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ABSTRACT: Kohn−Sham density functional theory (KS-DFT) has been a well-
established theoretical foundation for ground-state electronic structure and has achieved
great success in practical calculations. Recently, utilizing the eigenvalues from KS or
generalized KS (GKS) calculations as an approximation to the quasiparticle energies, our
group demonstrated a method to calculate the excitation energies from (G)KS calculation
on the ground-state (N − 1)-electron system. This method is now called QE-DFT
(quasiparticle energies from DFT). In this work, we extend this QE-DFT method to
describe excited-state potential energy surfaces (PESs), conical intersections, and the
analytical gradients of excited-state PESs. The analytical gradients were applied to perform
geometry optimization for excited states. In conjunction with several commonly used
density functional approximations, QE-DFT can yield PESs in the vicinity of the
equilibrium structure with accuracy similar to that from time-dependent DFT (TD-DFT).
Furthermore, it describes conical intersection well, in contrast to TD-DFT. Good results
for geometry optimization, especially bond length, of low-lying excitations for 14 small molecules are presented. The capability
of describing excited-state PESs, conical intersections, and analytical gradients from QE-DFT and its efficiency based on just
ground-state DFT calculations should be of great interest for describing photochemical and photophysical processes in complex
systems.

The excited-state potential energy surface (PES), the
excited-state total energy as a function of geometrical

structure, is an important property for describing photo-
chemical and photophysical processes in chemistry, biology,
and material science. Accurately describing the PES for the
excited state provides critical information for many important
problems, including excited-state geometry optimization that
searches the excited-state PES for minimum and stationary
points to obtain excited-state molecular structures, conical
intersections,1,2 and nonadiabatic dynamics.3

To obtain reliable excited-state PESs, many high-level
methods can be applied to calculate the total energy of excited
states with high accuracy, including the multireference
configuration interaction (MRCI),4,5 the complete active
space second-order perturbation theory (CASPT2),6,7 and
equation-of-motion and linear response coupled-cluster
theories (EOM-CC and LR-CC).8−12 However, these methods
are computationally demanding, which hinders their applica-
tion to large systems in practice.
With broad applications to large and complex systems,

Kohn−Sham density functional theory (KS-DFT) has a well-
established theoretical foundation for electronic structure of
ground states.13−15 Because of its efficiency and accuracy, KS-
DFT has achieved great success in practical calculations. For
excited-state calculations, several methods have been devel-
oped extending the framework of KS-DFT. Time-dependent

DFT (TD-DFT)16,17 has been widely used to calculate
excitation energies18,19 and optimize geometries for excited
states.20,21 However, TD-DFT with commonly used density
functional approximations (DFAs) still faces key challenges for
excitations related to double excitations, charge transfer, and
Rydberg states.22−30 It also fails to describe the topology of
PESs near conical intersections.24 Besides TD-DFT, the Δ self-
consistent field (ΔSCF) approach,31,32 while not rigorously
established as a theory, is another useful method, in which a
non-Aufbau occupation is applied to an SCF procedure to
describe excited states. In order to avoid the non-Aufbau
electronic configuration from collapsing to the ground state
within regular ΔSCF calculations, modifications to the SCF
procedure, such as maximum overlap method (MOM)33 and
initial maximum overlap method (IMOM),34 have been
developed to overcome the issue, achieving good performance
for calculating excitation energies, geometries of excited states,
and conical intersections.33−38 Other methods in the frame-
work of ΔSCF that apply various constrains to obtain the
excited states of interest have been reported to provide good
excitation energies and capture conical intersections well,
including constrained variational DFT (CV-DFT),39,40 con-
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strained DFT (CDFT),41 orthogonality-constrained DFT,42,43

and excited constrained DFT (XCDFT).44

In this work, we pursue a method that describes the excited-
state PES directly from a ground-state KS or generalized KS
(GKS) calculation by using the eigenvalues. Note that we use
(G)KS eigenvalues to indicate orbital energies either from KS
calculations for any approximate Exc as an explicit and
continuous functional of electron density (such as the local
density approximation (LDA) and the generalized gradient
approximation (GGA)) or from GKS calculations for any
approximate Exc as an explicit and continuous functional of the
noninteracting one-particle density matrix (such as hybrid
functionals). The use of KS or GKS in these two different types
of functionals originates from the connection of its highest
occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) eigenvalue to the chemical
potentials, as established by Cohen, Mori-Sanchez, and
Yang.45,46

In ground-state DFT calculations, it has been rigorously
shown that the frontier orbital eigenvalue of HOMO/LUMO
is the corresponding chemical potential for electron removal/
electron addition associated with the approximate functional
used.45,46 When the applied DFA has the minimum
delocalization error,47 the chemical potentials (HOMO and
LUMO energies) approximate accurately the lowest ionization
energy and highest electron affinity, which are the quasiparticle
energies. This was demonstrated, for example, in the recently
developed localized orbital scaling correction (LOSC)
approach,48 which provides a size-consistent elimination of
the delocalization error. Beyond HOMO and LUMO energies,
the remaining (G)KS eigenvalues are of considerable interest.
With extensive numerical results, our group has shown in
recent work that the remaining (G)KS orbital energies from a
DFA with minimum delocalization error can also well
approximate the corresponding quasiparticle energies;49 that
is, the occupied orbital energies lower than HOMO
approximate higher ionization potentials (IPs) and unoccupied
orbital energies higher than LUMO approximate lower
electron affinities (EAs). The quaisparticle energy prediction
from our method is comparable or better than that from the
much more expensive many-body GW Green’s function in
extensive tests for 40 large molecular systems.49 This
observation indicates that different states (ground and excited
states) of an N-electron system can be obtained from orbital
energies of the ground-state (N − 1)-electron system via a one-
electron addition process.49 Therefore, the excitation energy of
an N-electron system can be calculated as the (G)KS orbital
energy difference of the (N − 1)-electron system with the same
external potential.49

Furthermore, our previous work has shown that commonly
used DFAs, such as LDAs, GGAs, and hybrid GGAs, can yield
good low-lying excitation energies.49 Although the orbital
energies from these conventional DFAs can not approximate
quasiparticle energies accurately because of the delocalization
error,50−52 the good performance of these DFAs for low-lying
excitation energies was attributed to error cancellation within
this method.49 For Rydberg49 and charge-transfer53 excitations,
conventional DFAs face challenges in providing reliable results.
However, applying the recently developed localized orbital
scaling correction (LOSC)48 to these DFAs can greatly
improve the results. We note that the Bartlett group also
reported recently that applying the QTP (Quantum Theory
Project) class of functionals including long-range Hartree−

Fock exchange with the same methodology can yield good
excitation energies for 10 simple test molecules.54 We now call
this method49,54 QE-DFT, referring to quasiparticle energies
from DFT. QE-DFT is the simplest approach to excitation
energies and can provide good prediction of excitation energies
from (G)KS orbital energies. In this Letter, we explore further
the description of excited-state PESs and conical intersections
with QE-DFT and we derive the analytical gradients of this
method, which are needed for application in geometry
optimization of excited states and nonadiabatic dynamics.
We first review the QE-DFT method to describe excited

states via (G)KS orbital energies in ground-state calcula-
tions.49,54 Starting from the ground state of the (N − 1)-
electron system, the particle part of the quasiparticle energy,
ωn

+(N − 1), connects the ground state of the (N − 1)-electron
system, E0(N − 1), to the nth excited state of the N-electron
system, En(N), via adding one electron to the unoccupied
orbital. With observations that the unoccupied orbital energy
εn(N − 1) approximates the quasiparticle energy, we have the
following relation:

N N E N E N( 1) ( 1) ( ) ( 1)n n n 0ε ω− ≈ − = − −+
(1)

When eq 1 is rearranged, En(N), the excited-state energy of an
N-electron system, can be approximated from the ground-state
DFT calculation of the (N − 1)-electron system via using its
unoccupied orbital energy

E N E N N

E N N E N

( ) ( 1) ( 1)

( 1) ( 1) ( )

n n

n n

0

0
QE DFT

ω

ε

= − + −

≈ − + − =

+

‐
(2)

There are two things that need to be clarified for the QE-DFT
method (eq 2). First, it should be pointed out that the QE-
DFT method captures the interaction between the added
electron and the collective hole (exciton binding).55 In the
ground state of the (N − 1)-electron system, the collective
hole is created by removing one electron from the HOMO of
the ground state of the N-electron system. When one electron
is added to the virtual orbital of the (N − 1)-electron system to
retrieve excited states of the N-electron system, the collective
hole will interact with the added electron, and the electron−
hole interaction is thus captured by the particle part of the
quasiparticle energy of the (N − 1)-electron system. Second,
the total energy from the QE-DFT method is not a self-
consistent calculation for the N-electron system. Instead, it is
only a self-consistent calculation for the (N − 1)-electron
system to obtain its total energy and eigenvalues. Because
quasiparticle energies of the (N − 1)-electron system are
approximated by the (G)KS eigenvalues and the quasiparticle
energy of the ground-state (N − 1)-electron system, according
to its definition, is related to an N-electron system by one
electron addition process, the relation shown in eq 2 does not
need any self-consistent calculation for the N-electron system.
Considering most (N − 1)-electron systems are open shell

cases (assuming one more α electron than β electron), adding
one electron to a unoccupied orbital with α spin forms a triplet
excited state, E(↑↑), that can be used immediately. However,
adding one electron to an unoccupied orbital with β spin forms
a spin-mixed excited state, E(↑↓). To describe singlet excited
states within this method, we apply the commonly used spin
purification process,56 namely

E E E2 ( ) ( )singlet = ↑↓ − ↑↑ (3)
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This spin purification process is effective to reduce the spin
contamination and improve the results for excited states. It has
been shown to improve the excitation energy results in ΔSCF
calculations.36 In addition, the recent work from our laboratory
on applying GW approximation to calculate the quasiparticle
energies of an (N − 1)-electron system demonstrates that the
same spin purification process can yield both excellent singlet
and triplet excitation energies for low-lying and charge-transfer
states for many molecules.55 These results from the GW
calculation55 suggest that, as long as the quasiparticle energies
are well-approximated by (G)KS eigenvalues, good perform-
ance on total energies of excited states, singlet−triplet
splittings, and excitation energies can be obtained from QE-
DFT.
Now considering the spin of orbitals and substituting eq 2

into eq 3, we can express the singlet excited-state energy from
QE-DFT as the following:

E N E N N N( ) ( 1) 2 ( 1) ( 1)n nsinglet
QE DFT

0 ε ε= − + − − −β α
‐

(4)

With eqs 2 and 4, the excited-state energies for a molecule at
different geometrical structures can be calculated from the
ground-state DFT method. Therefore, the PESs of excited
states can be obtained.
The analytical gradient of an N-electron system from the

QE-DFT method involves two terms from the (N − 1)-
electron system calculation, namely, the gradient of the
ground-state total energy of the (N − 1)-electron system
and the gradient of the corresponding orbital energy. Taking
eq 2 as an example, the gradient with respect to nuclear
coordinate R is expressed as

E N E N N( ) ( 1) ( 1)n nR R R
QE DFT

0 ε∇ = ∇ − + ∇ −‐
(5)

The gradient of total energy from DFT involves the
Hellman−Feynman term (noted as G1) and the Pulay term
(noted as G2), and it is given by57−61

E G GR tot 1 2∇ = + (6)

The Hellman−Feynman term comes from the derivative of the
exact Hamiltonian of the interacting system, and it is given
by57

G v Er r R r R( ) ( , )d ( )R R1 nuc∫ ρ= ∇ + ∇
(7)

where v(r, R) is the external potential and Enuc(R) is the nuclei
interaction potential energy. The Pulay term comes from the
derivative of the wave function with respect to nuclear
coordinates R, and it is given by58,59

G h c.c.
i

i s i i2

occ

∑ φ ε φ= ⟨ ′ | − | ⟩ +
σ

σ σ σ
(8)

where hs is the (G)KS Hamiltonian for the noninteracting
system, σ the spin of electron, and φiσ′ derivative of molecular
orbital φiσ to nuclear coordinates with fixed coefficients {Ciμ}
for the expansion of basis sets {ϕμ}, namely

Ci i R∑φ ϕ′ = ∇σ
μ

μ μ
(9)

As shown in eq 8, the Pulay term will vanish at the condition
that the (G)KS equations are solved exactly with a complete
basis set or with basis sets not dependent on nuclear
coordinates, such as plane waves. However, when a finite

number of atom-centered basis sets are used, the contribution
from the Pulay term should be included. Substituting eqs 7 and
8 into eq 6, one can obtain the gradient of total energy from
the (G)KS-DFT calculation. Clearly, this gradient of total
energy can be directly used in our QE-DFT method with only
the change of electron number from N to N − 1.
The gradient of (G)KS orbital energy εn for the (N − 1)-

electron system can be expressed as the following:

h

h h

(10)

( c.c.) (11)

n n s n

n s n n s n

R R

R R

ε φ φ

φ φ φ φ

∇ = ∇ ⟨ | | ⟩

= ⟨ |∇ | ⟩ + ⟨∇ | | ⟩ +

Similarly to the gradient of total energy, the first term shown in
eq 11 is similar to the Hellman−Feynman term that comes
from the derivative of the (G)KS Hamiltonian hs with respect
to nuclear coordinates R, and the second term is similar to the
Pulay term that comes from the atomic basis set dependence
on geometry. As shown in the second term of eq 11, the
gradient of orbital energy involves the derivatives of molecular
orbital coefficients with respect to nuclear coordinates. The
direct approach to capture this contribution is solving the
coupled-perturbed SCF equations,62 which are dependent on
nuclear coordinates and have 3N degrees of freedom (N being
the number of atoms in the system). To reduce computational
complexity, the Z vector method63,64 that is independent of the
nuclear coordinates is normally applied to reduce the degree of
freedom by solving just one Z vector equation. The Z vector
method has been commonly used in many calculations in
which the first-order changes of molecular orbital coefficients
are involved, such as energy gradient from CIS,65 TD-HF,66

and TD-DFT.67 Here, the Z vector method is also applicable
in calculation of energy gradients from the QE-DFT method.
In the Supporting Information, we derive the explicit
expression of the (G)KS orbital energy (eq 11) for
implementation.
We now compare the computational cost between QE-DFT

and the state-of-art TD-DFT method for excited-state
calculations. For the total energy calculation of excited states,
QE-DFT is computationally much more efficient than TD-
DFT. Calculating many excitation energies involves only a
ground-state (G)KS calculation on the (N − 1)-electron
system. In an iterative algorithm, the operational complexity of
diagonalization of the Fock matrix in the (G)KS equation has a
scaling of O(N2) (N being the dimension of the basis set).
Moreover, because all the eigenvalues, used in QE-DFT to
retrieve different excited state, are given from a single DFT
calculation, QE-DFT is computationally much more efficient
for describing many excited states at once. In constrast, TD-
DFT, as a linear response theory from the ground-state DFT
calculation, involves solving the TD-DFT equation with a
dimension of NoccNvir = O(N2) (Nocc being the dimension of
the occupied orbital space and Nvir being the dimension of the
virtual orbital space).68 Therefore, the scaling of solving the
TD-DFT equation is O(N4). To achieve fast calculation in
practice, the Davidson algorithm69 is normally applied in TD-
DFT to determine the lowest few eigenvalues, associated with
low-lying excited states. In this way, calculating high excited
states in TD-DFT would become increasingly expensive,
because all the lower states have to be calculated as well.
For the analytical gradient calculation, QE-DFT should be

computationally similar or cheaper than TD-DFT. There are
two reasons: (1) Both methods need to solve the Z vector
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equation, which is of dimension of NoccNvir (QE-DFT; see the
Supporting Information, TD-DFT; see ref 21), which means
the computational scalings of QE-DFT and TD-DFT are
similar. (2) All the matrix elements needed in QE-DFT for
analytical gradient are needed in the TD-DFT calculation as
well, with no more effort required from QE-DFT than TD-
DFT. Thus, based on the foregoing analysis, our QE-DFT
method is a computationally similar or cheaper method than
TD-DFT for calculating analytical gradients of excited states.
To test the performance of QE-DFT, we implemented QE-

DFT in our in-house program, QM4D package,70 to conduct
all the calculations. For geometry optimization, we choose 14
small molecules (BF, BH, C2H2, CO, CH2O, CH2S, HCN,

HCP, Li2, N2, SiO, t-(CHO)2, SiF2, and CCl2) from the test set
that was used by Furche et al.20,21 and Besley et al.35 in
examining the performance of TD-DFT and ΔSCF for excited-
state properties. We include only the lowest singlet excitations
(HOMO to LUMO excitation), which are available from
experimental references for comparison. These test cases range
from diatomic molecules to polyatomic molecules. Their
structural parameters of excited states, including bond length,
bond angle, and dihedral angles, are compared with
experimental references and the calculated results from TD-
DFT and ΔSCF. Because the (N − 1)-electron system of all
these molecules are open-shell systems, we used unrestricted
calculations. The applied basis set is 6-311+g*, which is close

Figure 1. Calculated PESs of excited states for two molecules in the vicinity of their equilibrium structures: (a) 1Π state of BH and (b) 1Au state of
C2H2. The energy of each PES is relative to its minimum value. The PES of BH is plotted with respect to B−H bond length in picometers. The PES
of C2H2 is plotted with respect to the ∠HCC bond angle in degrees. The H−C and C−C bond length in C2H2 are fixed at 110 and 132 pm,
respectively. 6-311+g* is used as the basis set for QE-DFT calculations. TD-DFT calculations are conducted from the Gaussian 09 package,76 and
6-311+g** is used as the basis set.

Figure 2. Calculated conical intersection and PES of the ground and first excited states for H3 molecule. cc-pVTZ is used as the basis set. The
potential energy is relative to the maximum energy in the ground-state PES. With fixing two H atoms at positions (0.525, 0) and (−0.525, 0) in the
Cartesian coordinates system, the potential energy is given as a function of coordinates of the third H atom (x, y). The PESs from QE-B3LYP and
TD-B3LYP are plotted in panels a and b, respectively. One-dimensional potential energy curves from (c) QE-B3LYP and (d) TD-B3LYP are
obtained by slicing the PES along the y-axis with x fixed at 0.0.
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to the basis set used in Besley’s work.35 For DFT calculations,
we applied only three conventional DFAs (LDA,71,72

BLYP,73,74 and B3LYP73−75) to perform geometry optimiza-
tion at present, because implementation of solving coupled-
perturbed SCF equations for orbital energy derivatives is
straightforward for these conventional DFAs. Implementing
the gradients of other special DFAs needs more effort, and
their performance will be studied in future work. For example,
our recently developed functional, LOSC-DFAs, has been
shown to yield orbital energies that are much more accurate
than those of conventional DFAs.48,49 However, taking
gradients of the corrected orbital energies from LOSC-DFAs
will involve a set of localized orbitals (called orbitalets),48

which will be carried out in future work.
We now present our results on the description of excited-

state PESs. In Figure 1, the shapes of PES in the vicinity of
equilibrium structures for two simple molecules, a linear
molecule BH and a bent molecule C2H2 in their first singlet
excited states, are plotted via eq 4 and compared with the
calculated results from TD-DFT. Although the orbital energies
from conventional DFAs deviate much from quasiparticle
energies,49 which may lead to error in the shape of PESs for
describing excited states within the QE-DFT method, results of
test molecules in Figure 1 show that excited-state PESs from
QE-DFT are smooth and their shapes are similar to the ones

from TD-DFT. This observation shows that the systematic
delocalization errors for orbital energies from conventional
DFAs are similar even at different geometrical structures for
low-lying excited states and that the error cancellation is
effective here. This extends the previous conclusion on the
good accuracy and insensitivity of QE-DFT on the
delocalization error of DFAs for low-lying excitation energies49

to their potential energy surfaces. Such observation suggests
that these conventional DFAs would still be applicable for
describing low-lying excited-state PESs within QE-DFT.
Furthermore, we test QE-DFT to describe the PES with the

more challenging conical intersection problem, for which TD-
DFT with adiabatic approximation fails. Here we choose a
well-studied case, the H3 molecule.77 It is known that ground-
state and the first excited-state PESs for H3 will intersect at one
point at equilateral triangle geometry with D3h symmetry.
Fixing two H atoms on the x-axis at coordinates (0.525, 0) and
(−0.525, 0) in a Cartesian coordinates system, we scan the
PES by varying coordinates of a third H atom in the xy-plane.
Panels a and b of Figure 2 show the calculated PESs from QE-
B3LYP and TD-B3LYP respectively. According to these two
figures, the topology of the conical intersection for H3 can be
well captured by QE-DFT, while TD-DFT fails with the
surface collapsing around the conical intersection. Such
different performances for QE-DFT and TD-DFT can further

Table 1. Geometry Optimization Results of Excited States from Different Methods Compared with Experimenta

aBond length are in picometers, and angles are in degrees. Numbers marked red show large deviation to the experimental reference. bData were
taken from ref 35.
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be observed from Figure 2c and 2d, in which a potential energy
curve with x = 0.0 is plotted along the y-axis.
With the success of describing PESs for excited states, we

continue to verify the results of optimized excited-state
geometries. Table 1 summaries the optimized geometry
parameters of the first singlet excited states for the test set.
According to Table 1, QE-DFT shows good results for bond
lengths. Even with the LDA functional, the mean absolute
error (MAE) for the optimized bond length is 3 pm, which is
close to the accuracy from TD-DFT and ΔSCF (1−2 pm). For
the results from QE-BLYP and QE-B3LYP, the results are
slightly worse with MAE up to 5 pm. Such an increase of MAE
for QE-BLYP and QE-B3LYP can be attributed to several
challenging cases with high absolute error over 10 pm (marked
in red in Table 1). For other cases, there is no significant
difference in the performance of test DFAs. In addition, the
mean signed error (MSE) for bond length results are close to
zero, indicating no significant bias from this method. For the
prediction of bond angle, TD-DFT and ΔSCF show good
results, with MAE being 2° and 1° and maximum absolute
deviation (MXE) being 7° and 3°, respectively. The MAE for
the results from QE-DFT (5−15° error) is larger than that for
TD-DFT and ΔSCF because of a specific case, the HCN
molecule, whose absolute error is larger than 20°. However, for
bond angles from the remaining test cases, results from QE-
DFT are close to the experimental reference. We believe these
results for the challenging cases are related to inaccurate orbital
energies from applied conventional DFAs. With application of
better DFAs to yield more reliable orbital energies, improve-
ments for these cases should be expected.
In conclusion, we demonstrate that the QE-DFT can

describe excited-state PESs and conical intersections from a
ground-state DFT calculation. With application of several
commonly used DFAs, we observe that QE-DFT performs
similarly to TD-DFT for describing excited-state PES in the
vicinity of the equilibrium structure. In addition, QE-DFT can
capture the conical intersection well, while TD-DFT
encounters difficulty. We also developed the analytical gradient
needed to perform excited-state geometry optimization and
excited-state dynamics within the QE-DFT method and
showed its good performance on geometry optimization,
especially bond length, for 14 small test molecules.
Considering the capability of describing excited-state PES,
conical intersections, and gradients in this method and its
efficiency based on just ground-state DFT calculations, we
believe QE-DFT should be of great interest for describing
photochemical and photophysical processes in complex
systems.
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(77) Halaśz, G.; Viboḱ, A.; Mebel, A. M.; Baer, M. A Survey of Ab
Initio Conical Intersections for the H+H2 System. J. Chem. Phys.
2003, 118, 3052−3064.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.9b00712
J. Phys. Chem. Lett. 2019, 10, 2538−2545

2545

https://qm4d.org/
https://qm4d.org/
http://dx.doi.org/10.1021/acs.jpclett.9b00712

