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The GW approximation for the electronic self-energy is an important tool for the quantitative prediction of
excited states in solids, but its mathematical exploration is hampered by the fact that it must, in general, be
evaluated numerically even for very simple systems. In this paper I describe a nontrivial model consisting of two
electrons on the surface of a sphere, interacting with the normal long-range Coulomb potential, and show that the
GW self-energy, in the absence of self-consistency, can in fact be derived completely analytically in this case.
The resulting expression is subsequently used to analyze the convergence of the energy gap between the highest
occupied and the lowest unoccupied quasiparticle orbital with respect to the total number of states included in
the spectral summations. The asymptotic formula for the truncation error obtained in this way, whose dominant
contribution is proportional to the cutoff energy to the power −3/2, may be adapted to extrapolate energy gaps
in other systems.

DOI: 10.1103/PhysRevB.87.075104 PACS number(s): 71.15.Qe, 71.45.Gm

I. INTRODUCTION

Accurate first-principles calculations of electronic exci-
tations in solids are notoriously challenging because the
variational principle, which underlies ground-state schemes
like Kohn-Sham density-functional theory1,2 or quantum
Monte Carlo methods,3 cannot be exploited in this case.
Therefore, many-body perturbation theory,4 which is based
on Green functions and allows an explicit incorporation of
relevant Coulomb-correlation effects through a summation of
the corresponding Feynman diagrams, is often the method
of choice for quantitative ab initio descriptions of experimen-
tal spectroscopies. An especially fruitful realization of this
framework for actual electronic-structure calculations is the
so-called GW approximation5 that yields quasiparticle band
structures in much better agreement with photoemission data
than density-functional theory with standard local or semilocal
exchange-correlation functionals.6 From a mathematical point
of view, it constitutes an expansion of the exact nonlocal
and frequency-dependent self-energy to first order in the
dynamically screened Coulomb potential W , which describes
the interaction between two quasiparticles formed by an
electron or a hole together with its surrounding polarization
cloud. The GW approximation is hence particularly suited
for materials with weak to medium correlation strength, such
as semiconductors or simple metals, but not for strongly
correlated systems, where the quasiparticle picture breaks
down.

In spite of the undisputed success of the GW approximation
for the prediction of material properties and the interpretation
of photoemission measurements, the debate over its best
practical implementation shows no tendency of abating. One
long-standing controversy centers on the question whether
the Green function used to construct the self-energy should
be evaluated self-consistently or not.7–17 Both approaches
can be justified: The Green function obtained with full self-
consistency is the variational solution that makes the Luttinger-

Ward functional18 for the total energy within the random-
phase approximation stationary,19 while the more commonly
applied non-self-consistent version follows naturally from the
iterative solution of Hedin’s coupled integral equations for
the self-energy with a mean-field treatment as the starting
point.5

Assessments of different variants of the GW approximation
are typically based on a comparison of the numerical results
for selected test systems. However, the adopted numerical
procedures and limited computational resources inevitably
necessitate additional simplifications whose impact on the
final results is not always clear. For instance, the case studies
investigating the effects of self-consistency for real solids
reported so far have, in general, only used a restricted
form of self-consistency that was limited to the quasiparticle
energies in the denominator of the Green function,15 the
quasiparticle orbitals,13 or the diagonal part of the Green
function.12 Even at the level of the standard non-self-consistent
GW approximation, far-reaching additional simplifications
are widely employed. Among these are the pseudopotential
approximation, which leads to small but systematic deviations
from all-electron results due to the inexact core-valence
partitioning and the use of pseudo wave functions,20–25 as
well as plasmon-pole models or other simplified screening
functions.6 A range of less obvious but equally important
factors like the proper treatment of anisotropic screening
in noncubic systems20,26,27 or problems resulting from an
incomplete basis set in all-electron calculations22,28 have also
been emphasized.

One point that has increasingly come into focus in this
context is the convergence behavior with respect to the
number of unoccupied states included in the construction of
the Green function G and the screened Coulomb interaction
W . Much attention was raised after an early all-electron
calculation,12 which claimed much smaller semiconductor
band gaps than established pseudopotential results, was put
into question due to alleged incomplete convergence with
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respect to this parameter,29,30 leading to further detailed
studies22,28,31 that illustrated the slow convergence rate of the
quasiparticle energies for a wide variety of materials. As an
extreme example, Shih et al.32 reported that bulk zinc oxide
required thousands of unoccupied bands to achieve satisfactory
accuracy in a calculation based on pseudopotentials and a
plane-wave basis set. It was subsequently argued that this
peculiar behavior was caused by the particular choice of
plasmon-pole model used in Ref. 32 and that far fewer bands
are in fact required if the full frequency-dependent screening
function is properly constructed within the random-phase
approximation.33 However, a similarly slow convergence
was again observed in an all-electron calculation for zinc
oxide that not only avoided plasmon-pole models but also
the additional pseudopotential approximation.34 Parallel to
these developments, different approaches were proposed to
circumvent or at least alleviate the convergence problem.
These include the replacement of all high-lying empty states
by plane waves,35 the extrapolar method,31 in which merely a
small number of unoccupied states are treated explicitly and
a common energy denominator is assigned to the remainder,
so that the closure relation can be applied, the Lanczos-chain
algorithm,36 as well as the effective-energy technique37 and
methods based on the self-consistent Sternheimer equation,38

which are formally exact despite only involving occupied
states. While these novel schemes undoubtedly hold great
potential, practical applications are not yet widespread, in
part because not all popular computer codes support them
at present. As a consequence, the majority of GW calculations
still rely on traditional procedures and suffer from the problem
of slow convergence.

All of the above issues are relevant on the energy
scale of several tenths of an electron volt that matters for
the comparison between different implementations of the
GW approximation and with experiments, but their control
is difficult in practice due to complex interdependencies.
Therefore, model systems that permit numerically exact or,
ideally, analytic solutions play an important role for devel-
oping and testing approximation schemes within many-body
perturbation theory, but even the homogeneous electron gas, a
frequently employed model in solid-state physics, can only be
treated numerically in the GW approximation. Furthermore,
with no experimental measurements or independent theoretical
benchmark results, even the basic question whether the true
occupied band width in the range of metallic densities is
smaller than that of free electrons, as predicted by the
standard non-self-consistent GW approximation,5,39 or larger,
as obtained when full self-consistency is included,7,8 is not
yet finally settled. Calculations that go beyond the GW
approximation and attempt to incorporate the combined effects
of self-consistency and vertex corrections remain inconclusive,
because the results depend on the choice of vertex function
and details of the implementation.7,11,40 In this situation, more
tractable few-electron systems are of considerable interest.

The first nontrivial system for which the self-energy at
the GW level can be derived analytically was a Hubbard
model with four sites in a tetrahedral arrangement and two
electrons,41 originally used as a counter example to demon-
strate the violation of particle-number conservation in the

non-self-consistent GW approximation before a more general
investigation of this problem based on symmetry arguments.42

The analytic solvability was important in this case, because
it proved unequivocally that the quantitative deviation was
genuine and not due to numerical inaccuracies. A related but
even simpler two-site model with a pair of electrons can
be treated analytically in the same way.43 Lattice models
with a wider range of parameters, for which the GW self-
energy is accurately obtainable by numerical means, were also
employed in several studies.10,44–47 The properties of Hubbard
models deviate in many respects from those of real materials,
however, and conclusions from such comparisons cannot
always be directly transferred to the ab initio realm.45 Most
importantly, the local on-site interaction differs significantly
from the actual Coulomb potential and leads to a dominance of
short-range correlation effects. These are not well described by
the GW approximation, which mainly accounts for the long-
range screening of charge carriers. Furthermore, the restricted
Hilbert space does not allow us to address problems like the
convergence behavior with respect to the number of empty
states.32 Peculiar symmetries, such as that between occupied
and unoccupied states in the two-site model at half filling,43

which are not obeyed by real solids, may also have an influence
on the results. For completeness, it should be mentioned
that the polaron model of individual electrons coupled to an
external boson field can also be treated analytically,48 but
its usefulness as a test system for the GW approximation
is even more limited, as there is no explicit renormalizable
electron-electron interaction.

For future methodological investigations I here propose
a better-suited continuum system consisting of two electrons
confined to the surface of a sphere, and I show that the
self-energy within the standard non-self-consistent GW
approximation can be derived entirely analytically. In contrast
to the previously considered Hubbard models with the
same property,41,43 the electrons interact with the normal
long-range Coulomb potential, and there is an infinite Hilbert
space of single-particle wave functions whose eigenvalues
are not bounded from above. Therefore, the performance of
particular approximation schemes should be more indicative
of applications to real systems. The model considered here
can be regarded as a two-dimensional homogeneous electron
gas in a closed curved space, whose density depends on the
radius of the sphere. As in the three-dimensional electron
gas, the correlation is weak at high densities (small radius)
and becomes strong at low densities (large radius),49 so that
different regimes can be explored within the same framework.
The system is also quasi-exactly solvable, which means that
some exact eigenvalues, although not the complete spectrum,
are known analytically.50

This paper is organized as follows: In Sec. II the system is
mathematically defined and discussed in more detail, before
the analytic expression for the self-energy in the non-self-
consistent GW approximation is derived in Sec. III. Then in
Sec. IV the convergence behavior with respect to the number
of empty states is analyzed, leading to an analytic formula
describing the asymptotic dependence on the cutoff energy.
The conclusions are summarized in Sec. V. Unless otherwise
noted, Hartree atomic units are used throughout.
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II. MODEL DESCRIPTION

The system considered here consists of two electrons on
the two-dimensional surface of a sphere with radius R. Their
positions are expressed in spherical coordinates

r(θ,φ) = R

⎛

⎝
sin θ cos φ
sin θ sin φ

cos θ

⎞

⎠ (1)

in terms of the polar angle θ and the azimuthal angle φ.
A homogeneous positive surface charge density 2/(4πR2),
which gives rise to the attractive electrostatic potential −2/R,
is included to ensure overall charge neutrality. If the self-
interaction of the positive charge background is also taken
into account, then the Hamiltonian becomes

H = −$S2

2R2
−

$′
S2

2R2
+ 1

|r(θ,φ) − r(θ ′,φ′)|
− 2

R
, (2)

with the Laplace-Beltrami operator on the 2 sphere

$S2 = 1
sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2
, (3)

which is related to the angular-momentum operator L. Its
eigenfunctions are the spherical harmonics

−$S2Yℓm(θ,φ) = L2Yℓm(θ,φ) = ℓ(ℓ + 1)Yℓm(θ,φ). (4)

The eigenstates of the Hamiltonian (2) must in general
be determined numerically, but for certain discrete radii
individual analytic solutions are known.50 For example, for the
particular value R =

√
3/2, which corresponds to intermediate

correlation strength, the exact ground-state energy for two
electrons is E0(2) = 1 − 4/

√
3.

Due to symmetry requirements, the ground-state electron
density is evenly distributed on the spherical surface. In
density-functional theory the one-particle Hamiltonian of the
auxiliary Kohn-Sham system thus takes the form

h = −$S2

2R2
+ Vxc, (5)

with a constant exchange-correlation potential Vxc. The
Hartree potential is exactly canceled by the electrostatic
potential of the positive charge background. From Eq. (4) the
Kohn-Sham orbitals are

yℓm(θ,φ) = Yℓm(θ,φ)
R

, (6)

where the normalization is chosen with respect to the two-
dimensional integral over the spherical surface
∫ 2π

0

∫ π

0
y∗

ℓm(θ,φ)yℓ′m′(θ,φ)R2 sin θdθdφ = δℓℓ′δmm′ (7)

and the corresponding eigenvalues

ϵℓ = ℓ(ℓ + 1)
2R2

+ Vxc (8)

are independent of the magnetic quantum number m. In the
ground state the lowest spin-degenerate Kohn-Sham orbital
is doubly occupied, whereas all others are unoccupied. As
the eigenvalue of the highest occupied orbital also equals the
negative of the ionization potential in exact density-functional

theory,51 the exchange-correlation potential can be determined
from the difference

Vxc = ϵ0 = E0(2) − E0(1) (9)

between the ground-state total energy E0(2) of the true
interacting two-electron system and the energy E0(1) = 0
of the corresponding ionized one-electron system, if the
former is known. Thus for R =

√
3/2 the exact exchange-

correlation potential is Vxc = 1 − 4/
√

3. Alternatively, for free
electrons Vxc is set to zero. Analogous to the three-dimensional
homogeneous electron gas, these two choices differ only by a
trivial energy shift.

III. DERIVATION OF SELF-ENERGY

The first ingredient required for the construction of the GW
self-energy is the Kohn-Sham Green function. In the following,
all functions will be projected onto the orbitals (6), which form
a complete set. The Green function is diagonal in this basis,
and the diagonal matrix elements

Gℓ(ω) = δℓ0

ω − ϵ0 − iη
+ 1 − δℓ0

ω − ϵℓ + iη
(10)

are furthermore independent of m. The symbol η always
denotes a positive infinitesimal. Since the wave function
y00 = (4πR2)−1/2 of the only occupied Kohn-Sham state is
constant, the polarization function becomes

Pℓ(ω) = −2|y00|2
i

2π

∫ ∞

−∞
[Gℓ(ω + ω′)G0(ω′)

+G0(ω + ω′)Gℓ(ω′)]dω′

= 1 − δℓ0

2πR2

(
1

ω − ωℓ + iη
− 1

ω + ωℓ − iη

)
, (11)

with the definition ωℓ = ϵℓ − ϵ0 and a factor 2 for the spin
summation. The representation of the Coulomb potential

vℓ = 4π

2ℓ + 1
R (12)

follows from the addition theorem for the spherical harmonics.
It is immediately clear from this formula that the interaction
strength grows with R while the level spacing between the
eigenvalues (8) is simultaneously reduced, so that the system
becomes more and more strongly correlated with increasing
sphere radius. As the polarization function and the Coulomb
potential are both diagonal in the chosen basis, the matrix
elements of the dynamically screened interaction

Wℓ(ω) = vℓ + W c
ℓ (ω) (13)

with the correlation part

W c
ℓ (ω) = vℓ

Pℓ(ω)
1 − vℓPℓ(ω)

vℓ

= (1 − δℓ0)8πωℓ

(2ℓ + 1)2zℓ

(
1

ω − zℓ + iη
− 1

ω + zℓ − iη

)

(14)
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can be calculated by means of a simple scalar renormalization.
The poles are located at

zℓ =

√

ω2
ℓ + 4ωℓ

(2ℓ + 1)R
. (15)

The exchange part of the self-energy, which is frequency
independent and equals the nonlocal exchange potential in
Hartree-Fock theory, is obtained as

+x
ℓ = −|y00|2vℓ = − 1

(2ℓ + 1)R
, (16)

while the correlation part of the self-energy is given by a
convolution of the Green function and the screened interaction.
The matrix elements are given by

+c
ℓm,ℓ′m′ (ω) =

∞∑

ℓ1=0

ℓ1∑

m1=−ℓ1

∞∑

ℓ2=0

ℓ2∑

m2=−ℓ2

1
R2

×⟨ℓ1m1,ℓ2m2; ℓm⟩⟨ℓ1m1,ℓ2m2; ℓ′m′⟩∗

× i

2π

∫ ∞

−∞
Gℓ1 (ω − ω′)W c

ℓ2
(ω′)dω′, (17)

with the Gaunt coefficients52

⟨ℓ1m1,ℓ2m2; ℓm⟩ =
∫ 2π

0

∫ π

0
Yℓ1m1 (θ,φ)Yℓ2m2 (θ,φ)

×Y ∗
ℓm(θ,φ) sin θdθdφ. (18)

These overlap integrals are in fact real valued and zero unless
m1 + m2 = m. They are written conveniently in terms of the
Wigner 3-j symbols53 as

⟨ℓ1m1,ℓ2m2; ℓm⟩ = (−1)m
√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ + 1)
4π

×
(

ℓ1 ℓ2 ℓ
0 0 0

) (
ℓ1 ℓ2 ℓ
m1 m2 −m

)
.

(19)

It then follows from the orthogonality relation

ℓ1∑

m1=−ℓ1

ℓ2∑

m2=−ℓ2

(
ℓ1 ℓ2 ℓ
m1 m2 m

) (
ℓ1 ℓ2 ℓ′

m1 m2 m′

)
= δℓℓ′δmm′

2ℓ + 1

(20)

that the correlation part of the self-energy, like all other
quantities considered in this section, is diagonal in the Kohn-
Sham basis and that the diagonal elements

+c
ℓ(ω) =

∞∑

ℓ1=0

∞∑

ℓ2=0

(2ℓ1 + 1)(2ℓ2 + 1)
4πR2

(
ℓ1 ℓ2 ℓ
0 0 0

)2

× i

2π

∫ ∞

−∞
Gℓ1 (ω − ω′)W c

ℓ2
(ω′)dω′ (21)

are again independent of m. Carrying out the remaining
contour integration eventually yields

+c
ℓ(ω) = (1 − δℓ0)2ωℓ

(2ℓ + 1)2zℓR2

1
ω − ϵ0 + zℓ − iη

+
∞∑

ℓ1=1

∞∑

ℓ2=1

(
ℓ1 ℓ2 ℓ
0 0 0

)2

× 2(2ℓ1 + 1)ωℓ2

(2ℓ2 + 1)zℓ2R
2

1
ω − ϵℓ1 − zℓ2 + iη

. (22)

This general formula can now be exploited to derive the self-
energy correction of individual orbitals. Of particular interest
are the highest (and only) occupied state

+c
0(ω) =

∞∑

ℓ=1

2ωℓ

(2ℓ + 1)zℓR2

1
ω − ϵℓ − zℓ + iη

(23)

as well as the lowest unoccupied state

+c
1(ω) = 2ω1

9z1R2

1
ω − ϵ0 + z1 − iη

+
∞∑

ℓ=2

2ℓωℓ−1

(2ℓ − 1)2zℓ−1R2

1
ω − ϵℓ − zℓ−1 + iη

+
∞∑

ℓ=2

2ℓωℓ

(2ℓ + 1)2zℓR2

1
ω − ϵℓ−1 − zℓ + iη

. (24)

Finally, the energy spectrum of electronic excitations is given
by the solutions of the quasiparticle equation

ω = ϵℓ + +x
ℓ + +c

ℓ(ω) − Vxc. (25)

In Fig. 1 both sides of this nonlinear equation are shown for
ℓ = 0 (above) and ℓ = 1 (below) for a sphere radius of R =√

3/2. The possible excitations correspond to the intersections
of the two curves. Evidently, there are an infinite number of
satellite resonances for each quantum number ℓ, stemming

-25
0
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100

-25 0 25 50 75 100-25
0

25
50
75

100

= 0

= 1

ω

+
Σ

x
+

Σ
c (

ω
)
−

V
xc

FIG. 1. Right-hand side ϵℓ + +x
ℓ + +c

ℓ(ω) − Vxc of the quasipar-
ticle equation (25) for the occupied state (ℓ = 0, above) and the
first unoccupied state (ℓ = 1, below) for R =

√
3/2. The solutions

of the quasiparticle equation correspond to the intersections with
the diagonal ω (dashed line). In addition to the actual quasiparticle,
marked by a circle, there are an infinite number of satellite resonances
for each value of ℓ.
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from the poles of the self-energy, in addition to the principal
quasiparticle state, which is marked by a circle. It should be
noted that the poles are well separated at the positions ϵℓ + zℓ

with integer ℓ for the occupied state, while the self-energy of
the unoccupied state features pairs of poles located very close
to each other at ϵℓ + zℓ−1 and ϵℓ−1 + zℓ. These stem from the
second and third term on the right-hand side of Eq. (24), but
the splitting cannot be properly resolved on the scale of the
figure. As a rule, the multiplicity of the satellites splitting
increases with the quantum number of the quasiparticle
state. If the self-energy is linearized around the Kohn-Sham
eigenvalues ϵℓ, as is common in ab initio calculations, then the
quasiparticle energies are given by

ϵ
qp
ℓ = ϵℓ + Zℓ

[
+x

ℓ + +c
ℓ(ϵℓ) − Vxc

]
, (26)

where the renormalization factors

Zℓ = 1

1 − ∂
∂ω

+c
ℓ(ω)

∣∣∣∣∣
ω=ϵℓ

(27)

specify the weight of the quasiparticle resonance in the spectral
function. For R =

√
3/2 the values are Z0 ≈ 0.94 and Z1 ≈

0.95.
The energy gap Egap = ϵ

qp
1 − ϵ

qp
0 thus obtained is shown

in Fig. 2 as a function of the sphere radius R relative to the
Kohn-Sham eigenvalue gap EKS

gap = ϵ1 − ϵ0. In addition, the
exact value, which is defined as the difference I − A between
the ionization potential I = E0(1) − E0(2) and the electron
affinity A = E0(2) − E0(3), is displayed for comparison. The
ground-state energies E0(2) for two electrons and E0(3) for
three electrons are obtained from a numerical diagonalization
with a full set of Slater determinants constructed from the
orbitals (6), converged at the scale of the figure. For small
radii, i.e., high electron densities, the dynamics of the system
are dominated by the kinetic energy, and the quasiparticle
energy gap approaches that of noninteracting electrons. With
increasing sphere radius, correlation effects become stronger,

   0.1 1 10
R

0

2

4

6

8

E
ga

p / 
E

 K
S

ga
p

exact
non-self-consistent GW

FIG. 2. Energy gap Egap = ϵ
qp
1 − ϵ

qp
0 between the occupied and

the lowest unoccupied quasiparticle state as a function of the sphere
radius R relative to the Kohn-Sham eigenvalue gap EKS

gap = ϵ1 − ϵ0

(dashed line). The exact numerical value, obtained from the difference
between the ionization potential and the electron affinity, is also
shown (solid line). Small R correspond to weak and large R to strong
correlation.

and the quasiparticle energy gap widens relative to the
eigenvalue gap of the noninteracting Kohn-Sham system. Up
to an intermediate correlation strength of R ≈ 1, the GW
approximation is in excellent quantitative agreement with
the exact numerical value, but it underestimates the further
rapid increase of the gap in the strong-correlation regime at
larger radii. Altogether, the behavior of the GW approximation
for this model system hence accords completely with its
performance for real solids.

IV. ASYMPTOTIC CONVERGENCE

The analytic expression (22) for the self-energy derived
above includes a double infinite summation over the angular
quantum numbers ℓ1 and ℓ2, reflecting the spectral sums
over unoccupied eigenstates in the Green function and the
screened interaction, respectively. In practice, such sums must
be truncated at a certain cutoff energy, so that quantitative
deviations from the true results are incurred as a consequence.
In the following I analyze the asymptotic convergence with
respect to the number of unoccupied states for this system.

Owing to the truncation, the exact matrix element of the
correlation part of the self-energy in Eq. (26) is replaced by
+̃c

ℓ(ϵℓ), which includes only those terms of Eq. (22) where both
ℓ1 and ℓ2 are smaller than a particular finite quantum number
Lcut. If the difference is denoted by $ℓ = +̃c

ℓ(ϵℓ) − +c
ℓ(ϵℓ),

then the associated error in the quasiparticle energies due to
the truncation equals Zℓ$ℓ. In principle, there is also another
distinct error that stems from the approximate evaluation of the
renormalization factors (27), which are in practice obtained
from the truncated +̃c

ℓ(ω) instead of the exact +c
ℓ(ω), but it

turns out that the resulting additional deviation is proportional
to the cutoff energy to the power −2 and hence not relevant
for the following analysis of the leading-order corrections.

In accordance with Eq. (23), the truncation changes the
self-energy matrix element for the occupied state by

$0 = −
∞∑

ℓ=Lcut

2ωℓ

(2ℓ + 1)zℓR2

1
ϵ0 − ϵℓ − zℓ

. (28)

If the addends on the right-hand side are expanded in inverse
powers of ℓ according to

$0 =
∞∑

ℓ=Lcut

(
1
ℓ3

− 3
2ℓ4

+ O(ℓ−5)
)

, (29)

then the entire expression can be rewritten as a sum of Hurwitz
zeta functions

ζ (n,Lcut) =
∞∑

ℓ=Lcut

1
ℓn

=
∞∑

ℓ=0

1
(Lcut + ℓ)n

, (30)

with positive integer exponents n. From the asymptotic
behavior of the Hurwitz zeta function54

ζ (n,Lcut) = 1

(n − 1)Ln−1
cut

+ 1
2Ln

cut
+ O

(
L

−(n+1)
cut

)
, (31)

one thus obtains

$0 = 1
2L2

cut
+ O

(
L−4

cut

)
= 1

4R2Ecut
+ O

(
E−2

cut

)
. (32)
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In the last step a cutoff energy

Ecut = L2
cut

2R2
, (33)

which is half-way between the energies of the states with
Lcut − 1 and Lcut, was inserted. An analogous calculation for
the first excited state based on Eq. (24) yields

$1 = 1
4R2Ecut

+ 1

4
√

2R3E
3/2
cut

+ O
(
E−2

cut

)
. (34)

As the terms proportional to L−3
cut fail to fortuitously cancel

in this case, the final expression retains a nonvanishing
contribution with the cutoff energy to the power −3/2. The
truncation error of the energy gap between the occupied and
the lowest unoccupied quasiparticle state hence exhibits the
asymptotic behavior

$gap = Z1$1 − Z0$0 ∼ Z1 − Z0

4R2Ecut
+ Z1

4
√

2R3E
3/2
cut

. (35)

The leading term is proportional to E−1
cut but of small absolute

magnitude, because the renormalization factors (27) in the
vicinity of the fundamental gap show very little variation. In
fact, if the quasiparticle energies are evaluated with Zℓ = 1, as
has been advocated by some authors,28 then this term vanishes
exactly. In practice, the convergence of the gap is hence
dominated by the term proportional to E

−3/2
cut . This remains

true for other transitions; for example, between the occupied
state and the second unoccupied state, whose truncation error

$2 = 1
4R2Ecut

+ 3

8
√

2R3E
3/2
cut

+ O
(
E−2

cut

)
(36)

can be derived along the same lines. If the cutoff energy is not
chosen as in Eq. (33) in the center but elsewhere in the interval
between the states with quantum numbers Lcut − 1 and Lcut,
then the formulas for all $ℓ are modified by an additional
identical term proportional to E

−3/2
cut .

As a visualization, Fig. 3 displays the matrix elements
+̃c

ℓ(ϵℓ) for the occupied state (ℓ = 0) and for the first
unoccupied state (ℓ = 1) as a function of the cutoff energy for
R =

√
3/2. The step-like variation reflects the discrete nature

of the Kohn-Sham eigenvalue spectrum. The dashed lines
indicate the asymptotic expansions +c

ℓ(ϵℓ) + $ℓ(Ecut), where
the analytic expressions for $0 and $1 from Eqs. (32) and
(34) with terms up to the order E

−3/2
cut are used. The difference

Z1+̃
c
1(ϵ1) − Z0+̃

c
0(ϵ0), which equals the contribution of the

correlation part of the self-energy to the gap, is also shown
together with the asymptotic formula Z1+

c
1(ϵ1) − Z0+

c
0(ϵ0) +

$gap(Ecut). In this case, only the term proportional to E
−3/2
cut

in Eq. (35) is considered, because the difference Z1 − Z0 ≈
0.01 is so small that the leading term is almost completely
suppressed; the change resulting from its inclusion would
not be discernible on the scale of the figure. The asymptotic
convergence of the energy gap is evidently well described in
this way.

In actual ab initio calculations for real solids, the high
computational cost often precludes a convergence to the
desired accuracy. The contribution of the omitted high-lying
unoccupied states may be approximately included within the

0 10 20 30-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Σ̃c
0( 0)

Σ̃c
1( 1)

Z1Σ̃c
1( 1) − Z0Σ̃c

0( 0)

Ecut

FIG. 3. Convergence of the matrix elements of the correlation
part of the self-energy +̃c

ℓ(ϵℓ) for the occupied state (ℓ = 0) and the
first unoccupied state (ℓ = 1) as well as their contribution Z1+̃

c
1(ϵ1) −

Z0+̃
c
0(ϵ0) to the energy gap for R =

√
3/2. The dashed lines indicate

the asymptotic behavior given by the analytic formulas (32), (34),
and (35). In the latter case, only the term proportional to E

−3/2
cut is

included.

extrapolar method31 or the effective-energy technique,37 but
straightforward extrapolation to arrive at the limiting values
would seem the most natural course of action where imple-
mentations of these schemes are not available. In practice,
however, a direct extrapolation of the quasiparticle energies
has only been attempted very rarely due to uncertainties about
the proper asymptotic formula. In Ref. 34 an expression of the
form

f (N ) = a

N − N0
+ b, (37)

where N is the number of bands and a, b, and N0 are
fitting parameters, was employed ad hoc to extrapolate the
limiting value b for the band gap of zinc oxide, whereas
fitting functions with different powers of N have been used in
other studies.55 As the number of bands increases proportional
to E

3/2
cut at high cutoff energies, this work suggests that the

form f (N ) − b ∼ N−1 ∼ E
−3/2
cut guessed in Ref. 34 is indeed

correct. The suppression of the leading order in Eq. (35) also
provides an explanation why band gaps are often observed to
converge faster than the individual quasiparticle energies.

V. CONCLUSIONS

In this paper I have described a nontrivial model system
of two interacting electrons on a sphere for which the self-
energy in the GW approximation without self-consistency can
be evaluated analytically. This corresponds to the standard
approach taken in virtually all actual ab initio calculations. As
the relevant characteristics, such as the long-range Coulomb
potential and the infinite Hilbert space, are the same as in
real materials, the system appears better suited to explore
the properties of the GW approximation than previously
employed analytically solvable lattice models. Indeed, the
results presented here demonstrate an analogous performance
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as for real materials: The GW approximation corrects the
underestimation of the fundamental energy gap in Kohn-Sham
density-functional theory and yields accurate quantitative
results for low to intermediate correlation strength, but fails
in the strong-correlation regime. For this reason, it suggests
itself as a natural testing ground to study extensions beyond
the standard GW approximation that are designed to describe
the self-energy of strongly correlated systems. Even if a purely
analytic treatment is then no longer possible, the computational
cost will be much smaller than for real materials, allowing a
highly accurate evaluation without the apparent artificialities
and the parameter dependence of typical lattice models, which
have repeatedly been chosen to study the influence of vertex
corrections and self-consistency in the past.10,11,43,46,56,57

Here this system was used to study the convergence
of the self-energy with respect to the number of empty
states included in the spectral summations. The results not
only confirm previous empirical observations that transition
energies converge faster than individual quasiparticle states
due to a partial error cancellation, but the asymptotic expansion
also demonstrates that the gap between the highest occupied
and the lowest unoccupied state approaches its limiting value
with an error that is, for practical purposes, proportional to the
cutoff energy to the power −3/2. Although a more general
study of the asymptotic behavior is highly desirable, there
is no indication that the dependence on the cutoff energy

obtained here is due to specific details of this model. Indeed,
the truncation error of the quasiparticle band gap in solids
appears to exhibit the same exponent.34 If confirmed, this
would enable practical direct extrapolation schemes with
an appropriate fitting function, implying enormous potential
benefits for computationally expensive ab initio calculations.
Furthermore, if some way was known to determine the relevant
prefactor based on general characteristics of the material
in question, then even an a posteriori correction without
the ambiguities of numerical fitting procedures would be
possible. Such an a posteriori scheme exists, for example,
to extrapolate the self-energy correction of the band gap from
the repeated-slab approximation with finite vacuum buffers
and three-dimensional periodicity to the limit of an isolated
slab, greatly accelerating the convergence of GW calculations
for thin films with respect to the supercell size.58 In this sense,
it is hoped that the present paper sparks further fruitful work
along the same lines.
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