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A new approach to the one-particle Green s functions 6 for finite electronic systems is

presented. This approach is based on the diagrammatic perturbation expansions of the
Green's function and of the dynamic self-energy part M related to 6 via the Dyson equa-
tion. The exact summation of the latter expansion is reformulated in terms of a simple alge-
braic forin referred to as algebraic diagrammatic construction (ADC). The ADC defines in

a systematical way a set of approximation schemes (nth-order ADC schemes) that represent
infinite partial summations for M and (via the Dyson equation) for 6 being complete
through nth order of perturbation theory. The corresponding mathematical procedures are
essentially Hermitian eigenvalue problems in restricted configuration spaces of unperturbed
ionic configurations. Explicit equations for the second-, third-, and fourth-order ADC
schemes are derived and analyzed. While the second- and third-order schemes can be
viewed as systematic rederivations of previous approximation schemes, the fourth-order
ADC scheme represents a complete fourth-order approximation for the self-energy and the
one-particle Green s function which was hitherto not available.

INTRODUCTION

The one-particle Green's function' is a well-
recognized means of calculating the ionization and
attachment spectra of finite electronic (or nucleonic)
systems. The conceptual advantage of the Green's-
function method and of related many-body methods
lies in the fact that the interesting physical informa-
tion for the ionization and attachment process is cal-
culated directly without resorting to separate calcu-
lations for the (initial) ground state and the (final)
ionic states as is the case in more conventional ap-
proaches. The ionization energies and electron af-
finities are determined froin the location of the poles
of the (Fourier-transformed) one-particle Cxreen's
function while the spectral intensities are derived
from the corresponding residues. A large number of
calculations for atoms and molecules has been
presented since the first applications a decade ago.
For a more detailed discussion and references the
reader is referred to review articles.

As is well known, there exist perturbation expan-
sions for the one-particle Green's function (more
precisely, for the matrix of Green's functions) 6 and
for the related self-energy X in terms of the famous
Feynman diagrams' which are very useful in the
construction of approximation schemes. An obvious
way of obtaining an approximation for X is to em-

ploy a finite expansion for the self-energy, an exam-
ple of which is the outer-valence Green's-function

method (QVGF) (Refs. 6 and 9). This method is
based on the third-order expansion for the self-
energy and includes higher-order contributions by a
renormalization procedure. The QVCxF has proven
to provide accurate results for the outer-valence ion-
ic main states that are well described in the quasi-
particle picture. ' For energy regions where higher
excited (shakeup) configurations play a role, the
QVGF method does not apply. Here, the self-
energy itself has poles and thus cannot properly be
described by a finite expansion.

Approximation schemes which maintain the
analytical properties of the exact self-energy are de-
rived as infinite partial summations of the perturba-
tion series for X. Well-known examples for such in-
finite summations of special classes of diagrams are
the random-phase approximation (RPA) and the
ladder summations for X(co) (see, e.g., Mattuck ).
However, for finite electronic systems these approxi-
mations have proven to be inadequate. Here, the
third-order contributions for the ionic main states
and the first-order contributions for the secondary
states are already incomplete and selective and the
results may be worse than in the simple second-
order expansion for X(co). A summation of both
RPA and ladder-type diagrams (restricted, however,
to special "time orderings") is achieved by the so-
called two-particle —one-hole Tamm-Dancoff ap-
proximation (2p-h —TDA). ' The 2p-h —TDA
summation is complete only up to second order and,
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as a consequence, the main ionic states are less accu-
rately described than in the OVGF method. On the
other hand, the secondary states are here treated
consistently through first order and this allows for
an at least qualitatively correct description of the en-
tire valence ionization spectrum. In particular, the
2p-h —TDA provides access to the inner-valence re-
gime, where generally the simple one-particle picture
of ionization breaks down. "' This effect has been
demonstrated by 2p-h —TDA calculations for
numerous molecules. "'

The 2p-h —TDA scheme can readily be extended
so that the resulting infinite partial summation for
the self-energy (and thus for the Green's function) is
complete up to third order. These extended 2p-
h —TDA equations have been presented previously. '

Applications to atoms' and molecules' show that
this approach significantly improves the level of ac-
curacy for the ionic main states matching that of the
OVGF method.

Other concepts for the derivation of approxima-
tion schemes for the one-particle Green's function
have been presented, alternative to the diagrammatic
approach. One such concept is the equation-of-
motion method (EOM) which, being originally for-
mulated for the electronic excitation problem, ' '
has been transferred to the treatment of ionization
and electron-attachment processes. ' ' ' The basic
EOM equations are formulated in terms of ground-
state expectation values of exact excitation operators
for %+1 particles. Equations, fully equivalent to
the EOM equations, also emerge from a propagator
formalism. ' ' In this formalism the so-called su-
peroperator representation of the one-particle
Green s function is expanded via inner-projection
techniques in an operator space of (X+ 1)-particle
exritation operators.

In both the EOM and the propagator approaches
approximation schemes result from expansions of
the (exact) excitation operators and the ground state
in terms of basic operators and unperturbed configu-
rations, respectively. Within the framework of these
formalisms a complete third-order scheme has been
worked out' ' which is essentially equivalent to
the diagrammatically derived extended 2p-h —TDA.
We mention that the simpler 2p-h —TDA scheme
can also be obtained within the EOM approach.

In spite of the simplicity of the basic equations,
the derivation of extended approximation schemes
in the EOM becomes increasingly complicated and
is by no means straightforward: Besides the ques-
tion of the proper expansion of the excitation opera-
tors in terms of basic operators, complications arise
due to the high-order expansions required for the
ground state, the nonorthogonality of the basic exci-
tations with respect to the correlated ground state,

and the non-Hermiticity of the resulting secular
equations. The difficulties may be appreciated by
consulting previous attempts to proceed beyond
third order. ""

In the diagrammatic approach, on the other hand,
a well-defined prescription for constructing higher-
order approximation schemes for the self-energy and
the Green's function was hitherto not available at
all. It is the purpose of this article to present a new
diagrammatic approach which allows for a sys-
tematic construction of extended approximation
schemes. This approach, which we call the algebra-
ic diagrammatic construction (ADC), starts explicit-
ly from the diagrammatic perturbation expansion
for the self-energy. We present a simple algebraic
scheme by which (in principle) this perturbation ex-
pansion can be summed up exactly. This scheme de-
fines in a natural way a set of systematic approxi-
mations that represent infinite partial summations
for the self-energy (and the Green's function) being
exact up to a finite order of perturbation theory.
The resulting mathematical procedures involve Her-
mitian eigenvalue problems within limited spaces of
physical excitations of ¹1particles. We shall
present the explicit construction of the "nth-order
ADC schemes" for n=2, 3, and 4. As will be seen,
the second- and third-order ADC schemes recover
the 2p-h —TDA and the extended 2p-h —TDA
schemes, respectively, which thereby are rederived
from a systematic point of view. The fourth-order
scheme clearly goes beyond all previous approxima-
tion schemes. It gives results which are exact up to
fourth order for the ionic main states and further-
more yields the secondary (satellite) states consistent
through second order, which is an important step to-
wards a quantitative description of the spectral re-
gions where the secondary states play a role, i.e., for
the inner valence and the core ionization. We men-
tion that the ADC scheme is quite general and ap-
plies also to other Green's functions, e.g., for the po-
larization propagator where a similar approach has
been presented recently.

In Sec. II below we review briefly the theory of
the one-particle Green's function as far as is needed
for our purpose. The presentation of the general
ADC scheme and the explicit construction of the
second-, third-, and fourth-order approximations are
contained in Sec. III. In Sec. IV we discuss the
physical content of the resulting ADC schemes. A
short summary is given in Sec. V.

II. THEORETICAL FOUNDATIONS

A. One-particle Green's function

The matrix of one-particle Green's functions G is
defined with respect to a suitably chosen basis of
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e(~)= 0, v&0
e ", ~)0 (2)

of the time differences q. =+(t t'). —The positive
infinitesimal qi guarantees the convergence of the
Fourier transform

G(ra)= fd)t t )e' "—' ''G)tt,
Here a time-independent Hamiltonian is assumed.
The components of G(to) can be expressed by the
well-known spectral representation'
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Here, E„'and
l

q—i„—) denote the energies
and states of the (%+1)-particle systems, Ep is the
ground-state energy. The physical significance of
the one-particle Green's function is evident from Eq.
(4). The ionization energies

EN —1

and electron affinities

EN EN+1
n 0 n

are derived from the pole positions of G(to). The
residues are products of the transition amplitudes

x,'"'=(q~ 'lc, lqo),
(n) (qiiv+1

l

t
l

qi ) (7b)

These quantities are related to the spectral intensi-
ties of the ionization and the electron-attachment
experiment, respectively. In the case of a photoelec-
tron experiment (with a photon energy cop sufficient-
ly above the respective threshold), the spectral elec-
tron intensity associated with the final ionic state

') is given by the expression
2

I„-g grktpxp" 5(Ek+In too) . (8)
k p

one-particle states
l q ) (in general, a discrete set of

Hartree-Fock orbitals) by'

Gpq(t, t')= i—(%o
l
Tcp(t)cq(t')

l
%p) . (1)

Here,
l
q'o) is the exact (closed-shell) ground state

of the considered N-particle system, cq(t) [cq(t)]
denote creation (destruction) operators for the one-
particle states

l q ) in the Heisenberg representation,
and T is Wick s time-ordering operator which intro-
duces generalized step functions

Here, the q.
q~ denotes the matrix element of the di-

pole operator taken with the one-particle state
l p )

and the continuum state
l
k) with kinetic energy

Ek. For a thorough discussion of the spectral inten-
sities the reader is referred to the review article by
Cederbaum and Domcke.

H =Ho+Hi
A.

Hp =QEici ci

HI = W+ V= g Wij C& cj + 2 g Vjp klci cj'Clck

into a diagonal one-particle part Ho and a perturba-
tion part HI, which consists of the two-particle
(Coulomb) interaction and a nondiagonal one-
particle part W. For simplicity we shall assume a
representation in terms of Hartree-Fock (HF) one-
particle states

l
j). Then, the e; are the HF orbital

energies. The matrix elements of the two-particle
(Coulomb) interaction are defined according to

Vjki = (p;(1)pj(2) I
V(1,2)

l
A(1)ki(2)) . (10)

In the HF case the nondiagonal one-particle part W
is determined by the matrix elements

W; = —QVik( kink .
k

Here and in the following we use the notation
Vj (kil ——Vjki —Vjtk for the antisymmetrized two-
particle matrix element, and nk ——1 nk for the H—F
occupation numbers, i.e., nk ——1 (nk=0) for

l
k)

occupied (unoccupied) in the HF ground state
l @p).

We stress that the choice Hp ——HH~ does not restrict
the generality of our approach. The formulation for
an arbitrary Hp is, though more lengthy, a straight-
forward extension of the HF case.

The one-particle Green's function G is related to
the so-called self-energy X by the Dyson equation'
which in the to representation reads

G(to ) =G (~o )+G (o~ )& (to )G(co )

and allows for the (formal) solution

G(to ) = I [Go(to )] ' —X(to ) I

The "free" Green's function

(12)

Gwo(~)=5~ p
. +

CO —6' —l'g CO —E + l'gp p

introduced here follows from Eq. (1) for the free

B. Self-energy

In the following we shall make use of the usual
decomposition of the full Hamiltonian,
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Hamiltonian Ho.
The self-energy X(co ) can be written as the sum

way in terms of the so-called two-particle-hole (2p-
h) response function R which is defined according to

X(co ) = X( oo )+M(co) —1
~23 r'2 2 = 123 1' 2 3

— 23 3 4, G45 Gal 1 2 . (16)

of a static (co-independent) part X( oo ) and a dynam-
ic (co-dependent) part M(co). Let us first consider
the latter part. Following Ethofer and Schuck and
Winter, M(co) can be expressed in a symmetric

In this short-hand notation, summation and time in-
tegration over doubly occurring indices are implied.
The two- and three-particle Green's functions in Eq.
(16) are defined according to the general definition '

Gr. . . „) . . .„(tl . . . t„)=( i—)"(+p
~
Tcr(t&) c„(t„)c„(t„) cr (tr ) ~%'Q)

The 2p-h —response function is a complicated function of six time arguments (or five time differences). We
mention that, as in the case of the p-h and p-p response functions, one can formulate a Bethe-Salpeter equation
for the 2p-h —response function. For the purpose of representing the co-dependent self-energy it is sufficient
to employ the simpler 2p-h propagator

lllkl 1 k 1 (t, t') = lim Rj kl k 1 j(tj, tk, tl, tk, tl, tl )
t., tk, t&~tj'

t -i, tki, fi.~g'
(18)

which depends on the time difference t t' only. —
The limit on the right-hand side of Eq. (18) is in-
dependent of the ordering of the time arguments.
Introducing the Fourier transform

n,.„,.„,(~)= jd(~ ~ )~"' "n,„.,., (i, ~
—
)

I

the Dyson equation. 3~

As is the case for the one-particle Green's func-
tion G(co) the poles of II(co) and M(co) are located
either in the upper (cT„=+1)or in the lower corn-
plex co plane (cr„=—1). Thus, the 2p-h propagator
11(co) and the co-dependent self-energy part M(co)
can be written as sums

the final result for the co-dependent self-energy part
reads

D(~)=11r(~)+D"(~),
M(co) =M'(co)+M"(co), (24b)

M (co)= —g V [„]Iljkl 'k 1 (co)VqJ[kl] . (20)

We note that II(co) has a spectral representation of
the form

( ) ( )*
gjul gj k'1'

IIjkl, jk 1 (~)=g
CO —COp +1'g Op

where according to oz ——+1 the poles are located
below or above the real co axis, respectively. As a
consequence of Eq. (20), one obtains the spectral
representation for the co-dependent self-energy part,

(n) (n)

Mpq(co) =
con +'9 crn

where the coupling (Dyson) amplitudes are given by
(n) (n)

mp 2 g Vpj [kl]gjkl (23
j,k, l

We mention that Eq. (22) can be derived directly
from the spectral representation (4) for G(co) and

of two parts I and II, being analytic in the upper and
the lower complex co plane, respectively. Physically,
the parts I and II are associated with excitations of
%+1 and K —1 particles, respectively. One should
keep in mind that the energies co„appearing in the
spectral representations for M do not yet correspond
to energies of physical states. The latter result only
upon the coupling to the one-particle ( 1p) and one-
hole (lh) configurations via the Dyson equation. It
should also be noticed that II(co) is more general
than M(co ) in that it contains additional poles corre-
sponding to those ionic states, which, for example,
due to symmetry restrictions, do not couple with the
lp or lh configurations.

We finally consider the static part X( ao ) of the
self-energy part As is w. ell known, ' ' X(op ) can
be expressed by the one-particle Green's function ac-
cording to

1
~pq( ~ ) ~pq+ g Vpk[ql] Glk (co )dco

2'7Tl

(25)

Here, the contour integration closes in the upper
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complex co plane. Replacing G(co) by the right-
hand side of Eq. (13) one obtains an equation, by
which the static part X( oo ) can be determined self-
consistently if M(co) (or an approximation for it) is
given. This means that the problem of determining
the full self-energy and the one-particle Green's
function can be reduced to the problem of calculat-
ing the dynamic self-energy part M(co). Of course,
one can also make use of the direct (diagrammatic)
perturbation expansion for X( oo ).

The representation of the self-energy according to
Eqs. (15), (22), and (24) allows us to reformulate the
Dyson equation (13) as a diagonalization problem:

AX=XE, XtX=I,

&+X( oo )

(ml)t

(m II)'t

ms mzx

nl 0

0 n"
(27)

Here, e denotes the diagonal matrix of the one-
particle energies, Ql I are the diagonal matrices of
the spectral energies co„of the self-energy parts
MI Il(co), and m I II are the correspondin~ matrices of
the coupling (Dyson) amplitudes mp" . The one-
particle Careen's function is then obtained as

(~) (n)*

Gpq(co)=g
co —e~

(28)

in terms of the eigenvalues e and the corresponding
eigenvector components xp" =Xp„. For these alge-
braic equations the infinitesimal +ig is nonessential
and has been dropped. With respect to numerical
applications it is often more advantageous to resort
to the original form (13) of the Dyson equation,
where an efficient graphical algorithm for determin-
ing the poles and amplitudes of G(co ) is available. 33

C. Diagrammatic perturbation theory

As is well known, the self-energy X can be ex-
panded in a diagrammatically formulated perturba-
tion series. For the rules of drawing and evaluating
these diagrams the reader is referred to textbooks '

and review articles. The Feynman diagrams (in
Abrikosov notation) for the static and the dynamic
self-energy part X( oo ) and M(co ) up to fourth order
have been presented elsewhere. We would draw at-
tention to the fact that each nth-order Feynman dia-
gram gives rise to n! time orderings or Goldstone di-
agrams by which the result of the n —2 internal in-
tegrations required for the evaluation of this Feyn-
man diagram can be formulated. For the following
discussion it is important to note that the n! Cxold-
stone diagrams for a given nth-order Feynman dia-

gram can be divided into two distinct classes accord-
ing to the ordering of the external vertices (t & t' and
t & t'). The first class (t & t') contributes exclusively
to Ml(co) while the second class (t &t') contributes
to Mll(co ) only; there are no mixed terms and Ml(to )

and Ml'(co) may be calculated separately from their
respective diagrammatic expansions. All second-,
third-, and fourth-order Goldstone diagrams for
Ml(co ) are shown in Figs. 2, 3, and 4, respectively.

III. ALGEBRAIC DIAGRAMMATIC
CONSTRUCTION FOR THE DYNAMIC

SELF-ENERGY PART

In this section we present a new approximation
scheme for the co-dependent self-energy part M(co).
In accordance with a similar approach for the polar-
ization propagator we shall refer to this scheme as
the algebraic diagrammatic construction (ADC).
The general ADC concept is introduced in Sec.
III A. In Sec. III B we demonstrate the usefulness of
this approach by the explicit construction of the
second-, third-, and fourth-order ADC schemes,
which represent infinite partial summations for
M(co) being complete through second, third, and
fourth order in the perturbation, respectively. The
question of the existence and uniqueness of the
ADC approach is addressed in Sec. III C.

A. General formulation of the ADC concept

The central quantities considered in the following
are the two parts M'(co ) and M "(co ) of the dynamic
self-energy. Since the treatment of both parts is
essentially identical, we may concentrate our discus-
sion on the part I. For the sake of notational brevity
we shall omit the superscripts I,II whenever they are
nonessential.

As we have seen [Eq. (20)], the self-energy part
Ml(co) is related to the part I of the 2p-h propagator
according to

Mpq(co) = Vp III(to)~V (29)

Here, a matrix notation has been adopted where Vp
denotes the vector of the components

( Vp )jkl Vpj[kl», J,k ( I . (30)

Note, that due to the index restriction k &I intro-
1

duced here, the factor —, of Eq. (20) is absent.
Now the basic points of the ADC may be stated

as follows.
(1) The exact self-energy parts Ml(co) and Mll(co)

can be obtained by the simple algebraic form

M~(co) = Up(co3. K —C) '~U— (31)

where Up is a constant (co-independent) vector of
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"modified coupling amplitudes" for the orbital p
and K and C are constant Herinitian matrices, the
latter being referred to as the "modified interaction
matrix. " These quantities are defined with respect
to the space of physical (¹I)-particle excitations
excluding the 1h and 1p configurations. More
specifically, the configuration space for the (N+1)-
particle case Mi(co ) is given by the 2p-lh, 3p-2h, . . .,
excitations, while the (N —1)-particle case Mii(co)
requires the 2h-lp, 3h-2p, . . ., excitations.

(2) Both the (column) vectors Uz and the matrix C
are deter-niined by perturbation expansions

(32a)

C(1)+C(&)+. . .

each series starting with a first-order contribution
Uz" and C'", respectively. The matrix K is given as
the diagonal matrix of zeroth-order (HF) excitation
energies, e.g. ,

Kjki,jk! Ej+~k+~! nn+k i!

+ij klm, ijklm 6'i —Ej +6k +Gl +6m

and 2h-1p excitations, respectively. For the fourth-
order scheme the 3p-2h excitations (for I}, and the
3h-2p excitations (for II) are additionally required.

We finally establish the connection with the cal-
culation of the Green's function via the Dyson equa-
tion. For given ADC expressions Uz and C, the ma-
trix inversion problem of Eq. (31) or Eq. (34) is
equivalent to the eigenvalue problem

(K+C)Y= YQ, (36)

(n)
mp

——Up Y'"', (37)

where Y'"' denotes the nth eigenvector. In a second
step the Dyson equation can be solved either by
resorting to the original foriri (13) or by the diago-
nalization according to Eqs. (26) and (27). Obvious-
ly, the latter is equivalent to the following diagonali-
zation problem:

where Q and Y denote the diagonal matrix of eigen-
values and the matrix of eigenvectors, respectively.
The eigenvalues determine the poles of the self-
energy parts M'"(co ) and the Dyson amplitudes are
obtained according to

nl J k l m (33) BX=XE, XtX=I, (38a)
for the 2p-lh and the 3p-2h space, respectively.

(3) A set of systematic approximations M(co;n),
n =2,3, . . ., for Mi n(co) is obtained by requiring
that the form

r

&+g(~) (UI)t
UI KI+ CI

U II Q

( UII)t

Q

KII+ ( II

(38b)

Mpq(co;n ) = U~t(n)[co 1—K —C(n)] '~U(n) (34)

is exact up to nth order in the perturbation, that is,

Mpq(co;n)= QMqq (co)+O(n+1) (35)

We would like to stress that the nth-order ADC
schemes [ADC (n)] defined by Eqs. (34) and (35}
represent infinite partial summations for M'"(co)
which, by construction, are exact up to nth order.
The most important point with respect to actual ap-
plications is that the configuration space required
for the nth-order scheme is restricted. For example,
the second- and third-order schemes for Mi(co) and
Mn(co) are foririulated within the space of 2p-1h

Here, Mzq'(co) denotes the vth-order contribution
for the self-energy parts Mi ii(co) in the diagram-
matic perturbation expansion. We shall see, by the
explicit construction for n =2, 3, and 4, how this
comparison enables one to make a unique evaluation
of the quantities involved, Uz(n) and C(n)

(4) The configuration space for the nth-order ap-
proximation is restricted to the lowest (m+1)p-mh
excitations [(m + 1)h-mp excitations in case II],
m=1, . . . , [ —,n].

By arranging the submatrices corresponding to the
ionic configurations in the order lp, lh, 2p-lh, 2h-
lp, 3p-2h, . . . , one arrives at the structure
displayed in Fig. 1. It should be observed that in the
ADC approach the only coupling between the
(N+1)- and (N —1)-particle configurations occurs
via the static self-energy part X(oo ) and the modi-
fied coupling amplitudes Uz, there is no direct cou-
pling between a (m+ 1)p-mh block, m ) 1, of N+ 1

particles and a (m'+1)h-m'p block, m') 1, of N 1—
particles.

B. Explicit construction of the ADC schemes

Following the general principles presented in Sec.
III A, we shall now explicitly construct the modified
coupling amplitudes Uz and the modified interac-
tion matrices C for the second-, third- and fourth-
order ADC schemes.

1. Second and third order

The second-order contribution to the self-energy
part Mi(co) arising from the diagram of Fig. 2 is
given by
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ADC(2$) ,'ADC(4, 5)i
I
I I

Ip/Ih- 2p-1h 2h-1p I 3p- 2h 3h-2p

e.+Z(~) u Ull
U U

(K+c)

(K+C)

(K+ C)

FIG. 2. Second-order time-ordered (Goldstone) dia-

gram for the self-energy part M'(co ).

FIG. 1. Structure of the eigenvalue problem [Eq. (38)]
for the one-particle Green's function in the ABC ap-
proach. Note that there is no direct coupling between

(n + 1)p-nh excitations of the (N+ 1)-particle system and

(m + 1)h-mh excitations of the (N —1)-particle system for
m, n) 1.

configuration space, however, is defined by all 2h-lp
excitations

(j,k, l), with nznkni= 1 and k &I . (41b)

~e note that in the strict second-order scheme the
modified interaction matrix C vanishes. A straight-
forward extension can be obtained by employing the
first-order expressions for C which, strictly speak-
ing, are derived within the third-order scheme dis-
cussed below:

V V*.
pj[kl] qj[kl]

Mpq njnknl .
jk&i ~+~j ~k

(39)

This expression fits trivially into the algebraic form
of Eq. (34) yielding

~(&)
+jkl, j'k'1' jkl, j'k'I'

(&)
Cjkl, j'k'I' Cjkl, j'k'1

(428)

(42b)

(&)
Up jkl = Up jkl = Vpj[kl]

+jkljkl ~j +~k +~l

(40a)

(40b)
+(k~l) . (42c)

(&)
Cjkl j k I = 5jj Vkl[k I ]

—(5kk Vj l[jl ]+511 Vj k[jk ])

Cjkl, j'k'I' (40c)

The configuration space is spanned by the 2p-lh ex-
citations

(j,k, l), with njnkn~ ——1 and k &1.
For case II the resulting expressions for K, Up, and
C are formally given also by Eqs. (4Qa) —(4Qc). The

I

The resulting approximation scheme for the self-
energy part M(co) is identical with the two-particle-
hole Tamm-Dancoff approximation (2p-h —TDA)
mentioned in Sec. I.

So that we may construct the third-order ADC
equations, we expand the algebraic form of Eq. (34)
to third order:

M~(co;3) =~U(3)[ni][ —K —C(3)] '~U(3)

+ U' "t[co1 L] 'C' "[ni][—K] '—U" '+ 0(4)
I

(43)

This expansion starts with the second-order contri-
bution which has already been considered. Since Up

is at least of first order, the three third-order contri-
butions on the right-hand side of Eq. (43) involve
the second-order terms Up

' and the first-order term
C'". These quantities have to be determined by
comparison with the third-order contribution in the

diagrammatic perturbation expansion for M'(co) or
Mt (ni), respectively. In Fig. 3 the third-order dia-
grams contributing to Mr(co ) are shown. The corre-
sponding analytical expressions have been given else-
where. The diagrams C 1,D1 are easily identified
with the last third-order teria of Eq. (43). This
determines C'". The diagrams C3,D3 and C2,D2

Pierre-Francois Loos


Pierre-Francois Loos


Pierre-Francois Loos


Pierre-Francois Loos


Pierre-Francois Loos


Pierre-Francois Loos
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Gl G3

01 02 03
FIG. 3. Time-ordered (Goldstone) diagrams for the

self-energy part M'(co ) in third order

+ g Ykrvj' +pr[vl]nrnv
r, u

(44b)

where

rs [uu]
7$QU

&7+&S —&u —
&V

Cjkl, j'k'I' Cjkl, j'k'I'(&) (44d)

Here, Up Jkl and Cgj j k I are given by Eqs. (40a) and
(42c), respectively. The configuration space is speci-
fied by the definition (41a).

For the case of M' (co) the configuration space is
defined by (41b), and the results are

(45a)

Cjk!j k I = —Cjkl j k I
(&) (45b)

Here, Up"jqI and CI'ki'J'k I are (formally) given by
Eqs. (40a) and (42c), respectively. Up jkI is obtained
from the expression (44b) for ~U'z~kI by exchanging
the occupation numbers according to n, ~n, :

correspond to the first and the second term of third
order, respectively. They allow us to evaluate Up '.
The expressions resulting for the case of M'(nl ) read
as follows:

(1) (2)
Up, jkl p,jkl+ p, jkl ~

(2) ~ ~ v~+
Upjkl = l ~ Xkluv "pj [uv]nu nv

The algebraic form of Eq. (31) implemented with
the modified coupling amplitudes Up and the modi-
fied interaction matrix C as given by Eqs. (44) and
(45) constitutes the third-order ADC scheme
[ADC(3)] for the self-energy part M(co). Clearly,
this approximation represents an infinite partial
summation being exact up to third order in the per-
turbation. Via the Dyson equation and Eq. (25) one
obtains a complete third-order approximation for
the one-particle Green's function. As has been men-
tioned in Sec. I the ADC(3) equations for G are
essentially equivalent to the third-order EOM equa-
tions and to the extended 2p-h —TDA equations. A
discussion of the ADC(3) scheme. is given in Sec.
IV B.

We note that the (third-order) ADC equations re-
flect the symmetry properties of the underlying
Hamiltonian. For a spin-independent Hamiltonian
one easily arrives at a spin-free formulation of the
ADC equations. For applications to atoms extended
2p-h —TDA [or ADC(3)] working equations have
been presented which make use of the full rotation
symmetry. '

2. Eourth order

Our construction of the second- and third-order
ADC schemes has recovered systematically previous
approximation schemes. The particular benefit of
this approach, however, will become apparent from
the construction of the fourth-order scheme. Cer-
tainly, this represents a formidable task: In fourth
order, there occur (in Abrikosov notation) 10 Feyn-
man diagrams for M(co), each generating 24 time
orderings (Goldstone diagrams), leading to a total of
240 diagrams —the 120 diagrams contributing to
M (nl) are shown in Fig. 4. In spite of this at-first-
sight intimidating situation, the problem of identify-
ing and evaluating the algebraic entities is surpris-
ingly simple and straightforward, once the diagrams
are drawn.

As a new feature of the fourth-order case the con-
figuration space now has to be enlarged by the 3p-2h
excitations for M'(nl) and the 3h-2p excitations for
M"(nI). Consider, for example, the diagram Vl(1):
According to the diagrammatic rules, each cut be-
tween successive vertices introduces an energy
denominator of the form

(Co +EI +Ej+ ' ' —'ek —eI —' ' ' )

where i,j, . . . , represent hole and k, l, , particle
lines intersected by the cut. The diagram Vl(1)
starts with a 2p-lh denominator

( Q7 +EI—E'k —el )
—1

(2) (2)
Up jkI = Up Jkl (nI~72g ) (45c) proceeds with a 3p-2h denominator
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(2) (3) (4) I) ls) ll) (9) (I) (ll)
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I iQI
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FIG. 4. The 120 time-ordered (Goldstone} diagrams for the self-energy part M'(e) in fourth order. The diagrams con-

tributing to M"(co) are obtained by turning upside down each diagram in this figure. For the diagram type Wl only six
time orderings are shown, since in the Abrikosov notation employed here each two time orderings of the diagram W1 are
identical: When all time orderings are counted, one has to introduce a factor

2
.

(ro+«'+~j ek e'I
—1

and ends again with a 2p-lh denominator. Obvious-
ly, this diagram corresponds to the coupling between
2p- lh and 3p-2h excitations.

The fourth-order terxris of the ADC(4) form

M~(co;4) =~U(4)[col —K —C(4)] 'U (4) (46)

are listed in Table I. Since the modified coupling
amplitudes for the 3p-2h (3h-2p) space are at least of
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TABLE I. Fourth-order terms of the ABC representa-
tion for M~(co). The designation by a, b, and c refers to
the occurrence of exclusively 2p-lh excitations, of both
2p-lh and 3p-2h excitations, and of exclusively 3p-2h ex-
citations, respectively.

~(&)
Cj kl, ij''k'I'm' Cj kl, ij''k'I'm'

required in first order.
(5) The 3p-2h (3h-2p) part

Cij klm, i 'j ' k '1'm '

(50)

la

Fourth-order terms of M~(co)

2a,2c
3a,3b

second order, the following terms are explicitly in-
volved in the fourth-order expansion.

(1) The modified coupling amplitudes for the 2p-
lh (2h-lp) space

~(&) ~(2)
Cjkl j k I =Cjkl j k 1 +Cjkl j k 1 (49)

required through second order,
(4) a 2p- lh —3p-2h (2h- 1 p—3h-2p) interaction part

(1) (2) (3)
Up,jkl Up,jk!+ Upj kl + Up,jkl

are needed through third order. Here, the first- and
second-order contributions have already been ob-
tained and only the third-order term has to be deter-
mined from the diagrammatic fourth-order contri-
bution.

(2) The modified coupling amplitudes for the 3p-
2h (3h-2p) space,

re(2)
Up, ijklm ~p, ijklm

are at least of second order.
(3) The modified interaction matrix C can be di-

vided into a 2p-1h (2h- lp) part

vanishes in the strict fourth-order case.
In order to determine the newly occurring terms

in the expansions (47)—(51) (and to verify the previ-
ous terms) it is necessary to identify the fourth-order
contributions listed in Table I with the diagrammat-
ic fourth-order contribution. For most diagrams
this identification is quite obvious and the result can
be taken from Table II, where the corresponding
term of Table I is assigned to each diagram of Fig.
4. As a further specification the symbols (a), (b),
and (c) indicate pure 2p- lh, mixed 2p-lh —3p-2h,
and pure 3p-2h terms, respectively. Conversely,
with the help of Table II one can easily trace all dia-
grams that contribute to a given algebraic term of
the fourth-order contribution for Mp~ (co ).

Table II shows that most diagrams are assigned to
a single algebraic term. However, there is a group
of diagrams that do not fit as straightforwardly into
the algebraic scheme, namely, the time orderings (2),
(5), (6), and (12) of U1, U2, V1, and V2. We consid-
er the diagram Ul(2) as an appropriate example.
Apparently, this diagram introduces a 4p-3h
dern oninator

( +Ek +E; +E~
—Ck

—Ei —6 —F„)—1

and one might conclude that this requires the explic-
it consideration of the 4p-3h (4h-3p) configurations
for the fourth-order ADC scheme. However, as is
shown in Appendix A these denominators exactly
cancel out if all four time orderings (2), (5), (6), and
(12) of the diagram Ul are taken into account. The
sum of these diagrams gives contributions to the
algebraic terms (la) and (5a) of Table I, and, as a
consequence, introduces third-order contributions

TABLE II. Assignment of the fourth-order diagrams for M~(co) to the fourth-order terms
of the ABC representations of Table I.

Ul
U2
U3
U4
U5
Vl
V2
Wl
W2
W3

la, 5a
la, 5a

4b
4b

la, 5a
la, 5a

4b
4b
4b

3a
3a
3a
3a
3d,

3b
3b
3b
3b
3b

3a
3a
3a
3a
3a
3b
3b
3b
3b
3b

la 5a
la 5a

3b
3b
3b

la, 5a
la, 5a

3b
3b
3b

la, 5a
la, 5a

3b
3b
3b
la
la
3b
3b
3b

la
la
la
la
la
la
la
la
la
la

la
la
la
la
la
la
la
la
la
la

la
la
la
la
la
la
la
la
la
la

la
la
la
la
la
la
la
la
la
la

2a
2a
2a
2a
2a
2c
2c
2c
2c
2c

la 5a
la, 5a

2c
2c
2c

la, 5a
la, 5a
2c
2c
2c
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for Up jkl and second-order contributions for
Cjkl, j'k'l"

Now it is a straightforward task to evaluate the
essential algebraic terms of Table I that are needed
to determine the new terms of Up and C. For this
purpose not all diagrams of fourth order have to be
evaluated, although for a verification of the fourth-
order scheme one has to carry out the comparison
for all diagrams. The resulting expressions for
Up(4) and C(4), in part somewhat lengthy, are ex-
plicitly given by the Eqs. (Bl)—(B16) of Appendix
B. A discussion of the ADC(4) equations is given in
Sec. IV C.

ADC and the diagonal representation are identical
since the modified interaction matrices vanish. The
diagrammatic third-order contribution contains a
"nondiagonal" term, namely, the last term of the
right-hand side of Eq. (43),

&(1)= Up"' (col —K) 'C'"(col —X) '~U"'

(55)

which is associated with the diagrams C(1) and D(1)
of Fig. 3. In order to arrive at the diagonal repre-
sentation we write the matrix C"' [given by Eq.
(42c) for the case I] as the sum of its diagonal part
C' and the nondiagonal remainder C",

C. Existence and uniqueness of the ADC c"!=c'+c" . (56)

By explicit construction we have shown that the
ADC assertions of Sec. III A are valid up to fourth
order. We shall now shortly discuss the general jus-
tification. Let us consider the spectral representa-
tion for the self-energy part M'(co ), which according
to Eqs. (22) and (24) may be written in the form

M~(co) =mp(co). Q) '~m— (52)

where Q denotes the diagonal matrix of the energies
co„and mp is the (column) vector of the amplitudes
mp"' . Obviously, this representation is a special
form of the ADC representation (31), namely, a
form where the modified interaction matrix

Thus, the right-hand side of Eq. (55) decomposes
into a part containing only genuine quadratic poles
(co +ez —ek —el ) and a part containing mixed
products

( CO +Ej —E'k —6l ) '( CO +E~' —E'k —E'l )
—1 —1

where

(j,k, l)&(j',k', I') .

performing a partial-fraction decomposition for the
latter part, one finally arrives at the expression

C'= 0 IC— (53)

is diagonal. The general nondiagonal ADC repre-
sentation follows from Eq. (52) by introducing the
"transforined" quantities where

(57a)

~U= Y~m

K~C= YQ Yt

where Y is a unitary matrix

(54b)

(2)
Up, ,k!=

(1)
cjkl, j'k'l' I pj'[k'l']

kj ~k ~l kj'+~k'+ ~l'
(j ', k', 1')&(j,k, 1 )

(57b)

F~Y=I . (54c)
Thus, the existence of the ADC representation is
readily established. On the other hand, the (column)
vectors ~U and the matrix C are not uniquely deter-
mined by Eqs. (54) since the unitary matrix Yis not
specified and the question arises, whether the ADC
approach leads to a unique construction of its basic
quantities Up and C.

In order to clarify the problem of uniqueness it is
worthwhile to return to the diagonal representation
of Eqs. (52) and (53). The diagonal representation
obviously is a distinct mathematical form which
leads to a unique construction of the amplitudes mp
and the matrix C. It is interesting to repeat the ex-
plicit derivation of the second- and third-order
scheme in the diagonal version. In second order the

(jkl )* (1) (2)
mp Up,jk!+ Up, jkl+ Up,jkl

and matrix elements

(58a)

~jkl,j 'k', 1' Ujj 'Ukk'~11'~j kl,jkl (58b)

of the diagonal third-order rejIiresentation.
Here (for the case I) Upzkl, Upzkl, Upzkl, and( ) (2) (2)

Cjkl, jkl are given by Eqs. (40a), (44b), (57b), and
(42c), respectively. Proceeding in this way one may
generate direct Rayleigh-Schrodinger perturbation
expansions for the poles co„and the Dyson ampli-

Obviously, the right-hand side of Eq. (57a) now fits
into the diagonal representation. Together with the
remaining two third-order teinis of Eq. (43) corre-
sponding to the diagrams C2, C3, D2, and D3 this
leads to the coupling amplitudes
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tudes mz"' of the self-energy part M(co). As can be
seen by inspection of the term U~ J)k~ of Eq. (57b),
these Rayleigh-Schrodinger —type expansions con-
tain terms with "dangerous" denominators, i.e.,
demoninators which are given as the differences of
(zeroth-order) excitation energies for excitations
within the same class, e.g., 2p- lh excitations. Such
dangerous denominators do not occur in the ADC
expansions.

As the construction of the diagonal representation
in third order has shown, it is possible to transfer
nondiagonal contributions of the ADC matrix C
into the modified coupling amplitudes U . Con-
versely, it is easily established (for the orders con-
sidered so far) that it is not possible to transfer con-
tributions of the ADC amplitudes Uz into the ma-
trix C. In this sense the matrix C constructed by the
ADC is "maximally nondiagonal" and thus
represents a distinct mathematical form as opposed
to the other form, namely, the diagonal representa-
tion. One may also say the ABC representation is
obtained from the diagonal representation by
transferring all terms with dangerous denominators
in the expansion of the amplitudes mz"' into the in-
teraction matrix C, which in the ADC approach is
subject to a full diagonalization. In this sense the
ADC may be regarded as an advantageous combina-
tion of a diagonalization problem and perturbation
theory.

Finally we would like to draw attention to an ob-
vious generalization of the scope of the ADC
scheme. The modified coupling amplitudes Uz are
obtained as linear forms in the "outer" Coulomb
matrix elements V~~(~~). By replacing the outer
Coulomb matrix elements in Uz and ~U by (arbi-
trary) matrix elements Zjk~~V~~(~1) and ZJ'k~+ —Vqj(1,~)

the ADC form (31) can provide the general transi-
tion function T(co)=Zoo(co)Z' ai~d, in particular,
the components of the 2p-h propagator O(co) itself.

IV. DISCUSSIQN QF THE ABC SCHEMES
FQR THE QNE-PARTICLE

GREEN'S FUNCTIQN

Ionization energies

Let us consider the ionic main state
l

'Pq ) of
the (X—1)-particle system which derives (in the
sense of the adiabatic theorem) from the unper-
turbed hole configuration

le% —1) @ )

Here,
l
40) denotes the Hartree-Fock ground state.

The energy up to second order Eo (2) of the exact
X-particle ground state is given by the Rayleigh-
Schrodinger expression

Eo (2) =Eo (1)—g — — n;n~nknI,
&i+&g &k

k(1

(60)

Eo (1)=- (@p
l
H Np)

is the first-order ground-state energy. The energy of
the ionic state up to second order reads

Eq '(2) = Eo (1)—eq+ 8'q(2h-lp)

+ Wq(3h-2p),

where the terms

l Vqj[kl] I~q(2h-lp) = —g n~nknI
( Cq + 6~ —Ek —CI

(62)

A. Second-order approximation

We start our discussion by considering the simple
second-order approximation for the self-energy
[ADC(2)]; although M'2'(co) represents only a finite
summation for the self-energy one obtains an infin-
ite partial summation for G(co) by the Dyson equa-
tion, whereby the peculiar coupling between (%+ 1)-
and (X—1)-particle configurations also comes into
play: It is interesting to clarify the effect of this
mathematical device, which is specific to the
Green's-function approach.

In order to obtain a better understanding of the
ADC approximations for M(co) and G(co) presented
in the preceding section it is useful to compare the
results of the ADC approach with those of the
familiar wave-function description for the X-particle
ground state and the (%+1)-particle ionic states. As
a tool for this analysis we shall consider the lowest-
order expressions for the ionization energies and for
the transition amplitudes resulting from the Green's
function approach as well as the expressions derived
by the conventional Rayleigh-Schmdinger perturba-
tion expansions.

2

8'q(3h-2p) =-
&&- +&g

—- &k —&I
k (l~q

nI E1j.nknI

(63b)

arise from the interaction of the ionic configuration

l @q) with the 2h-1p and the 3h-2p excitations,
respectively. The interaction 8'q(lh) of

l
&5q ) with

other hole configurations
l N~ ), p&q, gives no
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Here,

eq—+ Wq(2h-1p)+Rq . (64a)

2

Rq ——g njnkni
qj [kl]

j,k &l ~q +~j ~k ~l
(64b)

is the remainder of a partial cancellation of the 3h-
2p contribution Wq(3h-2p) for the ionic state and
the 2p-2h contribution for the ground state. A
straightforward perturbation analysis of Iq within
the Careen's-function approach yields the following
second-order expression:

(65)

where M'q"' '(co) are given by Eqs. (31), (40), and
(41).

Comparing the right-hand side of Eqs. (64) and
(65) one immediately identifies the self-energy con-

second-order contribution according to Brillouin s
theorem. Now the second-order ionization energy
Iq(2) follows by subtracting Eq. (60) from Eq. (62):

Iq(2) Eq (2) Eo (2)

tributions I and II with Rq and W» (2h-lp), respec-
tively. This allows an interpretation of the role of
the two second-order self-energy contributions. As
expected, the (N 1—)-particle part M"(co) introduces
the coupling of the one-hole configurations with the
2h-lp excitations. The (N+1)-particle part M'(ro),
on the other hand, accounts simultaneously for the
(second-order) ground-state correlation and for the
interaction of the one-hole configurations with the
3h-2p excitations of the (N 1)-p—article system.
Thus, we see clearly the effect of the coupling of the
(N 1)- —and (N+1)-particle spaces in the Careen's-

function approach. Within a wave-function ap-
proach, e.g. , the conventional configuration interac-
tion (CI), one has to perform a double (2p-2h) exci-
tation CI calculation for the ground state and a lh,
2h-lp, plus 3h-2p CI calculation for the ionic states
in order to obtain the (main) ionization energies con-
sistent through second order. The second-order
[ADC(2)] approximation for the Careen's function G,
on the other hand, achieves this result by one diago-
nalization within the configuration space of 1h, lp,
2h-lp, and 2p-lh excitations of¹1particles. The
lh —2p-lh and lp —2p-lp coupling matrix elements
cannot be derived within a wave-function approach.

2. Transition amplitudes

A similar analysis can be performed for the transition amplitudes

x,"'=(e",—' lc, I
e, & (66)

of the ionic main state
I %q ) considered above. Within the Green's-function approach x&q' is obtained as

the pth component of the eigenvector corresponding to the solution
I %q ) for the eigenvalue problem (38)

where, in the second-order scheme [ADC(2)], the matrix elements are given by Eqs. (40) and (41). Obviously,
the second-order scheme reproduces the transition amplitude exactly to second order, that is,

1 ——, g I V»J(kq I
(njnknl+njnknl) p

j,k &l

V V.pj [kl] qj[kl]
(nj nkn(+ nj nk nl ), p ~q.

Eq +Ei —Ek —6i E~ —Eq

(67)

(69a)

(69b)

(69c)

We note that no first-order contributions occur.
Again, we compare these expressions with the result of the direct perturbation expansions for the wave func-

tions
I

O'Q) and
I

0'q ') in Eq. (66):

(2)=&cqc'olc~ +o&+&cqc'olc,
I 4 &+(+q Icp IC'o&+(+q cp +o (68)

Here,
I %q ') and

I
Vo ') denote the vth-order ionic- and ground-state wave functions, respectively. We may

further specify the contributions on the right-hand side of Eq. (68) with respect to those np mh conf-igurations

I

4'"'(np-mh) ) which are involved. As a result, Eq. (68) can be written as

1+2» '+do '+ (%q"(3h-2p) c~ Vo"(2p-2h) ), p =q
xpq'(2)= (@q '(lh)

I cp I
eo)+(eq"(3h-2P)

I cp I
eQ"(2P-2h)), P~q, np

——1

(cq+o
I cq I

4Q '(1P-lh) ) + (4q '(2h-1P)
I c~ I

4Q"(2P-2h) ), P&q, nq ——0.
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Here, A~
' and Ao ' denote the second-order contri-

butions for the normalization factors of the ionic-
and ground-state wave functions, respectively.
These terixis and the remaining terms of Eq. (69) can
easily be evaluated explicitly and one may check
that indeed the expressions of Eq. (67) are repro-
duced. From Eq. (69) it can be seen that the correct
wave-function description for the second-order tran-
sition amplitudes requires a single- plus double-
excitation CI for the ground-state wave function and
a lh, 2h-lp, plus 3h-2p CI for the ionic state.

tions are specified according to the respective
( n + 1)h-np excitations. Only the 1h part

~

'I'jki(lh) ) of the ionic wave function contributes to
the first-order transition amplitudes

(jkI) (Vjkl'( lh-Op)
~ c~

~

4O), n~ =1
(C jk~ ~

cj, 0 o"(2p-2h) ), nz
——0.

(75)

The explicit expression reads

3. Higher excited ionic states
(jkl)( 1 )P +6~ —Ek —6)

(76)

(71)

have no zeroth-order contribution,

xP "(0)=(+jkI
~ c~

~

@o)=0, (72)

the consistency of G(co) through second order im-
plies that the transition amplitudes and ionization
energies (electron affinities) of these states are con-
sistent through first and zeroth order, respectively.
A straightforward extension of the strict second-
order scheme, namely, the consideration of the
first-order interaction matrix C" ' for the 2h- lp
(2p-lh) excitations according to Eqs. (42) in the 2p-
h—TDA scheme, yields also the ionization energies

Isa ——kj ek ei+—Cjk—i jki+0(2)(1) (73)

exact up to first order.
Within the wave-function description the con-

sistency of the transition amplitudes xP ' through
first order requires the first-order wave functions for
the ground state and for the ionic state. The latter
can be written as

I ski�(1 ) =
I
~ jkl & +

I
+jkl( lh) &

+ [
+jki(2h-1P) ) + [

Vj~ki(3h-2P) )

+
~
+jki(4h-3P)),

where, similarly to Eq. (69), the first-order contribu-

Besides the ionic main states considered so far
there occur secondary states (satellites) in the spec-
trum which are related to higher excited ionic con-
figurations, e.g., the 2h-lp excited states

~
'IljkI )

which derive (in the sense of the adiabatic theorem)
from the 2h-lp excitations

I
c'jki & =cjckci

I
@0» njnknl (70)

The 2h- lp excited states (and the 2p- lh excited
states of N+1 particles) are explicitly considered in
the second-order approach [ADC(2)] for G (co ).
Since their transition moments

which is readily identified as the component of the
first-order eigenvector for the solution

~
%jki ) of the

eigenvalue problem (38) in the second-order ap-
proach.

B. Third-order ADC scheme

As we have seen, the ADC(3) scheme (or extended
2p-h —TDA) defined by Eqs. (43) and (44) represents
an infinite partial summation for the dynamic self-
energy part M(co) which is complete through third
order. Via the Dyson equation (13) using either the
form (26) or (38), one obtains the ADC(3) approxi-
mation for G(co). Here, one has to employ a con-
sistent static self-energy part X( oo) that is at least
complete through third order. As has been outlined
in Sec. III B, the static part can be determined self-
consistently from the approximation for M(co). Al-
ternatively, one may use the third-order expression
X'3'( oo) as obtained from the diagrammatic pertur-
bation theory. In the latter case the ADC(3) work-
ing equations are identical with the third-order
EOM equations. ' '

The explicit configuration space employed for the
ADC(3) approach for G(co) is identical to that of the
strict second-order scheine and of the 2p-h —TDA
scheme, that is, it comprises the lh and 2h-lp exci-
tations of N —1 particles plus the lp and 2p-lh ex-
citations of N + 1 particles. With respect to the 2p-
h—TDA, the only modification consists in replacing
the first-order coupling amplitudes Vzj(ki} with the
modified couPling amPlitudes Uz jkI, which are of
second order in the perturbation.

For the ionic main states the resulting energies
and transition amplitudes are now treated con-
sistently through third order (see Table III). Again,
it is instructive to compare in third order the
Careen's-function results with the expressions result-
ing from the perturbation expansion for the wave
functions. However, since here the explicit expres-
sions are already somewhat lengthy we restrict our-
selves to a brief sketch of the procedure. The
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Rayleigh-Schrodinger perturbation theory yields
four contributions of third order:

I' '= 8" '(2h-lp)+8'q (3h-2p)

+ W' '(2h-lp —3h-2p) —W0 '(2p-2h)

for the ionization energy of the ionic state
~

%z ) of

Eq. (59). The first three terms on the right-hand
side denote contributions to the ionic energy, the
fourth term denotes the third-order contribution to
the ground-state energy. All terms are specified ac-
cording to the contributing configurations. The
third-order contribution for the ionization energy
within the ADC(3) scheme for G is readily obtained
from a straightforward matrix perturbation theory
for the diagonalization problem (38):

+ j[U(~'(e I—IC) 'U'"+c.c.]'+( . )"j .

The ADC(3) expressions for Uz and C are given
in Eqs. (43) and (44). The third-order contribution
Xz&'( oo ) for the static self-energy part can be taken
from Ref. 6.

The comparison of the expressions in Eqs. (77)
and (78) is somewhat more intricate than in the
second-order case. Only the second term on the
right-hand side of Eq. (78) can directly be identified
with the contribution 8'z '(2h- 1p) of the wave-

function approach in Eq. (77). The remaining four
terms of Eq. (78) reproduce in a complicated way
the remaining three terms of Eq. (77) which we shall
not discuss further at this point. We mention that
the CI spaces required for a consistent second-order
treatment also allow consistency through third order
for the main iomzation energies. This does not ap-

ply to the transition amplitudes xz~'. Here, the
analysis of the third-order contributions shows that
already 3p-3h excitations have to be considered for
the ground-state wave function.

We finally note that the energies of the higher ex-

cited 2h- lp (2p- lh) states are, as in the 2p-h —TDA,
treated consistently through first order, whereas the
transition amplitudes are already exact to second or-
der.

C. Beyond third order

Certainly, the most remarkable achievement of
the general ADC approach is the explicit construc-

j

tion of the fourth-order scheme [ADC(4)] defined by
the Eqs. (Bl)—(B16) of Appendix B, and we would
emphasize that the ADC(4) constitutes infinite par-
tial summations for the self-energy M(co) and (via
the Dyson equation) for the Green's function G(co)
which are complete up to fourth order. Concomi-
tantly, the ionization (attachment) energies and the
transition amplitudes for the ionic main states are
treated consistently through fourth order. In the
wave-function picture this means that one has to
employ all excitations up to 4p-4h excitations (qua-
druple excitations) for the ground state and all exci-
tations up to 5h-4p (5p-4h) excitations for the ionic
states. The explicit ADC(4) space for G(co), on the
other hand, is spanned by the lh, 2h-lp, and 3h-2p
excitations of N —1 particles and the lp, 2p-lh, and
3p-2h excitations of N+1 particles. Again, this
shows that in the ADC approach both the ground-
state correlation and the effect of higher excitations
(here 4h-3p, 5h-4p, or 4p-3h, 5p-4h) on the ionic
states are implicitly taken into account by means of
the coupling of the (N + 1)- and the (N —1)-particle
spaces in the Dyson equation and by the use of
higher-order matrix elements for C and U&.

Of particular importance is the improvement
achieved for the secondary 2h- lp (2p- lh) excited
states: In the ADC(4) scheme their ionization (at-
tachment) energies and the transition amplitudes are

TABLE III. Orders of consistent treatment for ionization/attachment energies I„and tran-
sition amplitudes x~"' in the first ADC approximations.

ADC(2)
2p-h —TDA
ADC(3)
ADC(4)

Iq

Main state
1h, 1p

~ (q)

2h- 1p~ 2p- 1h
(jkl)

jkl

Secondary states
3h-2p, 3p-2h

(ij klm)
jklm
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For the transition amplitudes

x,"'"' '=(e,,„, ~c, ie, ) (80)

there occur two nonvanishing first-order contribu-
tions,

x~'J"' '= ('kI~'kt (lh)
~
c~ ~

@0)

+(e,j„, ~, ~

e,"'(2p-2h) &,

arising from the hole excitations
~

'PIJkt~(lh)) of the
ionic state and the 2p-Zh excitations ~%'0 '(2p-2h))
of the ground state. It is readily verified that both
contributions cancel each other.

As we have seen explicitly, the transition mo-
ments of the 2h- lp (2p-lh) and 3h-2p (3p-2h) excit-
ed states are at least of first and second order,
respectively. This finding can easily be generalized:
The transition amplitudes for (n +1)h-np and
(n +1)p-nh excited states, n =0, 1, . . ., are at least
of order n in the perturbation:

(O~„+i~q„~ lc I +0 &=0(n),
(@Iv+1

~ ~

@I') g( )

(82a)

(82b)

calculated consistently through second and third or-
der, respectively. With respect to the energies this
means that the ground-state correlation is correctly
described through second order. FurtheiirIore, the
contributions of the ionic 4h-3p (4p-3h) excitations
which are not present in the ADC(4) space, are im-
plicitly taken into account.

In the fourth-order scheme the 3h-2p and 3p-2h
excitations, which implicitly have been considered
already in second order, are introduced explicitly,
thus making the next higher class of secondary
states, namely, the 3h-2p (3p-2h) excited states, ac-
cessible to calculation in the Green's-function ap-
proach. Since the transition amplitudes of these
states are at least of second order, the ADC(4)
scheme treats the transition amplitudes and the en-
ergies consistently through second and zeroth order,
respectively. Similar to the extension of the strict
second-order scheme (2p-h —TDA), the ADC(4) may
be extended by introducing the first-order contribu-
tion C"' for the 3h-2p (3p-2h) block [see Eqs. (B10)
and (B16) of Appendix B]. In this case the ioniza-
tion (attachment) energies obtained are exact up to
first order.

The result that the transition amplitudes for the
3h-2p (3p-2h) excited states vanish in first order is
not trivial. To see this, let us consider the 3h-2p ex-
cited state

~
4;Jkt ) associated with the unperturbed

configuration

) =c, c, ckc,c
~
@0), n;n, nkn, n =1 .~ .

A proof of this assertion is found in Appendix C.
Here we mention an immediate consequence of this
pmperty: Inspection of the spectral representation
(4) of G shows that the (n + 1)h-np and (n + 1)p-nh
excited states occur explicitly in G in (and beyond)
the order 2n, n =0, 1, . . .. To state this differently
we may say that in each even order of G the next
higher class of excitations comes explicitly into con-
sideration. This proves the rule (4) of Sec. III A.

Within the framework of the EOM and the
equivalent superoperator formalism one arrives, in
general, at secular equations that are structurally re-
lated to the ADC equations. The EOM equations
also exhibit the coupling between the (N+ 1)- and
(N —1)-particle spaces and the respective configura-
tion spaces are constructed in terms of the physical
ionic excitations lp, lh, 2p-lh, 2h-lp, etc. In partic-
ular, second- and third-order schemes have been de-
rived that are essentially equivalent to the ADC(2)
and the ADC(3) scheme, respectively. ' ' On
the other hand, there are obvious differences be-
tween the two procedures. The basic EOM equation
is fornIulated in terms of ground-state expectation
values of exact excitation operators. Approximation
schemes result by expanding the exact excitation
operators in ternis of basis operators and by employ-
ing a finite Rayleigh-Schmdinger expansion for the
ground state. This procedure introduces several
problems which render the derivation of extended
approximation schemes increasingly complicated.
First, we note that in the EOM approach the restric-
tion to the physical lp, lh, 2p-lh, . . . excitation
operators is by no means obvious. One cannot rule
out the necessity to employ "unphysical" excitation
operators, e.g. , 3p(3h) operators, in the basis in order
to be complete. Second, the resulting secular ma-
trices are not a priori Hermitian and it is not clear
in which way the non-Hermiticity should preferably
be dealt with. Third, the basic excitations are not
orthogonal and, moreover, the nonorthogonality de-
pends on the approximation employed for the
ground state. Finally, we remark that the derivation
of a consistent higher-order approximation scheme
requires in general a rather high-order expansion of
the ground-state wave function. For example, the
second-order ground-state wave function is needed
for the derivation of the third-order equations. Be-
sides the formal differences between the EOM and
the diagrammatic approach the resulting equations
also seem to be essentially different beyond third or-
der. According to Herman et al. the EOM
method introduces direct second-order coupling ma-
trix elements between the 2p-lh and 2h-1p excita-
tions of N + 1 and N —1 particles, respectively,
which do not appear in the ADC scheme.
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V. CONCLUSIONS

The algebraic diagrammatic construction (ADC)
presented in this article reformulates the diagram-
matic perturbation expansion for the dynamic self-
energy part M(co) in tei-iiis of an exact algebraic
forrii. The poles of M(ro) are derived as the eigen-
values rok of the Heiiiiitian modified interaction ma-
trix X+C and the Dyson amplitudes mz

' are ob-
tained as the products of the eigenvectors X'k' and
the vectors of modified transition amplitudes U~.
The configuration space for the ADC equation is
spanned by the physical (n+1)p-nh excitations of
N + 1 particles and by the physical (n + 1)h-np exci-
tations of N —1 particles, n =1,2, . . .. There is no
coupling between the (N+1)-particle space I and
the (N —1)-particle space II and both self-energy
parts Mr(ro) and M"(co ) can be calculated indepen-
dently. The matrix elements of C and Uz are de-
fined by perturbation expansions which can be con-
structed successively by comparison with the lowest
orders of the diagrammatic expansion for M(ro).
The modified transition amplitudes Uz are hereby
obtained as linear forms in the "outer" two-particle
interaction (Coulomb) matrix elements Vz„(„). This
allows the deteriiiination of the (more general) 2p-
h—polarization propagator II(io) and any transition
function of the form T(ro)=ZtII(co)Z', where Z
and Z' denote vectors of arbitrary transition matrix
elements Zjki.

The general ADC scheme defines in a natural and
systematic way a set of nth-order approximations
M(io; n )~M( ro ), n =2, 3, . . . , representing infinite
partial summations complete through nth order.
Here, one employs low-order expansions Uz(n) and
C(n) for the modified transition amplitudes and the
modified interaction matrix, respectively. We em-
phasize that the nth-order equations are Hermitian
and that the required configuration space is restrict-
ed to low excited configurations. Via the Dyson
equation the nth-order ADC approximation for
M(ro) induces a consistent approximation for the
one-particle Careen's function. We note that the
Dyson equation introduces an explicit coupling be-
tween the spaces of N+ 1 and N —1 particles. With
respect to this feature the Careen's-function approach
differs markedly from the conventional wave-
function approach. Another difference is the in-
stance that the ADC equations employ effective ma-
trix elements which are no longer first-order expres-
sions in the two-particle interaction, but which in-
clude higher-order terms. As the analysis of the
ADC results in the lowest orders of perturbation
theory has demonstrated, these means allow, on the
one hand, a consistent consideration of the ground-
state correlation and, on the other hand, the implicit

consideration of higher excited ionic configurations
that are not taken into account in the explicit con-
figuration space.

The second-, third-, and fourth-order ADC
schemes have been explicitly constructed and dis-
cussed. The ADC(2) scheme is trivial and recovers
the well-known second-order approximation for the
self-energy. The corresponding approximation for
G(co) treats the ionization energies and transition
amplitudes of the ionic main states consistently
through second order. This means that in a wave-
function picture one has to employ 2p-2h excitations
for the ground state and up to 3h-2p (3p-2h) excita-
tions for the ionic states, which are not contained in
the configuration space of the second-order scheme.
However, as is well known, the second-order ap-
proximation does not provide accurate results for
the main ionization energies and one has to proceed
to an approach which is at least complete through
third order.

The third-order [ADC(3)] equations have been
identified with previously derived approximations,
namely, the third-order EOM (Refs. 18 and 22—24)
and the extended 2p-h —TDA equations. ' In this
approximation the ionic main states are treated con-
sistently through third order and, as a consequence,
quite accurate results are obtained. ' ' The higher
excited (2h- lp, 2p- 1 h) ionic states are treated con-
sistently through first order which allows for a qual-
itatively adequate description of the energy regions
where these higher excited ionic states play a major
role. ' These properties designate the ADC(3)
scheme as a useful standard method for generating
theoretical ionization (and attachment) spectra.

The fourth-order scheme [ADC(4)] constitutes
from both a theoretical and a practical point of view
a decisive step beyond previous approaches. It al-
lows the incorporation in a systematic and trans-
parent way of the large bulk of fourth-order dia-
grams and it enables us to interpret the various con-
tributions in terms of the simpler expansion of the
ADC representation. The ADC(4) approximation
for the one-particle Careen's function yields the ioni-
zation (attachment) energies and the transition am-
plitudes of the main ionic states exact up to fourth
order. In order to achieve consistency through this
order within the wave-function treatment one has to
consider up to 4p-4h excitations for

~

0'0) and up to
Sh-4p (5p-4h) excitations for the ionic states of the
(N+1)-particle system. A decisive improvement of
the results with respect to the ADC(3) scheme can
be expected for the higher 2h-1p (2p-lh) excited
states, which now are treated consistently through
second order. As has been mentioned, the adequate
treatment of these secondary states is particularly
important for the inner valence and the core region,
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which may now become accessible to an even quan-
titatively good description. However, it is apparent
that the numerical requirements of the ADC(4)
scheme surixiount those of the ADC(3) considerably
and+that further approximations have to be intro-
duced in order to cope with the large matrices which
are to be diagonalized.

nJ nk nl nJ nk nl (A2a)
where

—1 —1 —1 —1 —1 —1 —1 —1 —1~12 (~1 ~2 +~1 El +~2 k2 +~1 ~2

can be written as
1

I pj [k/]~jj ' ~k/[uv ] I uv [k'l'] I
qj '[k'/'] u nv

j,k&l,
j',k' & l',

Q, V
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APPENDIX A: FOURTH-ORDER DIAGRAMS
WITH A SEVEN-LINE CUT

&12= (& +EJ +Eu +Eu —Ek —6/ —Ek —E/ ),
CO 1

=CO +Ej—Ck —El,

rg/2 & +6 —Ek —E/'

E'1 =6u +E'v —6k 6l

2 ~u + '4 ~k' ~l'

Obviously, h can be simplified to

(A2b)

U2(2) +U2(5) +U2(6) +U2(12) (A 1)

In fourth order there occur 16 diagrams, namely,
the time orderings (2), (5), (6), and (12), for Ul, U2,
Vl, and V2, which introduce 4p-3h (4h-3p) denomi-
nators. In the following we shall demonstrate expli-
citly that these denominators cancel out. We shall
restrict ourselves to the diagrams U2. The treat-
ment of the other cases is analogous. The sum D of
the four U2 diagrams

h=~i F02 e, e2 —,(~, +e +2m +1~ )2

, (@1+@2)/2
=CO 1 C02 + & (~1 +/02 )

616'2

(A3)

where the 4p-3h denominator co/2 is canceled. In-
serting the last expression for l/ in the right-hand
side of Eq. (A2a) one obtains

qj'[k'l']
Cjkl j k I njnknlnj nk nl

D = g Vpj[k/]
j,k &l (CO +E—E/ —E/ ) (C' O +E—Ek —E/)' '

J J
j',k' & l'

+ g ( +pj [k/] Uq,jkl + Upjkl Vqj [kl] ) ~

CO +Ej 6'k
(A4a)

where

Eu+Eu —(Ek '+E'/+6k +6/ )/2
j kl,j'k'I' 2 X~jj' ki[uv] I uv[k'/']

(Eu +Eu —Ek ~'/)(ku +Eu —Ek —'E/ )
Q V

7

1 +k/[uu] ~uu[k'/ ]nu nv'
Up, jkl = —,

u v (~u +~u ~k ~/)(~u +~u Ek' ~/')
7

k', l'

pj[k'1'] . (A4c)

The first sum on the right-hand side of Eq. (A4a)
has the form of the terrri (5a) in Table I and Cjk/ I'k l
is identified as a contribution to Cg/'j k l . Similarly,
the second sum contributes to the terna (la) of Table
I and Up Jkl represents a contribution to the third-
order modified transition matrix elements Up Jkl.

APPENDIX 8: EXPLICIT EXPRESSIONS
FOR THE FOURTH-ORDER ADC SCHEME

Here we present the explicit expressions for the
modified coupling amplitudes ~U and the modified

interaction matrix C of the fourth-order ADC
scheme. We start with the case of M/(co ). Here, the
configuration space is spanned by the 2p-lh and
3p-2h excitations:

(j,k, l), with njnkn/=1, k &l;
(i j,k, l, m), with n;njnkn/n =1, i &j,

k &I &m . (Bl)
The modified coupling amplitudes for the 2p-1h
space read
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(1) (2) (3)
Up,jkl Up,jkl + p,jkl + Up,jkl i (82)

where Up J'kl and Up Jkj are given by Eqs. (4Qa) and
(43b), respectively. The third-order term

(3,8)
pjkl

1 Vj w [uv] pr [wk]
yuvrl n, n„n„n

r, u, v, w 6J'+ E'w —E'r —Cl

—(k~1), (83i)
23

(3) (3,I) 0
Up,jkl g ~pjkl

I=1

is the sum of the following 23 contributions:

(83a)
(3,9) 1 ~ rs[kt] pt[vl]

pjkl g ~ yJvrs nrnsntnv
rsgv &J +&v —&k —

&~

(3,1)=
pjkl

1

2 yujkrysruv Vpv fsl]nrnsn
j', k', r, v

—( ~l), (83b)

—(k~l),

(3 10) Vrj[kv] Vps[ul]
pjjtj = ~ y„„nn n n„

u, v, r, s ~J +~u ~k ~s

(83j)

~pjld 8 g yuvklyrsuv Vpj [„,]n„n, n„n„, (83C)
k', l', u, v

—( ~l), (83k)

(3 3)
$Ppjltj 4 ~ yjvrs yrsuv Vpu [kI]11 ms n un v

r, s, u, v

(3,4)
~pjkj =

4 ~ yuvj ysrgv rpj[ks]n n ng v

u, v, r, s

(83d) (3, 11) vr [us] ps [vl]V
pjkl ujkr nr ns nu nv

u, v, r, s ~v+~j ~k ~s
L

—( ~l), (831)

rrz(» 5)"ipjkl

—(k~l),

Vwr [ku] Vpj [wv]
yuvrl nrnunvn

&v +&w —&k —&l

—(k~l),

(83e)

(83f)

(3 12) Vrs [kl] Vpj [uv]
pjij =

4 ~ yuvm nr ns nu nv
~u +E'v —6k —El

(83m)

(3 13) v. '[-]vpj[ ']
pjjtj 4 ~ y kj n n n n

u v u' v' 6u +6v' 6k Fl

(83n)

(3,6) Vvr [ku] Vps [vl]
~pjkl yujrs nr ns ng n

uvrs j+
r~~(3, 14) Vrv [kl] Vps [uv]r"pjkl ~ 'yujrs

r, s, u, v ~u +Ev +Ej —Ck —El Es

—( ~l), (83g) Xn, n, nunv, (83o)

(3 7) Vjr [su] Vps [vk]
ygvrl nrnsnu nv

Ej + 'Ev Cl 6s

(3, 15) wj[ur] pr[~]
pjkl ~ yuvkl

r u v w ~v+~w+6j Gk 61 ~r

—(k~l), (83h) Xn nunvn (83 )

(3, 16) Vrj [ks] ps [uv]
~pj kj 2 X yuvrl nrnsnunv (k~l),

~u + e'v +e'j ~k &I —~s—
(3 17) Vtlv [wl] Vpr [uv]

pjjtl 2 g ywjkr n„n„n,n„—(k~1),
6u + e'v +Ej—Ek —EI —Er'''

(83q)

(83r)

(3 18)
~pjj[j

Vwj [kv] Vpr [~]
uvrl n„ng n„n„—(k~l),

&u +&w+&j —&k —&l —&r
(83s)
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rs u u ~u+~u+~j ~k ~( ~s
(83t)

(3 20)

u, v, r, s

v, r, s, t

Vjs [uu] Vpr [kl]
+r nsnu &v ~

E' —E'
J r

V Vrs [tv] pt [kl]
r&sntnv ~

Ej Ct
(83v)

(3,22)
pjkl

'

2 ~ Yuurs
Q, v, r, s

Vrs [lu] Vpj [ku]
n„n, n„n„—(k~l),

&u —&l
(83w)

r, Q, U, N

n, n„n„n —(k~1) .
&w —&l

(83x)

Here and in the following we use the first-order
coefficient ~p ijk(iu ~ Yijrsn rpr[kl]n + ~ Y jk rp'[ l]n

r V

~ij [kl]
Yij kl 6 +6'.—Fk —Ell J

(84) —(i~j ) +[(k,l, m)~(m, k, l)]

The first four contributions (83b)—(83e) originate
from the time orderings (2), (5), (6), and (12) of the
diagrams Ul, U2, Vl, and V2. The remaining 19
contributions (83f)—(83x) correspond to the dia-
grams W 1(8), WX(8), WX(10), X=2,3; UX(8),
UX(10), X= 1, . . . , 5; and VX(8), VX(10), X= 1,2—
in this order.

The modified coupling matrix elements for the
3p-2h space read

+[(k,l, m)~(l, m„k)] . (85b)

~(1) ~(2)
jkl j 'k'1' ~j klj 'k'(' +Cjkl j 'k'(' (86)

The modified 2p-lh interaction matrix elements

(2)
Up, Jkl =Up, J.kl (85a)

consist of a first-order term given by Eq. (42c) and
the second-order term

C('k('J'k ( =5(( Ak( k, 5kk 5(( B(j +—(5(( D(k t „5j(5k„E, , ) —(k~1) (k—'~l')+ (k—~l, k'~l'),
1 1

Akl, k'1' 2 g Ykl Y k'1 [&.+&.——, (~k +'Ek +~(+E( )ln. n.
Q, U

1 1

Bjj p g YrsjuYj'urs['4 ~r '4+ 2 (~j +~j')]nr snu
r, s, v

1

Djk,j'O'= P Ykruj Yuj'k'r [~u '~r + z ( E( +~j' ek ~k')]nrnu
r, v

1 1

El, l' 2 g Y( v Yuu('r[&u+~v r 2 (+(+~(')] rnu v

u, v, r

(87b)

(87c)

(87d)

(87e)

The modified 2p-h —3p-2h interaction matrix elements

~(1)
CJkl, ij''k'l'm' Cjkl, ij''k'l'm'

are identical with the wave-function expression

C&kt (( k t m = g 4 o I ctckc& Hc& c&'ck cl cm'
I
~o&

=
t [(5(k 5(( ~ Vt j[Jru ]+5kk 5jj V(([t ~ ])+((k,l,m )+ (l,m, k ))

+((k', l', m')~(m', k', l'))] —[i'~j ']
I
—

I k~l I .

(88)

(89)
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In the strict fourth-order ADC scheme the modified 3p-2h interaction matrix vanishes. It is a straightforward
extension to take into account the first-order 3p-2h interaction matrix elements

Cijkl~ i'j'k'!'ppg' = g C P ~
c~clckcj cg Hci'CJ'ck'cl'c~'

~

4 P ) —5!!'5&&'5kk 5!!5~~'[EP( 1 ) —e&
—EJ +Ek +E!+eggs ]

=5kk 5!!5m~ I i j [ijl+[(5a 5jj 5kk I'in[i ~ l )+((k l m )~(l m, k))+((k l m)= =(m, k l))]

+ [(k', 1',m')~(l', m', k')]+ [(k', l', m')~(m', k', 1')]

+ I [( 5i—i'5kk'5!!'Vj'm [j l) ((—k, l,m )~(k,m, l ))+((k, l, m )~(l,m, k ) )]
+[(k', 1',m')~(l', m', k')] —[(k', I', m')~(k', m', I')] j

—Ii~jj —Ii'~j'j+ Ii~j, i'~j 'j . (B10)

Here Ep(1) denotes the first-order ground-state ener-

gy Eo(1)= &@o
I
H

I
C'o).

For the case of M"(co) the configuration space is
spanned by the 2h-lp and 3h-2p excitations

(j,k, l), with njnknl, k &i

(i,j,k, l, m), withninjnknin~, i &j, k &i &m .
(B1 1)

The resulting expressions are foliiially similar to the
previous case:

(B14)

APPENDIX C: ON THE PERTURBATION
EXPANSION OF THE TRANSITION

AMPLITUDES

In the following we shall sketch a proof of the as-
sertion (82) which states that the transition ampli-
tudes for (n + 1)h-np and (n + 1)p-nh excited states
are at least of order n, n=0, 1, . . . . Let us consider
the amplitudes

—(2) —(3)
Up &kl

= Up jk!—Up Jk!+ Up jkl, (B12)
(2)

Up, ij klm Up, ijklm (B13)
(1) (2)

Cjkl j k I
———Cj kl j k l +mj kl j k I

(1)
Cjkl, i'j 'k'l'm' —Cjkl, i 'j 'k'l'm ' (B15)

~(1)
Cijklm, ij''k'l'm' Cijklm, i'j'k'!'m' (B16)

Here, Up Jkl and Cjkl J k l are obtained from the pre-{v) {v)

vious expressions by simply exchanging the occur-
ring occupation numbers according to n;~n; [see
Eq. (44c)].

We emphasize that the fourth-order ADC equa-
tions reflect the symmetry properties of the underly-
ing Hamiltonian H. For a spin-independent Hamil-
tonian one arrives straightforwardly at a spin-free
formulation of the ADC equations.

Here U, ( t, t ') denotes the time-evolution operator in
the interaction picture for the adiabatic Hamiltonian
H=Hp+e ' ' Ht,

~
@p ) is the unperturbed (HF)

ground state, and

')=cj cj c; . c; ~@o ) (C4)

stands for an unperturbed (n+ 1)h-np excited ionic
state. Since the wave functions in Eqs. (C2) and
(C3) are not normalized, one has to replace the ex-
pression (C 1) by

P
( ( @AN

—I
i

@AN
—1 ) ( AN

i

@AN ) )
1/2 (C5)

For our purpose it is sufficient to consider the
numerator

)=(e„-'
~
U,'(0, — ),U, (0, ) ~e, ) .

It should be noted that this quantity may not exist
separately as e —+0. Since the following argument is
not affected by the complications arising from the
limits we may instead of (C6) consider the expres-
sion

press the ground state and the ionic state according
to the adiabatic theorem (see, e.g. , Fetter and Walec-
ka ):

U, (0, +oo)
i
Np )= lim

o (No
I

U, (0, + )
~
No )

U,(0, +. ) ~e", -')
p

= ™E 1 N 1p(@p
~
U, ( 0+oo) ~Np )

(C3)

x,'~'=(e„"-' ic, i
e,") (C 1)

for an exact (N —1)-particle state ~V& ) deriving
from a (n + 1)h-np configuration. In order to estab-
lish a perturbation expansion for xp"' we may ex-

A (t) = limA, (t)
e~o

= (@p
~

U (O, t)cp U(O, t)
~
No),

which for finite t is well defined. Here

(C7)
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U(t tI)
' 0 iH—(t —i')e 0 (C8)

is the usual time-evolution operator in the interac-
tion picture. Using Eq. (C8) one obtains

A (t) =exp I i [Eq '(0) —Ep (0)]t I

~ ((y& —&

~

iHt — iHt
~

(y ) (C9)

where E& '(0) and Ep(0) denote the zeroth-order
ionic-state and ground-state energies. With the help
of the well-known relation

e ' 'c~e ' '=c~+it[cp, H]
+ —,(it) [[c~, H], H]+

(C10)

the expectation value on the right-hand side of Eq.
(C9) can be written as a sum of terms

(C11)

where l indicates the number of commutators. Re-
calling that H =Hp +Ht where H p is one-particle
operator and Ht is a two-particle operator, one easi-
ly sees that the expectation values (Cl 1) vanish un-
less Ht occurs at least n times, that is, unless Ai and
thus A (t) is at least of nth order. Obviously, this ar-
gument also holds as t —+ —oo, which completes our
proof.
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