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Abstract

The study of two-dimensional electronic systems has revealed a host of new and startling phenomena, such as the quantum Hall effect.
Although effort has gone into studying the effects of confinement in two-dimensional systems, the effects of surface curvature remain relatively
unexplored. Nevertheless, curvature and surface topology are expected to have a profound influence: for example, on a sphere it is not possible to
have a non-trivial current field that has no vortex structure in it. The spherical geometry also influences lattices in that topological lattice defects
are always present.

In this report, we present results and recent insights into the physics of electrons on spherical surfaces. In particular, we investigate the case
of multielectron bubbles. Multielectron bubbles are (micron sized) cavities inside liquid helium, containing electrons that collect in a nanometer
thin film on the surface of the bubble and form a spherical two-dimensional electronic system. Different phases are identified and investigated: the
electron fluid, the Wigner lattice, and the pair-correlated “superconducting” state. Uniaxial external magnetic fields (normal to the surface at the
poles of the sphere, and tangential to the surface at the equator) influence the different phases and give rise to textures on the surface. In discussing
the properties of the spherical electron system under various conditions, we identify the differences between flat surfaces and spherical surfaces.

The theoretical framework presented here is focused on the case of electrons on the spherical surface of a bubble in helium. We discuss
how the theory can straightforwardly be generalized to investigate the case of (finite thickness) metallic nanoshells. Nanoshells consist of a non-
conducting nanograin covered by a few atomic layers of metal. The physiologically compatible size and unique optical properties of these objects
have led to applications in diagnostics and directed therapeutics of cancer and drug delivery. These successful biomedical applications underline
the increasing interest in curved-surface electron systems treated in this report, and the necessity to supply a theoretical framework for these
systems. Multielectron bubbles and nanoshells are structures that are realizable in nature. We begin this report by discussing the experimental
developments and progress in producing these entities in a useful manner that allows them to be studied and utilized.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction equilibrium. The electrons on this surface are free to move in
directions parallel to the surface, but are strongly bound in the
1.1. Overview directions perpendicular to the surface. On a sphere, this means

that the full (three-dimensional) wave function describing such

In this review we present recent developments in the study electrons should be factorizable in a function depending only
of a two-dimensional electron structure on a curved surface. on the angles and a function depending only on the radial
In particular we investigate surfaces that are spherical in static distance. The system can be considered two-dimensional if all
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the electrons have the same radial dependence of their wave
function, and if the energy required to change the radial mode
is much larger than the other relevant energy scales involved.
If the energy scale is such that several radial modes (be it
still a limited number) participate, the system is quasi-two-
dimensional.

Flat, two-dimensional systems are realized with electrons on
helium and in solid state systems (such as quantum wells or
surface layers). Similarly, curved two-dimensional systems can
be created both with electrons on helium and with solid state
systems. The former case is that of the multielectron bubble
in liquid helium, and an example of the latter are metallic
nanoshells. In this review we will mostly focus on multielectron
bubbles (MEBs), since it is a closer realization of a two-
dimensional spherical 2D electron gas, whereas thin nanoshells
are better described as quasi-2D systems.

We shall start with a simple qualitative picture of the
multielectron bubble and later develop these ideas analytically.
The electrons in a multielectron bubble are confined to a narrow
shell in space at the surface of the sphere; the electrons form
a gas or liquid, free to move along the surface in angular
momentum states or localized as a Wigner crystal of electrons.
MEBs have a number of fascinating properties. They contain
a countable number of electrons, N, and certain properties can
have important differences for odd or even numbers, even if
N is large. The range of N is of order tens to billions and
the spherical radius is of order nanometers to millimeters for
this range. The lone single-electron bubble (SEB) in helium is
also an important entity and has an experimentally determined
diameter of 34.4 A [1]. The single electron is in an s-state
spread out over the volume of the bubble. The large diameter
of the SEB is due to the large zero-point energy of the electron,
confined or limited in volume by the surface tension of the wall
of the confining helium bubble.

In the MEB formed in liquid helium, electrons repel each
other due to Coulomb forces; their energy is minimized if
they move off to infinity. The liquid helium surface presents a
potential barrier of ~1 eV [2,3], preventing the electrons from
entering the liquid. A bubble of helium vapor will collapse
to zero radius to minimize surface energy. The energy of the
MEB is minimized when the electron Coulomb repulsion and
helium surface tension forces are balanced in a spherical bubble
with the electrons residing on the surface in a thin layer about
a nanometer thick. For 10* electrons the classical equilibrium
radius, called the Coulomb radius R, is about 1.06 microns
and scales as N2/3. Fig. 1 visualizes an SEB and an MEB in
liquid helium.

Waves on a flat helium surface are called ripplons.
The surface of an MEB can have both radial and angular
deformations; the radial deformations or waves are called
spherical ripplons. These deformations were originally studied
by Lord Rayleigh [4] for spherical droplets and play an
important role in the dynamics and other properties of MEBs.
Electrons are in single-particle angular momentum states. For a
rigid sphere of radius R, the energy of a single electron confined

Fig. 1. Schematic representation of a multielectron bubble in liquid helium.
The electrons are not smeared out over the entire bubble volume, but form a
spherical film on the inner bubble surface.

to the surface is

20+ 1)
Eo=— 5
meR

where ¢ is the angular momentum, m. the mass of the electron,
and /4 is Planck’s constant. The electrons in the MEB interact
with each other, the helium, and the ripplons. Generally, the
helium vapor inside of the bubble is ignored and at very low
temperatures the helium vapor density becomes negligible.
MEBSs can be formed in helium I or helium II, i.e., normal or
superfluid helium. At the current stage of study, the properties
of He II are not involved in the bubble properties and the main
advantage of superfluid helium is that a more robust film of
helium covers the walls of an enclosing cell. These He walls
act as a barrier to the electrons, whereas electrons would rapidly
disappear into bare metallic surfaces.

A number of properties of electrons on a spherical surface
will be treated in this review. In Chapter 2 (and this chapter)
we shall discuss some of the experimental observations, the
stability of MEBs and bubble dynamics, as well as other
realizations such as metal nanoshells. In Chapter 3 we set
up and discuss the formalism for analyzing the Hamiltonian
and excitations on a curved, mainly spherical surface. In flat
space the Hamiltonian in second quantization is expressed in
terms of creation annihilation operators of momentum states.
In spherical space the Hamiltonian is expanded in terms of the
more complicated creation annihilation operators of the angular
momentum states. This formalism will be utilized throughout
the remainder of this review. In this chapter we then consider
the many-body problem, the dielectric response, plasmons, and
magnetic properties, including magnetic ordering due to two-
particle electron exchange and the interaction with a magnetic
field to form Landau bands. The interaction of electrons with
ripplons leads to polarons, which will be treated in Chapter
4, along with considerations of the Wigner lattice of electrons
on a sphere. The electron—ripplon interaction is attractive, just
as the electron—phonon interaction, which leads to pairing and
superconductivity in metals. Chapter 5 treats ripplon mediated
pairing and BCS superconductivity in MEBs. This chapter also
considers superconducting vortices and superconductivity in

)]
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nanoshells. In the remainder of this chapter we present a short
historical review and discuss some properties that will be useful
in the later chapters.

1.2. Historical

MEBs were first observed by Volodin, Khaikin, and
Edel’man in 1977 [5]. Studies of the electron—liquid helium
system had already started more than a decade earlier. In 1971
Crandall and Williams [6] noted that electrons at a sufficiently
high density should undergo Wigner crystallization [7] on a
helium surface, later observed by Grimes and Adams [8].
Electrons could be created using a hot tungsten filament, a
field emission tip, or a glow discharge, all at low temperature
in a vessel containing liquid helium with a flat liquid surface
(with helium covered walls). Using a various electrodes
configurations the electrons could be found to dress the
surface of the helium [9]. The electrons are attracted to the
surface by their image charge. Cole and Cohen [10] calculated
the attractive binding energy due to the electron’s Coulomb
interaction with its image charge. For *He, with dielectric
constant ¢ = 1.057 at a distance 2z between the charge and
its image, the potential is

e2 e—11

Arey e+ 127

V(z) =— 2
where ¢, is the vacuum permittivity. The binding energy has a
value of ~8 K.

Without an applied electric field the electron surface density
is quite low. In order to increase the electron density an
electrode with a positive potential could be placed under the
helium surface. Already in 1964 Sommer [2] noted that a
high electric field would produce a hydrodynamic instability
so that the surface charge would be dumped to the submerged
electrode. Gor’kov and Chernikova studied the instability
theoretically [11]. At high fields the surface of the helium
is visibly deformed [9]; an instability develops for a field
of ~4000 V/cm and for an electron surface density of 2 x
107 /cm?. This is the maximum density that can be achieved
on a bulk *He surface. Volodin et al. [5] observed the instability
at the values predicted by Gor’kov and Chernikova, observing
the formation of MEBs containing ~107 to 10% electrons with
diameters of 50-300 microns. The smaller MEBs moved to
the submerged electrode in less than a millisecond where they
were annihilated, while larger bubbles could float back up to
the surface in a millisecond. A decade later, Albrecht and
Leiderer [12] used high speed video photography to observe
bubbles with up to 107 electrons. They measured bubble
velocities of ~10 cm/s and could observe bubble oscillations
and fissioning of the bubbles. In both of these photographic
measurements, the bubbles were far from an expected spherical
shape due to their rather violent birth and short life, so
that they did not have time to relax to their lowest energy
shape. To study the equilibrium properties of MEBs in long-
lived states, Albrecht and Leiderer suggested trapping them in
electromagnetic or acoustic fields, but did not succeed in an
attempt with EM fields.

A clear picture of the equilibrium properties of an MEB was
developed by Shikin [13]. To calculate the equilibrium radius,
the total energy was minimized. The main energy terms are the
surface tension of the bubble and the Coulomb repulsion, the
first and second terms in Eq. (3), below

) N2e2 2
Eiot = 47 R - N—
ot = AR e R—a) T 2med?
4 4
+ p?R‘ + exchange terms. 3)

Here R is the radius of the bubble, o = 3.6 x 10~* J/m? is
the surface tension of helium. The third term is the localization
energy, where the electron film is located at a radial distance
d. Typically this is of the order of (a few) nanometers; y is
a geometrical factor of order 1. We have include a pV term
as the fourth term, with pressure p. The Coulomb repulsion
energy is (Ne)z/[47wv(R — d)]. Adding in the polarization
energy omitted by Shikin, (1 — e)(Ne)?/[4meey(R—d)], yields
the second term. The image energy of the electrons, and the
exchange energy in the electron film, are omitted. For large
bubbles with p = 0, the localization energy can be ignored
after which d <« R can be set equal to zero in the Coulomb
term. This yields R¢, the Coulomb radius

1/3
Re = N2 (ez/(“”“?v)) /

16meo

N \2/3
1.064 (W) microns. @

The leading correction to the equilibrium radius is

R® = R.(1 + A) with

1/3
A:‘_‘(W‘O) . 5)

3 \4NRc

This small correction, an expansion of the bubble, is important
for considerations of stability of a charged bubble; here ag
is the Bohr radius. Minimizing the energy with respect to d,
one finds d to be of order a few nanometers. Salomaa and
Williams [14] studied the structure of the MEB using density
functional theory and found the (radial) width of the density
distribution of the electron film to be somewhat smaller.

In addition to the direct Coulomb interaction there is an
electron exchange term contributing to the energy that will be
important for small bubbles. Shung and Lin [15] studied the
effect on MEBs using density functional theory; their results
can be accurately represented by

eZN4/3

Eouyy = —03176——
exch 4reye(R2d)1/3

(6)
This leads to about a 1% reduction in R¢ for small bubbles.
Artem’ev, Khrapak, and Yakubov [16] have refined Shikin’s
theory with a more fully quantum mechanical approach and find
that the bubble radius is reduced from the Coulomb radius.
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n (cm?)

Fig. 2. The surface density of MEBs as a function of pressure p and number of
electrons N. The maximum pressure taken is ~25 bar, where helium solidifies.

1.3. Surface density tunability

Here in this introduction we discuss a few more properties
of MEBs that will be useful in the later chapters. One of the
important properties of the MEB is that it can have an enormous
range of electron surface density. At zero pressure we have

N

— = 1514 x 102N"1B em™2,

ne =
* 471R%

For MEBs with N varying from 102 to 10° electrons, this results
in surface electron densities of 3.25 x 1013 to 1.51 x 10° cm™2,
varying by more than four orders of magnitude. Exchange
corrections should be taken into account when the number of
electrons is below 103, The result is a reduction of the density
(and an increase of the radius) for these small bubbles. When
pressure is applied [17], the equilibrium density is found by
minimizing Eq. (3) (including Eq. (6)). Results are shown in
Fig. 2.

The bubbles are also highly compressible as shown by
Tempere, Silvera, and Devreese [17]. In Fig. 3 we show the
variation of the bubble radius with pressure for several values
of N. Here the pressure can take on small negative values until
the bubble explodes. Negative pressures up to ~9 bar can be
achieved in helium [18].

One of the driving motivations for studying the electron—
helium system has been the observation of the Wigner crystal or
more specifically, the melting line between the electron liquid
and the two-dimensional electron solid. In two dimensions on
a flat surface, electrons crystallize in a hexagonal (triangular)
lattice. Melting is qualitatively different in 2D than in 3D,
thus there has been a great theoretical and experimental effort
to understand this system. There are two regimes of melting:
the classical and the quantum regimes [19,20]. The transition
region is usually characterized by the plasma parameter I, the
ratio of the potential energy to the kinetic energy. A 2D gas or

3‘5 T T T T T
|
30f : .
'
25 ! -
c 1
8 A 0 40 80
E 20+ \ pressure (mbar)
= )
- k Q00
=) k = = N=100
B 15F N —N=3000
5 R ++-+ N=10000
o o, - = N=30000
S10F 000 [k, 00000000 TiSnaoneawsge 7
= e
1 1 1

40 60 80 100
pressure (mbar)

Fig. 3. The variation of a bubble’s radius for modest pressures up to 100 mbar,
including negative pressures. Negative pressures can provide stability to the
bubble as will be discussed in Chapter 2. The inset shows the variation of d as
a function of pressure.

liquid has a small plasma parameter and the more correlated
liquid or solid, a large value, I" > 100.
The localizing potential for the Wigner solid is the Coulomb

172
)

potential, (V) = ez/ ro = e2n'/2n’”, while in the classical

regime the kinetic energy is kg T, so

T =& n? (ks T). (7

The conditions are often given in terms of ry = ry/ag, the ratio
of a radius of an area containing 1 electron, ry = 1/,/mnyg, to
the Bohr radius ag. At 1 K with ny, = 10° ¢cm ™2 the calculated
value of the plasma parameter is 94. In the experimentally
observed melting line of the Wigner lattice on a flat surface,
Grimes and Adams [8] found I' = 135 + 15. A number of
experimental measurements scatter around this value [21]. In
the classical regime, as the density is increased the melting
temperature increases.

In the quantum regime for a 2DEG the kinetic energy at
T =0is (K) = 7 h% ng/me, so that

2

mee 1/2
I =—— =1/(agn
quant ﬂl/zflzns /( 07s

As ng increases at low temperature a transition is made to the
quantum regime. With increasing ng the melting temperature
decreases until the solid melts at zero kelvins.

Quantum melting is well known in 3D, with the example of
helium where the zero-point motion of the atoms is so large that
liquid helium, in equilibrium with its vapor pressure, remains a
liquid to T = 0 K and only solidifies under a pressure of ~25
bar. This is often discussed in terms of a quantum Lindemann
melting criterion, that the solid melts when the rms deviation of
an atom relative to the lattice constant ry,

8 =1/Ir—rol*/ro (8)

exceeds a critical value of 0.1-0.3. In an infinite 2D system
& diverges; however in a finite system such as a bubble the
infrared divergence in no longer present. Bedanov et al. [22]
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introduced a modification of this criterion (also valid for infinite
2D systems) that considers fluctuations of the average distance
between neighbors, and performed a simulation to find 0.3 for
quantum melting in 2D. Thus, as the electron density increases,
the rms deviation increases until the lattice melts.

If we set I'quant = 137, we find ny = 6 x 10" ¢cm~2; this
corresponds to the density at which the melting temperature
goes to T = 0 K, or quantum melting. After the observation
of the Wigner lattice on a flat surface in the classical regime,
efforts were made to observe quantum melting. These were
thwarted by the surface instability for high coverage, limiting
the density to ~2 x 10° cm™2. However, the MEB was born
of this instability and it can have very high surface coverages.
Wigner crystallization and quantum melting are transitions that
can be attained and studied on the MEB.

The criterion or condition for quantum melting of the Wigner
crystal is different for the flat surface and the spherical surface.
Not only are they different, but localization of the electrons can
occur due to different mechanisms. In a curved 2D electron
gas, the Coulomb interactions give rise not only to a mean-
field electric field confining an electron laterally, but also to
a pressing field. The Coulomb energy per particle (V) =
Ne? /(8meyeRc) depends on N and on R, affecting the relevant
plasma parameter for melting in a non-trivial way. The plasma
parameter will increase as R is decreased (either by decreasing
the number of electrons in the bubble, or by increasing the
pressure), so that a quantum melting transition can be expected
when the bubble is compressed. However, as R¢ is decreased
the pressing field is increased, favoring again a localization
and the Wigner lattice. When the pressing field is strong
enough the resulting electron-ripplon leads to the formation
of a Wigner lattice of ripplonic polarons, distinct from the
Coulombic Wigner lattice.

In Chapter 4 a variational model is introduced to describe the
melting of the ripplopolaronic lattice, and to derive the phase
diagram for the ripplopolaron Wigner lattice. This scheme can
be extrapolated to the region where the Coulomb interaction
dominates the electron—ripplon interaction, in an attempt to
find also the phase transition line for the Coulombic Wigner
lattice on the sphere. However, a point to note is that when
the Coulomb interaction dominates over the electron—ripplon
interaction the variational model of Chapter 4 which is geared
towards the ripplopolarons will not be a suitable variational
trial model. Indeed, when the electron—ripplon model system is
used to estimate the density at which quantum melting occurs
in a bubble at p = 0, with Lindemann criterion § = 0.13,
a critical density ~10° is found, much lower than the flat-
surface critical density of ~10'! cm™2. The motivation for this
particular choice of the Lindemann criterion will be discussed
in Section 4.4.3. The melting line of the Coulombic Wigner
lattice depends strongly on the Lindemann criterion in this
scheme — the critical density in this model can be increased
up to 10'"" cm™2 by using a Lindemann criterion of § =
0.23. An observation of quantum melting, through capacitance
spectroscopy of lattice phonons, as in the original experiment
of Grimes and Adams [8], is still lacking for spherical systems,
as is an experimental estimate of § for these systems.

2. Physical realizations of curved 2D electron systems
2.1. Multielectron bubbles in liquid helium

What are the states and shapes of multielectron bubbles
and their properties? Can MEBs be prepared in long-lived
equilibrium states and studied to understand their properties?
Under what conditions do we expect an MEB to be stable
in liquid helium? How can MEBs be observed? What is the
response of an MEB to a pressure shock? What are other
realizations of electrons confined to a curved surface? Answers
to these questions will be discussed in this chapter.

In the following chapters we shall discuss the possible
phases of MEBs, which may depend on subtle values in the
interaction energies, bubble size, pressure, and temperature.
On the one hand, in all of our considerations we consider the
electrons to be in a single layer confined to the surface of
the bubble; that is, there is no layering of the electrons. For
an electron density ~10'% cm™2 the average spacing between
electrons is very large, ~50 nm. On the other hand, if very high
densities could be achieved, the electrons might achieve a lower
energy by layering, as observed in simulations of electrons
confined on a flat surface by a hard wall [23].

2.1.1. Equilibrium structures and observations

As was discussed in the previous chapter the MEB in
equilibrium in a gravity free region is expected from energy
considerations to be spherical and have a radius given by
Eq. (4) for the Coulomb radius, ignoring smaller terms. If the
diameter of the MEB is larger than the wavelength of optical
light one can make an image and study the bubble visually.
Since liquid helium has an index of refraction of about 1.03 and
the interior of the bubble is vacuum (or a very low density of He
gas) with index of refraction 1, there is sufficient contrast of the
light due to refraction and reflection to form an image. Smaller
bubbles should also be detectable and quantitative data could
be obtained, for example, by light scattering or measurement
of charge. If the bubble is in a gravitational field then this
potential will distort it from spherical symmetry if the potential
is comparable to the surface tension energy. Shikin [13] has
shown that gravity tends to flatten the bubble unless the radius
satisfies

R < /30/pg ~ 10 um

where p is the helium density and g = 9.81 m/s. A second
deformational effect can occur if the bubble is sessile, i.e. due to
buoyancy the bubble is pushed up against a surface, deforming
at the interface. In the following we shall continue to consider
the bubble as spherical. There are also local deformations due
to dimpling under the electrons. On a flat surface the bound
electrons are about ~100 A from the surface. The attraction
of an electron by its image force, or aided by an external
electric field leads to a local deformation of the lattice under the
electron. However, in the absence of external fields the depth of
the dimple is only ~10~2 A [24]. In an MEB the electron not
only feels its image force, but the Coulomb force of the electric
field due to all of the other electrons, directed into the surface.
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Fig. 4. The classical Wigner lattice on a spherical surface. Locally the lattice
is triangular with each electron having six neighbors. The 5 and 7 neighbor
defects are shown by dark spots. From Ref. [25].

This electric field can be very significant, ~10° V/cm, and lead
to deep dimpling of the surface under the electron.

One of the important phases and areas of study of the
MEB may be the Wigner lattice and quantum melting. The
ground state triangular Wigner lattice of the flat surface should
be the lowest energy structure for a large diameter bubble.
However, the hexagonal lattice does not map onto a spherical
surface. In the perfect lattice each electron has six neighbors;
to fit on the spherical surface there must be defects with 5
or 7 nearest neighbors, existing in the ground state. Due to
topological constraints, there has to be an excess of twelve
5-fold defects. Additional defects occur in pairs of 5- and 7-
defects. These defects can be locally bound to each other; or
the 5- and 7-defects can unbind. Correspondingly, additional
nematic phases can be identified in the Wigner lattice state [25,
26]. A visualization of the nematic phase is shown in Fig. 4. In
Chapter 4 we shall discuss this and a new mechanism due to the
electron—ripplon polaron that leads to Wigner localization of the
electrons onto a lattice, with deep dimples under each electron.

One of the important questions concerning MEBs is “can
they be experimentally produced in long-lived states so that
they can be studied in detail?”” We have already seen that MEBs
can be made by an instability in a flat surface in which millions
of electrons are subsumed in a bubble. However, the MEB
made in this manner only exists for milliseconds and is in a
highly deformed excited state due to its violent chaotic creation
and has no time to relax to its ground state before annihilation
occurs. There have been no extended attempts to produce and
trap MEBs with electromagnetic or acoustic fields.

An experimental effort is underway by collaborators of this
review, following a proposal for a new approach for producing
an MEB in a stable long-lived state [27]. The geometry is
shown in Fig. 5. A cylindrical cell with a dome shaped roof
is partially filled with liquid helium in the superfluid phase. A
source of electrons, either a field emission tip or a tungsten
filament, is in the vapor phase region and can be actuated to
load the cell with electrons. Since the helium is superfluid, a
reasonably robust film of helium covers all surfaces above the

(b) ﬂﬂﬂi — Fiber optic bundle
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Fig. 5. A schematic of a cell for producing long-lived MEBs, described in the
text. In (b) a fiber optic for illuminating the MEB from below is not shown.

bulk liquid helium. This is very important because if a metallic
surface is locally denuded of helium, the electrons can enter
the metal and exit the vapor region of the cell. The helium film
thickness is dy = /o /(pgh) (where « is the Van der Waals
coefficient, p is the helium density, and # is the height above the
bulk helium surface) is of the order a few hundred angstroms
thick, depending on % and «. Although the equilibrium state
of a chamber with any bulk liquid and a vapor phase region
should have a film coverage, the surfaces are usually denuded.
For normal fluids with gas phase density or rate of evaporation
depending exponentially on temperature, small thermal
fluctuations of the surface lead to evaporation of the film and
its local destruction. For superfluid helium, a film flows to
warmer areas and thus levels out thermal gradients to maintain
a uniform chemical potential. The film is particularly robust at
subkelvin temperatures when the vapor pressure is low. As a
consequence of the bulk helium, the film on all surfaces, and
the barrier for helium to enter the liquid through the surface, the
electrons are confined to the surfaces and the vapor phase. The
cell is designed with a mechanism for raising or lowering the
helium surface, shown schematically in the figure as a bellows.
As the helium level is raised the electrons are confined to an
ever-decreasing volume. When the level reaches the top of the
dome, the volume containing the electrons form a minimum
energy surface, or a sessile MEB that in principle should be
in a long-lived state that can be studied by various techniques.
Raising the liquid helium level above the top of the dome
hydrostatically pressurizes the MEB by the liquid pressure
head. By making the dome transparent (i.e., a concave lens) the
bubble can be illuminated and imaged. One implementation is
to use a low temperature microscope and image the bubble on
a coherent fiber optic to transfer the image out of the cryostat.
A number of other possibilities exist for studying properties of
the bubble, but these will not be discussed here.

This new approach has been implemented and at this writing
has not produced MEBs localized in the top of the dome. Very
large bubbles with diameters >1 mm, containing billions of
electrons have been produced and viewed for times ~1 s, but
these move across the field of view and are not localized in the
top of the dome, as expected. Furthermore, if the helium level
is lowered and again raised the bubble is not seen. A possible
explanation will be discussed ahead.
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2.1.2. Stability with respect to electron tunneling

We first discuss the stability of electrons in a cell with
bulk liquid helium and walls covered by a superfluid film. The
primary question is whether the electrons produced in a cell
surrounded by helium surfaces remain on the surface or in the
vapor phase, or escape into the underlying walls. A number of
studies discuss the rapid or slow decay of the electron density
in such a cell. Sommer [2] reported that when electrons are
produced in the vapor phase, and an electrode (with a potential
negative relative to an electrode above in the vapor phase)
initially covered by bulk helium was exposed to the vapor
phase, a negative current pulse was observed and the electrons
disappeared from the cell. If the voltage difference was reduced
to zero and then turned back on, there was no pulse, implying
that the electrons had already disappeared. In most experiments
a submerged electrode with a positive potential is used to hold
electrons on a surface; this charged surface is very stable.
Brown and Grimes [28] reported stability of the electrons
in their cell; if the holding field was lowered to release
electrons and raised again, they would recover approximately
the same electron density. Etz et al. [29] directly studied the
stability of electrons on a flat surface, either dielectric or
conducting, covered with a superfluid film whose thickness
could be measured by ellipsometry. The helium surface could
be charged with electrons held by an electric field and the
charge density measured as a function of time, after turning off
the electron source. The surface charge slowly decayed. When
the holding potential was turned off so that the electrons on
the helium should leave, a residual charge of order 101! ¢cm™2
remained if the surface was a dielectric. This was interpreted
as electrons that had penetrated the He film, by tunneling.
The helium film was thinned due to the image forces of the
electrons attracted to the substrate, by about a factor of 2 for
insulating substrates and 5 for conducting substrates. The film
thickness when charged was about 100 A. This seems to be
too thick for electrons to tunnel through, but tunneling could
occur at rough regions where the helium might be thinned [30].
Electrons become trapped on the dielectric substrates but flow
away when the substrate is conducting. These measurements
provide interesting insight into the behavior and distribution of
electrons in a cell made of conducting and insulating materials
filled with bulk helium, a film, and a vapor phase.

We now consider the thinning of films above an MEB such
as in Fig. 6. If the film becomes very thin then the electrons
can tunnel into the surface and rapidly deflate or annihilate
the MEB. An interesting property for dielectric surfaces, also
observed for flat surfaces, is that the tunneling and trapping
of electrons in the surface is limited as the trapped electrons
repel surface electrons on the helium; this is not the case for
conducting surfaces.

For a sessile MEB there are three forces that affect the
thickness of the helium film above it: the image force, as
considered for a flat surface, the polarization force (due to
replacing a sphere of helium atoms by a void), and the buoyancy
force. To determine the film thickness we shall write down the
energy and minimize it with respect to thickness. Consider the

glass substrate
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Fig. 6. A sessile bubble in helium. Various dimensions are defined in this figure
for the theoretical determination of the film thickness.
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Fig. 7. Thickness of the film above a sessile bubble, for two types of glass
characterized by a different ¢ and «. To allow for electron tunneling out into
the wall, the film thickness should be 10 A or less.
geometry of Fig. 6, where d is the thickness of the film on an
insulating surface.

The depth of the bubble center is d + R, where we ignore
the thickness of the 2DEG. The image potential for an electron
at orthogonal distance z from the surface is —A/z with

e2 e—11

A= S
dre,e+12

€))

for a dielectric surface as seen from (2); and A = e2/(8me,) for
a conducting surface. The potential energy of the image charges
is
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The polarization energy is the increase of energy that occurs
because the bubble volume is vacuum rather than helium. If «
is the Van der Waals coefficient (9.5 x 10~2 for He on glass),
then
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N electrons

liquid helium liquid helium

Fig. 8. The configuration for calculating the stability of an N electron MEB
against boil-off of a single electron.

The third term is the buoyancy, important for large bubbles,

4
Vouoy = —-R*pgD. (12)

The total energy Vimage + Vvdw+ Vbuoy 1s minimized with respect
to d, the film thickness above the sessile bubble. Both buoyancy
and image charges pull the bubble towards the wall, whereas
the Van der Waals attraction between helium atoms and the
wall tends to push the bubble away from the wall. The resulting
equilibrium distance is shown in Fig. 7. There is a bubble size
of roughly 1-2 million electrons where the film thickness is
maximal. Typically, it is more than 10 A, which should prevent
electron tunneling through the film.

2.1.3. Stability with respect to electron boil-off

Is a multielectron bubble stable? We first note that a bubble
can lower its energy by splitting in two. From Eq. (3) the energy
of a p = 0 bubble behaves as Ey; o« N*3. If a bubble
splits up into two bubbles, each with N /2 electrons, then the
energy is lowered to 0.79E for infinite separation, or the
MEB is at best metastable. Dexter and Fowler [31] performed
a quantum mechanical study and found that the two-electron
bubble should be unstable against decay to two single-electron
bubbles by ~0.5 eV in energy. By fissioning, the reduction in
Coulomb repulsion energy more than offsets increased surface
area energy [32].

One can now extend this to larger N and ask if an MEB is
unstable to single-electron boil-off. Salomaa and Williams [33]
first considered this problem with a semi-classical model
and found the transition to stability for N =~ 15. Silvera,
Blanchfield, and Tempere [34] reconsidered this problem
including exchange and other factors and found the crossover
to stability at N >~ 100. The energy for the N electron bubble
is given by Eq. (3), including the exchange, Eq. (6).

For the configuration on the left in Fig. 8, with an N — 1
electron MEB, there is an additional term due to the repulsion
of the N —1 electron bubble and the single-electron bubble (N —
l)ez/(Ze(RN_l — ro)) where rg is the radius of the SEB, while
the energy of the SEB is 4wrdo + h* /2mrd) + p(dnry/3).
The difference in energy of these two configurations changes
sign for 100 electrons (at zero pressure) indicating a transition
to stability.

When pressure is taken into account the interesting phase
diagram shown in Fig. 9 is found. Increasing the pressure
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Fig. 9. The phase diagram for stability against single-electron split-off of an
MEB. Here the stability fields are plotted as a function of pressure and N.

destabilizes the MEB, moving the crossover to stability to larger
N. Liquid helium can support a negative pressure [35]. As shall
be discussed ahead, a negative pressure can stabilize an MEB
against splitting in two, and here it also increases the stability
to smaller N. However, if the pressure is made too negative
the MEB radius explodes, the critical pressure depending on
the radius, or N. The results including this second boundary
for stability are shown in Fig. 9. We point out that the analysis
does not consider the possibility of a potential barrier that could
inhibit single electron boil-off.

2.1.4. Deformation instability

The instability of a spherical drop with a charged surface
was studied by Lord Rayleigh [4]; Shikin [24] pointed out
that Rc is the radius of instability. The instability is a
result of the competition between the surface tension that is
minimized by having a spherical surface and the Coulomb
repulsion, which lowers its energy if the bubble undergoes an
angular deformation to an ellipsoidal shape that grows until the
bubble fissions in two. (Recall, after Eq. (4), that in Shikin’s
approximation the radius is slightly larger than Rc, which
might be important for stability, whereas Artem’ev et al. found
a reduction from R().

We shall show in Section 4 that frequencies of the angular
modes (spherical ripplons) can be calculated in the harmonic
approximation by expanding the deformations in spherical
harmonics, Yy, (§2). Tempere, Silvera, and Devreese [17]
calculated the frequencies of these modes, including the effect
of pressure. These modes have frequencies characterized by
the angular momentum quantum numbers {¢,m} and are
degenerate in m,

(Ne)?
drweRc

wr(ﬁ):\/i |:G(Z2+Z+1)+2pRC— Jz} (13)
M,

where M, = pRé/(Z 4+ 1) is a mass term. Evaluating the
¢ = 2 quadrupole ripplon mode gives frequency 0, or there is
no restoring force for this mode. Tempere et al. pointed out that
a small negative pressure stabilizes the bubble; this results in a
finite restoring force or frequency (the bubble radius expands
to be greater than Rc). However, as the pressure increases
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Fig. 10. A generalized shape composed of spheroids and hyperboloids to
describe the fissioning of an MEB in cylindrical coordinates. The parameters a;
and b; are the squares of the semi-major axes and the deformation parameter,
respectively; the f; define the centers of the spheroids.

the mode frequencies for £ > 2 are sequentially driven to
zero, the pressure for each mode instability depending on R¢
(see Fig. 29, ahead in Chapter 4). Thus, in this approximation
pressure can both stabilize and destabilize the bubble.

Earlier, Salomaa and Williams [14] considered the bubble
at zero pressure and found a window of stability due to the
coupling between the ripplon modes and the radial oscillation
modes of the bubble, solving the Rayleigh—Plesset equations for
the bubble dynamics. (These equations will be shown ahead).
This results in a time averaged radius that is larger than Rc,
depending on the oscillation amplitudes of the modes, and
thus a finite restoring force to stabilize the bubble. If R(?)
grows larger than ~6% of the equilibrium value the MEB
becomes unstable and the amplitude of the Yy, mode grows
without limit. Hannahs, Williams, and Salomaa [36] extended
this analysis and found that although the £ = 2 mode has a
region of stabilization, with this non-linear coupling the £ = 3
becomes unstable first, at a lower value of the mode amplitude.

The above discussion of instability considers the small am-
plitude normal modes of oscillation of the bubble and their
coupling. The Bohr—Wheeler model [37] was developed to de-
scribe the fissioning of nuclei, treated as charged liquid drops.
This model, whose validity is not limited to small amplitude
oscillations was applied to MEBs by Tempere, Silvera, and De-
vreese [38] and overcomes limitations of the harmonic approx-
imation and the Rayleigh—Plesset approach. Amongst other im-
portant results, the model shows that for zero pressure there is
an energy barrier that stabilizes the MEB from bifurcation. This
barrier arises from the increase of surface energy and Coulomb
repulsion that accrues as a bubble is deformed from an ellip-
soidal shape to two spherical bubbles.

A generalized surface, shown in Fig. 10, can be described
by three quadratic forms, two spheroids connected by
a hyperboloid. This corresponds to a limited number of
variational parameters describing the surface. The total energy
consisting of the surface tension, the pressure term, and the
electrostatic term (ignoring exchange and smaller quantum
localization terms) Ew; = oS + pV + Ec¢ can be written
in terms of the generalized surface S and the volume V. The
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Fig. 11. The energy as a function of an interpolation parameter that traces out
a trajectory starting with O for a distorted but unsplit bubble and ending at 1
when the bubble is split. This is for an MEB with 10% electrons.

energy is then minimized as a function of shape for a given
elongation d. = z3 — zo starting with an equilibrium bubble
diameter for N electrons, z3 — zo = 2Rc¢. The 11 variables
defined in the figure are reduced in number by constraints, such
as continuity, fixing the origin, etc.; the volume and surface
area are unconstrained and the surface density of electrons is
homogeneous and maintained as N/S.

The stability of MEBs was studied as a function of pressure.
The result of minimization procedure for zero pressure is
shown in Fig. 11 for a bubble with 10* electrons. For small
deformations there is no barrier, but as the deformation
increases a barrier height 0.2 eV/electron develops. From a
normal mode point of view, the necking down that is required
for the splitting of the bubble requires higher £ modes and these
are more energetic, giving rise to the barrier. Splintering into
more than two pieces would involve an even higher barrier and
be much less likely.

For negative pressures the barrier remains but there is a finite
restoring force for small distortions. For positive pressure the
barrier against bifurcation is suppressed, so that the bubble
should be unstable. Recall that pressure drives the higher ¢
modes to zero frequency. In this case the deformation involves
both £ = 2 and 3 modes with mode 3 being driven to zero at a
pressure of 3 mbar for 10* electrons. (Modes are driven to zero
at the pressure p = o (€2 —2)/(2R¢)). Thus, the deformation
in terms of these modes does not require high energy and at a
certain pressure the barrier is suppressed. When the pressure is
raised to make a bubble with N electrons unstable, the resulting
fission products with N /2 electrons may still be metastable
since the critical pressure for driving a mode to zero increases as
the bubble radius decreases. To fission the daughter fragments
the pressure needs to be raised further. One might expect that
with increasing pressure MEBs will break up into smaller and
smaller bubbles, that is a froth of bubbles. If a froth is produced
and the pressure then released or even made negative, it is not
expected that the froth will coalesce into a large bubble again,
as there will be a barrier preventing this.

We summarize the results. An MEB at zero pressure should
be stable. Negative pressures increase the stability until the
radius explodes. Positive pressures lead to bifurcation; the
smaller the bubble the higher the pressure required for splitting.
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It would be extremely interesting to experimentally test these
conclusions.

2.1.5. Dynamics of the bubble surface

At this point in the discussion we consider the affect of
an external force driving the MEB and its response. One can
consider various external probes: electromagnetic, acoustic, or
pressure. Actually an acoustic wave in helium corresponds to
a time varying pressure. Here we consider the response of the
bubble to a pressure step [39]; we consider the affect on both
a spherical and an angularly deformed bubble. If pRy/o > 1
(where Ry, is the pressurized bubble radius), then the R, scales
as p~1/4, which follows from the equilibrium equation

(eN)?
471ng

=2pRy +4o. (14)

The result is that the highly compressible MEB undergoes a
collapse from a pressure step, or a large rapid reduction in
radius, followed by re-expansion and high frequency oscilla-
tions. The oscillations also correspond to large accelerations of
the electrons that result in pulses of electromagnetic radiation
or sonoluminescence. Under certain conditions the bubble be-
comes unstable after collapse and the deformation amplitude
rapidly grows.

In order to describe the dynamics we require the Rayleigh
equation of motion for the radial component. A point on the
bubble surface relative to the center can be described by

00 14
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A rather complex set of equations follow from the Lagrangian
equations of motion:
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The first equation is the Rayleigh equation, with an additional
electronic term and the second, for the deformation, is similar to
the Plesset—Prosperetti equation [40,41] for the deformational
amplitudes. For the response of a spherical undeformed bubble
(ag,n = 0) Eq. (16) is solved for pressure steps of 1, 2, and
3 kPa, shown in Fig. 12. Details are given in Ref. [39].

With increasing pressure step, the amplitude of the collapse
increases and is cyclic as there is no damping in the equations.
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Fig. 12. The response of an MEB in helium with N = 10% electrons initially
at zero pressure to the pressure steps shown in the top panel. The second panel
shows the oscillation of the radius. The initial radius is 1.06 microns so the
collapse is seen to be substantial. The third panel shows the radial velocity of
the surface, and the fourth the radial acceleration. The quantities are cyclic as
there is no damping in the equations. The time axis is scaled to the period of
the oscillations with 7 = 0.795, 0.570, and 0.462 ps for the 1, 2, and 3 kPa
pressure steps, respectively.

The radial acceleration is very sharp and peaked at the time
when the bubble radius is at its minimum. The response times
are less than a microsecond. The peaked acceleration is quite
large, substantially greater than 10% m/s>.

For angularly deformed bubbles (in the initial state) we
expect stable or unstable modes, depending on the pressure step
and the mode. The behavior is found by solving Eq. (17). To
study a stable situation, a higher mode, ¢ = 25, is chosen so
that with the pressure step the ripplon frequency remains non-
zero. The calculated behavior is shown in Fig. 13. For a mode
with unstable conditions, i.e. the pressure step is sufficient to
drive an (¢, m) mode to zero frequency, the mode ampl