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Abstract

General-order equation-of-motion coupled-cluster methods for ionization potentials and electron a�nities (IP-

EOM-CC and EA-EOM-CC) are developed by employing a determinantal algorithm. With these, principal ionization

potentials or electron a�nities of diatomic molecules and the excitation energies of their ionized or electron-attached

counterparts are computed across di�erent approximations of the cluster operator and the ionization (electron-at-

tachment) operator. IP-EOM-CC(2,2h-1p)� IP-EOM-CCSD and EA-EOM-CC(2,1h-2p)�EA-EOM-CCSD or EA-

EOM-CC(2,2h-3p) prove to be well-balanced models for principal ionization potentials and electron a�nities, whereas

for the quantitative descriptions of non-Koopmans ionization or electron-attachment processes IP-EOM-CC(3,

3h-2p)� IP-EOM-CCSDT and EA-EOM-CC(2,2h-3p) appear to be the minimal levels. Ó 2000 Elsevier Science

B.V.

1. Introduction

The coupled-cluster (CC) method for energy
di�erences (EOM-CC) [1±4] uses the equation-
of-motion (EOM) concept of Rowe [5] for the
simultaneous treatment of two states, which in
that work leads to the random-phase approxima-
tion (RPA). McCurdy Jr. et al. [6] and Simons [7]
also employed this concept using both excitation
and deexcitation operators, sometimes applying a
`killer' condition self-consistently, to develop
higher RPA techniques for excitation energies and
ionized and electron-attached states, respectively.

EOM-CC di�ers substantially from these e�orts in
that it employs the highly correlated CC reference
function with only excitation operators in its de-
velopment [4], leading to one correlated Hamilto-
nian exp�ÿT �H exp�T � for all processes. This has
been implemented [1±4,8] and related variants such
as CC linear response [9±14] into a computation-
ally e�cient and widely applicable approach for
the description of excited [1±4,8±14], ionized [15±
18], and electron-attached [19] states (see also Ref.
[20] for symmetry-adapted-cluster con®guration
interaction, Ref. [21] for Fock-space multi-refer-
ence CC theory, and Ref. [22] for CC Green's-
function theory, all of which are intimately related
to EOM-CC). In this approach, the wavefunction
jWki of the kth target state (excited, ionized or
electron-attached state) is created by operating on
a reference wavefunction jW0i (typically but not
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necessarily the ground-state wavefunction) with a
linear operator X�k�,
jWki � X�k� jW0i: �1�
The reference wavefunction jW0i is given by the
CC approximation (see Ref. [23] for a review and
references therein)

jW0i � exp�T � jU0i; �2�
where jU0i represents an independent particle ref-
erence [in our case a Hartree±Fock (HF) deter-
minant] and T is the cluster operator of the form

T �
Xocc:

i

Xvirt:

a

ta
i ayi�

Xocc:

i>j

Xvirt:

a>b

tab
ij ayibyj� � � � : �3�

The linear operator X�k� can be chosen with con-
siderable ¯exibility according to the nature of
target states. For the excited states having the
same number of electrons as the reference state, we
may choose the excitation operator R�k� as X�k�
given by

R�k� � R0�k� �
Xocc:

i

Xvirt:

a

Ra
i �k�ayi

�
Xocc:

i>j

Xvirt:

a>b

Rab
ij �k�ayibyj� � � � : �4�

For ionized or electron-attached states, we simply
allow excitation into the continuum to give the
ionization operator I�k� as X�k� or deexcitation
from the continuum to give the electron-attach-
ment operator A�k�,

I�k� �
Xocc:

i

Ii�k�i�
Xocc:

i>j

Xvirt:

a

Ia
ij�k�iayj� � � � �5�

and

A�k� �
Xvirt:

a

Aa�k�ay �
Xocc:

i

Xvirt:

a>b

Aab
i �k�ayiby � � � � :

�6�
These particular EOM-CC methods are referred to
as EE-EOM-CC, IP-EOM-CC, and EA-EOM-
CC, respectively. Approximating the target-state
wavefunctions by Eq. (1), we can conveniently
take into account the correlation e�ects that are
common to the reference and target states by the

exponential wave operator exp�T � and allow the
linear operator X�k� to describe the essential dif-
ferential correlation e�ects. The action of exp�T �
and X�k� on a closed-shell reference determinant
creates properly spin-adapted wavefunctions for
open-shell systems, rendering IP-EOM-CC and
EA-EOM-CC e�ective tools for the study of the
ground and excited states of radicals.

In practice, the summations in Eq. (3) for T
and in Eqs. (4)±(6) for X�k� are truncated after
certain tractable terms. Hence the EOM-CC
models are characterized by the truncation orders
of T and X�k�, and as the operators become
closer to complete, the calculated results would
systematically approach the full con®guration
interaction (FCI) results. We have recently ana-
lyzed the performance of the EE-EOM-CC
models with di�erent truncation orders of T and
X�k� with the aid of a determinantal general-or-
der EE-EOM-CC program [24]. We found that
generally including the same orders of excitation
operators in T and X�k�, we arrive at numerically
well-balanced EE-EOM-CC models, but we also
obtained good results from slightly di�erent
treatment of the ground and excited states, at-
testing to the greater importance of some kinds of
excitations in excited states than in the ground
state. In this Letter, we report the extension of
this analysis to IP-EOM-CC and EA-EOM-CC.
We shall examine the performance of these
methods as a function of the truncation orders of
T and X�k� by comparing the calculated results
against FCI results. This is of particular interest
as the number of electrons is incremented or de-
cremented upon the ionization or electron-at-
tachment process, and it may not be obvious how
T and X�k� should be approximated to handle
these processes in a well-balanced manner. We
develop general-order IP-EOM-CC and EA-
EOM-CC methods that employ a determinantal
algorithm, and compute the principal ionization
potentials and electron a�nities of small diatomic
molecules (BH, CH�, and C2) across di�erent
truncation orders of T and X�k�. The excitation
energies of diatomic radicals (BH� and CH) are
also computed as the di�erences between the ®rst
ionization potential (electron a�nity) and higher
ionization potentials (electron a�nities) of the
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closed-shell reference state. The results are dis-
cussed in the following.

2. Theory

The exponential reference wavefunction
jW0i � exp�T � jU0i is determined by the usual CC
equations [23]:

hU0jH jW0i � E0; �7a�

Ua
i jH jW0


 � � E0 Ua
i jW0


 �
; �7b�

Uab
ij jH jW0

D E
� E0 Uab

ij jW0

D E
; �7c�

Uabc
ijk jH jW0

D E
� E0 Uabc

ijk jW0

D E
; �7d�

etc., where H is the Hamiltonian, E0 the electronic
energy of the reference state, and jUa

i i, jUab
ij i, and

jUabc
ijk i represent singly, doubly, and triply substi-

tuted determinants, respectively. When T contains
single, double, . . . , m-tuple excitation operators,
the chain of equations, (7a)±(7d), terminates after
the projection equation onto m-tuply substituted
determinants, and we call this method CC(m). For
the implementation and calculations of CC(m) at
any given order m, the readers are referred to our
earlier Letter [25].

The EOM-CC equations are derived by
substituting the target wavefunctions into the
Schr�odinger equation and projecting it onto an
appropriate class of determinants. For the kth
target state (with the associated energy Ek), we
thus start with the equation

HX�k� exp�T � jU0i � EkX�k� exp�T � jU0i: �8�
Operating on both sides of the equation with
exp�ÿT � from the left-hand side and using the fact
that X�k� and T commute, we ®nd

�HX�k� jU0i � EkX�k� jU0i �9�
with the non-Hermitian e�ective Hamiltonian �H
being de®ned by similarity transformation

�H � exp�ÿT �H exp�T �: �10�
Eq. (9) is projected onto the basis of determinants
that are accessible by the action of X�k� on jU0i.

For IP-EOM-CC, the equations obtained by this
projection are

hUij �HI�k�jU0i � EkhUijI�k�jU0i; �11a�

Ua
ijj �HI�k�jU0

D E
� Ek Ua

ijjI�k�jU0

D E
; �11b�

Uab
ijkj �HI�k�jU0

D E
� Ek Uab

ijkjI�k�jU0

D E
; �11c�

etc., where jUii, jUa
iji, and jUab

ijki represent one-hole
(1h), two-hole-one-particle (2h-1p), and three-
hole-two-particle (3h-2p) determinants, respec-
tively, and likewise for EA-EOM-CC. These
equations constitute a non-Hermitian CI-like ei-
genvalue problem, which is to be solved for the
amplitudes of X�k�.

In what follows, we shall use the notation IP-
EOM-CC(m; n� 1h-np) and EA-EOM-CC(m; nh-
n�1p) to denote speci®c approximate models of
IP-EOM-CC and EA-EOM-CC, respectively. The
®rst parameter m indicates that all connected ex-
citation operators through the connected m-fold
excitation operator are included in T ; the wave-
function of the reference state is obtained from
CC(m). The second parameter nh-n�1p speci®es
the truncation order of X�k�, which takes such
values as 1h, 2h-1p, 3h-2p, etc., for IP-EOM-CC,
and 1p, 1h-2p, 2h-3p, etc., for EA-EOM-CC. For
example, IP-EOM-CC(3,3h-2p) diagonalizes
the e�ective Hamiltonian �H obtained from the
CC(3)�CCSDT similarity transformation, in the
space of 1h, 2h-1p, and 3h-2p determinants.
IP-EOM-CC(1; n� 1h-np) and EA-EOM-CC(1;
nh-n� 1p) employ the CC(1)�HF reference
wavefunctions, and are equivalent to the so-called
nh-n�1p CI (see, e.g., Ref. [26]). When we take the
largest possible value for n, i.e., when X�k� is
complete, IP-EOM-CC(m; n� 1h-np) and EA-
EOM-CC(m; nh-n� 1p) are equivalent to FCI re-
gardless of the choice of m, as the similarity
transformation of Eq. (10) does not change the
eigenvalues of the original bare Hamiltonian H .
The ionization potentials and electron a�nities of
a molecule M are obtained as the energies of the
ground and excited states of M� and Mÿ com-
puted by IP-EOM-CC(m; n� 1h-np) and EA-
EOM-CC(m; nh-n� 1p), respectively, minus the
energy of the ground state of M computed by
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CC(m). Note that according to this de®nition one
may not necessarily obtain the exact ionization
potentials (electron a�nities) with complete X�k�,
because the energy of the ground state of M may
not be exact unless T is complete. The di�erences
in ionization potential (electron a�nity) between
the lowest root (the ground state of the radical)
and the other roots (excited states of the radical)
amount to the vertical excitation energies of the
radical.

3. Demonstrative calculations

The general-order IP/EA-EOM-CC method has
been implemented in the POLYMERPOLYMER program [27]
by literally following the procedure described in
the previous section with a determinantal algo-
rithm. The implementation is parallel to that for
the determinantal EE-EOM-CC method, which
invokes a non-Hermitian modi®cation [28] of
Davidson's iterative subspace method [29] to ob-
tain the several lowest eigenvalues and corre-
sponding eigenvectors of the e�ective Hamiltonian
matrix �H . The wavefunction of the reference state
(with N electrons) is stored in an array of the so-
called a- and b-strings [30], which address the a-
and b-parts of determinants. The wavefunctions of
the target states (with N � 1 or N ÿ 1 electrons)
are also represented by arrays of a- and b-strings,
but now these strings address the determinants
with one more or one less electrons than those for
the reference state. The amplitudes of I�k� or A�k�
are also conveniently packed into arrays of a- and
b-strings for N � 1 or N ÿ 1 electrons. Therefore,
the determinantal EE-EOM-CC program can be
readily extended to IP/EA-EOM-CC by replacing
appropriately some of the a- and b-strings for N
electrons by those for N � 1 or N ÿ 1 electrons.
The details of the implementation of EE-EOM-CC
can be found in Ref. [24].

The IP-EOM-CC and EA-EOM-CC calcula-
tions are performed for the vertical ionization
potentials of BH and for the vertical electron af-
®nities of CH�, respectively, for all possible com-
binations of the truncation orders of T and X�k�.
The calculated results are compiled in Tables 1 and
2, in which we also list the results of CI calcula-

tions. CI(m; nh-n� 1p) means that the ionization
potentials or electron a�nities are evaluated as
the CI(nh-n� 1p) energies of ionized or electron-

Table 1

The ionization potentials (in eV) of BH (rBH � 1:232 �A) cal-

culated by IP-EOM-CC(m; n� 1h-np) and CI(m; n� 1h-np)

with the 6-31G** basis seta

Theory 3r!1 2r!1
FCI 9:383 16:643

CI(1,1h)b 9:169 19:794

CI(1,2h-1p)b 8:097 15:853

CI(1,3h-2p)b 7:056 14:390

CI(1,4h-3p)b;c 7:016 14:276

CI(2,1h) 11:422 19:680

CI(2,2h-1p) 10:351 18:106

CI(2,3h-2p) 9:310 16:643

CI(2,4h-3p)c 9:269 16:529

CI(3,1h) 11:467 19:725

CI(3,2h-1p) 10:395 18:151

CI(3,3h-2p) 9:354 16:688

CI(3,4h-3p)c 9:314 16:573

CI(4,1h)d 11:535 19:794

CI(4,2h-1p)d 10:464 18:220

CI(4,3h-2p)d 9:423 16:757

CI(4,4h-3p)c;d 9:383 16:643

IP-EOM-CC(1,1h)b 9:169 19:794

IP-EOM-CC(1,2h-1p)b 8:097 15:853

IP-EOM-CC(1,3h-2p)b 7:056 14:390

IP-EOM-CC(1,4h-3p)b;c 7:016 14:276

IP-EOM-CC(2,1h) 10:385 18:368

IP-EOM-CC(2,2h-1p)e 9:418 16:980

IP-EOM-CC(2,3h-2p) 9:342 16:626

IP-EOM-CC(2,4h-3p)c 9:335 16:643

IP-EOM-CC(3,1h) 10:417 18:391

IP-EOM-CC(3,2h-1p) 9:448 17:377

IP-EOM-CC(3,3h-2p) 9:384 16:688

IP-EOM-CC(3,4h-3p)c 9:381 16:641

IP-EOM-CC(4,1h)d 10:418 18:391

IP-EOM-CC(4,2h-1p)d 9:450 17:006

IP-EOM-CC(4,3h-2p)d 9:385 16:669

IP-EOM-CC(4,4h-3p)c;d 9:383 16:643

a The lowest and highest orbitals are kept frozen in the corre-

lation treatment. The FCI energy of the ground state of BH is

ÿ25:206212H.
b IP-EOM-CC(1,1h)�CI(1,1h)�Koopmans'theorem;IP-EOM-

CC(1,2h-1p)�CI(1,2h-1p); IP-EOM-CC(1,3h-2p)�CI(1,3h-2p);

IP-EOM-CC(1,4h-3p)�CI(1,4h-3p).
c The total energy of any electronic state of BH� is exact.
d The ground-state total energy of BH is exact.
e IP-EOM-CCSD.
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Table 2

The electron a�nities (in eV) of CH� (rCH � 1:120 �A) calculated by EA-EOM-CC(m; nh-n� 1p) and CI(m; nh-n� 1p) with the 6-31G*

basis seta

Theory 1! 1p 1! 3r

FCI 10.109 1.741

CI(1,1p)b 8.922 1.159

CI(1,1h-2p)b 10.949 2.086

CI(1,2h-3p)b 12.551 4.175

CI(1,3h-4p)b 12.681 4.288

CI(1,4h-5p)b;c 12.709 4.340

CI(2,1p) 6.433 )1.329

CI(2,1h-2p) 8.460 )0.402

CI(2,2h-3p) 10.063 1.687

CI(2,3h-4p) 10.192 1.800

CI(2,4h-5p)c 10.220 1.852

CI(3,1p) 6.386 )1.376

CI(3,1h-2p) 8.413 )0.449

CI(3,2h-3p) 10.016 1.640

CI(3,3h-4p) 10.146 1.753

CI(3,4h-5p)c 10.173 1.805

CI(4,1p)d 6.322 )1.440

CI(4,1h-2p)d 8.349 )0.513

CI(4,2h-3p)d 9.952 1.575

CI(4,3h-4p)d 10.081 1.689

CI(4,4h-5p)c;d 10.109 1.741

EA-EOM-CC(1,1p)b 8.922 1.159

EA-EOM-CC(1,1h-2p)b 10.949 2.086

EA-EOM-CC(1,2h-3p)b 12.551 4.175

EA-EOM-CC(1,3h-4p)b 12.681 4.288

EA-EOM-CC(1,4h-5p)b;c 12.709 4.340

EA-EOM-CC(2,1p) 8.317 0.834

EA-EOM-CC(2,1h-2p)e 10.150 1.701

EA-EOM-CC(2,2h-3p) 10.132 1.745

EA-EOM-CC(2,3h-4p) 10.159 1.787

EA-EOM-CC(2,4h-5p)c 10.159 1.791

EA-EOM-CC(3,1p) 8.311 0.829

EA-EOM-CC(3,1h-2p) 10.133 1.693

EA-EOM-CC(3,2h-3p) 10.117 1.734

EA-EOM-CC(3,3h-4p) 10.111 1.740

EA-EOM-CC(3,4h-5p)c 10.112 1.744

EA-EOM-CC(4,1p)d 8.310 0.828

EA-EOM-CC(4,1h-2p)d 10.132 1.693

EA-EOM-CC(4,2h-3p)d 10.115 1.734

EA-EOM-CC(4,3h-4p)d 10.109 1.740

EA-EOM-CC(4,4h-5p)c;d 10.109 1.741

a The lowest and highest orbitals are kept frozen in the correlation treatment. The FCI energy of the ground state of CH� is

ÿ37:990913H.
b EA-EOM-CC(1,1p)�CI(1,1p)�Koopmans' theorem; EA-EOM-CC(1,1h-2p)�CI(1,1h-2p); EA-EOM-CC(1,2h-3p)�CI(1,2h-3p);

EA-EOM-CC(1,3h-4p)�CI(1,3h-4p); EA-EOM-CC(1,4h-5p)�CI(1,4h-5p).
c The total energy of any electronic state of CH is exact.
d The ground-state total energy of CH� is exact.
e EA-EOM-CCSD.
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attached states minus the CI(m) energy of the
reference state.

By comparing the results of CI(4; nh-n� 1p)
and IP/EA-EOM-CC(4; nh-n� 1p), we can clearly
see the virtue of the similarity transformation of
the Hamiltonian in the latter method. The con-
vergence of the calculated ionization potentials
and electron a�nities with respect to n is remark-
ably faster in IP/EA-EOM-CC than in CI. As the
reference states (the ground states of BH and
CH�) are handled exactly by CI(4)�CC(4)�FCI,
the di�erence arises from a better description of
the target radicals in IP/EA-EOM-CC(4; nh-
n� 1p) achieved by the e�ective inclusion of
dynamical correlation through the similarity
transformation. The IP-EOM-CC(m;mh-mÿ 1p)
models appear to be numerically well-balanced
models among others. When we increase or de-
crease the order of T while holding the order of
I�k� ®xed, we obtain deteriorated results relative to
IP-EOM-CC(m;mh-mÿ 1p) except for a few cases.
This observation might be expected as these

IP-EOM-CC models include IP-EOM-CC(4,4h-
3p)�FCI and IP-EOM-CC(1,1h)�Koopmans'
theorem at both ends of the series and also the
standard IP-EOM-CCSD� IP-EOM-CC(2,2h-
1p). They also correspond to a natural extension
of EE-EOM-CC(m;m) in the sense that the exci-
tation energies of Rydberg series obtained
from EE-EOM-CC(m;m) should converge at the
ionization potentials obtained from IP-EOM-
CC(m;mh-mÿ 1p) [16,18,31]. The connection
between EA-EOM-CC and EE-EOM-CC is less
straightforward [31]. We may consider two di�er-
ent series, i.e., EA-EOM-CC(m;mÿ 1h-mp) and
EA-EOM-CC(m;mh-m� 1p), as candidates for
the best-balanced series. The former series in-
cludes EA-EOM-CC(1,1p)�Koopmans' theorem
(though it performs poorly for electron a�nities)
and also the standard EA-EOM-CCSD�EA-
EOM-CC(2,1h-2p), but not FCI, whereas the lat-
ter includes FCI. Overall these two series perform
equally well for principal electron a�nities, but, as
we shall see later, the results for the excitation
energies of radicals appear to favor EA-EOM-
CC(m;mÿ 1h-mp).

Table 3 summarizes the IP-EOM-CC(m;mh-
mÿ 1p) and CI(m;mh-mÿ 1p) results for the ver-
tical ionization potentials of C2. The ground-state
wavefunction of C2 is known to have substantial
multi-determinantal character, and is a challenging
problem for single-reference theories. The largest
absolute amplitude in T occurs at a double (2h-2p)
replacement from the ground-state wavefunction,
and is as big as 0.39 in the CC(8) wavefunction.
Consequently, the wavefunctions of the ionized
states, which are predominantly 1h ionization
from the ground state, have appreciable contri-
butions from 3h-2p determinants. We notice from
the table that IP-EOM-CCSD� IP-EOM-CC(2,
2h-1p) does not provide as accurate principal
ionization potentials for C2 as it does for BH,
owing to the multi-determinantal character of the
former. However, the deviations from the FCI
results are remarkably smaller in IP-EOM-
CCSD� IP-EOM-CC(2,2h-1p) (ca. 0.5 eV) than
those encountered in the corresponding CI model,
i.e., CI(2,2h-1p) (>4 eV), which again attests to the
e�ectiveness of the similarity transformation. IP-
EOM-CC(3,3h-2p) includes the 3h-2p operator

Table 3

The ionization potentials (in eV) of C2 (rCC � 1:262 �A) calcu-

lated by IP-EOM-CC(m;mh-mÿ 1p) and CI(m;mh-mÿ 1p)

with the 6-31G basis seta

Theory 1pu !1 2rÿu !1
FCI 12:131 14:721

CI(1,1h)b 12:195 13:942

CI(2,2h-1p) 16:809 18:221

CI(3,3h-2p) 12:070 14:537

CI(4,4h-3p) 12:695 15:063

CI(5,5h-4p) 12:109 14:716

CI(6,6h-5p) 12:136 14:726

CI(7,7h-6p) 12:131 14:721

CI(8,8h-7p)c 12:131 14:721

IP-EOM-CC(1,1h)b 12:195 13:942

IP-EOM-CC(2,2h-1p)d 12:662 15:180

IP-EOM-CC(3,3h-2p) 12:134 14:803

IP-EOM-CC(4,4h-3p) 12:151 14:749

IP-EOM-CC(5,5h-4p) 12:130 14:724

IP-EOM-CC(6,6h-5p) 12:132 14:721

IP-EOM-CC(7,7h-6p) 12:131 14:721

IP-EOM-CC(8,8h-7p)c 12:131 14:721

a The two lowest and two highest orbitals are kept frozen in the

correlation treatment. The FCI energy of the ground state of C2

is ÿ75:609844H.
b IP-EOM-CC(1,1h)�CI(1,1h)�Koopmans' theorem.
c The ground-state energies of C2 and C�2 are exact.
d IP-EOM-CCSD.
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among X�k� and yields accurate ionization poten-
tials (within 0.1 eV of the FCI results) for this
pathological example.

The vertical excitation energies of BH� and
CH computed by IP-EOM-CC and EA-EOM-CC
are compiled in Tables 4 and 5, respectively. The
percentage contributions of the 1h (1p) and 2h-1p
(1h-2p) determinants in the FCI wavefunctions
are also given in these tables. The excited states
are categorized into three groups: those that are
associated with dominant 1h (1p) transitions from
the reference state, those with dominant 2h-1p
(1h-2p) transitions, and those with dominant 3h-
2p (2h-3p) and higher transitions. The excited
states in the ®rst category (the lowest 2R� state of
BH� and the third lowest 2R� state of CH) are
the destinations of the principal ionization or
electron-attachment processes. The excitation en-

ergies to these states are reasonably well repro-
duced by IP-EOM-CC(m; 2h-1p) or EA-EOM-
CC(m; 1h-2p), though the deviations from the
FCI results for the lowest 2R� state of BH� (0.3±
0.5 eV) are appreciably larger than those typically
encountered in the EE-EOM-CCSD excitation
energies for dominant single replacement transi-
tions (see, e.g., Ref. [32]). This is obviously due to
the substantial contributions of 2h-1p determi-
nants in the wavefunction of that state. Most of
the excited states listed in the tables are in the
second category, which are the destinations of
non-Koopmans ionization or electron-attachment
processes. Their wavefunctions are predominantly
single replacement from the ground-state wave-
functions of the radicals, which in turn are
predominantly 1h ionization or 1p electron
attachment from the reference states. As one

Table 4

The excitation energies (in eV) of BH� (rBH � 1:232 �A) calculated by IP-EOM-CC(m; n� 1h-np) with the 6-31G** basis set as the

di�erences in the ionization potential of BH between the lowest root (the ground state of BH�) and higher roots (excited states of

BH�)a

IP-EOM-CC 2P 4P 2R� 2P 4R� 2P

FCI 3.369 7.073 7.260 10.603 10.698 11.068

(1,1h)b ± ± 10.625 ± ± ±

(1,2h-1p)b 3.530 7.016 7.756 11.007 ± 11.607

(1,3h-2p)b 3.793 7.083 7.334 10.795 11.022 11.285

(1,4h-3p)b 3.369 7.073 7.260 10.603 10.698 11.068

(2,1h) ± ± 7.983 ± ± ±

(2,2h-1p)c 4.047 7.913 7.562 11.628 ± 12.412

(2,3h-2p) 3.415 7.085 7.284 10.591 11.035 11.098

(2,4h-3p) 3.369 7.073 7.260 10.603 10.698 11.068

(3,1h) ± ± 7.974 ± ± ±

(3,2h-1p) 4.090 7.959 7.587 11.675 ± 12.458

(3,3h-2p) 3.415 7.088 7.304 10.591 11.041 11.100

(3,4h-3p) 3.369 7.073 7.260 10.603 10.698 11.068

(4,1h) ± ± 7.973 ± ± ±

(4,2h-1p) 4.059 7.929 7.556 11.645 ± 12.427

(4,3h-2p) 3.415 7.089 7.284 10.592 11.041 11.100

(4,4h-3p) 3.369 7.073 7.260 10.603 10.698 11.068

% 1h 0.00 0.00 76.04 0.00 0.00 0.00

% 2h-1p 96.76 96.44 13.09 94.75 0.00 94.98

a The lowest and highest orbitals are kept frozen in the correlation treatment. The percentage contributions from the determinants with

one hole and two holes and one particle in the FCI wavefunctions are also given as % 1h and % 2h-1p, respectively. The IP-EOM-

CC(m; 4h-3p) results are identical to the FCI results irrespective of m.
b IP-EOM-CC(1,1h)�CI(1h)�Koopmans' theorem; IP-EOM-CC(1,2h-1p)�CI(2h-1p); IP-EOM-CC(1,3h-2p)�CI(3h-2p); IP-

EOM-CC(1,4h-3p)�CI(4h-3p)�FCI.
c IP-EOM-CCSD.
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might expect, the excitation energies calculated
from IP-EOM-CC(m; 2h-1p) and EA-EOM-
CC(m; 1h-2p) for these excited states are exces-
sively higher than the FCI results. Quantitative
descriptions of these excited states require the
inclusion of at least the 3h-2p (2h-3p) operator.
Likewise, for those excited states with predomi-
nantly 3h-2p (2h-3p) replacement character, the
inclusion of the 4h-3p (3h-4p) operator would
become necessary. The e�ect of the similarity
transformation on the excitation energies mani-
fests itself in a rather complicated manner. On
going from IP-EOM-CC(1,2h-1p)�CI(2h-1p) to
IP-EOM-CC(2,2h-1p)� IP-EOM-CCSD, we ob-
tain an improvement only for the lowest 2R� state
of BH�, which is a dominant 1h replacement

from the reference state, while we deteriorate the
results for the rest of the excited states signi®-
cantly. Comparison between IP-EOM-CC(1,3h-
2p)�CI(3h-2p) and IP-EOM-CC(2,3h-2p), on
the other hand, indicates that the latter is a uni-
form improvement over the former. The same
trend can be seen in the EA-EOM-CC results.
One possible explanation is that the similarity
transformation particularly enhances the descrip-
tions of the ionized (electron-attached) states with
dominant 1h (1p) character when used in com-
bination with 1h-2p (2h-1p) operator, rendering
the energy di�erences uneven. To obtain reason-
able excitation energies for many of the excited
states of radicals, we must include 3h-2p (2h-3p)
in the ionization or electron-attachment operator.

Table 5

The excitation energies (in eV) of CH (rCH � 1:120 �A) calculated by EA-EOM-CC(m; nh-n� 1p) with the 6-31G* basis set as the

di�erences in the electron a�nity of CH� between the lowest root (the ground state of CH) and higher roots (excited states of CH)a

EA-EOM-CC 4R� 2P 2R� 2R� 2P 2R�

FCI 0.483 3.144 3.407 4.321 7.900 8.368

(1,1p)b ± ± ± ± ± 7.763

(1,1h-2p)b 1.106 3.915 4.961 5.115 ± 8.862

(1,2h-3p)b 0.918 3.569 3.809 5.125 9.393 8.376

(1,3h-4p)b 0.466 3.132 3.405 4.347 8.094 8.392

(1,4h-5p)b 0.483 3.144 3.407 4.321 7.900 8.368

(2,1p) ± ± ± ± ± 7.483

(2,1h-2p)c 2.217 5.067 5.924 6.219 ± 8.449

(2,2h-3p) 0.477 3.156 3.498 4.362 9.347 8.387

(2,3h-4p) 0.485 3.145 3.408 4.333 7.930 8.371

(2,4h-5p) 0.483 3.144 3.407 4.321 7.900 8.368

(3,1p) ± ± ± ± ± 7.482

(3,1h-2p) 2.234 5.085 5.930 6.237 ± 8.439

(3,2h-3p) 0.504 3.184 3.528 4.374 9.378 8.383

(3,3h-4p) 0.483 3.144 3.407 4.322 7.929 8.371

(3,4h-5p) 0.483 3.144 3.407 4.321 7.900 8.368

(4,1p) ± ± ± ± ± 7.482

(4,1h-2p) 2.235 5.086 5.931 6.238 ± 8.439

(4,2h-3p) 0.505 3.184 3.529 4.375 9.379 8.382

(4,3h-4p) 0.484 3.144 3.408 4.322 7.930 8.370

(4,4h-5p) 0.483 3.144 3.407 4.321 7.900 8.368

% 1p 0.00 0.11 0.00 0.16 0.89 87.84

% 1h-2p 94.63 94.58 91.84 93.28 0.45 5.19

a The lowest and highest orbitals are kept frozen in the correlation treatment. The percentage contributions from the determinants with

one particle and one hole and two particles in the FCI wavefunctions are also given as % 1p and % 1h-2p, respectively. The EA-EOM-

CC(m; 4h-5p) results are identical to the FCI results irrespective of m.
b EA-EOM-CC(1,1p)�CI(1p)�Koopmans' theorem; EA-EOM-CC(1,1h-2p)�CI(1h-2p); EA-EOM-CC(1,2h-3p)�CI(2h-3p); EA-

EOM-CC(1,3h-4p)�CI(3h-4p); EA-EOM-CC(1,4h-5p)�CI(4h-5p)�FCI.
c EA-EOM-CCSD.
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We now return to the question of the perfor-
mance of the EA-EOM-CC models. As the
truncation order of X�k� largely dictates the per-
formance of the EA-EOM-CC models, it may
not be meaningful to compare EA-EOM-CC(m;m-
1h-mp) with EA-EOM-CC(m,mh-m+1p) because
the latter certainly performs better than the
former. Rather we should compare EA-EOM-
CC(m� 1;mh-m� 1p) with EA-EOM-CC(m;mh-
m� 1p). From Table 5, we notice that for a given
order of electron-attachment operator mh-m� 1p,
EA-EOM-CC(m, mh-m� 1p) performs apprecia-
bly better than EA-EOM-CC(m� 1;mh-m� 1p).
For example, EA-EOM-CC(1,1h-2p) provides ex-
citation energies that are in better agreement with
the FCI results than EA-EOM-CC(2,1h-2p) does.
Likewise the excitation energies obtained from
EA-EOM-CC(2,2h-3p) or EA-EOM-CC(3,3h-4p)
are systematically closer to the FCI results than
those from EA-EOM-CC(3,2h-3p) or EA-EOM-
CC(4,3h-4p), respectively. It may be said that for
principal electron-attachment transitions both the
EA-EOM-CC(m� 1;mh-m� 1p) and EA-EOM-
CC(m;mh-m� 1p) models perform reasonably
well, but for non-Koopmans electron-attachment
transitions the latter model is better balanced.

To summarize:
1. IP-EOM-CC(2,2h-1p)� IP-EOM-CCSD is a

well-balanced IP-EOM-CC model that provides
principal ionization potentials (which are typi-
cally of dominant 1h character) with reasonably
high accuracy.

2. EA-EOM-CC(2,1h-2p)�EA-EOM-CCSD and
EA-EOM-CC(2,2h-3p) perform equally well
for principal electron a�nities.

3. Despite (1) and (2), for the ground states with
considerable multi-determinantal character, IP-
EOM-CC(2,2h-1p)� IP-EOM-CCSD performs
noticeably worse, and the use of IP-EOM-
CC(3,3h-2p)� IP-EOM-CCSDT or higher mod-
els will be warranted to obtain accurate principal
ionization potentials. Nevertheless, IP-EOM-
CC(2,2h-1p)� IP-EOM-CCSD works remark-
ably better than CI(2,2h-1p) in such pathological
cases.

4. For the quantitative descriptions of non-Koop-
mans ionization or electron-attachment pro-
cesses, one must go to IP-EOM-CC(3,3h-2p) �

IP-EOM-CCSDT or EA-EOM-CC(2,2h-3p)
(the approximate variants of them would be
pragmatic choices [18,33±35]). These models
provide the excitation energies of radicals within
a few hundredths of an electron volt of the FCI
results for excited states that are dominant 1h
(1p) and 2h-1p (1h-2p) replacements from the
reference state.

5. In general, one has to consider the ionization or
electron-attachment operator that is one order
higher than the dominant rank (the number of
electrons involved) of the ionization or elec-
tron-attachment process of interest within rea-
sonable accuracy (a few tenth of an electron
volt). If one attempts to achieve the similar ac-
curacy with mh-m� 1p CI, one must consider
the ionization or electron-attachment operator
that is two orders higher than the dominant
rank of the ionization or electron-attachment
process.
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