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In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same
time, tensor hypercontraction has emerged as an intriguing method to reduce the computational
cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase
approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle
RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r6), the
THC-ppRPA algorithm scales asymptotically as only O(r4), albeit with a much larger prefactor than
the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the
same results as traditional ppRPA to within mH accuracy. Our method opens the door to the develop-
ment of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of tradi-
tional ppRPA implementations. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4886584]

I. INTRODUCTION

The random phase approximation (RPA) was originally
derived in the context of a homogeneous electron gas over 60
years ago.1, 2 Although there are multiple forms of the RPA,
research has largely focused on the particle-hole RPA (which
is often referred to in the literature simply as the “RPA” with-
out qualification). Despite some initial success, its application
to quantum chemistry was largely overshadowed by the suc-
cessful development of coupled-cluster theory in the 1970s
and 1980s. However, the last 15 years have seen a renewal of
interest in the RPA.3–6 The RPA is attractive in part because it
can capture long-range dispersive interactions,7, 8 has no static
correlation error,9–12 and does not experience divergence for
materials with small band-gaps.5 One of the more interesting
theoretical developments to emerge from the study of the RPA
was the realization that the phRPA could be rewritten in terms
of coupled-cluster theory.13 This correspondence was used by
several authors13, 14 to develop efficient algorithms for the so-
lution of the phRPA equations.

More recently, our group has examined the particle-
particle RPA (ppRPA).15–19 Initial results indicate that, like
the phRPA, the ppRPA has several interesting properties as a
density functional, and is more accurate than the phRPA for
a variety of chemical problems.15, 18 The ppRPA successfully
captures the known fractional-spin and fractional charge con-
straints on the exact functional, as seen in its correct dissoci-
ation of H+

2 , H2, and He+
2 .15 The ppRPA also does not suffer

from instabilities like the phRPA with exchange (RPAX).19

Like the phRPA, the ppRPA can be rewritten as a
coupled-cluster-like equation, in this case one which only in-
cludes so-called “ladder” terms.16, 20 One shortcoming of the
ppRPA is that the particular form taken by its ladder-coupled-
cluster-like equations make it resistant to the techniques used
to achieve an O(r4) scaling for the phRPA, where r is the
size of the basis set. Whether the ppRPA is written in its ma-
trix form, in its coupled-cluster form, or in its linear, double-

integral form,15, 19 all methods used for its solution thus far
require O(r6) operations, provided that the number of holes
and particles both scale as O(r). In this paper, we will show
that a recently developed form of tensor compression can re-
duce this scaling from O(r6) to O(r4) with minimal reduction
of accuracy.

Tensor compression decomposes high-rank tensors,
which are abundant in electronic structure theory, into lower
rank tensors. One well-known example of tensor compression
is the resolution-of-identity (RI) technique for the compres-
sion of the 2-electron repulsion integral (ERI) tensor

ε
ij

kl =
∫ ∫

drdr′φ∗
i (r)φk(r)

1

|r − r′|φ
∗
j (r′)φl(r

′). (1)

RI methods such as RI-SVS or RI-V express this rank-4 tensor
as the product of rank-3 and rank-2 tensors21–25

ε
ij

kl =
P

R∑
P,Q=1

vP
ikJPQv

Q
jl . (2)

If the number of auxiliary functions PR = r(r + 1)/2, then
Eq. (2) is an equality; if PH < r(r + 1)/2, then the equality
in Eq. (2) is only approximate. However, the locality of the
atomic orbitals makes it possible to obtain a very good ap-
proximation with only a small number of auxiliary functions,
usually PR ≈ 4r.

Tensor hypercontraction goes one step further than RI
techniques in that it expresses high-rank tensors entirely in
terms of rank-2 tensors.26–28 For example, the THC expres-
sion for the ERI tensor is

ε
ij

kl =
P

H∑
P,Q=1

hiP hkP HPQhjQhlQ. (3)

As in the case of RI techniques, the use of PH = r(r
+ 1)/2 auxiliary functions will guarantee an exact representa-
tion of the ERI tensor. In practice, it has been shown that only
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PH = O(r) auxiliary functions are needed to obtain a good ap-
proximation to the ERI tensor, due again to the locality of the
atomic orbitals.26

The THC of the ERIs can be obtained in two steps. First,
we select a desired atomic basis (e.g., cc-pVDZ) and apply
the standard RI-V method to decompose the ERIs in terms
of PR auxiliary functions in the corresponding auxiliary basis
(e.g., cc-pVDZ-RI) from the EMSL basis set library,29 yield-
ing a decomposition of the form in Eq. (2). This step can be
performed in O(r4) operations. We then perform a nonlinear
fitting procedure to approximate the rank-3 tensor vP

ik as a
product of two rank-2 tensors. Neither of these tensors is spec-
ified in advance; they are obtained through finding the best
least-squares fit to the tensor vP

ik . This step is described in
detail in Ref. 30 and also requires O(r4) operations, so that
the entire THC decomposition procedure scales as O(r4). One
added advantage of the THC decomposition is that orbital ro-
tations of the ERI tensor can be performed in O(r3) operations
by simply applying the orbital rotation matrix to the rank-2
tensor hiP.

Tensor hypercontraction can be applied to other objects
in electronic structure theory besides the ERI tensor, espe-
cially to excitation tensors T ab

ij such as those found in CISD,31

CCSD,28 CC2,32 p2RDM theory,30 and phRPA theory.14 In
all of these examples, it was found that the excitation tensor
could be compressed accurately using only PA = O(r) auxil-
iary functions rather than the PA = O(r2) auxiliary functions
needed for an exact representation of the tensor. When both
the excitation tensor and the ERI tensor were compressed, the
asymptotic cost of the resulting algorithm was generally re-
duced by a factor of r2. For example, it was found that the
CISD, CCSD, and p2RDM algorithms—which all scale as
O(r6) in their traditional implementations—can be reduced in
cost to a scaling of O(r4) by writing both the ERI tensor ε

ij

kl

and the excitation tensor T ab
ij as a THC. In this paper, we will

apply THC to the ppRPA algorithm. Consistent with these
previous results, we find that: (1) the excitation tensor T ab

ij

used in ppRPA can be accurately compressed using only PA
= O(r) auxiliary functions, and (2) the use of THC reduces
the asymptotic scaling of the algorithm from O(r6) to O(r4).

The remainder of our paper will be organized as follows:
in Sec. II, we will describe the THC-ppRPA algorithm. In
Sec. III, we will present the results of applying the THC-
ppRPA algorithm to several sets of small molecules, hydrogen
chains, and alkanes, comparing our results to the exact ppRPA
results obtained through traditional methods. We will show
that only a linear number of auxiliary functions are needed
to obtain good accuracy and that, when a linear number of
auxiliary functions is used, the algorithm does indeed scale as
O(r4). In Sec. IV, we will present our conclusions and areas
for future work.

II. ALGORITHM

A. Traditional ppRPA

There are several equivalent formulations of the ppRPA
equations,15 but we will use the formulation in terms of a Ri-
catti equation, as described in Refs. 14 and 20. After some

rearrangement, we find that the solution of the ppRPA equa-
tions requires us to solve

T ab
ij = − 1

εa + εb − εi − εj

×(
εab
ij + T ab

cd εcd
ij + εab

kl T kl
ij + T ab

kl εkl
cdT

cd
ij

)
. (4)

Here, εa and εi are the orbital energies of the unoccupied and
occupied orbitals a and i in the reference state. Note that this
reference state can be chosen to be either the Hartree-Fock
state or a Kohn-Sham reference state using some particular
DFT functional. The use of Kohn-Sham reference systems
can be justified based on the formulation of time-dependent
DFT on the pairing field.33 Although this approach is not
common practice in coupled cluster theory, DFT references
are often used in Green’s function methods, including the
RPA. When we solve Eq. (4) for the excitation tensor T ab

ij ,
the ppRPA correlation energy is given by

Ec = 1

4

∑
ijab

εab
ij T ab

ij . (5)

When spin is taken into account, the RPA equations for
closed-shell singlet systems separate into two different chan-
nels: a same-spin αα channel and an opposite-spin αβ chan-
nel. The ββ channel is identical to the αα channel since the
α and β spins are equivalent for singlets. Furthermore, the
solution ααT of the same-spin equations is simply the anti-
symmetrized version of the solution αβT of the opposite-spin
equations such that the total correlation energy can be written
as

Ec =
∑
ijab

εab
ij

(
2 αβT ab

ij − αβT ba
ij

)
, (6)

where the second term captures the effects of exchange and
could be dropped to implement an exchange-free DFT func-
tional. Because of this simplification, we will first calculate
the solution αβT of the opposite-spin channel and then use
this solution to calculate the energy in both the opposite-spin
and same-spin channels. Although there is no reason that our
method cannot be applied to non-singlet states, we will as-
sume for the remainder of the paper that we are dealing with
closed-shell singlets to avoid the costs and complications of
higher spin states.

In the traditional implementation of the algorithm, Eq. (4)
can be solved iteratively in much the same way that coupled-
cluster equations are solved. Assuming that T ab

ij is small, we
can adopt the following approach:

1. Set (0)T ab
ij = 0, n = 1.

2. Calculate

(n)T ab
ij = − 1

εa + εb − εi − εj

(
εab
ij + (n−1)T ab

cd εcd
ij

+εab
kl

(n−1)T kl
ij + (n−1)T ab

kl εkl
cd

(n−1)T cd
ij

)
. (7)

3. If ‖(n)T − (n − 1)T‖ is sufficiently small or some maxi-
mum number of iterations has been reached, then stop.
Otherwise, set n → n + 1 and return to step 2.
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Although this method will work, it will unavoidably scale
as O(r6) because step 2 requires the matrix multiplication of ε

and T, both of which are O(r2) × O(r2) matrices. To achieve
a speed-up using THC methodology, we need to avoid ex-
plicit evaluation or multiplication of the matrices ε and T.
Fortunately, it is possible to adapt the iterative methodology
outlined above to create an efficient algorithm, which we de-
scribe in Sec. II B.

B. THC methodology

To achieve a speed-up for our algorithm, both ε and T
must be written in THC form. There exist numerous method-
ologies for writing the ERI tensor ε

ij

kl as a tensor hyper-
contraction26, 27, 30, 34, 35 and research into making this process
more efficient is ongoing. Details of our methodology for de-
composing the ERI tensor are given in Ref. 30; for our current
work, we will simply assume that the molecular ERI tensor
has been expressed as a THC of the form in Eq. (3) using
PH = O(r) auxiliary functions through one of the available
methods.

Next, we have to represent the excitation tensor T ab
ij as a

THC. We slightly modify the THC structure in Eq. (3) to take
into account the symmetry of T ab

ij

T ab
ij =

P
A∑

P,Q=1

yaP xiP zPQybQxjQ. (8)

In Eq. (8), the matrix zPQ is symmetric such that the symmetry
(a, i) ↔ (b, j) is preserved. We also recall that the antisymme-
try of a ↔ b and i ↔ j need not be taken into account since
we are solving only the opposite-spin channel; the correlation
energy of the same-spin channel will be included at the end
of the calculation when we evaluate Eq. (6).

As we said, in order to achieve an improvement in algo-
rithmic efficiency, we must avoid any explicit evaluation of
T ab

ij from its THC components; all quantities must be calcu-
lated as functions of the THC components xiP, yaP, and zPQ
without ever explicitly generating T. To do so, we take a cue

from previous uses of THC and recast our problem as a func-
tional minimization. We can define the cost function J

J ((n)T ) =
∑
abij

(
(εa + εb − εi − εj )(n)T ab

ij − f ab
ij ((n−1)T )

)2
,

(9)
where

f ab
ij ((n−1)T ) = −(

εab
ij + εab

cd
(n−1)T cd

ij

+εab
kl

(n−1)T kl
ij + (n−1)T ab

kl εkl
cd

(n−1)T cd
ij

)
. (10)

But if we remember that both T ab
ij and ε

ij

kl can be written as
tensor hypercontractions, then J can be written as a function
of xiP, yaP, and zPQ without any explicit reference to T. Thus,
we can minimize Eq. (9) with respect to the THC parameters.
If we find a solution for which J = 0, then we have solved the
iterative Ricatti question in Eq. (7).

To make our iterative procedure more stable, we add a
damping term to Eq. (9) which tends to lead to smoother
convergence. Our final cost function is

J ((n)T )=p
∑
abij

(
(εa+εb−εi −εj )(n)T ab

ij −f ab
ij ((n−1)T )

)2

+(1−p)
∑
abij

(
(εa+εb−εi −εj )(n)T ab

ij −(n−1)T ab
ij

)2
.

(11)

This damping approach is common in Hartree-Fock calcula-
tions and adds minimal computational cost to our algorithm.
We find that a selection of p = 0.5 is effective at damping
oscillations that can occur during iterative optimization.

The cost of our algorithm comes from evaluating the
value and gradient of J during our minimization procedure. To
see that this cost scales as O(r4), we can evaluate the various
terms in J to see that they require the summation over at most
four indices. For instance, one of the terms in our cost func-
tion will be

∑
abijcd (εa + εb − εi − εj ) (n)T ab

ij εab
cd

(n−1)T cd
ij .

Remembering the a ↔ b, i ↔ j symmetry of T and expressing
ε and T in terms of THCs, we obtain

∑
abijcd

(εa + εb − εi − εj )(n)T ab
ij εab

cd
(n−1)T cd

ij = 2
∑

PQRST U

2yehPR · xxPT · yhQS · xxQU · yhT R · yhUS · zPQ · HRS · zT U

−2
∑

PQRST U

2yhPR · xexPT · yhQS · xxQU · yhT R · yhUS · zPQ · HRS · zT U , (12)

where we have defined

xxPT =
∑

i

xiP xiT , (13)

xexPT =
∑

i

xiP εixiT , (14)

xhPR =
∑

i

xiP hiR, (15)

yhPR =
∑

a

yaP haR, (16)

yehPR =
∑

a

yaP εahaR. (17)

The sum in Eq. (12) can be evaluated in O(r4) time, provided
that the number of auxiliary functions scales as PA = O(r). In
contrast, evaluating Eq. (12) without using tensor hypercon-
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TABLE I. The THC-ppRPA correlation energy in mH for six small
molecules in the cc-pVDZ basis as a function of the number of auxiliary
functions. The final column lists the result of traditional ppRPA. In all cases,
only PA = 40 auxiliary functions were required for the THC-ppRPA result to
converge to within a few mH of the traditional ppRPA correlation energy.

Exact
Molecule PA = 20 PA = 30 PA = 40 PA = 50 PA = 60 ppRPA

CH2(r = 25)) 75.85 79.64 79.90 79.92 79.98 79.83
CO (r = 30)) 198.80 211.68 214.78 214.18 214.59 214.54
H2O (r = 25) 148.79 155.33 154.83 154.97 154.97 154.76
HCN (r = 35) 178.75 201.77 207.88 208.99 209.03 208.68
N2 (r = 30) 209.47 224.03 227.84 228.22 227.89 227.69
NH3(r = 30) 128.80 139.21 140.60 140.48 140.39 140.21

traction requires the summation over the six indices a, b, c, d,
i, j and O(r6) time. If we similarly expand the other terms in
Eq. (11), we find that J and its gradients dJ/dx, dJ/dy, dJ/dz
can all be evaluated in O(r4) time, provided that both PA and
PH scale as O(r).

Based on our discussion above, the THC-ppRPA algo-
rithm can be outlined as follows:

1. Randomly initialize (0)xiP and (0)yaP. Set (0)zPQ = 0 and
n = 1.

2. Minimize the objective function J((n)T) in Eq. (11) with
respect to (n)xiP, (n)yaP, and (n)zPQ.

3. If ‖(n)T − (n − 1)T‖ is sufficiently small, then stop. Other-
wise, set n → n + 1 and return to step 2.

4. Calculate Ec from Eq. (6)

III. RESULTS

We applied our THC-ppRPA algorithm to several
molecules in a variety of basis sets. First, we considered the
calculated correlation energy of six small molecules in the
cc-pVDZ basis as a function of PA, the size of the auxiliary
basis set. Table I shows the results. As the number of auxiliary
functions is increased, the correlation energy approaches the
traditional ppRPA result. By the time the number of auxiliary
functions PA is less than twice the size of the basis set size
r, the correlation energy is within 1 mH of the traditional re-
sult, far less than the error of the traditional ppRPA algorithm
itself.

0 10 20 30 40
−0.2

−0.19

−0.18

−0.17

−0.16

−0.15

−0.14

Iteration

E
c

 

 

Undamped
Damped

FIG. 1. The convergence of the THC-ppRPA algorithm with and without a
damping term for H2O in the cc-pVDZ basis.

TABLE II. The THC-ppRPA correlation energy in mH for six small
molecules in the larger cc-pVTZ basis as a function of the number of aux-
iliary functions.

Exact
Molecule PA = 30 PA = 50 PA = 70 PA = 90 PA = 110 ppRPA

CH2(r = 65)) 93.03 104.91 107.87 108.27 108.34 108.49
CO (r = 70)) 210.79 256.53 278.91 282.59 283.68 283.03
H2O (r = 65) 176.11 204.42 207.83 209.89 210.15 209.36
HCN (r = 85) 176.35 234.78 258.33 270.04 272.56 272.79
N2 (r = 70) 232.95 276.52 292.39 295.83 297.08 296.01
NH3(r = 80) 154.20 176.52 172.35 185.14 186.59 186.09

We can also examine convergence properties of the THC-
ppRPA algorithm with respect to the number of iterations.
Figure 1 shows the behavior of the THC-ppRPA algorithm
with PA = 60 when applied to H2O in the cc-pVDZ basis. Be-
cause neither the traditional ppRPA algorithm nor the THC-
ppRPA algorithm is variational, the THC-ppRPA result will
not approach the ppRPA result monotonically. However, the
correlation energy does eventually converge to the traditional
result. Figure 1 also shows the benefit of including an “anti-
damping” term in our cost function, which smoothes out os-
cillations in the convergence.

We observe the same results when we apply our algo-
rithm to the same six molecules in the larger cc-pVTZ basis
set. Table II shows the correlation energies in this larger basis.
Once again, auxiliary sets of approximately PA = 2r functions
are sufficient to recover a good approximation to the tradi-
tional correlation energy.

These examples are interesting and suggest that the num-
ber of auxiliary functions needed to obtain good accuracy is
far less than the theoretical limit of PA = r(r + 1)/2. However,
they are not clear evidence that the THC-ppRPA algorithm
provides an asymptotic speed-up over the traditional approach
because the number of electrons in a particular molecule is
constant as the basis set size is increased. To obtain evidence
of genuine asymptotic scaling improvement, we first examine
linear hydrogen chains in the cc-pVDZ basis. In these sys-
tems, we can tabulate the fraction of the traditional ppRPA
correlation energy recovered by the THC-ppRPA as a func-
tion of the number of auxiliary functions. Table III shows our

TABLE III. The percentage of correlation energy recovered by THC-
ppRPA algorithm relative to the traditional ppRPA algorithm for hydrogen
chains of length N in the cc-pVDZ basis. This table shows that the number of
auxiliary functions required to achieve some constant fraction ppRPA energy
scales roughly linearly with the size of the system.

Molecule PA = N PA = 2N PA = 3N PA = 4N PA = 5N

H2 57.8% 90.5% 94.6% 99.8% 100.1%
H4 50.8% 79.2% 93.7% 98.1% 99.8%
H6 41.2% 75.0% 92.7% 98.2% 99.8%
H8 43.3% 73.6% 92.9% 97.6% 99.4%
H10 43.4% 74.0% 92.3% 97.0% 99.2%
H12 40.4% 71.0% 91.0% 96.8% 99.2%
H14 46.8% 74.8% 91.2% 95.9% 98.9%
H16 44.2% 69.7% 90.5% 95.9% 98.8%
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TABLE IV. The percentage of correlation energy recovered by THC-ppRPA
algorithm relative to the traditional ppRPA algorithm for alkanes with N car-
bon atoms in the cc-pVDZ basis. Again, the number of auxiliary functions
required to achieve some constant fraction ppRPA energy scales roughly lin-
early with the size of the system.

Molecule PA = 20N PA = 40N PA = 60N PA = 80N

CH4 87.2% 99.7% 100.1% 100.2%
C2H6 89.2% 99.6% 99.9% 100.2%
C3H8 90.2% 99.7% 99.8% 100.0%
C4H10 91.1% 99.4% 100.0% 100.1%

results. Here, we can clearly see that the number of auxil-
iary functions PA needed to obtain any particular fraction of
the correlation energy (say, 90%) scales linearly with r rather
than quadratically. The same result is seen in alkane chains, as
shown in Table IV. Once again, the number of auxiliary func-
tions needed scales as r. This result implies that we are achiev-
ing an asymptotically significant compression of the excita-
tion tensor T ab

ij , since we require only O(r) auxiliary func-
tions to achieve a good approximation instead of the O(r2)
functions which are required in principle to obtain an exact
representation.

This linear scaling of PA with r leads to an overall asymp-
totic reduction in the complexity of the algorithm, since the
evaluation of the cost function and its derivatives require sum-
mation over at most 4 indices. We have also verified this scal-
ing numerically. Figure 2 shows the time required for a sin-
gle evaluation of the cost function and gradient as a function
of the size of the hydrogen chain or alkane molecule along
with the linear best-fit of the data. The O(r4) scaling of the
algorithm is clearly visible in the case of the hydrogen chain.
The slight deviation of the alkane running time scaling from
the O(r4) ideal is likely due to the fact the number of elec-
trons, holes, and basis functions do not grow at a rate ex-
actly proportional to the length of the carbon chain. For in-
stance, if the running time for alkanes were plotted against
the number of electrons, a linear best fit would yield a scaling
of r4.24.
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t = 8.5× 10−4⋅ r4.0
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FIG. 2. The computational cost in ms of a single evaluation of the cost
function and gradient as a function of the size of the basis set, for hydro-
gen chains and alkanes. Hydrogen chains show clear O(r4) scaling. Alkanes
show slight deviation, which is primarily due to the fact that the number of
electrons and holes are not quite directly proportional to the number of basis
functions.

IV. DISCUSSIONS AND CONCLUSIONS

In this article, we have introduced the THC-ppRPA al-
gorithm for improving the asymptotic efficiency of the tra-
ditional ppRPA algorithm. Our method relies on the tensor
decomposition of both the ERI tensor 2ε and the excitation
tensor 2T. Results here and elsewhere confirm that the num-
ber of auxiliary functions needed to accurately approximate
both of these objects scales as O(r) rather than the theoretical
limit of O(r2), where r is the total number of basis functions
in our system. This reduction of order in the number of re-
quired auxiliary functions leads to a reduced asymptotic scal-
ing; whereas the traditional ppRPA algorithm scales as O(r6),
our THC-ppRPA algorithm scales as O(r4).

Two important insights were necessary for the formula-
tion of our algorithm. First, the ppRPA equation had to be
rewritten as a coupled-cluster-like equation. We implemented
several other variations of THC-ppRPA that relied on double-
integral and matrix formulations of the ppRPA equation, but
these were unsuccessful in providing a stable, efficient al-
gorithm. Only the coupled-cluster formulation allowed us to
solve the ppRPA equations efficiently within a THC expan-
sion. Second, the coupled-cluster equation had to be recast as
an iterative, scalar optimization problem. Solving the original
Ricatti equation in Eq. (4) directly would not lead to a speed-
up because it requires us to obtain the full, rank-4 tensor 2T
from its THC components, an expansion that requires O(r6)
time. However, we could have converted Eq. (4) into a non-
iterative scalar optimization problem by minimizing the cost
function

J (T ) =
∑
abij

(
(εa + εb − εi − εj )T ab

ij − f ab
ij (T )

)2
. (18)

Although this approach would have allowed us to avoid
explicitly expanding T, notice that it requires us to calcu-
late the term ‖f ab

ij (T )‖2
and its derivative. Unfortunately, if

we express this term using its THC components, we find
that its evaluation carries a cost of O(r5), which would in-
crease our asymptotic scaling. We circumvented this prob-
lem through the iterative approach, which replaced ‖f ab

ij (T )‖2

with ‖f ab
ij ((n−1)T )‖2

(see Eq. (11)). This latter term de-
pends on (n − 1)T rather than (n)T, which is the variable over
which we are optimizing. As a result, the derivative of the
‖f ab

ij ((n−1)T )‖2
term with respect to (n)T is zero. The term can

be discarded for the purposes of optimization and the overall
O(r4) scaling of our algorithm can be retained.

At this point, it is helpful to put our work in the con-
text of the broader application of THC to coupled-cluster the-
ory. It was shown in Ref. 28 that CCSD can theoretically be
implemented in O(r4) operations using tensor hypercontrac-
tion. Because algorithms like CISD, QCISD,28 and CC232 can
all be obtained through a truncation of terms in the CCSD
equations, the result in Ref. 28 proves that the scaling of
these other algorithms can also be reduced through the ap-
plication of THC. What is more, the recent discovery that
phRPA and ppRPA can both be written as coupled-cluster-like
equations16, 20 showed that THC-RPA can also be viewed—in
principle—as a subset of THC-CCSD. However, in practice,
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many of these THC methods must be treated separately from
THC-CCSD because they will display quite different scaling
behavior than the THC-CCSD algorithm and will make use of
different solution techniques.

A good example of the differences that can arise even be-
tween closely related THC algorithms is provided by the con-
trast between phRPA and ppRPA. Both phRPA and ppRPA
are—in principle—special cases of the CCSD equations.
Both phRPA and ppRPA can also be straightforwardly im-
plemented using exact matrix diagonalization that requires
O(r6) operations.5 However, it was shown that the scaling of
phRPA could be reduced to O(r4log r) and later to O(r3) by
applying RI36 and THC techniques,14 respectively. Despite
the close connection of the phRPA and ppRPA algorithms,
the ppRPA equations cannot be solved as efficiently as the
pHRPA equations due to the different ways in which the in-
dices are entangled in the two different methods. For example,
the most costly term in the Ricatti equations for both pHRPA
and ppRPA involves the product T · ε · T (see the last term
in Eq. (4). In ppRPA, this term can be written as the THC
expansion,∑

klcd

tab
kl εkl

cd t
cd
ij =

∑
PQT U

yaP · ybQ · xiT · xjU

·
[∑

RS

xhPR · xhQS · yhT R · yhUS · zPQ · HRS · zT U

]
.

(19)

Notice that there is no way to evaluate the quantity inside the
brackets in fewer than O(r5) operations. In contrast, the cor-
responding term in the phRPA equations can be written as∑

klcd

tac
ik εkl

cd t
db
lj =

∑
PU

yaP · ybU · xiP · xjU

·
⎡
⎣ ∑

QRST

xhQR · yhQR · xhT S · yhT S · zPQ · HRS · zT U

⎤
⎦ .

(20)

In this case, the quantity inside the brackets can be evalu-
ated in only O(r3) operations through a clever ordering of
summations. This marked difference in complexity is what
enables THC-phRPA to be implemented with O(r3) scaling
while the best known scaling for THC-ppRPA is the O(r4)
scaling demonstrated in this paper. This example shows that,
despite their similarities, the phRPA and ppRPA equations
cannot be solved using the same techniques with the same
reduction in cost. The THC-ppRPA algorithm should be de-
veloped and studied separately from other THC algorithms,
as we have done in this article.

One important question that arises from our work is when
the crossover between traditional ppRPA and THC-ppRPA
occurs. For what system size r does THC-ppRPA become
more efficient than traditional ppRPA? Here, we are hesitant
to offer a definitive number for multiple reasons. First, there
are many different equivalent approaches for solving the tra-
ditional ppRPA equations (matrix diagonalization, double in-
tegral formulation, Ricatti formulation) and each will require

different computational resources. For example, our own ex-
perience has shown that the solution of the double integral for-
mulation (see Ref. 15) can be tens to hundreds of times more
costly than the solution of the matrix formulation. Because the
application of the ppRPA method to molecules is relatively
new, it is not yet clear which methodology should be viewed
as the “standard” one or how it can be implemented most
efficiently. The crossover point between traditional ppRPA
and THC-ppRPA will therefore depend on which “traditional”
ppRPA method is implemented. Second, the cost of the THC-
ppRPA algorithm will depend on the number of auxiliary
functions PA and PH required for an accurate approximation
of the excitation tensor and the ERI tensor. Because this num-
ber will be strongly system-dependent, the crossover point
will likewise be strongly system-dependent. A related concern
is that the level of accuracy deemed acceptable will determine
the number of auxiliary functions and the degree of conver-
gence required, both of which will affect the THC-ppRPA al-
gorithm’s cost. For all these reasons, while we believe that the
crossover point is likely to be large (r ≈ 500) due to the high
prefactor of THC-ppRPA, declaring a single crossover point
would depend on too many factors to be of much use. And
certainly, future implementations of THC-ppRPA can work
on reducing the crossover point without knowing the precise
location of the crossover point for a particular system.

Two major areas for future work exist. The most impor-
tant area for improvement is the large computational prefac-
tor required by our algorithm. While we have shown that our
asymptotic scaling is O(r4), the use of THC introduces a sub-
stantial prefactor that, for small values of r, can overwhelm
any improvement due to the lower-order scaling. This result
is not surprising, given that the same problem is faced by
other THC algorithms. Nonetheless, it represents a very im-
portant challenge whose solution could significantly improve
the practicality of THC-ppRPA. Currently, a single evaluation
of the THC-ppRPA cost function and its gradient for a prob-
lem like H2O in the cc-pVDZ basis is not significantly more
expensive than its solution by traditional ppRPA. However,
THC-ppRPA requires many evaluations of the cost function
and its gradient, first for the optimization of the cost func-
tion J during a single iteration and then for the repeated it-
erations required to solve the coupled-cluster equation. The
overall performance of the algorithm could then be improved
either by reducing the number of optimization steps or the
number of iterations required for convergence.

A second area of investigation involves the use of
THC-ppRPA to correct DFT functionals. While long-range
dispersive forces are not captured by many popular DFT
functionals, they are captured by RPA.5, 15, 18 The ppRPA
also accurately describes the dissociation of H+

2 , avoiding the
delocalization error of DFT, in contrast to phRPA.10, 12 As
a result, we could imagine starting with a DFT calculation
and then empirically “mixing in” the results of a ppRPA
calculation to qualitatively add in these neglected effects.
Because our hybrid scheme would only require inclusion
of the qualitative properties of the THC-ppRPA calculation
(like its inclusion of dispersion effects), it is possible that
a very small number of auxiliary functions could be used
to capture these effects, far smaller than the number which
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would be needed to obtain a correlation energy that was
accurate in some absolute sense. Because the speed of or
algorithm depends on the number of auxiliary functions, the
use of a very small number of auxiliary functions would lead
to a much faster algorithm. Possibly, the auxiliary functions
could even be deliberately fixed in such a way that they
captured only one particular type of interaction; for instance,
we could imagine choosing auxiliary functions that were all
strongly localized which were therefore limited to capturing
local excitations only. Future research should explore the
possibility of correcting popular DFT functionals through the
use of THC-ppRPA with a limited auxiliary function set.

Speaking broadly, the applicability of THC to many dif-
ferent electronic structure algorithms is encouraging. It sug-
gests that many if not all electronic structure algorithms
can be improved by the application of tensor hypercontrac-
tion. Nonetheless, because each algorithm is distinct, it is
worthwhile to explicitly develop THC versions of different
algorithms to develop a larger toolkit for applying THC to
conventional algorithms. For instance, the strategy for apply-
ing THC to CISD is different than for applying it to MP2. It
is our hope that the extension of THC to the ppRPA algorithm
will facilitate further application of THC to areas which have
not yet been considered.
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