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Coupled-cluster expansion applied to the electron gas: Inclusion of ring and exchange effects*
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The coupled-cluster expansion (or the Coester-Kiimmel-Ciiek method) is applied to the correlation problem
in the uniform electron gas. Coupled nonlinear integral equations are developed for ring summations and the
analytic structure of the expansion coefficients is examined. To facilitate the solution of the equations a
technique is introduced to reduce the dimensionality of the problem. Numerical solution of the equations
enable the evaluation of both ring and exchange effects. The direct random-phase-approximation (RPA)
energy agrees with other work to the accuracy of the calculation. The screened exchange energy is evaluated
for the first time and contributes about 30% of the RPA energy. The resulting correlation energy compares
favorably with recent calculations using a dielectric formulation over the range of metallic electron densities.

I. INTRODUCTION

Owing to its similarity to metals with nearly
spherical Fermi surfaces and to the growing im-
portance of local density functionals, the electron
gas is one of the most widely studied of many-body
systems. Essential to an accurate description of
the electron gas is the inclusion of correlation
effects. An exact treatment of the correlation
terms is only possible when the electron density
is very high or very low. For the physically im-
portant region of intermediate densities correla-
tion contributions are either approximated or ob-
tained by interpolation between the high- and low-
density limiting r esults.

Many-body perturbation theory' has -been fre-
quently employed to study correlation contributions
to the properties of the electron gas. The classic
calculation of the high-density correlation energy
by Gell-Mann and Brueckner' used perturbative
methods and there have been recent attempts to
use diagrammatic formulations to extend the re-
sults to the region of metallic electron densities. ' '
One of the advantages to the perturbative approach
is that the expansion in principle will converge to
the exact result if all terms are included. In addi-
tion Monkhorst and Oddershede' have recently
demonstrated that perturbation theory can be ap-
plied to the correlation problem in real crystals.
Unfortunately, any meaningful and convergent
calculation using perturbation theory must include
summations to infinite order in the electron-elec-
tron interaction. This renders it difficult to choose
a physical basis from which to decide the appro-
priate terms to sum in the region of intermediate
densities.

Some of the more successful investigations of
correlation effects in the electron gas have used a
dielectric formulation of the problem. ' This ap-
proach has been very fruitful in describing the es-

sential features of the system. One of the short-
comings of the dielectric method is that its con-
nection with many-body perturbation theory is., un-
clear. As a consequence the appropriate correc-
tions to any given calculation are difficult to deter-
mine. In addition, as Singal and Das" have indi-
cated, dielectric methods may be well suited for
the electron gas but may not be useful for real
crystals.

An expansion which can be expected to overcome
the major deficiencies of both the dielectric method
and perturbation theory is the coupled-cluster
expansion, which has been alternatively called
coupled-pai. r many-electron theory " x4 or the
exp(S) method. "" It is a rigorous expansion for
the correlation correction, and the connection be-
tween the coupled-cluster method and the Gold-
stone expansion can be made clear. It is a useful
expansion for real crystals, and it yields con-
vergent, meaningful results in each order of trun-
cation. - One of the most appealing features of the
method is that in its lowest orders (the T, approxi-
mation; see Sec. IIB) ring diagrams are included
simultaneously with particle-particle, hole-hole,
and hole-particle ladder diagrams. These Gold-
stone diagrams have been speculated to have
major importance for the electron gas. In spite
of the power of the method there have only been
a limited number of applications to electronic
systems. The only application to the electron gas
has been the work of Singal and Das' who included
a class of diagrams which in atomic and molecular
calculations has been called rearrangements. "
Singal and Das obtained good agreement with the
dielectric calculations for intermediate densities.
For relatively high densities their results were
less accurate apparently due to the neglect of ring
diagrams "'

What follows is the first in a series of calcula-
tions on the correlation energy of the electron gas
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using the coupled-cluster method. We begin by
summing ring effects which are a necessary start-
ing point for any calculation. Using, the ring sum-
mations we evaluate both the random-phase-ap-
proximation (RPA} and screened exchange corre-
lation energy. We also develop some of the analyt-
ic properties of the coefficients of the coupled-
cluster expansion whi. ch will be essential for our
subsequent work.

In Sec. II me develop the theory. The results are
given in Sec. III and a discussion of the future
direction of our work will be given in Sec. IV.

II; THEORY

terms of the eigenfunctions of Ho. We write

H, =Q h(r, },
where

The eigenfunctions of &(r;) are given by

@(r }4k(r~}=~k4k(r~)

where

(r ) [1/(Q)1/2j elk r~'
and

(6)

(6)

In this section we present the theoretical details
for applying the coupled-cluster expansion to the
correlation problem in the electron gas. To intro-
duce the necessary notation and to bring out some
of the differences between the present formalism
and perturbation theory, we begin by briefly de-
scribing the system.

A. Definition of the problem

We consider N electrons enclosed in a. box of
volume Q. We shall study this system in the ther-
modynamic limit, i.e., where we allow both N and
Q to become infinite such that the density p de-
fined by

remains constant. To insure charge neutrality
and to remove certain divergences that arise, we
embed the system in a uniform-background of
positive charge of density p. As in other' treat-
ments of the electron gas it is convenient to write
the Hamiltonian for this system as

H =Ho+H',

Ho= ——Q &',
1

0

1
k

The ground-state eigenfunction of H„@„is a
Slater determinant made by doubly occupying the
2N eigenfunctions of Eq. (7) which are lowest in
energy. The highest-energy occupied state, called
the Fermi level, has wave vector k„. In terms of
the electron density of the system, k~ is given by

k~ = (3m'p)'~'. (10)

It is also convenient to define the classical elec-
tron radius for the system

~, =(-,' )x~'u

We also define

(12)

which is shown in a variety of text books" to be
given by

E, =2.20/~,'-0.916/~, .
The energy in Eq. (13) is expressed in rydbergs
per electron. In this paper we address the calcula-
tion of the correlation energy of the system 4E
which is defined by

(14)

where E is the exact ground-state energy of the
system.

eih (ri-1 f)
&f - Qk2

Equation (4) is the Fourier expansion of the elec-
tron-electron interaction, and as is well known,
the exclusion k+0 arises from divergences can-
celling with contributions from the uniform back-
ground of positive charge. Unlike perturbation
theory, in the treatment which follows it is un-
necessary to rescale the Hamiltonian in terms of
an expansion parameter depending on the density.
As in many treatments it is convenient to describe
a zeroth order approximation to the system in

B. Coupled-cluster expansion

The theoretical method we use has been called
alternatively, coupled-pair many-electron theo-
ry" "or the exp(S) method ""The. various
developments of the method are equivalent. Be-
cause we wish to compare the calculations which
follow with Goldstone diagrammatic perturbation
theory, ' we find it convenient to use the notation
and development introduced by Cizek" for atomic
and molecular problems and recently employed
for the electron gas by Singa1 and Das. ' The
complete details concerning the diagrammatic
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where the operator T is given by

(a) (b) In Eq. (17}each T, contribution is given by

0] ~ ~ ~ ~ yO j
~ ~ ~ ~

J'

C~C
ct~ y ~ c ~ p

&=1
(18)

(d) (e)

'- (g)

FIG- i. Linear diagrams contributing in the 72 approx-
imation.

In the coupled-cluster method, we write

(18)

method can be found in Ref. 11. Here we sketch
the necessary notational details.

The exact ground-state many-electron wave func-
tion, +, for the electron gas satisfies the Schro-
dinger equation

H+ =E4.

where C~. , C„.are, respectively, the creation"g
operator for particle state &; and the annihilation
operator for hole state Q,, and all".".', CJP is an ap-
'propriate coefficient. In Eg. (18) and throughout
this paper we have used the notation that Greek
letters signify states occupied in C, and Latin
letters signify virtual states. The coefficients in
Eq. (18) are determined by a set of coupled equa-
tions. These equations are given diagrammatically
in Ref. 11. To find the appropriate set of equations
for our purposes it is useful to introduce an ap-
proximation to T. This approximation, used by
Cizek"" in atomic and molecular calculations, is
given by

We shall call Eq. (19) the Tz approximation The.
diagrams corresponding to Eci. (19}are given in
Figs. 1 and 2; They have been drawn in accordance
with the rules given in Ref. 11 except that they are
rotated by 90 to more easily see the connection
with Goldstone theory.

Using the rules given in Ref. 11, and Eil. (7}, the

(c)

FIG. 2. Nonlinear dia-
grams contributing in the
7."2 approximation.
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T, equations are

s = &rsvp vl np&+ Q (&yslvtup&t r+ &yrlvlun&ts~y
1

a+ 8 r yu

—&yrlvl pu&t'" —&ys(v) un&t""z —&yr)v) up&tz"„) ~P&rslvluu&&t "~&

+ Q&y6[v[np&t" g+ Q [&y6)v[uu&&(t"„"

tsar,

+t()" t"„~g —t"„"t s'i, —t syt (;
—t"„"~t'i

y6uw

—t's"ntP —t "ayt ss —t s"rt "ns)

+(r»I ~I ~~&(', '(5~&""~&'p&+b&I~IN'~»"'„&);,)). (20)

In Eq. (20) the summations are taken over spin
orbitals, v is the electron-electron interaction,
and

&rs[v[np& = &rs[v[np& —&rs[v[pn&

is an antisymmetrized matrix element.
For the electron gas the matrix elements are

labeled by their wave vector. We write

(21)

&k,k, l vlk~k()& = (4)i/Illk, -k~l') ),

=(4&iii&')6k -~„.~,-k,
where q, given by

q =k„-k~,

(22)

(23}

is the momentum transferred by the Coulomb in-
teraction.

Equation (20) gives the appropriate expansion
coefficients for the many-electron wave function
through Eq. (16). The correlation energy is ob-
tained by evaluating the diagrams given in Fig. 3.
The direct diagram [Fig. 3(a)] gives .

orbitals.
As was indicated in Ref. 11 it is possible to sum

a class of Goldstone diagrams by solving the equa-
tions resulting from evaluating particular dia-
grams from Figs. 1 and 2. For example, if we
include diagrams (a)- (d) from Fig. 1 and (a) from
Fig. 2, we will have an equation which is equiva- .

lent to summing all the Goldstone ring diagrams.
This can be proved by choosing the appropriate
terms from Eq. (20) and iterating the equation for

As is well known, inclusion of the ring dia-
grams is essential to remove the divergences in
the order by order Goldstone expansion. " We now
examine the ring equations in some detail.

C. Ring equations

By virtue of Eq. (22) the t coefficients for the
electron gas will depend o..ly on two wave vectors
and the momentum transferred. %'e let

(26)

(24)Ag„. = ~s v + t~'8
f Sf&fe

and the exchange diagram [Fig. 3(b)] contributes

so that

T, = M (&(k(, k))C)((, qCkq qC(( Ck(.
kq sag. q

(27)

AE,„=— rs v ~ t"„'8. (26)

As in Eq. (20} the summations are taken over spin

If we write the solution to the equations for the
ring diagrams as t,"(k,, k;}, by choosing the ap-
propriate terms from Eq. (20) we obtain

t,"(k;,k, ) = 1++[t,"(k;,k)+t, (k;, k)] &(k)[I —e(k+q)]
D, (k„k;)Qq'

+—g g (&'(ic„ir)&'(k, ic')+,"0;,R')&,"(k„k&i &(k)e(%')(& —.&&%st&))[& —&%'+s))),
k, a ]f',a

(26)

where D, (k;, k&) is the energy denominator given by

D, (k;, k)) = —[q +q'(k;+k))], (29)

8(k) is a Pauli exclusion factor given by and the a denotes the spin quantum numbers.
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In the thermodynamic limit we may replace the
summations in Eq. (28) by integrations using the
relation

(31)
we obtain

, 0, lkl&a,
(32)

If we also perform the integration in units of k~,
and define

3
t", (k;, k~)=, 1+6]]',[t", (k, , k)+t,"(k~, k)Jq(k)[1 —q(k+j)]

3vkFq'D, (k„k,) .18"
2

" t: -kt:k k' t:k-k'" "k 0 8
'

x [& - «% + q]] [& —«%'«q)])

«

In E[l. (33) we have performed the necessary sum-
mations over spin. We note that E[l. (33) makes
manifest the well-known result that ring diagrams
do not couple different components of the momen-
tum transferred. We can solve E[I. (33) for each

value of q separately.
For our future discussions it is useful to note

that Eq. (33) contains both linear and nonlinear
parts. The linear part can be solved separately
using the equation

3
«*]k,, k,.)= 1+6«'j, [t"(k, , k ]t,, "(k,, k)] «(k)[1-q 0«q)]).

3nk~q2D'q(k k~)
(34)

The difference between t", (k;, k;) and t~"(k&, k&} is
clearly the nonlinear contributions. The effect of
the nonlinear terms. can be seen in Fig. 4. The
linear part contains the forward time ordered
Goldstone ring diagrams like those shown in Figs.
4(a) and 4(b}, whereas the nonlinear terms intro-
duce the other time orderings like that shown in
Fig. 4(c).

The regions of integration in Eqs. (33) and (34)
are depicted in Fig. 5 as the region outside sphere
A and inside sphere J3. The centers of spheres A
and B are separated by q. There are four cases for
the limits on the k integration; one for q &1, the
next for 1 &q & W2, the next for v2 &q &2 and the
last for q&2. The first three cases are shown in

Fig. 5. The appropriate limits on the k integration
for the case depicted in Fig. 5(a) are

8 [0 m —tan '[2(l ——,'q'}'~'/q) ],
[-qcos8+(1 —q' sin'8)'~', 1].

(a) (b)

For the case depicted in Fig. 5(b) there are three
regions of integration, labeled in the figure as I,
II, and III. The limits of integration are

~: [0, 1],
8: [0, ~~+tan '$(q' —I)''j]

for region I;

8: [-.'~+tan 'f(q2-1)~'], ~-tan '(2(I --'q')'"/q)],

[—q cos 8 —cos 8(q' —sec'8(q' —1}]~', 1]

ln SI[ &lp

(c)

(b)

FIG. 3. (a) Direct energy diagram; (b) the exchange
energy diagram.

FIG. 4. (a) and (b) examples of forward time-ordered
Goldstone ring diagrams included in the linear part of
Eq. (33); (c) an example of the other time orderings
arising from the nonlinear part of Eq. (33).
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(0) (a)

(b)

(c)

FIG. 5. Regions of k integration are shorn as the re-
gion outside sphereA and inside sphere & for (a) q &1,
(b) 1 &q & v 2, and (c) W2 &q & 2 for q measured in units of
kp.

for region II; and

8: [-,'m+tan '((q' —I)'"],w],

y: [0, -q cos8+cos8(q' —sec'8(q' —I))"]
for region III.

For the case shown in Fig. 5(c) there are two
regions labeled I and II. For region I the limits
are

~: [0, 1],
8: [0, v —tan '(2(1 ——,'q')'~'/q)J

(b)

FIG. 6. Screened exchange diagrams included in Eq.
(36)

and the limits for region II are

8: [w —tan '(2(1 ——,'q')~'/q), m],

[0, -q cos8+cos8[q' —sec'8(q' —1)} '].
When q &2 the integration on k is over a sphere of
radius 1.

For the ring summation the electron gas has
azimuthal symmetry and the integration over the
Q coordinate will give a factor of 2n As w. e shall
see in subsequent work this symmetry property is
not present for correlation calculations that go
beyond the rings and limits on the Q integrations
will be needed.

Using Eqs. (22), (24)—(26), (31), and (32) we ob-
tain energy expressions

and

aZ,". =144m'&,
J

',
J

', —,t", (k;, k, )g(k, )q(k~)[1 —q(k;+j)][1—q(k, +j)] (35)

t,"(k&, kq) R(k))q(k))[1 —q(k, + j)][1 —q(k) +j)1, (36)

where the units in Eqs. (35) and (36) are in ryd-
bergs per electron. There are expressions analo-
gous to Eqs. (35) and (36) for the energy including
only forward time ordered ring contributions.
They are obtained from Eqs. (35) and (36}by re-
placing f,"(k;,k&} by t~"(k„k,}. For our future
discussions we shall denote the forward time-
ordered direct and exchange correlation energy,
respectively, as 4E«and &E,„".

The direct contribution to the correlation energy
[Eq. (35)] is often called the random-phase ap-
proximation (RPA)." The exchange energy [Eg.

I

(36)] includes screened exchange effects as well as
the second-order Goldstone exchange contribution.
In Fig. 6 we give examples of screened exchange
Goldstone diagrams included in Eq. (36).

In the form of Eg. (33) the ring equations are
difficult to solve because f", (k;, k, ) defines a five-
dimensional matrix. To reduce the dimensionality
of the equations it is convenient to define

d'k
T,(k, )=, t s(k, , k)q(k)[1 —q(k+ j)] . (37)

Then Eq. (33) becomes
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t", (k„k,.) =[4j3wn, q'D, (k„k,.)]

x (1+6w'[T, (k;) + T,(k,.)] + 36w4T, (k,.)T,(k,.)] .
(38)

We shall now use Eq. (38) to find an integral equa-
tion for T,(k;). This equation, when solved, di.-
rectly yields t", (k, , k~) by substitution into Eq. (38).
We integrate both sides of Eq. (38) over k~ and ob-
tain

d'k
T,(k;) = (2,', n(k;)[1 —n(k;+ q)] „, ,„-,(1+6)T'[T,(k, )+ T,(,)]+367['T,(k,.)T,(k,.)].

Analogous expressions can be derived for the linear equations by using Eq. (34). We obtain

3

r,""(k)=f -;q(k)[1 —n(k+q)1 — . -[(+Br'[r,"(lc)+r, (k)])
3wk~q2D, (k;, k)

(41)t, (k, , k,.) = [4/3iik q'D, (k„k;)]/1+ 67i'[T, (k,.) y T, (k )]].
To find a numerical solution to Eq. (39) [or in a similar manner to Eq. (40)] we introduce a quadrature

formula to perform the integrations. If we write

where 8'-„are quadrature weights, we obtain

r, (i,.)(i-„'",P w-„-
' -„' P w-„' r, (i)

4q )., D,(k, , k) 4q g D,(k;, k)

(43)

It is convenient to introduce the notation

T, = T,(k, )
then Eq. (47) becomes

(49)

4n

q'D, (k, , k)

Then Eq. (43) becomes

P A.„T,=a,
k

We write this matrix equation as

A T=B(T). (51)
fm k k sk k

=Q W,f™+ T, Q W„T„D,„

or
(46)

D, 12m

(47)

If we write

Z 6;a 1-—Z +' D — — — +'aD~a Ta

'The matrix equation can be solved by standard
techniques. We note that the right-hand side of
Eq. (51) depends on the solution vector T and that
an iterative solution to Eq. (51) is required. An

analogous set of equations can be found by intro-
during a quadrature formula into Eq. (40). The re-
sulting equations are linear and no iterations are
needed.

We shall discuss the numerical solution to the
ring equations in 3ec. III. We complete this sec-
tion by examining the analytic structure of the
coefficients of the expansion in the ring approxima-
tion.

D. Behavior of the coefficients

2 2

kz m kz
(48)

'The following properties of the coefficients dis-
cussed in Sec. II C are important both for the nu-
merical solution to the ring equations and for fu-
ture applications of the formalism:
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lim T,(k, ) =—
6~' '

lim TF"(k,) =-
q~p m

l,im ts(k„k&) =f(k;, k~)q ',
q~p

where f(k„k,) is some function of k, and k„

lim t,"(k), kq) =-
3mk~q'

(52)

(53)

(54)

(55)

and

lim d'k; d'k~3,"k], k~ g k]
Bq

x g(k&)[1 g(k,.y tf)][1 —g(k, + q)] = ~,
(56)

where q is expressed in units of k~.
We can prove Eq. (52) if we rewrite Eq. (39) as

4 d~& q(k)[1- q(k+ q)] Sw d'k Z(k)[1 —Z(k+q)] T, (k)
3m& q' (2v)' D (k„k) — q'y (2v)' D (k( k) T (k, )

48'' d'k q(k)[1 —q(k+ q)]T,(k)
4& (2v) D,(k„k)

I

(57)

lim T,(k, ) =—lim f", (k„k&)
q~P q-+Q

d'k
2

', n(kg)[1-n(kg+q)1 (62)

The volume of the integrated region is given by

V(q) = d'k r)(k)[1 —n(k+ q)]

so that Eq. (62) becomes

(63)

lim T,(k, ) =—jim t, (k„k,.)
q~P q~p

or using Eqs. (52) and (63) we obtain

(64)

%e define

4 &'k g(k)[1 —q(k+q)]
3vk~q' (2v)' D (k. k)

As q approaches zero Eq. (57) becomes

lim T,(k, )=[o. '(q, k, ) 12m' 36m4T, (k, )] ', (59)
q ~p

where we have used the fact that T,(k;) is indepen-
dent of k, for small q. As q approaches zero
o. (q, k, ) becomes infinite so that Eq. (59) becomes

l,im T (k;)= [-12m —36m T (k&)] '. (60)
q~p

Solving Eq. (60) for T,(k;) we obtain Eq. (52). We
can prove Eq. (53) in a similar manner.

We can use Eq. (52) to prove Eq. (54). From
Eq. (37)

3

lim T,(k, }= lim ~, f(k„k&)q(k&)[1 —q(k&+ q)].
q~p q~p

(61)

Because t, (k„k&) is a weak function of k„and
k& for small q, we can approximate

lim f ", (k„k~)—= — . (65)
3q

The assumption that t, (k, , k,.) is independent of
k,. and k,. for small q is only approximately cor-,
rect, so that Eq. (65) rigorously gives the correct
q dependence of t, (k;, k, ) and proves Eq. (54).

We can prove Eq. (55) by noting that the first
term on the right-hand side of Eq. (33) is domin-
ant as q- and

lim D,(k;, k&) = —q'. (66)
q-+oO

The slope discontinuity at q = 2 [Eq. (56}]is simi-
lar to the slope d'iscontinuity in the electron gas
dielectric function. It occurs because the nature
of the Pauli exclusion factors changes at q = 2 and
a discussion of the mathematical details can be
found elsewhere. "

III. RESULTS

Gauss-I. egendre quadrature was introduced into
Eq. (39) to obtain Eq. (51}. The values of q used
in Eq. (51) were chosen to be the Gauss-Legendre
grid required to accurately evaluate Eqs. (35) and
(36). Because of the slope discontinuity [Eq. (56)]
it was necessary to divide the region of the q in-
tegration into three sections. It was found that di-
viding the regions into [0, 1.95], [1.95, 2.05], and
[2.05, ~] was sufficiently accurate to evaluate the
correlation energy to four significant figures.
Twelve Gauss-I, egendre points were used in the
first region, two in the second, and 26 in the
third.

The size of the mesh of points used for the k
integrations [Eq. (39)] depended on the value of q.
For the case that q & 1, regions I and III for the
case shown in Fig. 5(b), for regions I and II for
the case shown in Fig. 5(c) and for q&2, four quad-
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rature points were used for the k integration and
four quadrature points were used in the 8 inte-
gration. For region II in the case shown in Fig.
5(b) two quadrature points were used in the k
integration and two quadrature points were used
in the 6 integration.

We first solved the linear part of the ring equa-
tions [Eq. (40)]. The linear equations were solved
by standard techniques and the results. are given
in 'Table I. In Table I we have put

gEER gEsR (67)

TABLE I. For@sard time-ordered ring contribution to
the correlation energy. ~

'The significance of these results will be more
transparent when we compare them with the full
ring summation. It is useful to compare the ex-
change energy ~E~ with the second-order exchange
Goldstone diagram which contributes 0.046 By and
is ~, independent. ' From 'Table I it is clear that
the unscreened second=order exchange energy be-
comes unphysically large for large w, In contrast
4E~ contributes somewhat less than 50/q of &E«,
for all x,. This confirms the well-known fact that
the unscreened second-order exchange energy
overestimates the effect of exchange to the total
correlation energy for low and intermediate elec-
tron densities. As x, becomes small &E~ ap
proaches the bare second-order exchange result.

To solve the full ring equations [Eq. (39)] an
iterative solution was required. Preliminary
attempts to use T, (k, ) as the first guess resulted
in poor convergence of the iterative equations.
The convergence difficulties were particularly
severe for small q where the solutions differ by
a factor of 2 [see Eqs. (52) and (53)]. For large
q, T, (k, ) and T,(k,.) are identical. Numerical ex-
perience taught us that choosing

TABLE II. The correlation contribution from Eg. (51)
as a function of the number of iterations for ~$=1.~

No. of
iterations

-0.13730
-0.14668
-0.16084
-0.15990
—0.15932
-0.15770
-0.15768
—0.15768

0.03896
0.03922
0.03938
0.03936
0.03936
0.03936
0.03936
0.03936

—0.09834
—0.1075
-0.1215
-Q.1205
-0.1200
-0.1183
-0.1183
-0.1183

~Rydberg units.

T,(k,.) = (1 —q)/6w'

for q&1 and

T,(k, ) =0

(68)

(69)

for q&1, as the first iterate provided satisfactory
convergence. Additional improvement of the con-
vergence properties was obtained by using a
Shanks Transformation" on B(T).

'The convergence properties of the equations
can be seen in Table II. In 'Table II we have de-
fined

QER Qg R QER (70)

Convergence to four significant figures is attained
in six iterations.

In Table III the correlation energy is given for
x, equal to 1-10. The results were computed with
six iterations of Eq. (51). For comparison in the
last column of Table III we give the calculations
of Vashishta and Singwi'who used a dielectric for-
mulation. Unlike the calculation of Gell-Mann and
Brueckner' which gives the BPA energy as an ex-
pansion in x, and is only valid in the high-density

DWEEB
b

dir gEFB TABLE III. Correlation energy of the electron gas as
a function of ~$

1
2
3

5
6
7
8
9

10

-0.1462
-0.1128
-0.09512
-0.08358
—0.07522
-0.06882
-0.06368
-0.05946
-0.05590
-0.05284

0.03886
0.03432
0.03116
0.02876
0.02682
0.02520
0.02384
0.02266
0.02162
0.02070

-0.1073
—0.07848
-0.06396
-0.05482
-0.04840
-0.04362
-0.03984
-0.03680
-0.03428
-0.03214

~Rydberg units.
'

Obtained from EQ (35) by substituting tq (kz & k j) for
t~(k,-,k,.).

'Obtained from Eq. (36) by substituting t, (k;, k;) for
t, (k, , k,.).

f$

1
2
3
4
5
6
7
8
9

10

—0.1577
—0.1235
-0.1055
-0.09354
—0.08486
-0.07816
-0.07278
—0.06830
-0.06452
-0.06126

~ Rydberg units.
"Reference 8.

0.03936
Q.03512
0.03218
0.02994
0.02814
0.02664
0.02534
0.02424
0.02324
0.02238

—0.1183
—0.08838
-0.07332
-0.06360
—0.05672
—0.05152
-0.04744
-0.04406
—0.04128
-0.03888

-0.112
-0.089
-0.075
-0.065
-0.058
-0.052
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limit, the direct energy given here is the exact
RPA energy and agrees with the results of Hedin"
to the accuracy of his calculation. As in the linear
case the exchange energy is well behaved for large
x, in contrast to the unscreened second-order ex-
change energy. To our knowledge this is the first
such calculation of this screened contribution to the
exchange energy for the electron gas, and we find
that it contributes about 30% of the RPA energy for
all computed values of r,. The agreement between
4F."and the results of Vashishta and Singwi' is
excellent for all computed electron densities. By
comparing Table III with 'Table I it is clear that
the nonlinear terms are important and contribute
between 10 and 20/p of the total correlation energy.

1V. DISCUSSION

We have used the coupled-cluster expansion to
sum ring effects in the electron gas. Using the
ring summations we have evaluated both direct
and exchange contributions to the correlation ener-
gy. The agreement between the calculated correla-
tion correction and the results of recent self
consistent. dielectric function calculations was ex-
cellent.

This agreement does not imply that all important
correlation effects have been included. We have
neglected particle-particle ladder [Fig. 1(h)], hole-
hole ladder [Fig. 1(i)], hole-particle /adder [Figs.
l(e)-1(g)], and nonlinear diagrams other than
Fig 2(a), in addition to terms beyond the T, ap-
proximatjon. Recent calculations have emphasized

the importance of some of the terms in the T,
approximation that we have ignored, '" and we in-
tend to investigate them systematically. Of par-
ticular interest is a study of the effect of simul-
taneously summing particle-particle ladder and
ring diagrams. Such a calculation is presently
in progress, and will include both short and long-
range correlations as well as allow comparison
with the recent work of I.owy and Brown. ' Future
work will also study the contribution of rearrange-
ment effects and particle-hole ladder diagrams.

It is important to note that nonlinear equations
of the type we have investigated will have multiple
solutions. The solution we found to Eg. (33) is not
unique. Recent studies by Zivkovic and Monkhorst"
have suggested that the other solutions may pro-
vide useful approximationg for some of the excited
states of the system. 'Since the excitation spectrum
is of great interest, methods for finding the mul-
tiple solutions are in progress. . Additional work
on other properties of the electron gas is also
anticipated.
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