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SELF-ENERGY ASSOCIATED WITH SINGLE

EXCITATIONS

The renormalized single excitation (rSE) [1] contribu-
tion to the electron correlation energy, and its associated
self-energy are presented in terms of Feynman diagrams
in Fig. 1(a) and (b), respectively. For convenience we
here have used Feynman [2] instead of Goldstone [3] di-
agrams to represent rSE as was done in Ref. [1]. This
implies that the solid arrowed lines in Fig. 1 are time-
ordered Green’s functions. Each line represents both a
propagating particle or hole. Hence a prefactor has to be
included in front of each term to remove the redundancy.
With the Feynman-diagram representation, the self-

energy can be easily constructed from the total energy
in Fig. 1(a) by removing one Green’s function from the
closed diagrams. The resultant self-energy diagrams are
shown in Fig. 1(b). Now the prefactors are cancelled by
the number of different ways to remove the Green’s func-
tion lines. From Fig. 1(b) one can immediately see that
these rSE-derived self-energy terms are improper (i.e.,
reducible), as these diagrams can be broken into two dis-
connected pieces by cutting a single Green’s function line
[4].
It should be noted that, in quasiparticle energy calcu-

lations, it is the proper, or irreducible, self-energy Σ that
enters the Dyson equation [2],

G = G0 +G0ΣG = G0(1− ΣG0)−1 . (1)

The improper self-energy, which is usually not needed,
can be trivially generated from the corresponding proper
one by a simple geometrical expansion,

Σ̃ = Σ + ΣG0Σ+ · · · = Σ(1−G0Σ)−1 . (2)

In other words, every improper self-energy has a corre-
sponding irreducible part; that is the proper self-energy.
This also holds for the rSE improper self-energy shown
in Fig. 1(b). Close inspection reveals that the irreducible
part of the diagrams in Fig. 1(b) is nothing but the differ-
ence between the non-local exact-exchange self-energy Σx

and the local Kohn-Sham exchange-correlation potential
vKS
xc , as diagrammtically shown in Fig. 1(c).

In usual GW quasiparticle energy calculations, we add
the following self-energy term

∆Σ = Σx − vKS
xc +ΣGW

c (3)

to the Kohn-Sham orbtial energy. The first two terms are
exactly the irreducible self-energy part corresponding to
the improper rSE terms in Fig. 1. The rSE self-energy
contribution is thus already accounted for in usual GW

calculations and no additional rSE self-energy contribu-
tion needs to be included.

Without explicitly accounting for the rSE improper
self-energy, the rSE correlation energy can be recovered
from the normal adiabatic connection procedure. In per-
turbative calculations, the exchange-correlation energy
can be obtained by [5],

Exc =
1

2

∫ 1

0

dλ

λ
Tr [GλΣλ] , (4)

where Gλ and Σλ are the λ-dependent interacting Green
function and the irreducible self-energy. In this simple
case, we only consider the first-order irreducible self-
energy correction ∆v = Σx − vKS

xc shown in Fig. 1, then

Σλ = λ∆v, and Gλ =
[

G−1
0 − λ∆v

]

−1
. Equation (4)

thus becomes
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2
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Tr
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]
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1
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Tr

[

(G0∆v)3
]

+ · · ·

=
1

2
Tr [G0∆v] + ErSE

c . (5)

Thus the leading term arising from the above integra-
tiaon corresponds to the difference between the exact-
exchange energy and the KS exchange-correlation poten-
tial energy, and the rest (from the second-order on) terms
sum up to the rSE correaltion energy.
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FIG. 1: (a) Feynman diagrams for the rSE contribution to the
correlation energy; (b) The (improper) self-energy diagrams
corresponding to the rSE correlation energy; (c) Diagram-
matic representation for the matrix element of ∆v = Σx−vKS

xc ,
i.e., the difference between the non-local exact-exchange and
the local Kohn-Sham exchange-correlation potentials. Ar-
rowed solid lines represent the non-interacting Green’s func-
tion G0

p = 1/(ω−ǫp), and p, q and r are single-particle indices.

BENCHMARK RESULTS FOR VERTICAL

IONIZATION ENERGIES

Shown in Tables I and II are vertical ionizaton energies
(IEs) for two test sets. These are obtained with G0W0

and G0W0+SOSEX based on PBE and PBE0 starting
points, and compared to CCSD(T) reference values. The
first test set consists of 34 closed-shell molecules taken
from the G2 test set [6]. The vertical CCSD(T) reference
IEs were computed by Bruneval and Marques [7]. All
calculations for this test set were done using the Gaussian
cc-pVQZ basis set [8].
The second test set consists of 18 atoms from H to Ar,

and 8 molecules. These 8 molecules have the feature that
the adiabatic and vertical IEs are almost identical (within
0.01 eV) [9]. For atoms these two types of IEs are identi-
cal by definition. Hence our computed vertical IE results
can be directly compared to the adiabatic CCSD(T) IEs
reported in Ref. [10]. An FHI-aims tier 4 basis [11] (aug-

mented by diffuse functions from aug-cc-pV5Z [8] (“tier
4 + a5Z”)) is used for the G0W0 and G0W0+SOSEX cal-
culations. Our experience indicates that this basis set is
very accurate and close to the complete basis set (CBS)
limit [12]. The CCSD(T) calculations were done with
Gaussian orbitals extrapolated to the CBS limit using
two-point fitting.

The comparison to CCSD(T) reproduces the picture
gleaned in the main paper from the comparison to
the G2 reference numbers. We observe, however, that
(G0W0+SOSEX)@PBE yields noticeably larger errors
for open-shell atoms than for closed-shell molecules, as
can be seen from Tables I and II. Further explorations
into the origin of this behaviour however go beyond the
scope of this work.
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TABLE I: The vertical IEs (in eV) for 34 molecules (taken from the work of Bruneval and Marques (BM) [Ref. 7]) determined
by G0W0 and G0W0+SOSEX on top of PBE and PBE0 references respectively, compared to the CCSD(T) results.[7] The
columns of G0W0(BM) correspond to G0W0 results reported in Ref. 7. The Gaussian cc-pVQZ basis set [8] is used for all
calculations. At the bottom of the table the mean error (ME) and mean absolute error (MAE) with respect to the CCSD(T)
results are shown.

Molecule
G0W0(BM) G0W0 (G0W0+SOSEX)@ G0W0(BM) G0W0 (G0W0+SOSEX)

CCSD(T)

@PBE @PBE0

LiH 6.50a 6.50 7.03 7.66 7.50 8.06 7.94
Li2 4.98a 5.03 5.48 5.29 5.23 5.45 5.17
LiF 9.93a 9.94 11.13 10.93 10.82 11.77 11.51
Na2 4.89 4.81 5.13 4.97 4.93 5.08 4.82
NaCl 8.00a 8.00 8.37 8.82 8.74 9.15 9.13
CO 13.55 13.46 14.20 14.00 13.96 14.46 14.05
CO2 13.32 13.22 13.80 13.68 13.63 14.05 13.78
CS 10.93 10.83 11.64 11.43 11.39 11.85 11.45
C2H2 11.08 11.01 11.27 11.27 11.25 11.38 11.42
C2H4 10.37 10.34 10.58 10.53 10.51 10.62 10.69
CH4 14.03 13.93 14.28 14.30 14.26 14.47 14.40
CH3Cl 10.98 10.95 11.33 11.21 11.20 11.47 11.41
CH3OH 10.64 10.54 11.17 10.97 10.94 11.37 11.08
CH3SH 9.17 9.10 9.45 9.36 9.31 9.55 9.49
Cl2 11.16 11.13 11.52 11.42 11.41 11.67 11.62
ClF 12.33 12.29 12.81 12.61 12.59 12.95 12.82
F2 15.19 15.08 16.06 15.66 15.62 16.34 15.85
HOCl 10.85 10.78 11.33 11.14 11.11 11.49 11.30
HCl 12.35 12.25 12.72 12.54 12.48 12.82 12.74
H2O2 11.02 10.92 11.67 11.38 11.34 11.91 11.49
H2CO 10.51 10.35 11.08 10.87 10.81 11.24 10.95
HCN 13.20 13.12 13.42 13.44 13.41 13.57 13.64
HF 15.51 15.40 16.30 15.81 15.77 16.49 16.09
H2O 12.15 12.25 12.82 12.44 12.41 13.02 12.64
NH3 10.50 10.43 11.13 10.78 10.76 11.26 10.92
N2 14.98 14.88 15.66 15.45 15.40 15.96 15.49
N2H4 9.87 9.80 10.36 10.15 10.13 10.51 10.24
SH2 10.10 10.03 10.45 10.27 10.22 10.51 10.43
SO2 11.83 11.71 12.34 12.23 12.19 12.57 12.41
PH3 10.21 10.16 10.49 10.39 10.36 10.55 10.49
P2 10.12 10.09 10.37 10.27 10.25 10.40 10.76
SiH4 12.40 12.29 12.68 12.72 12.68 12.90 12.82
Si2H6 10.38 10.29 10.53 10.62 10.56 10.69 10.69
SiO 11.03 10.90 11.51 11.34 11.29 11.63 11.55

ME -0.46 -0.57 -0.03 -0.16 -0.20 0.17
MAE 0.46 0.57 0.18 0.17 0.21 0.20

aRef. 13
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TABLE II: The vertical IEs (in eV) for 18 atoms (H-Ar) and 8 molecules determined by G0W0 and G0W0+SOSEX based
on PBE and PBE0 references respectively, compared to the CCSD(T) results reported in Ref. [10]. The composite “tier 4 +
a5Z” [12] basis set is used for G0W0 and G0W0+SOSEX calculations, and Gaussian orbitals are used for CCSD(T) calculations
extrapolated to the CBS limit. The core correlation contribution is added to the CCSD(T) numbers (cf Table VI in Ref. [10]).
The ME and MAE are taken with respect to the CCSD(T) results.

Molecule
G0W0@ (G0W0+SOSEX)@

CCSD(T)

PBE PBE0 PBE PBE0

H 12.52 13.04 13.80 13.77 13.61
He 23.59 24.01 24.37 24.65 24.59
Li 5.67 5.84 5.91 5.55 5.39
Be 9.03 9.26 9.48 9.34 9.32
B 7.65 8.11 9.03 8.55 8.28
C 10.47 10.93 11.96 11.51 11.25
N 13.51 14.06 14.52 14.82 14.55
O 13.04 13.37 13.28 13.82 13.60
F 16.71 17.07 17.19 17.59 17.43
Ne 20.54 21.10 21.22 21.49 21.61
Na 5.45 5.47 5.44 5.33 5.12
Mg 7.71 7.64 7.88 7.72 7.62
Al 5.64 5.94 6.34 6.06 5.96
Si 7.76 8.01 8.61 8.22 8.15
P 10.11 10.25 10.50 10.61 10.52
S 9.94 10.24 11.01 10.45 10.33
Cl 12.51 12.83 12.5 12.79 12.98
Ar 15.21 15.51 15.58 15.74 15.84
OH 12.41 12.79 12.92 13.96 13.05
CO 13.30 13.78 14.06 14.32 14.02
N2 14.86 15.45 15.56 16.04 15.64
Cl2 11.04 11.49 11.41 11.64 11.56
CO2 13.21 13.68 13.77 14.07 13.92
CH3 9.24 9.59 9.44 10.07 9.80
C6H6 9.00 9.20 9.30 9.42 9.32
CH3SH 9.06 9.31 9.40 9.53 9.50

ME -0.51 -0.18 0.06 0.15
MAE 0.56 0.25 0.27 0.18


