electrons in the Fermi sea can
participate, but not all final states are unoccupied. Finally, in
angular momentum transfers larger than 2L F , all the electrons
can participate in the scattering and moreover all the resulting
final states from the addition of the angular momenta are
unoccupied and thus accessible. An example is shown in the
right panel of Fig. 17 for transfers of (`,m) = (8, 1).
The maximum energy difference between two states (such as
those connected by a line in Fig. 17) is

ωmax =
h̄2

2me R2 [(L F + `)(L F + `+ 1)− (L F )(L F + 1)]

=
h̄2

2me R2 [`2
+ `(2L F + 1)]. (147)

The smallest energy difference is, for transfers ` < 2L F

ωmin =
h̄2

2me R2 [(L F + 1)(L F + 2)− (L F )(L F + 1)]

=
h̄2(L F + 1)

me R2 . (148)
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Fig. 18. Structure factor for single-particle excitations; ω0 = h̄/(me R2).

The smallest energy difference, for angular momentum
transfers with ` > 2L F is

ωmin =
h̄2

2me R2 [(`− L F )(`− L F + 1)− (L F )(L F + 1)]

=
h̄2

2me R2 [`2
− `(2L F − 1)− 2L F ]. (149)

In Fig. 18, the possible `, ω combinations are shown for the
single-particle excitations, in the case L F = 10 (in the inset, the
similar result for the flat electron gas is shown).The minimum
and maximum frequencies ωmin and ωmax mark off an area
in the (`, ω) plane in which single-particle excitations can be
created. In the non-curved electron gas these frequencies are
ωmin = max(q2/2−q, 0) and ωmax = q2/2+q as shown in the
inset. For any q, ω in the dark area in the inset, a single-particle
excitation can be created with this momentum and energy.
This area of (q, ω) is commonly referred to as the Landau
continuum. In the spherical electron gas, that continuum is
discretized. When looking closely, you will see that it consists
of a collection of dots. This is a result of the discrete nature
of the energy spectrum in the case of the spherical electron
gas. It will be averaged out when the temperature is raised
(kbT � h̄2 /(me R2)).

3.4.4. Plasmons of the S2DEG
Apart from single-particle excitations in the S2DEG, also

collective excitations are possible. Technically speaking “Col-
lective excitations” are defined as poles of the density–density
Green’s function D, whereas single-particle excitations are de-
fined as poles of the single-particle Green’s function G. This
means collective excitations appear when ε = 0. In the flat
electron gas, these collective excitations are called plasmons.
The imparted angular momentum is shared between all the
particles.
Fig. 19. Regions in the `, ω plane where S(`, ω) 6= 0.

In a collective mode the entire spherical shell of electrons
will oscillate. The frequency of the collective modes (the
plasma frequency) will depend on the type of oscillation (`,m).
The plasma frequency ωpl(`,m) of the S2DEG can be found by
solving the equations

1 −
e2

2εvach̄ R
1

2`+ 1
Re
[
DR,0(`,m;ω)

]
= 0 (150)

Im
[
DR,0(`,m;ω)

]
= 0. (151)

The last condition means for the flat electron gas that the plasma
branch does not lie in the Landau continuum. In fact, as soon
as the plasma branch reaches the Landau continuum, it will be
strongly damped. For the spherical electron gas, the Landau
continuum is no longer a continuum but a set of points. Does
this mean that the S2DEG plasma branch will be much less
damped than in the corresponding flat electron gas case? At
temperature zero, yes, but as the temperature is raised this is no
longer true; the typical temperature kBTeff = h̄2 /(me R2) (in
the case L F = 10) corresponding to the separation of the points
is of the order of 10−2–10−3 nK. So for practical purposes,
we can continue to consider the region of the single-particle
excitations as a continuum.

Fig. 19 shows the plasmon branch (or rather, the value of the
plasma frequency ωpl(`,m) for every `. The plasma frequency
is the same for every m, it seems only to depend on `. This
corresponds to the fact that the plasma frequency of the flat
electron gas does not depend on the direction of the wave vector
but only on its magnitude. The plasma frequency is shown in
units h̄/(me R2). The spherical decomposition of the Coulomb
interaction is given by U0/(2`+ 1) so that U0 = e2/(2εvach̄ R).
In the units of frequency which we use, the dimensionless value
of U0 is e2me R/(2εvac h̄2) which is of the order of 104.

In Fig. 19 we have used U0 = 0.5 104. Note that as R
increases, U0 also increases. The calculation shows that for
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Fig. 20. The RPA dynamic structure factor of the S2DEG is shown color-coded
and as a function of the angular momentum l and the energy h̄w. In white
regions the RPA dynamic structure factor is zero. In colored regions, the RPA
dynamic structure factor differs from zero.

increasing U0 the plasma frequency also increases. The plasma
frequency shows a striking resemblance to the result of a flat
2DEG (the so-called “acoustic plasmons”). Yet it is no longer
a continuous branch but rather a set of separate excitations.
Another distinction from the 2DEG is that there exists a
minimum value larger than zero for the plasmon frequency; the
branch starts at a value ωpl 6= 0 which is a characteristic of
(optical) plasmons in the three-dimensional electron gas.

To find the spectral weight of the plasmon branch relative
to the single-particle excitation band, sum rules can be used.
The zeroth moment sum rule for the dynamic structure factor
defines the static structure factor: S(l,m):

S(l,m) =

∫
∞

0
S(l,m;ω)dω

= −
1

πv(l)

∫
∞

0
Im
[

1
ε(l,m;ω)

]
dω. (152)

Since the dynamic structure factor only depends on the
magnitude of the angular momentum l and not on m, this will
also be true for the static structure factor. Fig. 21 shows the
static structure factor as a function of angular momentum l. The
open squares are the result in the Hartree–Fock approximation
[using εHF, expression (136)], and the full circles are the result
in the RPA approximation [using εRPA, expression (142)]. As
in the case of the flat 2DEG, the HF structure factor SHF(l)
is linear for small l/L F , whereas the RPA structure factor
approaches zero more rapidly with decreasing l. In the inset
of Fig. 21, the first frequency moment of the dynamic structure
factor,

〈ω(l)〉 =

∫
∞

0
ωS(l,m;ω)dω, (153)
Fig. 21. Static structure factor for the spherical electron gas, in the
Hartree–Fock approximation and in RPA.

is shown, again for both HF and RPA approximations.
Inaoka [63] derived a sum rule for the first frequency moment
of the angular momentum dependent dynamic structure factor.
In units h̄ = me = R, this is

〈ω(l)〉 =
l(l + 1)

2
. (154)

From Fig. 21 it is clear that the HF dynamic structure factor
obeys this sum rule. The RPA dynamic structure factor can be
written as a sum of a contribution from the plasmon mode and
the contribution Scont from single-particle excitations:

SRPA(l;ω) = A(l)δ[ω − ωpl(l)] + Scont(l;ω), (155)

with A(l) the spectral weight of the plasmon branch. The
result for SRPA is shown in Fig. 20. The inset of Fig. 21
shows

∫
ωScont(l, ω)dω. From the deficit of the RPA dynamic

structure factor without the plasmon mode, shown in the inset
of Fig. 21, the spectral weight of the plasmon mode can be
derived:

A(l)ωpl(l) =
l(l + 1)

2
−

∫
∞

0
ωScont(l, ω)dω. (156)

The spectral weight of the single-particle excitation band,
relative to the spectral weight of the plasmon mode, is shown in
Fig. 22 as a function of L F , at angular momentum L/L F � 1.
At small angular momentum (l/L F < 0.5), the plasmon branch
carries the most spectral weight, and the region of single-
particle excitations only has a small fraction of the total spectral
weight. Within the region of single-particle excitations, there
is a local maximum in the dynamic structure factor around
l = L F .

Inelastic scattering experiments allow determining the
dynamic structure factor. In particular the differential cross
section for a probe particle of mass M (such as an incident ion)
and initial momentum pi to be scattered to a final state p f with
energy transfer between h̄ω and h̄(ω + dω) to the scattering
system is Ref. [64]:

dσ
dθdω

=
M2

8π3
p f

pi
|Vk |

2S(k, ω). (157)
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Fig. 22. Ratio of the spectral weight of the Landau continuum to the spectral
weight of the plasmon peak.

In this expression, θ is the scattering angle between p f and
pi , |Vk| is the Fourier transform of the interaction potential
between the probe particle, and the energy transfer ω is
related to the momentum transfer k by h̄ω = h̄2 k.pi/m +

(h̄k)2/(2m). The relation between the Fourier decomposition
and the spherical decomposition of the density is

ρ̂e(k) =

N∑
j=1

〈eik.̂r j 〉 =

N∑
j=1

∑
l

√
4π(2l + 1)i l jl(k R)

〈
Yl,0(θ̂ j )

〉
=

∑
l

√
4π(2l + 1)i l jl(k R)ρ̂e(l, 0) (158)

where the z-axis has been taken along the direction of the wave
vector k, and jl(x) is the spherical Bessel function of the first
kind, and θ j is the angle between k and the position operator of
electron j, r j . The dynamic structure factor is determined by

S(k, ω) =

∑
l

∣∣∣√4π(2l + 1) jl(k R)
∣∣∣2 S(l, 0;ω) (159)

which can be derived by writing the dynamic structure factor
as a density–density correlation function in the Lehmann
representation and substituting expression (158) for ρ̂e(k).

3.5. Magnetic response

The Hamiltonian of a non-interacting S2DEG in a uniform
magnetic induction field B is expressed through the familiar
replacement p → p − qA. Here we have a charge q = −e =

1.602 10−19 C. Using spherical coordinates, the vector potential
A = Ar er + Aθeθ + Aφeφ for a uniform magnetic induction in
the z-direction, B = Bez , can be expressed asAr

Aθ
Aφ

 =

 0
0

1
2

Br sin θ

 . (160)

We will use this particular gauge for the vector potential in
the rest of this work note. Expressing the rotor in spherical
coordinates, we can indeed easily see that this vector potential
gives rise to the correct magnetic induction:

rot A =



1
r sin θ

{
∂
[
sin(θ)Aφ

]
∂θ

−
∂Aθ
∂φ

}
1

r sin θ

{
∂Ar

∂φ
− sin θ

∂[r Aφ]
∂r

}
1
r

{
∂[r Aθ ]
∂r

−
∂Ar

∂θ

}


=

 B cos θ
−B sin θ

0

 = B, (161)

which is the correct answer, since ez = cos θer − sin θeθ .
Similarly, the momentum components can be written in
spherical coordinates as p̂ = p̂r er + p̂θeθ + p̂φeφ where

p̂φ =
−ih̄

r sin θ
∂

∂φ
. (162)

Note that the z-component of the angular momentum in
position representation is written as L z = (−ih̄)∂/∂φ, so that
from expression (162) we have the equality p̂φ = L̂ z/(r sin θ).
Because the gauge we chose only has a component of the vector
potential along eφ , the paramagnetic term is given by

e
2me

(
p̂.A + A.p̂

)
=

eBr sin θ
2me

p̂φ =
eB
2me

L̂ z . (163)

The diamagnetic term is given by

e2

2me
A2

=
(eBr)2

8me
sin2 θ. (164)

Thus, the Hamiltonian of non-interacting electrons in a
magnetic field can be written in the position representation as

Ĥ = −
h̄2

2me

(
1
r
∂2

∂2r
r
)

+
L̂2

2mer2 +
eB
2me

L̂ z

+
(eBr)2

8me
sin2 θ. (165)

Now, we impose that the electrons are on a spherical surface of
radius Rb. This corresponds to a wave function of the electron
that is factorized in the radial and angular directions where the
radial factor is δ(r − Rb) (alternatively, we could use a Gaussian
centered on Rb and with a width given by the thickness of the
electron layer — this leads to the same conclusion. We then
have for the remaining operator part of the Hamiltonian:

Ĥ =
L̂2

2me R2
b

−
eB
2me

L̂ z +
(eB Rb)

2

8me
sin2 θ. (166)

The first term is the kinetic energy of electrons on a sphere.
The second represents the paramagnetic effect (the angular
momentum part; not the spin part). The third one represents
the diamagnetic effect. All units are SI: charge in coulombs,
magnetic induction in teslas, angular momentum in Joule×sec.
When considering spin effects, an additional Zeeman term
appears in the Hamiltonian, corresponding to adding an angular
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momentum 2h̄ Ŝz to L̂ z :

Ĥ sphere
=

L̂2

2me R2
b

−
eB
2me

(
L̂ z + 2h̄ Ŝz

)
+
(eB Rb)

2

8me
sin2 θ. (167)

Introducing the Larmor frequency ωL = eB/(2me) allows to
write this Hamiltonian as

Ĥ sphere
=

L̂2

2me R2
b

− h̄ωL

(
L̂ z/h̄ + 2Ŝz

)
+

1
2

meω
2
L R2

b sin2 θ. (168)

3.5.1. From Landau levels to Landau bands
Since the Hamiltonian (168) commutes with L̂ z , we factor

the eigenfunctions into ψ(Ω) = P(θ)eimφ . This allows to
rewrite the eigenfunction equation Ĥψ = Eψ as

−
h̄2

2me R2
b

1
sin θ

∂

∂θ

[
sin θ

∂P(θ)
∂θ

]
−

eBh̄
2me

m P(θ)

+

[
meω

2
L R2

b
2

sin2(θ)+
h̄2 m2

2me R2
b sin2 θ

]
P(θ)

= E P(θ). (169)

We express the energy in units h̄2 /(2me R2
b) and introduce

RL =

√
h̄

meωL
=

√
2h̄
eB
, (170)

the Larmor–cyclotron radius. This is typically RL =

(36.283/
√

B) nm if B is expressed in teslas. We get

−
1

sin θ
∂

∂θ

[
sin θ

∂P(θ)
∂θ

]
−

2R2
b

R2
L

m P(θ)

+

[
R4

b

R4
L

sin2(θ)+
m2

sin2 θ

]
P(θ) = εP(θ). (171)

The only ‘system’ parameter that appears in this equation is
Rb/RL , the bubble radius divided by the Larmor–cyclotron
radius. For even modest fields such as 100 G, RL = 363
nm, so that usually Rb/RL > 1. In fact, we can use this
criterion to separate the paramagnetic (R2

b/R2
L) � 1 from the

diamagnetic (R2
b/R2

L) � 1 regimes. The paramagnetic effect
basically shifts the spherical harmonic energy spectrum by an
amount (R2

b/R2
L)m for level (l,m). This linear effect becomes

negligible in comparison to the diamagnetic shifts ∝ (R2
b/R2

L)
2

when the magnetic field becomes large. The diamagnetic term
introduces a “potential” proportional to sin2(θ) that will push
the electrons away from the equator and towards the poles of
the bubble.

The crucial parameter (R2
b/R2

L) can be related to the number
of flux quanta piercing the equatorial plane of the bubble.
Indeed, the elementary flux quantum for 1 electron is given by
φ0 = 2π h̄/e = 4.1357 × 10−15 Wb, and the flux through the
equatorial plane of the bubble is given by φ = πR2

b B. Thus,

Φ =
φ

φ0
=
πR2

b B
2π h̄/e

=
eB R2

b
2h̄

=
R2

b

R2
L
. (172)

If less than one flux quantum is piercing the equatorial plane,
we’re in the paramagnetic regime, if much more than one
flux quantum is piercing the equatorial plane, we’re in the
diamagnetic (Landau) regime.

Switching to x = cos θ and P(θ) = f (cos(θ)), we find that
the differential equation we need to solve is given by

(1 − x2)
d2 f
dx2 − 2x

d f
dx

+

[
(ε − Φ2

− 2mΦ)+ Φ2x2
−

m2

1 − x2

]
f = 0. (173)

This equation still has singular points, at x = ±1. The regular
differential equation associated with (173) can then be found by
substituting f (x) = (1 − x2)|m|/2 y(x), which yields

(1 − x2)y′′
− 2x(m + 1)y′

+ [(ε − Φ2
− 2mΦ)− Φ2x2

− m(m + 1)]y = 0. (174)

This differential equation was first encountered by Niven [65]
in 1880, in connection with a problem involving heat
conduction in spheroidal bodies (rugby balls, actually). It
has since then been the subject of thorough investigation
by mathematicians [70]. It is known as the oblate angular
spheroidal equation and it’s regular solutions are known as the
oblate spheroidal functions of the first kind Sm(1)

` (iΦ, x), or
the angular spheroidal harmonics. In the limit Φ → 0 these
functions become the associated Legendre functions,

lim
c→0

Sm(1)
` (c, x) = Pm

` (x), (175)

as they should to obtain the physically relevant solutions.
The parameter ` runs from −m to m. The angular spheroidal
harmonics obey the orthogonality relation∫ 1

−1
Sm(1)
` (c, x)Sm(1)

`′
(c, x)dx =

2
2`+ 1

(`+ m)!
(`− m)!

δ`,`′ . (176)

The spheroidal eigenvalues λm
` (c) satisfy

d
dx

[
(1 − x2)

dS
dx

]
+

(
λm
` (c)+ c2x2

−
m2

1 − x2

)
S = 0 (177)

and thus we find that the energy spectrum and eigenfunctions
of electrons on a sphere, in a constant magnetic field, are given
by

E`,m(Φ) =
h̄2

2me R2
b
[Φ2

+ 2mΦ + λm
` (Φ)], (178)

ψ`,m(θ, φ) = Sm(1)
` (iΦ, cos θ)eimφ . (179)

The single-particle energies are shown in Fig. 23. For weak
magnetic fields (Φ < 1) the angular momentum levels are
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Fig. 23. Energy levels of electrons on a sphere, in a homogeneous and constant
magnetic field parallel to the z-axis. The energy, in bubble energy units
h̄/(2me Rb), is given as a function of the number of elementary flux quanta
h/e piercing the equatorial plane of the bubble.

Fig. 24. The electronic energy spectrum of electrons on a spherical surface
(with radius Rb) in a strong magnetic field.

Zeeman split. As the magnetic field rises, the levels become
grouped in Landau bands rather than Landau levels, as shown in
Fig. 24. In a flat 2DEG the Landau levels are highly degenerate,
but in the curved S2DEG the Landau levels are only doubly
degenerate although they collect in Landau bands [66–68]. The
reason for lifting the large degeneracy of the Landau levels is
that the magnetic field projection on the normal of the sphere
is not the same everywhere on the sphere. On a flat 2DEG
there is translational invariance: we can accommodate many
electrons performing cyclotron oscillations, as many as the
area available divided by the area of the cyclotron orbit. On
the sphere, however, this is no longer the case, since moving
the cyclotron-orbiting electron along the surface of the sphere
causes it to experience a different magnetic field. The remaining
degeneracy may be due to the fact that there is a north–south
pseudosymmetry to the problem.

As the magnetic field is ramped up, the diamagnetic
potential term Φ2 sin2 θ in Eq. (171) becomes stronger. This
term in the potential tends to push the electron wave function
out towards the poles of the bubble, while the m/ sin2 θ term
favours the equator. In Fig. 25 for Φ = 10, this results in
a depletion at the tempered latitudes. For larger fields, the
electron density clumps at latitudes where the orbit corresponds
to the cyclotron orbit. Note that the regime of strong magnetic
field (Φ � 1) is reached for small fields. Already for an
N = 104 bubble at 100 G, Φ = 10. The larger the bubble
(or the field) the larger Φ.

Using the preceding results, we can now easily express the
Fermi level as a function of the magnetic field by counting the
single-electron levels. To find the magnetization of the ground
state (assuming a spin polarized electron gas), we list all the
occupied levels, sorted by energy, up to the Fermi level, and
add up all the m` quantum numbers of these levels. The result
is shown in Fig. 26. Having started with fully filled levels, the
magnetization at B = 0 is zero. There are roughly four regimes
to be distinguished. In the region 1, where the levels are Zeeman
split but no level crossings have occurred yet, the magnetization
stays zero. Next, there is a region (indicated by ‘2’ in Fig. 1)
where the Fermi energy stays roughly constant. This is a region
where many level crossings appear as the different ` states
start trading places in the ordered energy level diagram. Then a
transition (region 3) to the regime of Landau bands (region 4)
takes place; at the point indicated by the arrow, the system has
settled down in the Landau band structure. The magnetization
will decrease linearly, as more and more levels with large m`

are added to the lowest Landau band. Steps can be seen, as more
and more levels enter the Landau band; the period of these steps
corresponds roughly to the magnetic field increase to have one
extra elementary flux through the equatorial plane of the bubble.

3.5.2. Surface magnetoplasmons
To find how the plasmons are affected by the magnetic field,

we return to the RPA result

εRPA(`,m;ω) = 1 −
e2

2εvach̄ R
1

2`+ 1
DR,0(`,m;ω) (180)

where the retarded density–density Green’s function is given by
expression (134) as a function of the occupation numbers and
the single-particle energies Elm = l (l + 1) /2. In a weak non-
zero magnetic field in the z-direction an m-dependent term will
appear, coming from the orbital moment.

Elm =
l (l + 1)

2
− µBm B

where µB is a Bohr magneton. Plasma frequencies are found as
zeros of real part of ε in the region where imaginary part of ε is
also zero, i.e. solving

1 −
e2

2εh̄ R
1

2l + 1
Re[DR,0(l,m, ωpl)] = 0

for the region where Im[DR,0] = 0. The exact calculation of the
sums over occupied orbitals is computable only for relatively
small total number of electrons.

By doing the calculation for L F = 10 we get different
plasma branches for different m shown by different colors
in Fig. 27. This figure shows the location of the plasma
branches (for each m, in rainbow colors) as a result of an
exact summation over the occupied single-particle states for
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Fig. 25. The density distribution of electrons on the sphere is shown as a the magnetic field is ramped up. For weak fields, electrons are pushed away from the
tempered latitudes towards the poles and the equator. For stronger fields, the electron density forms bands with radii corresponding to the cyclotron radii.
Fig. 26. Total magnetization of the multielectron bubble, as a function of the
number of elementary flux quanta through the equatorial plane.

Fig. 27. “Band” of plasma frequencies for a sphere containing 10 electrons in
magnetic field calculated from a microscopic model. Plasma frequencies for
different quantum numbers m are shown by different colors. Even though the
frequency is defined only at integer l, the line is drawn continuous for better
visibility. The dashed line marks the region of continuum states.

a sphere with L F = 10, where the spin degree of freedom
has not been taken into account. The m = 0 line, in black,
corresponds to the location of the (degenerate) plasma branch
at zero magnetic field. The dotted line shows the edge of the
continuum region, so that above this line Im[DR,0] = 0.
The effect of the magnetic field is to lift the degeneracy, and
Fig. 28. Enlarged view of the m-dependent plasma frequencies from Fig. 27.
All frequencies are normalized to the m = 0 plasma line. The lines are drawn
as joined points for better visibility.

broaden the plasma branch [69]. This is to be contrasted with
the behavior of bulk metals in a (weak) magnetic field; in the
case of the nanoscopic spherical system, the coupling with the
orbital momentum rapidly leads to a broad plasmon branch –
Fig. 27 corresponds to about 0.13 T.

It is interesting to note that while the plasma branch for
m = 0 always stays above the continuum states (depicted
by dashed line), some of the m < 0 branches enter into the
continuum at l & 20, which will cause their damping. For better
visibility of the structure of this “plasma band”, Fig. 28 shows
the ratio of the m = 0 plasma branch that is identical to the
plasma frequency without magnetic field and other possible m’s
at certain values of l. In this plot, the lifting of the degeneracy
(that itself increases as l is increased) is more clearly visible. We
can qualitatively observe that with increasing quantum number
l, the number of branches is increasing (for every l there are
2l + 1 branches), but the distance between them is decreasing,
keeping the overall width of the “plasma band” approximately
constant. We verified that the width of the band is proportional
to the magnetic field over a range of three orders of magnitude.
If the system contains large numbers of electrons so that the
frequency cannot be calculated exactly in this microscopic way,
we can apply a phenomenological model, using the observation
from the above case. Instead of having one resonant frequency
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for the sphere given as

ω0(l) =

√
Ne2

√
4πme R3ε1

l(l + 1)
2l + 1

it is possible to introduce phenomenologically a whole
(quasicontinuous) “band” of m-dependent magnetoplasmons

ωB(l,m) = ω0(l)
(

1 + ∆pl
m
l

)
where ∆pl is a constant and denotes the width of the “plasma
band”.

4. Surface polaron effects

4.1. Introduction

The two-dimensional (2D) electron system formed on
the surface of liquid helium has been widely investigated,
especially with regard to the formation and melting of a Wigner
lattice [71]. An electric field pressing the electrons against the
helium surface results in an interaction between the electrons
and the quantized oscillation modes of the helium surface,
the ripplons [72]. The electron–ripplon interaction can lead
to the formation of a quasiparticle–ripplonic polaron (see,
e.g., [56,73–76]), or “ripplopolaron”. Mobility measurements
on electrons near a liquid helium surface [77] have been
interpreted in terms of ripplonic polarons [74].

Due to the acoustic nature of the ripplon dispersion at long
wavelengths, the electron–ripplon coupling can be relatively
strong, and self-trapping can be realized. In Ref. [56], the
system of two-dimensional electrons on a film of liquid
helium was studied as a polaron problem, and treated
with the all-coupling Feynman approach. It was found that
with increasing coupling constant the effective mass of a
ripplopolaron undergoes a first-order transition from the bare
electron mass to several helium atom masses, i.e., a localization
transition occurs. Self-trapped ripplonic polarons “melt” at
relatively low temperatures (≈17 mK for a 100 Å helium
film) [73]. However, a switch to a polaron localized state
for a two-dimensional electron system above a thin helium
film was observed experimentally [78] for considerably higher
temperatures T ∼ 1 K. According to the theory of single
ripplonic polarons [73], the polaron binding energy is far too
low to allow for the polaron formation at the experimental
temperatures of Ref. [78]. The presence of many electrons
introduces a new energy scale — the Coulomb interaction
energy, which for the experiment of Ref. [78] is about 10 K.
It was supposed in Ref. [78] that the polaron formation in a
many-electron system above the helium surface is facilitated
with respect to the polaron formation for a single electron.
The results of Ref. [78] indicate the importance of many-body
effects for ripplonic polaron phenomena.

A characteristic of the electron–ripplon and electron–electron
interactions is the appearance of collective oscillations of
the electron–ripplon system. Early experimental evidence
for a 2D Wigner crystallization of electrons on a liq-
uid He surface [8] relied on the detection of the coupled
plasmon–ripplon modes [79]. The energy spectrum of the cou-
pled electron–ripplon system in a 2D electron crystal near the
helium surface was studied theoretically (see, e. g., [80–82])
and experimentally [83–85]. The non-linear transport of an
electron Wigner solid along a helium surface finds an expla-
nation in terms of the electron–ripplon interaction [86].

In multielectron bubbles, because of the relatively high
values of the electric field induced by the electrons and
due to the high electron densities, the ripplonic polaron
effects are expected to play a more significant role than
in an electron system near a flat helium surface. This has
stimulated our investigations of the vibrational modes and of
the ripplonic polaron states in MEBs [17,87–90]. The Wigner
lattice of ripplopolarons was analyzed in Refs. [88,90]. To
study the ripplopolaron Wigner lattice at finite temperature
and for arbitrary values of the electron–ripplon coupling, in
Ref. [88] the all-coupling variational Feynman path integral
approach [91] is applied. As discussed in Ref. [92], in the
case of the melting of a Wigner lattice on a helium surface,
the additional coupling of electrons to the helium degrees
of freedom gives rise to interesting physics. The system of
interacting electrons in a MEB can exist in different phases:
(i) the electron gas, (ii) the electron liquid, (iii) the electron
solid (the Wigner lattice) and possibly (iv) a superconducting
phase [93]. The Wigner lattice is a sufficiently “rigid” structure,
which may strongly resist a deformation. In this view, the
approximation of an ideally conducting surface [17] is well-
founded only for the two first phases, but it seems to be hardly
applicable when the electron layer in a MEB is a Wigner crystal.
Consequently, in order to describe oscillation modes of a MEB,
the electron and ripplon motions must be considered together.
In Ref. [87] the approach of Ref. [17] was extended to take into
account the redistribution of charge along the bubble surface
when the bubble deforms. The dynamical modes of a MEB
were described [87] taking into account the interplay between
the motion of the helium surface (ripplons) and the vibrations of
the electron subsystem (plasmons). That treatment beyond the
approximation of an ideally conducting surface results in the
mixed electron–ripplon oscillations of a MEB. This allows us to
derive the dispersion relation for the spherical plasmon modes
and the plasmon–ripplon coupling peculiar for the spherical
surface.

As mentioned in Ref. [94], there exists a similarity between
the Wigner crystals of ripplonic polarons and Wigner crystals
of large polarons in 3D and 2D. Although the electron–ripplon
interaction is different from the Fröhlich interaction, the
resonances in the optrical absorption spectrum observed by
Grimes and Adams [8] are explained at low density [79] by
analogous qualitative arguments as those developed in Ref. [94]
for 3D and for 2D Fröhlich polarons. Also some properties of
the liquid phase in polar doped semiconductors arise due to the
mixing of plasmons and LO phonons [94].

Below, we represent the key properties of the electron–
ripplon interaction and of ripplonic polarons in multielectron
bubbles. Those properties will be used, in particular, for the
analysis of the superconductivity in MEBs in Chapter 5.



190 J. Tempere et al. / Surface Science Reports 62 (2007) 159–217
4.2. Ripplons on the bubble surface

4.2.1. Dispersion relation on a sphere
The surface of a bubble in liquid helium can be described

by a function R(Ω) which gives the distance of the helium
surface from the center of the bubble, in a direction given by the
spherical angle Ω = {θ, φ}. In equilibrium (at zero pressure),
the multielectron bubble has a spherical surface with radius Rb.
We expand the deformation away from the spherical surface in
spherical harmonics:

R(Ω) = Rb +

∞∑
`=1

∑̀
m=−`

Q`mY`m(Ω) (181)

where Rb is the angle-averaged radius of the bubble, Q`m is the
amplitude of the spherical harmonic deformation mode indexed
by {`,m}, and Y`m(Ω) is the corresponding spherical harmonic.
These modes of deformation are referred to as ripplons in
analogy with the surface modes of a flat surface of liquid
helium. In Ref. [17] the dispersion relation for the ripplons
in a multielectron bubble has been studied as a function of
pressure and related to the bubble stability. In Ref. [87], the
results of [17] are extended in order to take the coupling and
mixing of the ripplons and the electronic modes into account.

In a multielectron bubble, the electrons are confined to a thin
(1 nm) layer at the inner surface of the bubble. This layer is
anchored to the surface of the bubble, so that when the surface
deforms, the layer conforms to the new bubble surface. The
electrons can redistribute themselves inside the spherical layer,
so that the surface density of electrons is no longer uniform. We
describe the surface density with the function nS(Ω) giving the
number of electrons in a solid angle dΩ around Ω :

nS(Ω) =
N

4πR2
b

+

∞∑
`=1

∑̀
m=−`

n`mY`m(Ω). (182)

This function is normalized such that N =
∫

nS(Ω)R2
bdΩ is

the total number of electrons in the bubble or on the droplet.
The n`m’s represent the amplitudes of charge redistributions
corresponding to spherical harmonics Y`m .

The total potential energy of the multielectron bubble or
droplet can be separated into several contributions: (i) a term
from the surface tension energy US = σ S, with σ ≈ 3.6 ×

10−4 J/m2 and S the surface of the deformed bubble or droplet;
(ii) a pressure related term Up = pV , with p the difference
in pressure outside and inside the bubble and V the volume of
the bubble; (iii) a term representing the electrostatic energy UC
of the electron layer. In this last term, the quantum corrections
(such as the exchange contribution) to the electrostatic energy
can be neglected [15]. The first two terms, US and Up, have
been derived in [17]:

US = 4πσ R2
b +

σ

2

∞∑
`=1

∑̀
m=−`

(`2
+ `+ 2) |Q`m |

2 , (183)

Up =
4π
3

pR3
b + pRb

∞∑
`=1

∑̀
m=−`

|Q`m |
2 (184)
whereas US is an exact expression, Up is an expansion
up to second order in Q`m and the third-order term has
been neglected. In what follows, we assume small amplitude
deformations and small amplitude charge redistributions such
that√
`(`+ 1) |Q`m | � Rb, (185)√
`(`+ 1) |n`m | �

N

4πR2
b
. (186)

The electrostatic potential V (r) of the deformed MEB
with a non-uniform surface electron density is calculated
straightforwardly within the framework of the Maxwell
equations by expanding the potential inside and outside the
deformed bubble in their respective spherical decompositions
and imposing the electrostatic boundary conditions at the
surface. The potential energy associated with this electrostatic
potential is given by

UC = −(1/2)
∫

nS(Ω)V (R,Ω)dΩ . (187)

If we keep only terms up to second order in both n`m and Q`m ,
we find

UC =
e2 N 2

2εRb
+ 2πe2 R3

b

∞∑
`=1

∑̀
m=−`

|n`m |
2

ε1`+ ε2 (`+ 1)

−
e2 N 2

8πεR3
b

∞∑
`=1

∑̀
m=−`

ε1`
2
− ε2 (`+ 1)

ε1`+ ε2 (`+ 1)
|Q`m |

2

− e2 N
∞∑
`=1

∑̀
m=−`

`+ 1
ε1`+ ε2 (`+ 1)

n`m Q∗

`m . (188)

where e is the electron charge, ε1 is the dielectric constant of
the medium inside the surface, and ε2 is the dielectric constant
of the medium outside the surface. For a multielectron bubble,
ε2 = ε with ε = 1.0572 the dielectric constant of liquid helium,
and ε1 = 1 (if the temperature of the helium is low enough, the
bubble has vacuum inside).

The ripplon contribution to the kinetic energy of the MEB
is associated with the motion of the liquid helium surface.
Following a derivation of Lord Rayleigh for oscillating liquid
droplets [52], we find

Tr =
ρR3

b
2

Ṙ2
b +

ρR3
b

2

∞∑
`=1

∑̀
m=−`

1
`+ 1

∣∣Q̇`m
∣∣2 . (189)

where ρ ≈ 145 kg/m3 is the density of liquid helium. Note that
for a bubble, ` + 1 appears in the denominator instead of ` for
the droplet in Lord Rayleigh’s treatment.

The ‘classical’ kinetic energy of the electrons is given by

Te =
me

2

N∑
j=1

ẇ2(r j ) (190)

with me the electron mass, and w(r j ) represents the
displacement of electron j out of its equilibrium position r j .
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Since we assumed (186), we can use the formula

Te =
Nme

8π

∫
surface

ẇ2(r)d2r (191)

and express the field of displacements w(r) as a sum of
a longitudinal field wL(r) and transverse field wT(r). We
investigate the effect of the longitudinal field, which can be
written as a gradient of a scalar potential. The (divergence free)
transverse field is not considered here since it does not couple
to the ripplons. Using the relation

∇ · wL(r) = 1 −
4πR2

b
N

nS(θ, φ) (192)

we can express the kinetic energy of the electrons as

Te =
1
2

∞∑
`=1

∑̀
m=−`

4πme R6
b

N`(`+ 1)
|ṅ`m |

2 . (193)

It is easy to check that the present approach yields, for the 3D
and the 2D electron gas, the known expressions for the plasma
frequencies.

The full Lagrangian of the bubble, including the ripplon
modes and charge redistribution modes, is given by substituting
expressions (189), (193), (183), (184) and (188) in L = Tr +

Te −US −Up −UC . The result can be brought in the following
form

L = LR +

∑
`,m

M`

2

(
Q̇2
`m − ω2

r (`)Q
2
`m

)
+

∑
`,m

m`

2

(
ṅ2
`m − ω2

p(`)n
2
`m

)
+

∑
`,m

γ`n`m Q`m . (194)

The first term in expression (194) contains the Lagrangian
describing the radial motion (the anharmonic breathing mode):

LR =
ρR3

b
2

Ṙ2
b −

4π
3

pR3
b − 4πσ R2

b −
N 2e2

2εRb
. (195)

In what follows we assume that Ṙb = 0 and the bubble radius
is given by its equilibrium value.

4.2.1.1. Ripplon modes. The Lagrangian L also contains a part
representing the harmonic oscillation of the ripplon modes,
with oscillator mass term

M` =
ρR3

b
`+ 1

, (196)

and the bare ripplon frequency:

ωr (`)

=

√√√√ 1
M`

[
σ(`2 + `+ 1)+ pRb −

N 2e2

4πεR3
b

`2 − ε(`+ 1)
`+ ε(`+ 1)

]
.

(197)

The bare ripplon frequencies and their dependence on the
pressure were the subject of [17]. In the limit of very large
bubbles, Rb → ∞, the dispersion relation for ripplons on a
Fig. 29. The frequency of ripplon modes ` = 1, . . . , 10 is shown as a function
of external applied pressure (not vapor pressure) for N = 1000. The leftmost
points of the graphs start at the critical underpressure: for a pressure more
negative than this value, the bubble is unstable against isotropic expansion. As
the pressure is increased, more and more modes obtain a vanishing frequency.
On the left the deformations (exaggerated) are shown for a few of the modes.
(From Ref. [17].)

flat helium surface [95] is recovered: if the momentum k is
identified with `/Rb, then the typical k3/2 is retrieved. When
Rb is set equal to the equilibrium Coulomb radius, the modes
` = 1, 2 obtain a zero frequency in agreement with the result of
Salomaa and Williams [14]. For typical multielectron bubbles
with radii in the range of 1–100 µm (and numbers of electrons
of the order 104–107) the ripplon frequencies for ` < 1000 lie
typically in the MHz–GHz range.

In [17], it was shown that small negative pressures can
stabilize a bubble against dynamic instability, while positive
pressures can drive all ripplon modes unstable (see Fig. 29).
Since both negative and positive pressures are easily achievable
experimentally, it will be interesting if bubbles can be created in
a “stable” configuration that can be visually observed to study
these predictions.

4.2.1.2. Longitudinal plasmon modes. Next, the Lagrangian
(194) contains a part representing the (small amplitude)
harmonic oscillation of the classical charge redistribution
around its equilibrium. The oscillator mass term for these
oscillations is

m` =
4πme R6

b
N`(`+ 1)

, (198)

and the corresponding frequencies are given by

ωp(`) =

√
Ne2

me R3
b

`(`+ 1)
`+ ε(`+ 1)

. (199)

In the limit of large bubbles, this frequency corresponds to
that of the longitudinal plasmon frequency of a 2D electron
system on the helium surface [96]. If the electrons form a
Wigner lattice, this is the longitudinal phonon frequency. If
the momentum k is identified with `/Rb, then the typical k1/2

dispersion for this longitudinal plasmon is retrieved. Based
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on this correspondence, we will refer to these modes in a
multielectron bubble as the ‘(longitudinal) plasmon modes of
the MEB’ (or ‘longitudinal phonon modes of the MEB’ if the
electrons form a Wigner lattice).

For typical multielectron bubbles with radii in the range of
1–100 µm (and numbers of electrons of the order 104–107) the
longitudinal plasmon frequencies for ` < 1000 lie typically
in the GHz–THz range. For bubbles with N > 105, the
longitudinal plasmon frequencies are larger than the ripplon
frequencies, ωp(`) � ωr (`).

The equations of motion for the electron charge redistribu-
tion on a deformed bubble are given by:

d
dt

∂L
∂ ṅ`m

=
∂L
∂n`m

⇔ m`n̈`m = −m`ω
2
p(`)n`m + γ`Q`m . (200)

When ωp(`) � ωr (`) the electrons can redistribute much
faster on the surface of the bubble than the bubble surface can
deform. Thus, we can make an adiabatic approximation to find
the charge redistribution of the electrons on a bubble with a
given deformation. We find from (200) that if the bubble surface
deformation is described by a given set of spherical deformation
amplitudes Q`m , the equilibrium charge distribution on the
deformed bubble must satisfy the relation

n`m
n0

=
(`+ 1)

2
Q`m

Rb
, (201)

with n0 = N/(4πR2
b).

4.2.2. Ripplon–plasmon mixing
The last term in the Lagrangian (194) represents the coupling

between the longitudinal plasmons and the ripplons, with
coupling strength given by

γ` = Ne2 (`+ 1)
`+ ε(`+ 1)

. (202)

For electrons on a flat helium surface, such a coupling between
ripplons and longitudinal plasmons/phonons was derived by
Fisher et al. [79] and detected experimentally [8]. For electrons
on the inner surface of a deformed bubble, we find a similar
coupling, but only ripplon and longitudinal plasmon modes
which have the same angular momentum couple to each other.
After the diagonalization of the ripplon–plasmon part of the
Lagrangian (194), we arrive at the eigenfrequencies,

Ω1,2 (`)

=

√
1
2

[
ω2

p(`)+ ω2
r (`)

]
±

1
2

√[
ω2

p(`)− ω2
r (`)

]2
+ 4γ 2

` . (203)

In Fig. 30, we show the eigenfrequencies Ω1 (`) and Ω2 (`) for
N = 105 as a function of ` and p. The frequency Ω2 (`) is
close to the ripplon frequency derived for an MEB within the
approximation of a conducting surface [17]. Consequently, this
frequency can be attributed to the ripplon modes, renormalized
due to the ripplon–plasmon mixing. The other branch of
oscillations with the frequencies Ω2 (`) can be related to the
Fig. 30. Vibrational eigenfrequencies of an MEB in liquid helium, Ω1 (l)
(phonon modes) and Ω2 (l) (renormalized ripplon modes) given by Eq. (203)
for N = 105 as a function of l and of p. Inset: a schematic picture of the
directions of motion for phonons and ripplons in an MEB. The ripplons are
excitations of the helium surface (with typical frequencies in the MHz–GHz
range), while the phonons are related to the motion of electrons (with typical
frequencies in the THz regime) tangential to the bubble surface. Note the
different scales for Ω1 and Ω2. (From Ref. [87].)

longitudinal plasmon mode admixed with a small component of
ripplon nature. In typical multielectron bubbles, the difference
in frequency between the ripplon and the plasmon modes
weakens the coupling between these modes. Note that the
multielectron bubble will be stable when both Ω2

1 and Ω2
2 are

positive. This condition is equivalent to

ω2
p(`)ω

2
r (`) > γ`. (204)

By substituting the (199), (197) and (202) in the inequality
(204) it can easily be seen that when the radius of the bubble
is equal to the equilibrium radius, the ripplon–plasmon mixing
does not change the criterion of stability for a MEB formulated
in Ref. [17].

4.3. Electron–ripplon interaction

In Ref. [88], the effects of the electron–ripplon coupling in
a multielectron bubble in liquid helium are investigated, and
the differences with the case of electrons on a flat helium
surface are highlighted. The interaction energy between the
ripplons and the electrons in the multielectron bubble is derived
from the following considerations: (i) the distance between the
layer electrons and the helium surface is fixed (the electrons
find themselves confined to an effectively 2D surface anchored
to the helium surface) and (ii) the electrons are subjected
to a force field, arising from the electric field of the other
electrons. It occurs that the enhanced electron–ripplon coupling
in the bubble leads to a new solid phase, a lattice of ripplonic
polarons, that is distinct from the electron Wigner lattice.

4.3.1. The ripplonic subsystem
The ripplon gas (without the breathing mode) is described

by the Hamiltonian

Ĥ (rip)
=

∑
`>0,m

h̄ω`â+

`,m â`,m . (205)
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The bare ripplonic frequencies are

ω` =

√
σ

ρR3 (`+ 1)(`2 + `+ 2)+
p
ρR2 2(`+ 1). (206)

Two regimes exist: a surface tension dominated regime with
pR/σ < 1 and a pressure dominated regime with pR/σ > 1.

Regime parameter pR/σ
104 106 108

0 mbar 0 0 0
100 mbar 14.734 151.74 1522.0
3 bar 194.61 1951.1 19516

. (207)

The first line is clearly surface tension dominated, and the
second and third lines are pressure dominated (until `2

+ `+ 2
equals pR/σ ). We keep the density at 145 kg/m3. In the surface
tension dominated regime, ω` ≈ ωσ `

3/2 with

Frequency unit ωσ =

√
σ/(ρR3) in MHz (=7.6382 µK)

104 106 108

0 mbar 1.4391 0.014354 1.4349×10−4

100 mbar 4.1585 0.12582 0.0039609
3 bar 14.235 0.44841 0.014175

.

(208)

In the pressure dominated regime, ω` = ωp`
1/2 with

Frequency unit ωp =

√
2p/(ρR2) in MHz (=7.6382 µK)

104 106 108

0 mbar 0 0 0
100 mbar 22.574 2.1920 0.21853
3 bar 280.84 28.012 2.8004

.

(209)

Finally, two tables that shows which mode has enough energy
to change the angular momentum of an electron at the Fermi
level, and at which mode the dispersion crosses over from p-
dominated to σ -dominated:

` such that h̄ω` = ε0(L F + 1)
104 106 108

0 mbar 295 490 817
100 mbar 372 794 1708
3 bar 490 1053 2263

` such that σ(`2
+ `+ 2) = 2pR

104 106 108

0 mbar 0 0 0
100 mbar 5 17 55
3 bar 20 62 197

. (210)

We define the ripplon Green’s function in analogy to the
conventional phonon Green’s function:

D(`,m; t) = −i
〈
T [ Â`,m(t) Â+

`,m(0)]
〉

with Â`,m = â`,m + â+

`,−m .

We have introduced the auxiliary creation and annihilation
functions Â`,m . The electron–ripplon interaction can be written
as

Ĥint =

∑
j,n

M j Â jn
∑
`,m

ĉ+

(`,m)⊗( j,n)ĉ`,m, (211)

where M` is the electron–ripplon interaction amplitude. In
the original ripplon operators, the unperturbed ripplon Green’s
function is

D(0)(`,m; t) = −i〈T [(â`,me−iω`t + â+

`,−meiω`t )

× (â+

`,m + â`,−m)]〉θ(t > 0)

− 〈T [(â`,−m + â+

`,m)

× (â+

`,−meiω`t + â`,me−iω`t )]〉θ(t < 0).

Here unperturbed means that the presence of and the interaction
with the electrons is not taken into account. The only
expectation value different from zero are 〈â`,m â+

`,m〉 = n`m + 1
and 〈â+

`,m â`,m〉 = n`m where the ripplon occupation number
is n`m = 1/(exp{h̄ω`/kBT } − 1). At zero temperature, all
n`m = 0 and so

D(0)(`,m; t) = −i[θ(t > 0)e−iω`t + θ(t < 0)eiω`t ].

Its temporal Fourier transform is defined by

D(0)(`,m;ω) =

∫
+∞

−∞

eiωt D(0)(`,m; t)dt

=
1

ω − ω` + iη
−

1
ω + ω` − iη

,

which simplifies to

D(0)
rip (`,m;ω) =

2ω`
ω2 − ω2

` + iη
, (212)

with again η an infinitesimal.
In Table 1, for typical multielectron bubbles, the values of

the several physical quantities are given at zero applied external
pressure. The number of electrons in the bubble (N ), the
bubble radius (Rb), the average interelectron distance (d), the
surface density of electrons (ns), the pressing field generated
by the electrons |E |, the characteristic energy scale of the
electron–ripplon interaction [(e|E |)2/σ , cf. formula (234)], and
the characteristic frequency of the lattice potential (ωlat) are
given. Compare these quantities to, for example, the maximum
density (≈2 × 109 cm−2) and the maximum pressing field
(≈3 kV/cm) achievable on a flat helium surface over bulk.
We can see that, using pressure, the surface of the MEB
can be compressed to achieve 2D electron densities as high
as 1014 cm−2 [17], whereas flat surfaces are limited to 2 ×

109 cm−2 due to an instability [11]. This instability is not
present in multielectron bubbles [38], although the bubbles
may be unstable to bifurcation under pressure, as discussed
in Chapter 2. As a result very large electric fields exist on an
electron, normal to the surface (due to all other electrons in the
MEB), whereas for a flat surface the maximum field is around
3 kV/cm.
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Table 1
Parameters of multielectron bubbles

N Rb (µm) d (nm) ns (cm−2)

103 0.228 25.57 1.529×1011

105 4.937 55.34 3.265×1010

107 106.4 119.3 7.025 × 109

N |E| (kV/cm) e2
|E|

2/σ (meV) ωlat (THz)

103 138.3 85.16 3.891
105 63.80 3.884 1.222
107 6.350 0.180 0.386

From Ref. [88].

The Hamiltonian of a single electron on a flat helium surface
is given by

Ĥ =
p̂2

2me
+

∑
q
ω(q)â+

q âq +

∑
q

Mqe−iq.r (âq + â+

−q
)
, (213)

where p̂ is the electron momentum operator, me is the
electron mass, and ω(q) = q

√
σq/ρ is the ripplon dispersion

relation with σ ≈ 3.6 × 10−4 J/m2 the surface tension
of helium and ρ = 145 kg/m3 the mass density of
helium. In this Hamiltonian, we restrict ourselves to 2D
position and momentum operators, assuming that the part of
the wave function of the electrons relating to the direction
perpendicular to the surface can be factored out exactly.
The second-quantization operators â+

q , âq create/annihilate a
ripplon with planar wave number q . The electron–ripplon
coupling amplitude is given by

Mq =

√
h̄q

2ρω(q)
e|E|, (214)

where E is the electric field perpendicular to the surface (the
so-called ‘pressing field’), and e is the electron charge. The
pressing field pushes the electrons with a force eE towards
the helium surface, that acts like a sheet with surface tension
σ . Note that there is a 1 eV barrier preventing single electrons
from penetrating the helium surface. The self-induced trapping
potential of the electron on the helium surface is manifested by
the appearance of a dimple in the helium surface underneath
the electron, much like the deformation of a rubber sheet
when a person is pulled down on it by a gravitational force.
The resulting quasiparticle consists of the electron together
with its dimple and can be called a ripplonic polaron or
ripplopolaron [97].

Hamiltonian (213) for the ripplopolarons is very similar
to the Fröhlich Hamiltonian describing polarons [98]; the
role of the phonons is now played by the ripplons. Methods
suitable for the study of single polarons have been used
to analyze the single ripplopolaron on a flat surface [73,
99]. Recently, Fratini and Quémerais [100] have proposed a
path integral treatment for a Wigner lattice of polarons. In
their treatment of the electron Wigner lattice embedded in
a polarizable medium such as a semiconductors or an ionic
solid, Fratini and Quémerais [100] described the effect of the
electrons on a particular electron through a mean-field lattice
Fig. 31. The mean-field potential for an electron in a MEB Vlat (r) (the solid
curve) and its quadratic approximation, Eq. (216) (the dashed curve) in units of
e2/d.

potential. The (classical) lattice potential Vlat is obtained by
approximating all the electrons acting on one particular electron
by a homogeneous charge density in which a hole is punched
out; this hole is centered in the lattice point of the particular
electron under investigation and has a radius given by the lattice
distance d. Thus, in their approach, the anisotropy effects are
neglected. A second assumption implicit in this approach is
that the effects of exchange are neglected. This can be justified
by noting that for the electrons to form a Wigner lattice it
is required that their wave function be localized to within a
fraction of the lattice parameter as follows from the Lindemann
melting criterion [101,102]. As can be read from Table 1, the
typical distance between electrons (the lattice parameter) is
10–100 nm.

Within the particular mean-field approximation, the lattice
potential can be calculated from classical electrostatics and we
find that for a 2D electron gas it can be expressed in terms of
the elliptic functions of first and second kind, E (x) and K (x),

Vlat (r) = −
2e2

πd2

{
|d − r | E

[
−

4rd

(d − r)2

]
+ (d + r) sgn (d − r) K

[
−

4rd

(d − r)2

]}
. (215)

Here, r is the position vector of an electron measured from the
lattice position. We can expand this potential around the origin
to find the small amplitude oscillation frequency of the electron
lattice:

lim
r�d

Vlat (r) = −
2e2

d
+

1
2

meω
2
latr

2
+O

(
r4
)
, (216)

with the confinement frequency

ωlat =

√
e2

med3 . (217)

The potential Vlat (r)is shown in Fig. 31.
Although that mean-field approach may seem crude, it has

the distinct advantage that the ‘phonon’ frequency ωlat of the
electron lattice corresponds closely to the longitudinal plasmon
frequency that can be derived using an entirely different
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approach based on a more rigorous study of the modes of
oscillations of both the bubble and the charge distribution on
the bubble surface. This frequency lies typically in the THz
range and the lattice parameter d in MEBs ranges roughly
from 10 to 100 nm. From this, and from the successful
application of this mean-field approach to polaron crystals in
solids, we conclude that the approach based on that of Fratini
and Quémerais describes the influence of the other electrons
well in the framework of small amplitude oscillations of the
electrons around their lattice point. The (modified) Lindemann
melting criterion [88] suggests that the lattice will melt when
the electrons are on average displaced more than ca. 10%
from their lattice position; thus in the regime of interest the
Fratini–Quémerais approach is applicable. In the mean-field
approximation, the Hamiltonian for a ripplopolaron in a lattice
on a locally flat helium surface is given by

Ĥ =
p̂2

2me
+ Vlat

(
r̂
)
+

∑
q

h̄ω(q)â+
q âq

+

∑
q

Mqe−iq.r (âq + â+

−q
)
, (218)

where r̂ is the electron position operator.
Now that the lattice potential has been introduced, we can

move on and include effects of the bubble geometry. If we
restrict our treatment to the case of large bubbles (with N > 105

electrons) such as those already experimentally observed [5],
then both the ripplopolaron radius and the interelectron distance
d are much smaller than the radius of the bubble Rb. This
gives us ground to use the locally flat approximation using
the auxiliary model of a ripplonic polaron in a planar system
described by (218), but with a modified ripplon dispersion
relation and an modified pressing field.

The interaction energy between the ripplons and the
electrons in the multielectron bubble can be derived from the
following considerations: (i) the distance between the layer
electrons and the helium surface is fixed (the electrons find
themselves confined to an effectively 2D surface anchored to
the helium surface [14]) and (ii) the electrons are subjected to a
force field, arising from the electric field of the other electrons.

The interaction term in the Hamiltonian taking into account
the bubble geometry is

Ĥint =

∑
`,m

∑
j,n

M` Â`ĉ+

( j,n)⊗(`,m)ĉ( j,n), (219)

where
∑

j,n ĉ+

( j,n)⊗(`,m)ĉ( j,n) is the (`,m) spherical component

of the electron density, and Â` is a sum of ripplon creation and
annihilation operators defined in the previous subsection. The
coupling factor M` arises from two effects. It can be calculated
as an effect of the radial electric field generated by the electrons
and pressing the electrons against the helium surface, or it
can be derived as the change in polarization energy of the
electron–helium system when the helium surface is deformed
and the electrons are at rest. Both mechanisms will play a role,
and need to be compared in magnitude. First, we examine the
polarization energy (as done in flat space by Cole [54]). The
resulting factor is

M` = c`
nαe2

2R3

√
h̄(`+ 1/2)

2ρRω`
, (220)

where the polarizability is α =
m

4πρ
ε−1
ε+1 with m is the mass

of a helium atom and ε = 1.0572 is the dielectric constant of
helium. n is the mass density so that na = 2.2126343 × 10−3.
The factor c` is a geometrical factor, given by

c` = 2π
∫ 1

−1

P`(µ)
(1 + x2 − 2xµ)2

dµ with x = 1 −
d
R
.

In the limit of a flat surface this should go to the following value
to give a correspondence with Cole’s results [54],

Mq = π
nαe2λ2

4
A−1/2

√
h̄q

2ρHeωq

since

c` →
9
√
π

4(d/R)2
.

To study the electron–ripplon coupling, we introduce a coupling
constant given by

g(p) =
9
√
π

8
nαe2

d2 R

√
h̄

2ρRωσ

⇒ M` = g(p)
(`+ 1/2)1/2

[(`+ 1)(`2 + `+ 2 + 2pR/σ)]1/4 . (221)

Here g(p) itself has units of energy. It is very sensitive to d and
to small changes in ε. At large ` we have M` ≈ g(p)`−1/4.

Electron–ripplon coupling constant g(p) in mK
104 106 108

0 mbar 16.280 0.77571 0.038648
100 mbar 57.029 9.6077 1.6990
3 bar 257.19 45.424 8.0723

. (222)

These values for g(p) are relatively large compared to the
ripplon energy scale, denoting a very strong electron–ripplon
coupling.

An electrical field, perpendicular to the helium surface and
acting on the electrons will also give rise to a coupling between
the electrons and surface deformations. If the surface deforms
and the electrons conform to the surface, the energy associated
with a displacement u of an electron in an electrical field E
is eEu. The electrical field in the case of a bubble is not
an externally applied field but is generated by the electrons
themselves:

E = −
eN
R2 er.
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Values of this field under various conditions are given in the
table below:

Electric field at the bubble surface, in kV/cm
104 106 108

0 mbar 127.61 27.397 5.9000
100 mbar 525.19 495.17 492.17
3 bar 2709.4 2695.5 2694.1

. (223)

In experiments with electrons on helium films, an exter-
nal applied electric field has been used to enhance the
electron–ripplon coupling. The electric fields produced in these
experiments are of the order of 10–100 kV/cm [103]. It is clear
that, using pressure to compress the bubbles, we can achieve
higher coupling in bubbles. The electron–ripplon coupling con-
stant due to the electric field is given by [56]

g(e) =
1

2
√
π

−eE
R

√
h̄

2ρRωσ
, (224)

where the factor
√

4πR2 corresponds to the square root of the
surface,

√
A in the flat-surface equivalent.

Electron–ripplon coupling constant g(e) in mK
104 106 108

0 mbar 19.179 0.41123 0.0088538
100 mbar 134.18 22.006 3.8807
3 bar 1280.7 226.13 40.184

. (225)

These values are comparable to the values of the polarization
induced interaction. Low pressure and large electron numbers
make the polarization interaction the dominant effect, whereas
raising the pressure or lowering the number of electrons
increase the effect of the electric field induced interaction. The
total electron–ripplon interaction is then given by

M` = [g(p) + g(e)]
(`+ 1/2)1/2

[(`+ 1)(`2 + `+ 2 + 2pR/σ)]1/4 , (226)

with

Total electron–ripplon coupling
constant g = g(p) + g(e) in mK

104 106 108

0 mbar 35.459 1.1869 0.047502
100 mbar 191.21 31.613 5.5797
3 bar 1537.9 271.56 48.257

. (227)

As mentioned before, these numbers are large compared to
the ripplon energies. Both the electric field and the helium
polarization contribute on a similar order of magnitude to the
total electron–ripplon coupling.

Note that the electric field in the bubble is larger than the
typical pressing fields (of the order of 102–103 V/cm) applied
on electrons on a flat helium surface. Thus, the electron–ripplon
coupling will be stronger in the multielectron bubble. The
modified ripplon dispersion relation (and the dependence of
the bubble radius on the number of electrons and the pressure)
was studied in more detail in Ref. [17], and the stability of the
multielectron bubble against surface deformation modes was
investigated in detail in Refs. [14,38]. These studies concluded
that even though a large effective electric pressing field is
present at zero pressure, the bubbles can be stable in contrast
to the flat surface which can only sustain a moderate electric
pressing field.

The crucial differences that exist between the case of a
ripplopolaron in the multielectron bubble and on the flat surface
(and that are preserved in the locally flat approximation) are
(i) the electric pressing field E is stronger than that typically
realized for electrons on helium films (see Table 1) and thus
the electron–ripplon coupling is enhanced as compared to
the normal film; (ii) the interaction energy arising from the
change in polarization of the helium due to the displacement
of the electron has a similar form, but is much weaker and
can be neglected. In addition the electric field, and thus the
electron–ripplon coupling increases as the bubble radius is
decreased. Thus, pressurizing the bubbles, which decreases the
radius, also increases the electron–ripplon coupling strength
(roughly as R−2

b ). In the high pressure regime (p � σ/Rb),
the bubble radius goes as p−1/4 and thus the electron–ripplon
coupling increases as

√
p. The pressure provides a ‘tuning

knob’ to set the electron–ripplon interaction strength at a
desired level. There is uncertainty concerning the stability
of pressurized bubbles against bifurcation and this calls for
experimental study. However, small bubbles can have large
electron–ripplon couplings.

4.4. Ripplonic polarons

As follows from the aforesaid treatment, two different forces
act on the electron to localize it in a multielectron bubble.
Firstly, there is the Coulomb lattice potential from the electrons
at neighboring lattice sites. This potential was described in a
mean-field classical approach by Fratini and Quémerais [100].
Near the lattice site (r = 0) the Coulomb lattice potential is
quadratic with a characteristic frequency ωlat =

√
e2/(med3)

on the order of THz, consistent with our results for the phonon
frequencies.

The second force that acts on the electron and tends to
localize it, is caused by the electron–ripplon interaction. Due
to the coupling with the ripplons, the electron generates a self-
induced trapping potential [73] and forms a “ripplopolaron”,
similar to Fröhlich’s polaron formed by an electron in a bath of
longitudinal optical phonons. This can be understood intuitively
as follows. The static electric field of the multielectron bubble,
acting on the electron at the surface, is E = er Ne/(2εR2

b)

where er is the unit vector in the radial direction. This field
pushes the electrons with a force eE towards the helium
surface, that acts like a sheet with surface tension σ . Note that
there is a 1 eV barrier preventing the electrons from penetrating
the helium surface. The self-induced trapping potential of the
electron on the helium surface is manifested by the appearance
of a dimple in the helium surface underneath the electron, much
like the deformation of a rubber sheet when a person is pulled
down on it by a gravitational force. The ripplopolaron is the
quasiparticle consisting of the electron together with its dimple.
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Fig. 32. Ripplopolaron Wigner crystal in a MEB (schematic picture). The
ripplons and the Coulomb lattice potential give rise to a ripplopolaron Wigner
crystal. The electrons are localized in the dimples.

Ripplopolarons are well described by the Feynman path
integral variational method [91] which is successful in
determining the properties of polarons in ionic and polar
crystals. Extensions of this theory exist both for the description
of polaron lattices [100] and for ripplopolarons on a flat
surface [73]. These theories represent the system of electrons
and ripplons by a variational model system consisting of an
electron coupled to a fictitious mass through a spring. The
center of mass of the ripplopolaron is well approximated by
the center of mass of the model system, RC . The distance ρ
between the fictitious mass and the electron is a measure for the
extent of the ripplopolaron wave function.

Given the two localizing potentials (the Coulomb lattice
potential and the ripplopolaron self-trapping potential), four
phases can be construed.

(i) A ripplopolaron Wigner crystal: In this phase the electrons
are localized on lattice sites, and the electron–ripplon
interaction is strong enough to create, underneath each
electron, a dimple which is also localized within the lattice
parameter (see Fig. 32).

(ii) A ripplopolaron liquid: This occurs if the electrons are
delocalized and form a liquid, but the electron–ripplon
interaction is still strong enough to form a dimple
underneath the electron, and the electrons move with a
velocity small enough so that the dimple can follow the
electron.

(iii) An electron liquid: In this phase the electrons are not
localized, and have a kinetic energy corresponding to
velocities too large to have a dimple following them (they
“outrun their dimple”).

(iv) An electron solid (electron Wigner crystal): this occurs
if the electrons are localized by the Coulomb lattice
potential, but the electron–ripplon interaction is too weak
to create a dimple (or creates a dimple wider than the
distance between two neighboring electrons).

4.4.1. Strong coupling results

4.4.1.1. Ground state. To gain insight into the nature of the
Wigner solid of ripplopolarons, we will analyze Hamiltonian
(218) first in the strong coupling approach. In the next
subsection, the more general and more accurate Feynman
variational path integral method will be applied, generalizing
the results of this subsection to finite temperature. Noting that
the frequency associated with the electron’s motion, ωlat, is
typically several orders of magnitude larger than the frequency
associated with the ripplons [87], ω(q), we can safely make
the product ansatz for the wave function of the ripplopolaron
in the lattice: |Ψ 〉 = |ψe〉 |φ〉. Here |φ〉 is the factor of the
wave function that contains the ripplon coordinates, and |ψe〉

is the electronic part of the wave function. For small amplitude
oscillations of the electrons around their lattice site, the lattice
potential Vlat is well approximated by a parabolic potential
(216), so we choose a Gaussian trial wave function for the
electronic part:

|ψe〉 =
1

π1/2a
e−r2/(2a2). (228)

In this trial wave function, the variational parameter is a, the
width of the electron wave function. Taking the expectation
value of Hamiltonian (218) with respect to this electronic part
of the wave function yields:

〈ψe|Ĥ |ψe〉 =
h̄2

2mea2 +
meω

2
lat

2
a2

+

∑
q

h̄ω(q)â+
q âq

+

∑
q

Mqe−a2q2/4 (âq + â+

−q
)
. (229)

The ripplonic part of 〈ψe|Ĥ |ψe〉 represents a displaced
harmonic oscillator and can be rewritten as

〈ψe|Ĥ |ψe〉 =
h̄2

2mea2 +
meω

2
lat

2
a2

−

∑
q

|Mq |
2e−a2q2/2

h̄ω(q)

+

∑
q

h̄ω(q)

[
â+

q +
Mqe−a2q2/4

h̄ω(q)

]

×

[
âq +

Mqe−a2q2/4

h̄ω(q)

]
. (230)

The ground state of the displaced (2D) harmonic oscillator
at temperature zero has energy h̄ω(q), independent of the
variational parameter a. To find the variational optimal value
of a, we minimize the ripplopolaron energy

E(a) =
h̄2

2mea2 +
meω

2
lat

2
a2

−

∑
q

|Mq |
2e−a2q2/2

h̄ω(q)
. (231)

The sum over momenta can be rewritten as an integral,
remembering

∑
q

→

∫
q>1/Rb

d2q
(2π)2

=

∫
q̃>1

d2q̃
(2π)2 R2

b
. (232)

The lower limit appears since the largest wavelength available is
1/Rb. We checked that the final results do not depend crucially
on the value of this naturally occurring cut-off. A dimensionless
integration variable q̃ = q Rb is introduced. The ground state
energy of the ripplopolaron can then be evaluated analytically:

E(a) =
h̄2

2mea2 +
meω

2
lat

2
a2
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Fig. 33. The variational parameter a describing the width of the electron wave
function in the strong coupling approach as a function of number of electrons
and pressure in the multielectron bubble. d is the interelectron separation.
(From Ref. [88].)

Fig. 34. Energy and effective mass of the ripplonic polaron at zero temperature
and zero pressure, as a function of the number of electrons in the bubble. (From
Ref. [89].)

−
(e|E|)2

2πσ

∫
∞

1
dq̃

q̃

q̃2 +
pRb
σ

exp

[
−

a2

2R2
b

q̃2

]
(233)

=
h̄2

2mea2 +
meω

2
lat

2
a2

−
(e|E|)2

4πσ
exp

[
pa2

2σ Rb

]
0

×

[
0,

a2

2R2
b

(
1 +

pRb

σ

)]
, (234)

where 0 is the incomplete gamma function. Fig. 33 shows the
result for the variational parameter a as a function of number of
electrons and pressure in the multielectron bubble. If this figure,

a is expressed relative to the interelectron distance
√

4πR2
b/N .

The self-induced trapping energy of the electron in its
dimple, and the ripplopolaron effective mass are shown in
Fig. 34 as a function of N .

4.4.1.2. Dimple shape. The ripplonic part of the Hamiltonian
(230) represents oscillations of the helium surface no longer
around the original bubble surface, but around a new, displaced
equilibrium surface. This displacement of the helium surface is
the dimpling. Underneath each electron, a dimple appears. The
new equilibrium surface, described by the function u(r) (cf. Eq.
(181)), can be found by using the canonical relation between
the surface displacement operator and the ripplon creation and
annihilation operators:

Q̂q =

√
h̄q

2ρω(q)
(âq + â+

−q), (235)

and evaluating

u(r) =

∑
q

〈
Ψ
∣∣∣Q̂q

∣∣∣Ψ 〉 eiq.r. (236)

The result is given by

u(r) =
e|E|

2πσ

∫
∞

1
dq̃

q̃

q̃2 +
pRb
σ

J0

(
q̃r
Rb

)
e−a2q̃2/(4R2

b). (237)

In the limiting case of a large bubble, this result corresponds to
that of Shikin and Monarkha [97] for electrons on a flat helium
surface; the role of the capillary constant is played by p/(σ Rb).
Fig. 35 shows, for a bubble with N = 105 electrons, at different
pressures the shape of the dimpled surface. Several dimples are
shown — above the center of each dimple an electron is present.
The dotted curve represents the non-dimpled u(r) = 0 surface;
the curvature of the bubble surface is visible in this curve.
The electrons are separated by the interelectron distance d =√

4πR2
b/N . As the pressure increases, the radius of the bubble

decreases. Since the number of electrons is fixed the electric
pressing field increases, making on its turn the electron–ripplon
coupling larger. This results in deeper, narrower dimples. Note
that while the deformation here can be several angstroms, for
a flat surface on bulk helium the maximum deformation of
a dimple is less than one angstrom citeIkeziPRB25. Also for
electrons on a thin helium film above a dielectric substrate, the
dimple depth can reach several angstroms [74].

4.4.2. Path integral treatment
The simple but intuitive approach of the previous subsection

describes the system in the limit of temperature zero. To study
the ripplopolaron Wigner lattice at finite temperature (and for
any value of the electron–ripplon coupling), we use the vari-
ational path integral approach [91]. This variational principle
distinguishes itself from Rayleigh–Ritz variation in that it uses
a trial action functional Strial instead of a trial wave function.

The action functional of the system described by Hamilto-
nian (218), becomes, after elimination of the ripplon degrees of
freedom,

S = −
1
h̄

∫ h̄β

0
dτ
{me

2
ṙ2(τ )+ Vlat[r(τ )]

}
+

∑
q

∣∣Mq
∣∣2

×

∫ h̄β

0
dτ
∫ h̄β

0
dσGω(q)(τ − σ)eiq·[r(τ )−r(σ )], (238)

with

Gν(τ − σ) =
cosh[ν(|τ − σ | − h̄β/2)]

sinh(β h̄ν/2)
. (239)
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Fig. 35. For a bubble with N = 105 electrons, at different pressures the shape of the dimpled surface is shown. Electrons are present on the surface, separated
from each other by the lattice parameter d. Underneath each electron there is an individual dimple, induced by the electron–ripplon interaction. As the pressure is
increased, the bubble radius decreases, and the electron–ripplon interaction becomes stronger, resulting in a stronger dimpling effect. (From Ref. [88].)
In preparation of its customary use in the Jensen–Feynman
inequality, the action functional (238) is written in imaginary
time t = iτ with β = 1/(kBT ) where T is the temperature.
Following an approach analogous to that of Fratini and
Quémerais for a lattice of polarons in a semiconductor [100],
and to that of Klimin et al. for N polarons in a quantum
dot [104], we introduce a quadratic trial action of the form

Strial = −
1
h̄

∫ h̄β

0
dτ
[

me

2
ṙ2(τ )+

meΩ2

2
r2(τ )

]
−

Mw2

4h̄

∫ h̄β

0
dτ
∫ h̄β

0
dσGw(τ − σ)r(τ ) · r(σ ). (240)
where M, w, and Ω are the variationally adjustable parameters.
This trial action corresponds to the Lagrangian

L0 =
me

2
ṙ2

+
M
2

Ṙ2
−
κ

2
r2

−
K
2
(r − R)2, (241)

from which the degrees of freedom associated with R have been
integrated out. This Lagrangian can be interpreted as describing
an electron with mass me at position r , coupled through a
spring with spring constant κ to its lattice site, and to which a
fictitious mass M at position R has been attached with another
spring, with spring constant K . The relation between the spring
constants in (241) and the variational parameters w,Ω is given
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by

w =
√

K/me, (242)

Ω =
√
(κ + K )/me. (243)

Based on the trial action Strial, Feynman’s variational method
allows one to obtain an upper bound for the free energy F of the
system (at temperature T ) described by the action functional S
by minimizing the following function:

F = F0 −
1
β

〈S − Strial〉 , (244)

with respect to the variational parameters of the trial action.
In this expression, F0 is the free energy of the trial system
characterized by the Lagrangian L0, β = 1/(kbT ) is the
inverse temperature, and the expectation value 〈S − Strial〉 is to
be taken with respect to the ground state of this trial system.
The evaluation of expression (244) is straightforward though
lengthy. We find

F =
2
β

ln
[

2 sinh
(
βh̄Ω1

2

)]
+

2
β

ln
[

2 sinh
(
βh̄Ω2

2

)]
−

2
β

ln
[

2 sinh
(
βh̄w

2

)]
−

h̄
2

2∑
i=1

a2
i Ωi coth

(
βh̄Ωi

2

)
−

√
πe2

D
e−d2/(2D)

[
I0

(
d2

2D

)
+ I1

(
d2

2D

)]
−

1
2π h̄β

∫
∞

1/Rb

dqq|Mq |
2
∫ h̄β/2

0
dτ

×
cosh[ω(q)(τ − h̄β/2)]

sinh[βh̄ω(q)/2]
exp

[
−

h̄q2

2me

2∑
j=1

a2
j

×
cosh(h̄Ω jβ/2)− cosh[h̄Ω j (τ − β/2)]

Ω j sinh(h̄Ω jβ/2)

]
. (245)

In this expression, I0 and I1 are Bessel functions of imaginary
argument, and

D =
h̄

me

2∑
j=1

a2
j

Ω j
coth

(
h̄Ω jβ/2

)
, (246)

a1 =

√
Ω2

1 − w2

Ω2
1 − Ω2

2
; a2 =

√
w2 − Ω2

2

Ω2
1 − Ω2

2
. (247)

Finally, Ω1 and Ω2 are the eigenfrequencies of the trial system,
given by

Ω2
1,2 =

1
2
[Ω2

+ w2
±

√
(Ω2 − w2)2 + 4K/(Mme)]. (248)

Optimal values of the variational parameters are determined
by the numerical minimization of the variational functional
F as given by expression (245). As the reader may notice,
the result of the variational path integral method is slightly
less intuitive than that of the strong coupling approach of the
previous subsection, nevertheless it is much more general and
will allow us to introduce temperature to examine the melting
of the Wigner lattice of ripplopolarons in the next subsection.

4.4.3. Wigner lattice on a sphere
On a flat surface electrons see an image charge in the helium

or are pulled towards the surface of the helium by an external
electric field. Due to the electron–ripplon interaction a shallow
dimple is formed under the electron; however the Wigner lattice
is formed because of the electronic interactions, not because of
the dimple. In the MEB the electron not only feels the field
from its image charge but also the electric field normal to the
surface below it from all of the other electrons in the bubble.
This can be two orders of magnitude stronger than the fields
where instability develops on a flat surface and a narrow deep
dimple forms under each electron that localizes the electrons
into a lattice. As shown below, the mechanism of melting in
MEB is that the electrons shed their dimples.

The Lindemann melting criterion [101,102] states in general
that a crystal lattice of objects (be it atoms, molecules,
electrons, or ripplopolarons) will melt when the average motion
of the objects around their lattice site is larger than a critical
fraction δ0 of the lattice parameter d. It would be a strenuous
task to calculate from first principles the exact value of the
critical fraction δ0, but for the particular case of electrons
on a helium surface, we can make use of an experimental
determination. Grimes and Adams [8] found that the Wigner
lattice melts when Γ = 137 ± 15, where Γ is the ratio of
potential energy to the kinetic energy per electron. In their
experiment, the electron density varied from 108 cm−2 to
3 × 108 cm−2 while the melting temperature Tc varied from
0.23 K to 0.66 K. At temperature T the average kinetic energy
in a lattice potential Vlat is

Ekin =
h̄ωlat

2
coth

(
h̄ωlat

2kBT

)
, (249)

and the average distance that an electron moves out of the lattice
site is determined by

〈r2
〉 =

h̄
meωlat

coth
(

h̄ωlat

2kBT

)
=

2Ekin

meω
2
lat
. (250)

From this we find that for the melting transition in Grimes
and Adams’ experiment [8], the critical fraction equals δ0 ≈

0.13. This estimate is in agreement with previous (empirical)
estimates yielding δ0 ≈ 0.1 [23], and we shall use it in the rest
of this treatment.

The unmodified Lindemann criterion as stated above cannot
be applied to an infinite layer of electrons on helium at non-
zero temperature, because (when a thermal occupation of the
ripplon modes is assumed) a straightforward calculation of the
average distance that an electron moves out of its lattice site
yields a divergent result. This divergence is closely related to
Hohenberg’s theorem forbidding Bose–Einstein condensation
in 2D. Therefore, many authors rely on a modified Lindemann
criterion [22] that considers the average distance between two
nearest neighbors instead of the average distance of a lattice
resident from its lattice site. However, for the current geometry
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this modification is unnecessary: the multielectron bubble is
a finite and confined system, for which considerations based
on Hohenberg’s theorem do not apply. Hence, we shall use
the unmodified Lindemann criterion to study the melting of
the ripplopolaron lattice. In practice, we see that the above-
mentioned divergence is not present because there is a natural
cut-off wavelength for the ripplons: the lowest ripplon mode
on a sphere corresponds to an ` = 1 spherical harmonic, to
which a characteristic wavelength of the order of 1/Rb can be
associated. We have checked that the results do not depend on
the precise value of the cut-off wavelength λ/Rb with λ on the
order of 1.

Within the approach of Fratini and Quémerais [100], the
Wigner lattice of (ripplo)polarons melts when at least one of
the two following Lindemann criteria are met:

δr =

√〈
R2

cms
〉

d
> δ0, (251)

δρ =

√〈
ρ2
〉

d
> δ0 (252)

where ρ and Rcms are, respectively, the relative coordinate and
the center of mass coordinate of the model system (241): if r is
the electron coordinate and R is the position coordinate of the
fictitious ripplon mass M , this is

Rcms =
mer + MR

me + M
; ρ = r − R. (253)

The appearance of two Lindemann criteria takes into account
the composite nature of (ripplo)polarons. As follows from the
physical sense of the coordinates ρ and Rcms, the first criterion
(251) is related to the melting of the ripplopolaron Wigner
lattice towards a ripplopolaron liquid, where the ripplopolarons
move as a whole, the electron together with its dimple.
The second criterion (252) is related to the dissociation of
ripplopolarons: the electrons shed their dimple.

The path integral variational formalism outlined in the
previous section allows to calculate the expectation values〈
R2

cms
〉

and
〈
ρ2〉 with respect to the ground state of the

variationally optimal model system. We find

〈R2
cms〉 =

h̄w4

me[w2(Ω2
1 + Ω2

2 )− Ω2
1 Ω2

2 ]
(
Ω2

1 − Ω2
2
)

× [Ω4
2 (Ω

2
1 − w2) coth(h̄Ω1β/2)/Ω1

+Ω4
1 (w

2
− Ω2

2 ) coth(h̄Ω2β/2)/Ω2], (254)

〈ρ2
〉 =

h̄

me
(
Ω2

1 − Ω2
2
) (

Ω2
1 − w2

) (
w2 − Ω2

2
)

× [Ω3
1 (w

2
− Ω2

2 ) coth (h̄Ω1β/2)
+Ω3

2 (Ω
2
1 − w2) coth(h̄Ω2β/2)]. (255)

The procedure to find whether the Lindemann criteria are
fulfilled is then as follows: first the optimal values of the
variational parameters are obtained by minimization of the free
energy (245), and then these optimal values are substituted
in (254) and (255). Numerical calculation shows that for
Fig. 36. The phase diagram for the spherical 2D layer of electrons in the MEB.
Above a critical pressure, a ripplopolaron solid (a Wigner lattice of electrons
with dimples in the helium surface underneath them) is formed. Below the
critical pressure, the ripplopolaron solid melts into an electron liquid through
dissociation of ripplopolarons. (From Ref. [88].)

ripplopolarons in an MEB the inequality Ω1 � w is fulfilled
(w/Ω1 ≈ 10−3 to 10−2) so that the strong coupling regime
is realized, in agreement with the results of the consideration
above. Owing to this inequality, we find from Eqs. (254) and
(255) that

〈R2
cms〉 � 〈ρ2

〉. (256)

So, the destruction of the ripplopolaron Wigner lattice in an
MEB occurs through the dissociation of ripplopolarons, since
the second criterion (252) will be fulfilled before the first
(251). The results for the melting of the ripplopolaron Wigner
lattice are summarized in the phase diagram shown in Fig. 36.
For every value of N , pressure p and temperature T in an
experimentally accessible range, this figure shows whether
the ripplopolaron Wigner lattice is present (points above the
surface) or molten (points below the surface). Below a critical
pressure (on the order of 104 Pa) the ripplopolaron solid will
melt into an electron liquid. This critical pressure is nearly
independent of the number of electrons (except for the smallest
bubbles) and is weakly temperature dependent, up to the helium
critical temperature 5.2 K. This can be understood since the
typical lattice potential well in which the ripplopolaron resides
has frequencies of the order of THz or larger, which correspond
to ∼10 K.

We have established that the ripplopolaron Wigner lattice
will not melt into a liquid of ripplopolarons, but rather melt
through dissociation of the composite quasiparticle that is the
ripplopolaron. The absence of a ripplopolaron liquid phase
can be understood intuitively from the fact that the ripplon
frequencies (typically GHz) are several orders of magnitude
smaller than the electron frequencies in the lattice potential
(typically THz). In order to create a liquid of ripplopolarons,
the ripplopolarons have to move with an average velocity large
enough to keep the ripplopolaron lattice molten. This motion
has to be of the entire object, namely the electron and its
dimple. But, at the velocities required to keep the ripplopolaron
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liquid from freezing into a lattice, the dimples cannot follow the
electrons. Thus, ripplopolarons only exist in a crystallized state.

The method of Ref. [58] does not allow us to derive the
structure of this lattice — the mean-field approximation made
for the lattice potential prohibits this. The problem of the
exact lattice structure is complicated by the topology of the
surface [25]: unlike for a flat surface, it is impossible to tile
a sphere with a triangular lattice; frustration of the lattice in
the form of point defects is unavoidable, providing nucleation
points for melting the lattice. The problem of placing classical
point charges on a sphere was first considered by Thomson
[105] and was recently reconsidered for localized electrons in
multielectron bubbles [55].

The method of Ref. [58] does allow us to study also the
electron Wigner lattice, by putting e|E | = 0 in the above
results, thus switching the electron–ripplon coupling off. A
Wigner lattice of electrons is to be distinguished from a Wigner
lattice of ripplopolarons. The lattice of ripplopolarons on the
one hand melts through dissociation of the ripplopolarons, and
this melting line is almost temperature independent. The lattice
of electrons on the other hand melts though either classical
thermal motion (when the temperature reaches a melting
temperature of about 0.5 K), or through quantum melting when
the density of electrons is large enough so that the extent of the
zero-point motion becomes comparable to the lattice parameter.
In the Wigner lattice of the ripplopolarons on the one hand, the
particles are localized by the self-induced polaronic trapping
potential (the dimple) due to the electron–ripplon interaction.
In the Wigner lattice of electrons, the electrons are localized
through the Coulomb interaction between the electrons. Finally,
the region in phase space where the ripplopolaron Wigner
lattice resides is different from the region where the electron
Wigner lattice is found. This is illustrated in Fig. 37, where the
phase diagram drawn in Fig. 36 is extended to huge bubbles
(approaching the flat surface geometry). In the corner of largest
N (N > 109, Rb & 1 mm, ns . 109

− 1010 cm−2) and
lowest pressure (p < 0.1 Pa), we find that an electron Wigner
lattice (without individual dimples) can still be formed below
T = 0.4 K. The electron Wigner lattice is recovered and the
melting temperature derived from our treatment is in agreement
with the experimentally observed temperature [8].

The results of Ref. [58] show that, as the bubble is
compressed, the electron Wigner lattice will quantum melt
because of the increased density of electrons. As discussed
in the introduction, the critical density for quantum melting
of the electron Wigner lattice found by the present method
differs from the value expected on a flat helium surface.
A possible reason for this quantitative difference is that the
electron–ripplon model system used in the Jensen–Feynman
treatment becomes a poor trial system when the Coulomb
interactions dominate the electron–ripplon interaction: the
model is designed to describe the Wigner lattice of
ripplopolarons rather than the electron Wigner lattice. The
critical surface density for quantum melting of the electron
Wigner lattice, obtained in the present formalism, turns out to
be sensitive to the value δ = 0.13 for the Lindemann criterion,
with a larger δ leading to a better correspondence with the result
Fig. 37. The phase diagram shown in Fig. 36 is extended to reveal the relation
of the ripplopolaron Wigner lattice to the Wigner lattice of electrons. These are
distinct, not only in melting properties (the ripplopolaron Wigner lattice melts
through dissociation of ripplopolarons), but also in their location on the phase
diagram. The region for the Wigner lattice of electrons without dimples – in
agreement with the observation of Grimes and Adams [8] – starts at large N
and is quantum molten by pressurizing the bubble. (From Ref. [88].).

for quantum melting of the electron Wigner lattice on a flat
helium surface.

The region of phase space where the electron Wigner lattice
is present is separated from the region where the ripplopolaron
Wigner lattice is present by a region where the predicted
phase is an electron liquid. The ripplopolaron liquid phase, as
mentioned before, does not exist. Since, as mentioned above,
our method does not allow us to study the crystal structure,
we cannot, in the electron Wigner lattice phase, distinguish
between the crystalline and the hexatic phase [106].

Note that the coupled ripplon–phonon modes are a by-
product of the Wigner solidification. The concept of a
ripplopolaron does not a priori require Wigner solidification
— the polaronic effect can in principle appear in the absence
of Wigner solidification due to the electron–ripplon interaction
only. However, in a bubble the ripplopolarons exist in a lattice
so that we use the coupled modes rather than the bare ripplon
modes.

In conclusion, owing to the difference in the ripplon
and longitudinal plasmon frequencies [87], the ripplopolarons
can exist in a Wigner crystallized state. This state differs
from the Wigner lattice of electrons, in that the electrons
in the ripplopolaron Wigner lattice are localized by the
electron–ripplon interaction rather than the Coulomb repulsion,
and in that the melting occurs through the dissociation of the
ripplopolarons. As electron–ripplon interaction is weakened
(for example by reducing the externally applied pressure on
the multielectron bubble) the electrons can shed their localized
dimple and the ripplopolaron Wigner state is destroyed. The
melting transition occurs in a region of phase space that is
accessible to recently proposed experiments for stabilizing
multielectron bubbles.
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The new phase that was predicted [58], the ripplopolaron
Wigner lattice, will not be present for electrons on a flat
helium surface. At the values of the pressing field necessary
to obtain a strong enough electron–ripplon coupling, the flat
helium surface is no longer stable against long wavelength
deformations [11]. Multielectron bubbles, with their different
ripplon dispersion and the presence of stabilizing factors such
as the energy barrier against fissioning [38], allow for much
larger electric fields pressing the electrons against the helium
surface. The regime of N , p, T parameters, suitable for
the creation of a ripplopolaron Wigner lattice, lies within
the regime that would be achievable in recently proposed
experiments aimed at stabilizing multielectron bubbles [27].
The ripplopolaron Wigner lattice and its melting transition
might be detected by spectroscopic techniques [8,79] probing
for example the transverse phonon modes of the lattice [107].

5. Superconductivity on a spherical surface

Thin films have been a subject of interest for a long
time in the study of superconductivity. Superconducting films
have been used [108,109] to determine the superconducting
gap and to obtain measurements of the penetration depth.
More recently, patterned two-dimensional superconductors
have been used to probe the effects of nanoscopic confinement
on superconducting properties (see for example [110]).
Optical potentials can be used to confine ultracold atomic
gases to two-dimensional layers. Superfluidity in these
two-dimensional atomic gases occurs as a Bose–Einstein
condensate (BEC) or Bardeen–Cooper–Schrieffer (BCS) states
and is currently a subject of strong experimental and theoretical
investigation [111,112].

The effect of surface curvature on the superconductivity
of thin films has been less investigated, although there
are tantalizing hints that the curvature enhances the critical
temperature [113] or critical field [114]. Moreover, topological
properties such as the ‘hairy ball’ theorem (“one cannot comb
the hair on a ball in a smooth manner”) ensure that vortices have
to be present whenever the current is non-zero at some point
on the sphere. When the curvature becomes large, so that the
quantization of the angular momentum levels on the spherical
surface becomes comparable to the characteristic energy scale
of the BCS interaction, the superconducting properties (such as
the density of states and the thermodynamic properties derived
from it) become strongly modified from those of a flat, two-
dimensional superconductor [59].

These differences are especially pronounced in the case of
multielectron bubbles in helium. In a many-electron system on
a helium surface, the mechanism that leads to superconducting
pairing correlations is the electron–ripplon interaction. For flat
films (electrons on a flat helium surface) ripplon-mediated
superconductivity [93] would occur at a prohibitively low
temperature since the electron–ripplon coupling is weak.
However, as discussed in the previous section, in multielectron
bubbles this interaction is stronger. In this section we therefore
focus on the multielectron bubbles to illustrate the effects of
curvature on superconductivity in a thin film.
5.1. Ripplon-mediated electron–electron interaction

The effective electron–electron interaction is the sum
of the Coulomb interaction between the electrons and a
ripplon-mediated attractive interaction between the electrons.
A Feynman diagram can be used to represent the Coulomb
interaction between the electrons. We can add another diagram
with the same electron propagator lines, but instead of
exchanging a virtual photon, exchanging a virtual ripplon.
These two processes can be represented as a single
exchange of energy and angular momentum using an effective
interaction

Veff(`,m;ω) =
e2

2εR
1

2`+ 1
+ M2

`

2h̄ω`
(h̄ω)2 − (h̄ω`)2 + iη

.(257)

Both the Coulomb and the ripplon exchange interaction are
given by a product of two vertex factors and one virtual particle
propagator. The total electron–electron interaction Hamiltonian
could be written as

Hint(t) =

∑
`,m

∑
`′,m′

∑
j,n

[∫
dω
2π

Veff( j, n;ω)eiωt
]

× (−1)n ĉ+

(`,m)⊗( j,n)ĉ
+

(`′,m′)⊗( j,−n)ĉ`′,m′ ĉ`,m .

Let’s study for which regimes Veff( j, n;ω) is attractive; i.e. for
which values of ( j, n;ω) the ripplonic part dominates and
is attractive. It is clear that small energy transfers make the
ripplonic part attractive since D(0)(`, ω → 0) = −2/(h̄ω`).
This is good, since in general the ripplon exchange will occur
with ω = 0, because the ripplonic energies are much smaller
than the electron level spacing. The absorption or emission
of a ripplon cannot change the angular momentum of the
electron due to energy conservation requirements. The effective
interaction at ω = 0 is

Veff(`,m; 0) =
e2

2εR
1

2`+ 1
−

2M2
`

h̄ω`
. (258)

The attractive interaction dominates strongly at small `, as can
be seen from the table below which compares 2g2/(h̄ωσ ) to
e2/2εR.

|attraction |/|repulsion| for small `
104 106 108

0 mbar 30.748 74.551 257.40
100 mbar 152.52 1419.1 14 086
3 bar 1269.0 12 594 125 841

. (259)

Yet as ` grows it decreases faster than the Coulomb part of the
interaction: the large ` limit is

Veff(` � 1,m; 0) =
e2

4εR
1
`

−
2g2

h̄ωσ

1
`2 .

The angular momentum value where the effective interaction
turns from attraction into repulsion is `V =0 given in the table
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below.

`V =0 such that Veff(`,m; 0) is repulsive for ` > `V =0

104 106 108

0 mbar 61 149 514
100 mbar 305 2837 28 172
3 bar 2538 25 187 251 683

.(260)

For ` � `V =0 the attractive part dominates. It is strongest for
small ` and decreases roughly as `2:

Veff(` 6 `V =0,m; 0) ≈ −
2M2

`

h̄ω`

= −
2g2

h̄ωσ

(`+ 1/2)
(`+ 1)(`2 + `+ 2 + 2pR/σ)

.

The strength of the effective interaction is

Effective interaction prefactor 2g2/(h̄ωσ ) in K (!)
104 106 108

0 mbar 228.76 25.700 4.1175
100 mbar 2302.0 2079.7 2058.1
3 bar 43 504 43 061 43 017

. (261)

The effective attractive interaction is huge (values are in K, not
mK). We are clearly in a strong coupling regime, as noted in the
previous section.

5.1.1. Level filling effects
Which pairs of electrons can participate in the attractive

interaction though a ripplon exchange? This number will be
limited because of the Fermi statistics. Electrons below the
Fermi level need to be excited to an energy above the Fermi
level (since their final state after interacting needs to be
unoccupied). But even in order to excite an electron that was
on the Fermi angular momentum L F to angular momentum
L F + 1, a rather large energy h̄ω is necessary (�h̄ωσ ), so that
the ripplon-mediated interaction is no longer purely attractive.
Indeed the ripplon-mediated interaction is purely attractive only
for small energy transfers (<h̄ωσ ). At large h̄ω, the ripplon-
mediated interaction has positive contributions from ripplon
modes with ω` < ω.

This means that the attractive interaction can only take
place between two electrons on the Fermi level, and they
will be scattered into final states also on the Fermi level.
The energy gap to the other electronic levels is just too
big to bridge. Furthermore, Fermi statistics demand that the
initial states of the scattering pair are occupied and the final
states are unoccupied. If the occupation of the Fermi level
is 0 < f (L F ) < 1, then the fraction of possible pairs
of electrons that can participate is f (L F )

2
[1 − f (L F )]

2.
The important consequence of this is that if the number of
electrons in the multielectron bubble is such that the Fermi
level is completely filled up, the ripplon-mediated interaction
is suppressed, and any superconductivity must vanish. In
practice, this occurs every time the number of electrons
divided by two (spin states) equals an integer squared. If
superconducting correlations lower the energy substantially, it
may be energetically advantageous to redistribute the electrons
Fig. 38. The attractive BCS interaction: two electrons on the Fermi sphere are
scattered into other states on the Fermi sphere by ripplon exchange.

over several angular momentum states so more electrons can
participate in pair formation.

5.1.2. Clebsch–Gordan suppression factor
The attractive interaction can only take place between two

electrons on the Fermi level, and they will be scattered into final
states also on the Fermi level. Fig. 38 shows a diagram which
represent the attractive BCS interaction.

An electron in angular momentum state |initial〉 = |L F ,m〉,
which emits a spherical ripplon in angular momentum state
| j, n〉 finds itself in the following superposition of angular
momentum states

|final〉 =

L F + j∑
`=|L F − j |

√
(2L F + 1)(2 j + 1)

4π(2`+ 1)
C

× [(L F , 0), ( j, 0); (`, 0)]
× C[(L F ,m), ( j,−n); (`,m − n)] |`,m − n〉 .

In this expression C[(L F ,m), ( j,−n); (`,m − n)] is the
Clebsch–Gordan coefficient for combining the angular mo-
menta {L F ,m} and { j,−n} into {`,m − n}. The projection of
this final state |final〉 on the Fermi level is

fCG[(L F ,m), ( j,−n)] =

√
2 j + 1

4π
C[(L F , 0), ( j, 0); (L F , 0)]

× C[(L F ,m), ( j,−n); (L F ,m − n)].

Thus, the scattering process between two electrons on the Fermi
energy, with m,m′

∈ {−L F , L F }, can be described in second
quantization as

V̂BCS =

L F∑
m=−L F

L F∑
m′=−L F

∑
j,n

fCG[(L F ,m), ( j,−n)]

× fCG[(L F ,m′), ( j, n)]

× f (L F )
2
[1 − f (L F )]

2Veff( j, n; 0)
× ĉ+

L F ,m−n ĉ+

L F ,m′+n ĉL F ,m′ ĉL F ,m .

This interaction Hamiltonian derived for the multielectron
bubble is already close to a BCS-like interaction Hamiltonian,
as it involves only electrons on the Fermi surface and couples
them with an attractive potential. We included the Fermi filling
factor, as a ‘statistical averaging’ so that we can for this
Hamiltonian always assume that the initial state is occupied
and the final state unoccupied. In a statistical averaging over
the ensemble of equivalent microscopic states there will always
be members of the ensemble for which this is true. The fraction
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Fig. 39. The effective interaction strength between electrons on the Fermi level
of a N = 104, p = 0 bubble for {m,m′

} pairs of electrons. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

of such members with respect to the total is exactly our Fermi
filling factor f (L F )

2
[1 − f (L F )]

2.
An initial state with a pair characterized by {m,m′

} can be
scattered into a pair with {m − n,m′

+ n} in various ways:
namely by the scattering of a virtual ripplon with j = n, n +

1, n + 2, . . .. provided that j is an even mode to obey the
triangle sum. All these processes are indistinguishable (initial
and final states are exactly the same) and their diagrams should
be added to get the overall amplitude. Different combinations
of Clebsch–Gordan coefficients will occur, which can take
either a positive or a negative sign: the different diagrams
can interfere constructively but also destructively. The only
{m,m′

} pairs where we are sure that the different contributions
will interfere constructively, is for pairs of electrons with
opposite angular momentum m′

= −m. The reason for this
is that C[(L F ,m), ( j, n); (L F ,m + n)] has the same sign as
C[(L F ,−m), ( j,−n); (L F ,−m − n)].

Let’s take a closer look at the example bubble with
N = 104 and p = 0 to see what is going on with
the electron pairs for which m′

6= −m. This is shown
in Fig. 39. The pairs of electrons are characterized by the
m,m′ values which are shown on the x, y axis respectively.
The z-axis, which is color-coded from red (low) over yellow,
green, blue to violet and red again (high), shows the value
of Veff( j, n; 0)× fCG[(L F ,m), ( j,−n)] fCG[(L F ,m′), ( j, n)]
added up for different values of the ripplon angular momentum
j, n. The full sum (as defined in the next section) was broken off
at a value j = 10, but the effect is already apparent: the total
effective interaction is strongly reduced for pairs of electrons
which do not have opposite angular momentum (m′

6= −m).

5.2. BCS theory for the multielectron bubble

As we have established that the properties of the ripplon-
mediated electron–electron interaction lead to a BCS-type
attractive interaction between the electrons, we can go through
the motions of BCS theory mutatis mutandis. From the previous
section we know that the interaction between the electrons can
be written in the form of a BCS interaction term given by

Ĥ (BCS)
int = −

L F∑
m=−L F

L F∑
m′=−L F

Ṽm,m′ ĉ+

L F ,−m′↓

× ĉ+

L F ,m′;↑
ĉL F ,m;↑ĉL F ,−m;↓, (262)

where σ =↑,↓ denotes spin up and spin down and with

Ṽm,m′ = f (L F )
2
[1 − f (L F )]

2
2L F∑

j=max[2,|m−m′|]

2g2

h̄ωσ

×
( j + 1/2)

( j + 1)( j2 + j + 2 + 2pR/σ)
× fCG[(L F ,m), ( j,m′

− m)]

× fCG[(L F ,−m), ( j,m − m′)]. (263)

Due to the coefficients C[(L F , 0), ( j, 0); (L F , 0)] the summa-
tion cannot run further than 2L F and only even values of j con-
tribute. The summation starts from n = |m − m′

|, or if this is
less than 2, it starts at ` = 2. The reason is that the ` = 0 defor-
mation is not taken into account (it is the radius of the bubble),
and the ` = 1 deformation is only a uniform translation which
by definition cannot couple to the internal degrees of freedom.

The BCS variational wave function is given by

|ΦBCS〉 =

∏
`,m

(u∗

`,m + v`,m ĉ+

`,m;↑
ĉ+

`,−m;↓
) |0〉 , (264)

where |0〉 is the electron vacuum. This wave function is a
product of pair wave functions (and thus represents an even
number of electrons). The Bogoliubov transformation is

α̂`,m;σ = u∗

`,m ĉ`,m;σ − σv`,m ĉ+

`,−m;−σ
(265)

⇔

ĉ`,m;σ = u`,m α̂`,m;σ + σv`,m α̂
+

`,−m;−σ
, (266)

where we impose that

u`,−m = u`,m and v`,−m = v`,m,

and we use the convention that σ = +1 corresponds to spin
up ↑ and σ = −1 corresponds to spin down ↓. The variational
parameters must satisfy

u`,mu∗

`,m + v`,mv
∗

`,m = 1, (267)

so that the α+

`,m;σ
operators obey the Fermionic anticommutator

rule given by
{
α̂`′,m′;σ ′ α̂+

`,m;σ

}
= δ``′δmm′δσσ ′ . The usefulness

of these Bogoliubov transformed operators stems from the
property that they have the BCS wave function as their vacuum.
The expectation value of the kinetic energy is given by

E =

〈
ΦBCS

∣∣∣∣∣∑
`m,σ

ξ`ĉ+

`,m;σ
ĉ`,m;σ

∣∣∣∣∣ΦBCS

〉

+

〈
ΦBCS

∣∣∣Ĥ (BCS)
int

∣∣∣ΦBCS

〉
. (268)
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Remember that ξ` = E` − EF is the energy measured from the
Fermi surface. Using the Bogoliubov transformation, this yields

E = 2
∑
`m

ξ`
∣∣v`,m∣∣2 −

L F∑
m,m′=−L F

Ṽm,m′

×

[
v∗

L F ,m′u∗

L F ,m′uL F ,mvL F ,m − |v`,m |
4δm,m′

]
. (269)

In the last sum, the first term between square brackets
corresponds to

v∗

`,m′u∗

`,m′u`,mv`,m =

〈
ΦBCS

∣∣∣ĉ+

`,−m′;↓
ĉ+

`,m′;↑

∣∣∣ΦBCS

〉
×
〈
ΦBCS

∣∣ĉ`,m;↑ĉ`,−m;↓

∣∣ΦBCS
〉
, (270)

whereas the second term in corresponds to

|v`,m |
4δm,m′ =

〈
ΦBCS

∣∣∣ĉ+

`,m′;↑
ĉ`,m;↑

∣∣∣ΦBCS

〉
×

〈
ΦBCS

∣∣∣ĉ+

`,−m′;↓
ĉ`,−m;↓

∣∣∣ΦBCS

〉
. (271)

The second term in (269) is incorporated into the single-particle
energies ξ` and represents a mean-field correction to those
energies. Introducing the usual gap

∆`,m =

∑
m′

Ṽm,m′uL F ,m′vL F ,m′ (272)

leads to

E = 2
∑
`m

ξ`
∣∣v`,m∣∣2 −

L F∑
m=−L F

∆L F ,mv
∗

L F ,m′u∗

L F ,m′

−

L F∑
m=−L F

∆∗

L F ,mvL F ,m′uL F ,m′ . (273)

This energy is minimized by

v`,m = sin(θ`,m/2) and u∗

`,m = cos(θ`,m/2) (274)

with

sin
(
θL F ,m

)
=

∣∣∆L F ,m
∣∣√∣∣∆L F ,m

∣∣2 + ξ2
L F ,m′

, (275)

cos
(
θL F ,m

)
=

ξ ′

L F ,m√∣∣∆L F ,m
∣∣2 + ξ2

L F ,m′

. (276)

This leads to the gap equation

∣∣∆L F ,m
∣∣ =

1
2

∑
m′

Ṽm,m′

∣∣∆L F ,m′

∣∣√∣∣∆L F ,m′

∣∣2 + ξ2
L F ,m′

. (277)

Noting that at the Fermi level ξ2
L F ,m′ = 0, we get

∣∣∆L F ,m
∣∣ =

1
2

∑
m′

Ṽm,m′

1∣∣∆L F ,m′

∣∣ . (278)

From Fig. 39 in the previous subsection, we find that the
potential energy of a pair of electrons is nearly constant along
Fig. 40. BCS interaction strength G (in mK) as a function of pressure p and
number of electrons N in the bubble (from [59]).

the m = −m′ ridge. This is what one would expect in a
spherically symmetric system: no preferential direction should
exist and the gap and ξ ′

L F ,m should be independent of m. So we
use the averaged interaction

G =
1

(2L F + 1)2
∑
m,m′

Ṽm,m′,L F . (279)

Values for G for various configurations are given in Fig. 40.
This yields the following result for the gap∣∣∆L F

∣∣ = |(2L F + 1)G/2| . (280)

The BCS energy in the superconducting state is

E0 =

∑
m

[
2ξL F sin2(θ`,m/2)−

1
2

∣∣∆L F ,m
∣∣ sin(θ`,m)

]
= EN −

∑
m

[
ξL F cos(θ`,m)−

1
2

∣∣∆L F ,m
∣∣ sin(θ`,m)

]

= EN −

∑
m

 (ξL F ,m)
2√∣∣∆L F ,m

∣∣2 + (ξL F ,m)
2

+
1
2

∣∣∆L F ,m
∣∣2√∣∣∆L F ,m

∣∣2 + (ξL F ,m)
2

 . (281)

Thus,

E0 − EN =
1
2

|(2L F + 1)G/2| . (282)

As can be seen from the numerical values for G shown
in Fig. 40, this energy gain can be larger than the level
splitting between angular momentum states. Thus, it can
be advantageous to redistribute the electrons on to different
angular momentum state, even though for such a redistribution
there is not enough thermal energy and even though ripplons
cannot scatter electrons from one angular momentum state
to another. To investigate this effect further, we employ
Richardson’s method yielding exact solutions for the case of
a superconductor on a spherical surface.
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5.3. Richardson method on the sphere

In the preceding subsections we argued that multielectron
bubbles are a suitable candidate to observe pairing of electrons
in a spherical two-dimensional system. Note that only electrons
within the same angular momentum energy level L interact:
only intralevel interactions take place, but no interlevel
interactions. This is due to the fact that the relevant ripplon
energies are much smaller than the interlevel energy splitting.
So, the set of electrons with a given angular momentum L
can be considered as an independent subsystem, described
by the Hamiltonian (262). The full system is the collection
of independent subsystems characterized by different L . The
effective BCS Hamiltonian we obtained can be expressed as
a sum over independent subsystems with different angular
momentum,

Ĥeff =

∑
L

ĤL (283)

with

ĤL =

∑
m,σ

εL ĉ+

L ,m;σ
ĉL ,m;σ

− G
L∑

m,m′=−L

ĉ+

L ,−m′↓
ĉ+

L ,m′;↑
ĉL ,m;↑ĉL ,−m;↓. (284)

We introduce the notation εL rather than EL to emphasize that
the analysis described from here onwards can be applied to
the general problem of a S2DEG with attractive interactions
between electrons on the same angular momentum level. The
previous section provides possible values for the coupling
constant G (see Fig. 40) and for the relevant energy scales,
and a justification for the applicability of the effective
pairing Hamiltonian (262) to multielectron bubbles specifically.
Nevertheless the results derived in this section can be used
to investigate other systems such as the superconducting
properties of thin electronic nanoshells, or can be investigated
as an academic question regarding spherical electronic systems.

Setting ∀(i) : εi = εL and

b̂m;↑ = ĉL ,m;↑, b̂m;↓ = ĉL ,−m;↓, (285)

in (284) we obtain the so-called reduced BCS Hamilto-
nian [116,117]:

ĤBCS =

∑
i,σ

εi b̂+

i,σ b̂i,σ − G
∑
i,i ′

b̂+

i ′,↑b̂+

i ′,↓b̂i,↓b̂i,↑. (286)

Richardson [115] derived an exact solution for this reduced
BCS Hamiltonian. The solution method amounts to solving a
set of n non-linear coupled equations.

In general, the aforementioned set of equations can be solved
only by numerical computation. However, in the particular
case when all the involved single-particle states belong to one
and the same energy level – as is the case for a spherical
multielectron bubble – the energy of electron pairs can be easily
found analytically [118]. The result for the energy of electrons
in the subsystem characterized by angular momentum L can be
written down as

EL ,nL ,gL ,bL = (2nL + bL)εL − G(nL − gL)

× (2L − bL + 2 − nL − gL). (287)

Three quantum numbers characterize the energy levels of the
subsystem with angular momentum L . The quantum number
nL corresponds to the number of electron pairs, whereas bL
represents the number of unpaired electrons. The quantum
number gL indexes the number of elementary bosonic pair-hole
excitations [119] in the system of nL pairs. These are bosonic
excitations that involve a redistribution of the amplitude for
correlated pairs over the 2L + 1 states with angular momentum
L . Note that gL = 0 corresponds to the ground state for
the correlated pairs. The pair-hole excitations can be thought
of intuitively as collective excitations of the condensate of
Cooper pairs, whereas bL rather represents the broken Cooper
pairs. For example, if two bare single-electron states |L ,m; ↑〉

and |L ,−m; ↓〉 are occupied in level L , this electron pair
should be counted in nL , the total number of such pairs. It
is clear that nL has to be less than or equal to 2L + 1. Now
consider the ‘broken pair’ case where only one state of the pair
|L ,m; ↑〉 and |L ,−m; ↓〉 is occupied. The unpaired electron
cannot participate in the scattering described by the interaction
term in (284) and electron pairs cannot scatter into the pair
of states |L ,m; ↑〉 , |L ,−m; ↓〉 because one of these states is
already occupied. The states |L ,m; ↑〉 , |L ,−m; ↓〉 are blocked
for scattering of pairs. The number of these blocked spin
degenerate bare states equals the number of unpaired electrons,
and is denoted by bL . The total number of electrons in angular
momentum level L is then 2nL + bL ≤ 2(2L + 1).

The total energy can be expressed as a sum of the energies
for each independent subsystem:

E{nL ,bL ,gL }L=1,2,3,... =

∞∑
L=0

EL ,nL ,gL ,bL . (288)

The state of the entire system is characterized by a large
set of quantum numbers, three (nL , bL , gL ) for each angular
momentum subsystem.

5.3.1. Ground state properties
Consider the ground state of a bubble with an even number

of electrons. Given the constraint that the total number of
electrons on the sphere is constant, the number of electrons on
each angular momentum level can be adapted. As noted before,
it can be energetically advantageous to redistribute the electrons
over several angular momentum levels around L F in order to
achieve the lowest energy. The ground state in a bubble with
even N is characterized by gL = 0 and bL = 0 for all L .
In order to find the ground state configuration of nL , let us
consider the variation of the total energy, ∆EL ,L+1, due to a
transfer of an electron pair from the Lth energy level to the next
higher level. Using (287) with gL = bL = 0, we find

1EL ,L+1 = 4ε1(L + 1)− 2G (nL − nL+1) , (289)
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Fig. 41. The filling of single-particle states in the angular momentum subsystems is shown as a function of the BCS interaction strength G/ε1 expressed in units
ε1 = h̄/(me R2). Dark (light) shade corresponds to filled (empty) levels. From Ref. [59].
with ε1 = h̄/(me R2). Thus a transfer reduces the total energy
if the inequality

G (nL − nL+1) > 2ε1(L + 1) (290)

is satisfied. Of course, this inequality is not satisfied at nL ≤

nL+1, so that an inverted population of levels never appears in
the ground state.

Condition (290) is never fulfilled also at weak interaction:
the difference (nL − nL+1) cannot exceed the value 2L + 1,
which corresponds to completely filled Lth level and empty
level L + 1. Therefore, condition (290) cannot be satisfied for
G < ε1(L + 1)/(2L + 1) which simplifies to G < ε1/2
for L � 1. Such a “weak interaction” case is realized in
MEBs with the total number of electrons Ntot < 4 × 103 and
p = 0. The opposite limit, G � ε1/2, will here be referred
to as the strong coupling case. In this case, we deduce from
condition (290) that ground state configuration will be such
that the number of electron pairs gradually decreases from
level to level by approximately ε1L F/G for approximately
2G/ε1 energy levels around the level L = L F . In order to
illustrate and further confirm this conclusion, drawn from the
above analytical consideration, we show in Fig. 41 the ground
state electron distributions, obtained by an exact numerical
minimization of the total energy with respect to nL . The results
are shown as a function of G/ε1 for fixed L F = 26 and two
different values of NF , the ground state number of electrons
on the level L = L F in the “normal” MEB (i.e., at G = 0):
NF = 52 (approximately half filling; left panel of Fig. 41)
and NF = 106 (closed shell; right panel of Fig. 41). We do
not expect any qualitative changes of the electron distribution
patterns with increasing L F . Dark (light) color corresponds to
filled (empty) states on the energy levels.

In order to get an idea of how important the redistribution
of electron pairs is for the pairing characteristics, the difference
in energy between the state with pairing correlations and the
state with G = 0 can be examined. This energy difference is
the condensation energy

EC(G) = Egs(0)− Egs(G)− nG,

where Egs(G) is the ground state energy at a given G and
n is the total number of electron pairs on the sphere. The
condensation energy is always a non-decreasing function of
the interaction strength. A less trivial result is that at 2G/ε1
the slope of EC(G) rapidly rises with G: in the absence
of the electron redistribution between the energy levels the
condensation energy would be merely a linear function of G
as predicted by expression (282). Such a linear behavior of EC

versus G is seen indeed in the case G < ε1/2.
Another interesting result of the electron redistribution is

that the condensation energy, which is strongly influenced
by NF at “weak interaction” G < ε1/2 (in particular, the
condensation energy is zero in the case, when the shell L =

L F is closed, and reaches a maximum for half-filling of this
shell), becomes almost independent of NF when G significantly
exceeds ε1/2. The reason for insensitivity of the obtained EC

to NF at large 2G/ε1 is that for sufficiently strong interaction
the ground state electron configuration is qualitatively the same
independently of NF : there is a set of approximately 2G/ε1
energy levels, whose population linearly decreases with L from
almost complete filling to zero.

5.3.2. Density of states
Having obtained the ground state, we analyze the effect of

the pairing interaction on the density of (many-electron) states.
This density of states can be written down as

D(E) =

∑
i

J (i)δ(E − E (i)), (291)
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Fig. 42. The density of states Dδ(E) is shown as a function of the energy (above the ground state energy) for increasing BCS interaction strength G (from [59]).
where the energy levels E (i) and their degeneracy J (i) are given
by the expressions

E (i) =

∑
L

ELnL gL bL , (292)

J (i) =

∏
L

JLnL gL bL , (293)

with

JLgL bL = 2bL C2L+1
bL

×

{
1, gL = 0(

C2L+1−bL
gL

− C2L+1−bL
gL−1

)
, gL ≥ 1. (294)

where Ck
n are binomial coefficients. [118].

Instead of a sum of delta functions, it is more convenient to
consider instead of D(E) the quantity

Dδ(E) =

∫ E+δ/2

E−δ/2
dE D(E),

which gives the number of (many-electron) states in the energy
range of width δ around the energy E . First we will restrict
ourselves to the case of a bubble with an even number of
electrons. The calculations are performed for fixed L F = 26
and NF = 54 (approximately half filling), where L F is the
orbital quantum number for the uppermost occupied single-
electron energy level in the ground state at G = 0, while NF is
the ground state number of electrons on this level at G = 0.

In Fig. 42 the evolution of Dδ(E) with increasing G
is shown. Intralevel excitations are characterized by either
increasing bL (creating broken pairs) or increasing gL (creating
pair-hole excitations) while keeping the total number of
electrons in the angular momentum subsystem L constant. The
energy required to break a Cooper pair can be found by setting
nL → nL − 1, bL → bL + 2. The minimal energy required to
break a Cooper pair is

1pair-breaking = EL ,nL−1,0,2 − EL ,nL ,0,0 = G (2L + 1) . (295)

The energy required to form a pair-hole excitation of the pair
condensate is found by setting gL → gL + 1. The minimal
energy required for a pair-hole excitation is

1pair-hole = EL ,nL ,1,0 − EL ,nL ,0,0 = G (2L + 1) . (296)

This is equal to the minimal energy for a pair-breaking
excitation, and corresponds to the superconducting gap in
the limit of a flat electron system. In Fig. 42 the intralevel
excitations are shown as dark peaks; the distance between
the first two peaks in the intralevel excitation density of
states increases as G increases. In the weak coupling regime
(2G/ε1 � 1) the energy required to transfer a Cooper pair from
one angular momentum subsystem to another is much larger
than the energy required for intralevel excitations. The density
of states remains similar to the usual angular momentum
level spectrum, broadened by the intralevel excitations as in
panel (b) of Fig. 42. However, in the strong coupling regime
(2G/ε1 � 1) the energy to break a Cooper pair or create a pair-
hole excitation exceeds the energy necessary to transfer a pair
from one L subsystem to another. In this regime, there exist
excitations below the gap for breaking pairs or creating pair-
hole excitations, as can be seem in panels (c) and (d) of Fig. 42.
With increasing G, the excitation spectrum tends to become
quasicontinuous, with jumps of several orders of magnitude
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Fig. 43. The density of states is shown as a function of the excitation energy and
of G. The evolution from a set of discrete bands close to the angular momentum
level spectrum at small G towards a quasicontinuum at large G with steps at the
pair-breaking energy can be seen (from Ref. [59]).

in Dδ(E) near the energies corresponding to pair-breaking or
pair-hole excitations. Between these jumps there is a more
uniform distribution of excitations, corresponding to interlevel
transitions of pairs. Even though the density of states does not
tend to zero below the pair-breaking gap, this sudden jump still
constitutes distinctive feature at the pair-breaking gap.

Fig. 43 provides an overview of the behavior of Dδ(E) as a
function of both E and G. One can see an interplay between
intralevel excitations, whose energies always increase with
increasing G, and excitations, which correspond to interlevel
transitions of pairs. For the latter, both an increase and a
decrease in energy are possible with increasing G.

For G = 2ε1, a quite periodical pattern of Dδ(E) is seen
in Fig. 43 at energies below the first intralevel excitation. The
origin of such periodicity can be easily understood from (289)
or the more general expression

∆EL ,L+∆L = 4ε1∆L(L + ∆L)

− 2G
(
nL − nL+∆L + ∆L − 1

)
, (297)

which gives the variation of the total energy due to a transfer
of an electron pair from the Lth bare energy level to the level
with the orbital quantum number (L + ∆L) (in the absence
of broken pairs and pair-hole excitations). Thus, as seen from
Fig. 44. The specific heat as a function of temperature, for different values of
G 6 ε1/2 and for G = 0, for a system with an odd and an even number
of electrons. The arrows indicate the estimates for the critical temperature
discussed in the text. From Ref. [120].

(297), at G = 2ε1 only the excitation energies divisible by 2ε1
are possible at any L , ∆L , nL and nL+∆L .

5.4. Specific heat and critical temperature

The expressions (292) and (293) for the energy levels E j
and their degeneracies J j allow us to compute the specific heat
straightforwardly

C =
d 〈E〉

dT
, (298)

where 〈E〉 is the statistical average energy of the electrons in
the MEB:

〈E〉 =

∑
j

J j E j exp
[
−E j/ (kBT )

]
∑

j
J j exp

[
−E j/ (kBT )

] . (299)

The result for the specific heat [120] is shown in Fig. 44 in
the weak interaction regime 2G/ε1 6 1, and in Fig. 45 for the
regime 2G/ε1 > 1.

In the case of G = 0, the system behaves as a collection of
quantum rotors and the specific heat capacity vanishes at low
temperatures. An increase of C with T starts at temperatures
which correspond to non-negligible occupation probabilities
for the lowest excited (many-electron) states. These excited
states are separated from the ground state by an energy of the
order ε1(L F + 1) and correspond to transitions of electrons
between adjacent single-electron energy levels with different
L . The aforementioned energy spacing – together with the
ratio between the number of the lowest exited states and the
degeneracy of the ground state – determine the characteristic
temperature for the onset of non-zero C .

As seen from Fig. 44, at small non-zero G (G � ε1)
an additional peak of C(T ) appears at a temperature lower
than that at which the specific heat in the normal state (with
G = 0) starts to increase. This peak due to the intralevel pair-
breaking and pair-hole excitations: At G � ε1, these intralevel
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Fig. 45. The specific heat as a function of temperature, for different values of
G > ε1/2, for a system with an odd and an even number of electrons. The
arrows indicate the estimates for the critical temperature discussed in the text.
From Ref. [120].

excitations are characterized by much smaller energies than the
transitions between single-electron levels with different L . In
the case of a closed shell configuration, no intralevel excitations
from the ground state are possible, so that no additional peak of
C(T ) appears at G � ε1. With increasing G, the peak of C(T )
which corresponds to pair-breaking and pair-hole excitations,
shifts towards higher temperatures. For G > ε1/2 the pair-
breaking and pair-hole excitation energy is larger than the
interlevel transition energy, so that the extra peak is not present,
cf. Fig. 45. Nevertheless, in the density of states there is still a
marked increase in at the pair-breaking and pair-hole excitation
energy, so that this energy can still be identified through the
onset of a rapid increase in the specific heat as a function of
temperature.

The behavior of the specific heat as a function of temperature
allows us to identify a characteristic temperature T ∗ at
which pair-breaking processes occur. Both for odd and even
systems, the initial rise in the specific heat as a function
of temperature is caused by pair-breaking excitations. For
G < ε1/2 the characteristic temperature will correspond to
the temperature at which the peak (see Fig. 44) in C(T )
appears. For G > ε1/2 the onset of the fast increase in
C(T ) can be identified with this characteristic temperature.
For temperatures larger than this characteristic temperature,
many-body states with broken pairs or pair-hole excitations
are populated and the pairing correlations become suppressed.
Thus, the characteristic temperature T ∗ can be interpreted as
the critical temperature for superconductivity.

It is possible to make an analytical estimate for T ∗.
The probability for the system to be in the ground state
is proportional to Pgs = Jgs exp

(
−Egs/kBT

)
, where Jgs

is the degeneracy of the ground state. The probability for
the system to break up one pair is proportional to P1bp =

J1bp exp
[
−
(
Egs + ∆L F

)
/kBT

]
, since ∆L F is the first pair-

breaking energy. Here, J1bp is the total number of states with
one broken pair. An appreciable contribution of states with one
broken pair to the specific heat appears when P1bp becomes
comparable to Pgs, i.e. at a temperature

kBT ∗
=

∆L F

ln(J1bp/Jgs)
. (300)

The degeneracy of states, which correspond to the first
intralevel pair breaking (at gL = 0), exceeds that for the
ground state by a factor of 22C2L+1

2 . In this connection, one
could recall that the energy of the first pair-hole excitation
(gL = 1) coincides with that of the first pair-breaking excitation
(see Eqs. (295) and (296)). It is worth noting however that an
increase in the degeneracy of states due to the first pair-hole
excitation (from the ground state) is characterized by the factor
(C2L+1

1 − 1) which is much smaller than 22C2L+1
2 in the case

of L � 1. That is why the pair-hole excitations are much less
important – as compared to the first pair-breaking excitation –
for the initial stage of the fast increase of C with T . So, in the
case of G < ε1/2, the temperature T ∗ is determined by the first
intralevel pair breaking on the level L = L F .

5.5. Parity effects

The qualitative behavior of C(T ) is similar for spherical
systems with odd and even numbers of electrons. Nevertheless,
two observations can be made from Figs. 44 and 45: (i) for
odd numbers of electrons a fast increase of C with T takes
place at higher temperatures as compared to the even case; (ii)
a shoulder, which is clearly seen on the curves of C(T ) for the
system with an even number of electrons is not pronounced for
odd numbers of electrons.

The shoulder of C(T ), indicated by the arrows in Figs. 44
and 45, corresponds to the first pair-breaking excitation. The
appearance of this shoulder arises from the fact that the relative
increase of Dδ due to the first pair breaking is significantly
larger than that for further pair-breaking transitions. For
systems with an even number of electrons and G < ε1/2,
the increase of Dδ can be characterized by the factor ∼

4C2L F +1
2 ≈ 8L2

F . In the odd case, due to the presence of
one unpaired electron in the ground state, the ground state
degeneracy is 2C2L F +1

1 , so that the relative increase of Dδ
becomes 4C2L F +1

3 /C2L F +1
1 ≈ 8L2

F/3. This is 3 times smaller
than in the even case. Also for G > ε1/2, a jump of Dδ due
to the first pair breaking is appreciably less pronounced for
systems with odd numbers of electrons as compared to those
with even numbers. This parity effect in the specific heat also
translates into a parity effect for the critical temperature derived
from C(T ).

Moreover, for G < ε1/2 only the Fermi level is involved
in the pairing correlations, but at G > ε1/2, the situation is a
bit more complicated. In this case, approximately µ = 2G/ε1
single-particle energy levels around the level L = L F are
partially occupied in the ground state configuration. Moreover,
for the interaction strength G significantly larger than ε1/2,
interlevel pair-breaking excitations (within the aforementioned
set of µ single-electron energy levels) have energies close
to those of intralevel pair-breaking excitations. Taking the
above into account, we can approximate, for the even case
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ln(J1bp/Jgs) as ln(4Cµ(2L F +1)
2 ) ≈ ln(8L2

Fµ
2). As discussed

in the previous paragraph, the degeneracy ratio in the case of an
odd system is three times smaller, so that the expression (300)
becomes

kBT ∗
even ≈

(2L F + 1)G
ln(8L2

Fη
2)
, (301)

with η = max[1, 2G/ε1] for even systems, and for the odd case

kBT ∗

odd ≈
2L F G

ln(8L2
Fη

2/3)
. (302)

This shows that (at a fixed L F � 1): (T ∗

odd − T ∗
even)/T ∗

even ≈

ln 3/ ln(8L2
Fη

2). So, the characteristic temperature increases
due to the presence of an unpaired electron in the ground state.
As we discussed above, this result is related to the fact that the
many-electron ground state in an odd MEB is highly degenerate
due to degeneracy of single-electron energy states with a
definite L . In this connection, it may be of some relevance
to recall one of our results for grains with degenerate single-
electron states in the interaction band (see App. A in [118]).
For those grains with an odd number of electrons, degeneracy
of the many-electron ground state leads to a re-entrant behavior
of magnetization: slightly above the “critical magnetic field”,
an increase of T from zero results in a transition from the fully
spin polarized (“normal”) state to the maximally paired state
(see Fig. 7(a) and the related text in [118]).

In Fig. 46 the critical temperature is shown for the case of
multielectron bubbles with N electrons, subjected to different
pressures (the higher the pressure, the more compressed the
bubble is and the smaller the radius). In the bottom panel for this
figure, the parity effect is shown through (T ∗

odd − T ∗
even)/T ∗

even.
This relative difference in the odd–even critical temperatures is
seen to vary slowly as a function of an increasing number of
electrons in a bubble.

5.6. Ginzburg–Landau on the sphere

In the preceding sections, we investigated the microscopic
theory describing the state with (superconducting) pairing
correlations. Alternatively, a description based on interpreting
the superconducting order parameter as a macroscopic wave
function can be set up, allowing to set up a hydrodynamic
theory for the dynamics of the superconductor. This description
is more suitable to describe the superconducting dynamics
(such as vortex dynamics), and can be readily applied to
superconducting nanoshells with finite thickness.

The superconducting state is described by a macroscopic
wave function ψ = |ψ | eiφ whose modulus squared represents
the density of pairs. The gradient of the phase φ is proportional
to the pair velocity field. The macroscopic wave function
couples to the vector potential A of the magnetic field. The
Ginzburg–Landau equations which ψ and A have to satisfy are{

[∇r − iA(r)]2 ψ(r)+ 2κ2ψ(r)[1 − |ψ(r)|2] = 0
∇ × (∇ × A(r)) = 2 |ψ(r)|2 [∇rφ − A(r)] .

(303)

Here, κ = λL/ξ is the ratio of London penetration depth λL
and the coherence length ξ . The boundary condition states that
Fig. 46. In the top panel, estimates for the critical temperature for pair
formation is shown as a function of the number of electrons for multielectron
bubbles in helium subjected to different pressures. The bottom panel shows the
parity effect in the critical temperature. From Ref. [120].

there is no net superflow out of the superconductor:

[∇r − iA(r)]ψ(r)|n,boundary = 0. (304)

Here, we used units that simplify the equations, namely
√

2λL
for lengths, φ2/[4(2π)2µλ4

L ] for energy densities (where φ =

h/(2e) is the fluxoid quantum and µ is the permeability). The
vector potential is expressed in units φ/[2π

√
2λL ]. In these

units, the difference in Gibbs free energy density between
normal and superconducting state is:

gs − gn =
1
2
(B(r)− H(r))2 − κ2

|ψ(r)|4 (305)

where H(r) is the externally applied magnetic field and
B = µ(M + H) is the magnetic induction field (M is the
magnetization).

5.6.1. Thin nanoshells
In a nanoshell of thickness smaller than the penetration

depth, the variation of ψ(r) can be neglected in the radial
direction in the shell. When a magnetic field parallel to the z
direction is present, the axial symmetry allows us to set

A = Aφ(r, θ)eφ; (306)

then this can indeed describe the induction field B when this
lies in the r, θ plane. We have B =Br er + Bθeθ with

Br =
1

r sin θ
∂(Aφ sin θ)

∂θ
(307)
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Bθ = −
1
r
∂(r Aφ)
∂r

(308)

and Bφ = 0 as it should be. Moreover, this gauge for the vector
potential immediately satisfies the GL boundary condition A ·

n = 0 since n = er . If no vortex is present, we need to solve

∇ × ∇ × A = −2 |ψ |
2 A (309)

both in the regions inside (|ψ |
2

= 1) and outside (|ψ |
2

= 0)
the sphere. The solution outside the shell is

Aout
φ =

µH
2
(r + c1r−2) sin θ. (310)

In the region inside the shell we get

Ashell
φ =

[
c2

cosh(
√

2r)−
√

2r sinh(
√

2r)
2r2

+ c3

√
2r cosh(

√
2r)− sinh(

√
2r)

2r2

]
sin θ. (311)

Finally, in the region inside the shell the result is

Ain
φ = c4r sin θ. (312)

Here, c1, c2, c3 and c4 are integration constants; in the limit of
a very thin shell with radius R, they become

c1 → 0 (313)

c2 → −2R cosh(
√

2R)+ (
√

2 +
√

2R2) sinh(
√

2R) (314)

c3 → (
√

2 +
√

2R2) cosh(
√

2R)− 2R sinh(
√

2R) (315)

c4 → 1. (316)

This gives us the same solution for A in all regions, namely

Aφ =
µH

2
r sin θ. (317)

This means that for a thin shell, the external field is not
perturbed by the presence of the shell and the magnetic field
penetrates the superconductor, as we expect. The difference in
Gibbs free energy between the superconducting state with order
parameter ψ and the non-superconducting state in the same
external magnetic field H is given by the sum of the following
to terms:

∆GΨ =

∫
dx

{∣∣∣∣(∇ − i
A
A0

)
ψ

∣∣∣∣2
− 2κ2

|ψ |
2
(

1 −
1
2

|ψ |
2
)}

(318)

∆GB =
1
2

∫
dx (B − µH)2 . (319)

The first line represents the lowering in energy due to the order
parameter, and the second line represent the change in magnetic
energy due to the magnetization.
5.6.2. Critical magnetic field
First, we consider the case of uniform order parameter (ψ =

f with f constant), and calculate the difference in Gibbs free
energy between the superconducting and the normal state:

∆G = 2π f 2
∫ π

0
dθ sin θ

{(
−

1
2
µH R2 sin θ

)2

− 2(κR)2
(

1 −
1
2

f 2
)}

=
2π f 2

3
(µH R2)2 − 4π(κR)2(2 f 2

− f 4). (320)

This is minimized as a function of f for f satisfying

4π f
3
(µH R2)2 − 4π(κR)2(4 f − 4 f 3) = 0. (321)

This solves for f = 0 or

1
3
(µH R2)2 − 4(κR)2(1 − f 2) = 0 (322)

⇔
1
12

(
µH R
κ

)2

= (1 − f 2)

⇔

√
1 −

1
12

(
µH R
κ

)2

= f. (323)

This results in a critical magnetic field given by

µHc =
√

12
κ

R
. (324)

With the magnetic field (324) the energy is

∆G =
2π
3

[
1 −

1
12

(
µH R
κ

)2
]
(µH R2)2

− 4π(κR)2

2

[
1 −

1
12

(
µH R
κ

)2
]

−

[
1 −

1
12

(
µH R
κ

)2
]2


then

∆G =

−4π(κR)2
(

1 −
H2

H2
c

)2

for H < Hc

0 for H > Hc.

(325)

This indeed remains negative as long as H < Hc. It becomes
zero for H = Hc, and since the order parameter vanishes above
Hc, it remains zero afterwards.

5.6.3. Vortex state
If we assume that the vortex is parallel to the z-axis (and thus

to the magnetic field), and that it is located at the poles of the
sphere, the axial symmetry is still satisfied. We can write the
order parameter as

ψ = f (θ)eimφ (326)
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with m equal to the number of vortex quanta. For a single
quantum of vorticity, we have m = ±1, and f can no longer be
independent of θ . Indeed, we need to impose f (θ = 0, π) = 0.
The simplest way to achieve this is by setting f (θ) = sin θ —
which would be the ground state solution of a free particle on
a sphere under the given condition f (θ = 0, π) = 0. It will
be valid for spheres with R < ξ . However, for spheres with
R > ξ , we expect f (θ) to be different from 1 only in a region
of size ξ around the poles. So, the ratio R/ξ or Rκ will be of
importance for the form of f (θ).Then,

|ψ | = f sin(θ) (327)

∇ |ψ | =
1
r
∂ f
∂θ

eθ =
1
r

cos(θ)eθ (328)

∇ϕ =
1

r sin θ
eφ . (329)

The vector potential will be influenced by the current flowing
around. Nevertheless, we hope that this gives only a small extra
contribution to A, and use expression (317). The difference in
Gibbs free energies of the normal and superconducting states
becomes

∆G = 2π f 2 R2
∫ π

0
dθ sin θ

{
cos2(θ)

R2

+ sin(θ)2
(

1
R sin θ

−
µH

2
R sin θ

)2

− 2(κR)2 sin2(θ)

(
1 −

1
2

f 2 sin2(θ)

)}
(330)

= 2π f 2
{

2
3

+

(
2 +

4
15
(µH R2)2 −

4
3
(µH R2)

)
− 2(κR)2

(
4
3

−
8

15
f 2
)}

. (331)

From this, we can extract a optimal f :

2

(
8
3

+
16
15

(
µH R2

2

)2

−
8
3

(
µH R2

2

)
−

8
3
(κR)2

)
f

+ 4(κR)2
16
15

f 3
= 0

⇔

(
1 +

2
5

(
µH R2

2

)2

−

(
µH R2

2

)
− (κR)2

)
f

+
4
5
(κR)2 f 3

= 0. (332)

Then, either f = 0 or

f =

√
5

4(κR)2

[(
µH R2

2

)
+ (κR)2 − 1 −

2
5

(
µH R2

2

)2
]
.

(333)

This only has a solution for

5
2R2

(
1 −

√
8
5
(κR)2 −

3
5

)

< µH <
5

2R2

(
1 +

√
8
5
(κR)2 −

3
5

)
.

So, there are two critical fields,

µHc+ =
5

2R2

(
1 +

√
8
5
(κR)2 −

3
5

)
(334)

µHc− =
5

2R2

(
1 −

√
8
5
(κR)2 −

3
5

)
. (335)

First, we see that when (κR)2 < 3
8 , there is no solution. So,

to have a vortex solution, the radius needs to be larger than
R >

√
3/8κ−1, or in SI units

R >

√
3
4
ξ. (336)

This seems acceptable, since indeed if the radius is much
smaller than the healing length, making a vortex destroys too
much order parameter. So, we find a first critical radius. There
is a second critical radius, given by

1 −

√
8
5
(κR)2 −

3
5

= 0 ⇔ κR = 1. (337)

When the radius becomes larger than R >
√

2ξ , then the vortex
solution will be present up to a critical field

µHc =
5

2R2

(
1 +

√
8
5
(κR)2 −

3
5

)
. (338)

When on the other hand, the radius is between those values,
√

2ξ > R >

√
3
4ξ , then also the lower critical field µHc−

matters: below this the vortex solution is unstable. The solution
without a vortex (i.e. with constant f ) may be stable though.
Putting the result back in the Gibbs free energy, we get

∆G =


−
π(µR2)4

2(κR)2
[
(H − Hc+)(H − Hc−)

]2 for

Hc− < H < Hc+
0 for H > Hc+ or H < Hc−.

(339)

This result is summarized in Fig. 47. Below the blue line, the
superconducting state without vortex exists. And to the right
of the black curve, the superconducting state with a vortex,
ψ = f sin(θ)eiφ exists. In the region where they coexist, they
compete for the lowest energy. The red curve separates the
region where the vortex state is stable from the region where
the no-vortex state wins. At low magnetic field (blue zone) the
no-vortex state exists. At higher magnetic field (green zone) the
vortex state has lowest energy. Finally, in the white regions the
superconductivity is destroyed and the normal state wins.

6. Conclusions

In this review, we considered various aspects of the curved,
two-dimensional electron gas, focusing particularly on the
electronic and vibrational properties of multielectron bubbles.
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Fig. 47. Phase diagram of a spherical superconducting film, as a function of
sphere radius and applied magnetic field. In the zones indicated ‘no vortex’, the
superconducting state without vortex has the lowest energy. In regions indicated
‘vortex’, the vortex state has lower energy. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Both the electronic states and the vibrational modes of the MEB
are thoroughly derived and discussed.

The modes of oscillation of the bubble are important not only
for influencing the electronic properties, but also for analyzing
the stability of multielectron bubbles. We have analyzed the
effect of positive and negative pressure on the modes of
oscillation of a multielectron bubble. We find that small
negative pressures can stabilize the bubble against dynamic
instability, whereas positive pressures can soften the ripplon
modes. The fissioning of a MEB is studied within the liquid
drop model. We found that, although a mode of deformation
exists which can grow without increasing the total energy of the
bubble, there is still an energy barrier present which prevents
fissioning of the bubble. This barrier was explained by the
intermediate shapes that the fissioning bubble has to assume
in order to create a neck between the emerging fission fragment
and the parent bubble. At negative pressure, when all the modes
of deformation have a non-vanishing frequency, there is an
additional element of stability in that there is a restoring force
which counteracts small amplitude deformations. Also at zero
pressure the MEB is metastable.

To investigate the basic electronic properties of the spherical
two-dimensional electron gas, a second-quantization formalism
based on the spherical harmonics rather than plane waves is
introduced. Within this framework, the dynamic structure factor
is derived in the RPA framework and both the single-particle
excitations and collective excitations are analyzed for S2DEGs.
The dynamic structure factor in the RPA approximation reveals
collective excitations, “spherical plasmon modes”, which differ
from the collective modes of the flat 2DEG in that the spherical
plasmon modes of the S2DEG are discrete in frequency and the
smallest spherical plasmon frequency is larger than zero. When
a magnetic field is present, the difference between the spherical
electron gas and the flat 2DEG becomes more pronounced. In
a flat 2DEG Landau levels appear, while in the spherical case
Landau bands of equally spaced, doubly degenerate levels are
formed. The electron density tends to collect at latitudes on the
sphere that correspond to cyclotron radii. The plasmon branch
also broadens. For typical multielectron bubbles with N < 104,
the plasmon modes of the S2DEG lie in the far infrared, and
their frequency increases with decreasing number of electrons
in the MEB or with decreasing radius of the bubble, such that
these novel collective modes may be detectable in forthcoming
experiments on stabilized multielectron bubbles.

When vibrational modes – such as ripplons in the MEB
– couple to the electronic properties of the S2DEG, this can
leads to polaronic effects and to an attractive effective potential
between the electrons. We have investigated the properties of
ripplonic polarons in a multielectron bubble in liquid helium on
the basis of the all-coupling path integral variational method.
We have shown that the ripplopolaron state formed by an
electron together with its accompanying deformation of the
helium surface can exist in a MEB in the solid phase localizing
electron charges in a Wigner lattice on a spherical surface.
The ripplopolaron state in a MEB is distinct both from the
usual Wigner lattice of electrons and from the Wigner lattice of
ripplopolarons on a flat helium surface. It melts by dissociation
of the ripplopolarons when the electrons shed their localizing
dimple as the pressure on the multielectron bubble drops below
a critical value. This ripplopolaron solid can melt into an
electron liquid, and as the surface density is decreased this
may become an electron Wigner lattice. The phase diagram for
the ripplopolaron solid may be determined experimentally by
measuring the vibrational spectra of the MEB while varying
the pressure.

We have analyzed how the electron–ripplon interaction
on a spherical surface may lead to an attractive effective
electron–electron interaction and give rise to a Cooper
pairing scenario. The effective Hamiltonian of the two-
dimensional spherical electron system is mapped on a BCS-
type Hamiltonian and typical values of energies, length
scales, and interaction strengths are estimated. Richardson’s
method is used to investigate pairing properties of a two-
dimensional spherical electron system. We find that when
the condensation energy per pair is larger than the bubble
energy scale h̄2 /

(
me R2), the ground state of the system

acquires unique properties that set it apart from pairing in
conventional superconductors or superconducting nanograins.
Moreover, the many-body eigenenergy spectrum can be
calculated analytically. The resulting density of states no longer
has a gap, but nevertheless a strong step-like increase occurs
in the density of state as a function of the energy when the
energy exceeds the pair-breaking energy. This can be used to
define a critical temperature. The critical temperature reveals
pronounced odd–even effects that persists for large (106)

numbers of electrons.
In conclusion, we have shown that spherical electron

systems reveal particularly interesting pairing properties,
distinct from their bulk or flat-surface counterparts, combining
both topological effects and confinement effects. MEBs are a
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particularly pure realization of the two-dimensional electron
system just as an electron film on helium forms a pure
realization of a flat 2DEG.
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