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Chapter 3

Ground and Low-Lying Excited States of
Interacting Electron Systems; A Survey

and Some Critical Analyses*

BEHNAM FARID
Max-Planck-Institut fur Festkorperforschung, Heisenbergstrafie 1,

70569 Stuttgart, Federal Republic of Germany

Abstract
In this contribution we deal with a number of theoretical aspects concerning
physics of systems of interactiugelectrons. Our discussions, although amenable
to appropriate generalisations, are subject to some limitations. To name,
we deal with systems of spin-less fermions — or those of spin-compensated
fermions with spin —, with nondegenerate ground states, and those in which
relativistic effects are negligible; we disregard ionic motions and deal with "nor¬
mal" (not superconducting, for instance) systems that are inaddition free from
randomly distributed impurities. We restrict our considerations to the absolute
zero of temperature. The Green and response functions feature inour theoreti¬
cal considerations. Here we give especial attention to the analytic properties of
these functions for complex values of energy. We discuss how, both fundamen¬
tally and from the practical viewpoint, ground and low-lying excited-states
properties can be obtained from these correlation functions. Characterising
low-lying excited states by means of elementary excitations, we deal with both
those that are particle-like (the Landau quasi-particles) and those that are

•Dedicated to the memories of Dr Caroline P. Bammel, n£e Hammond, Fellow and Lecturer
in Classics of Girton College and Reader in Early Church History of the University of Cam¬
bridge, United Kingdom, and Dr Dr Ernst Bammel, Reader Emeritus inEarly Christian and
Jewish Studies of the University of Cambridge and Professor of Theology of the University
of Miinster, Federal Republic of Germany.
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104 Electron Correlation in the Solid State

collective (plasmons, excitation in the total distribution of electrons). We
devote some space to discussions concerning the domain of validity and break¬
down of the many-body perturbatiou theory, specifically that for the single-
particle Green function and the self-energy operator. Extensive analysis of the
asymptotic behaviour of dynamic correlation functions in the limits of small
and large energies reveal the significance of the Kohn-Sham-like Hamiltonians
within the context of the many-body perturbation theory. In view of this, at
places we pay especial attention to a number of the existing density-functional
theories (including the ones for the single-particle reduced density matrix and
time-dependent external potentials). We discuss in some detail a number of
issues that are specific to the (phenomenological) Landau Fermi-liquid theory
and their justification within the framework of the many-body perturbation
theory. Indoing so we touch upon a number of characteristic features specific
to Fermi-liquid (as oppsed to marginal Fermi- and Luttinger-liquid) systems.
Finally, we put one particular approximation scheme for the self-energy oper¬
ator, known as the the GW scheme, under magnifying glass and observe it in
many of its facets.

1. Introduction

The two-body Coulomb interaction amongst electrons can never justifiably be
neglected inany theoretical consideration. It can however happen that itsmain
effects may be subsumed in some one-body effective potential. Whether such
effective theories can be constructed, and if so, how the residual interaction
can be accounted for, are questions that are addressed within the framework
of the many-body theory.

The need for an effective description of interacting systems arises for two
reasons, of which one is perceptual and the other practical. The former is
related to the way in which we are able to conceive of things.1 Perceptually,
one may be able to conceive of the correlated state of a two-particle system,
however beyond this one does not seem to have the ability to forming concrete
ideas concerning the state and of what it possibly can represent. On the
practical side, the larger the number of the particles, the greater the effort
that has to be spent in order to calculate a correlated state and extract from

1"Thinking in terms of one / Is easily done — / One room, one bed, one chair, / One person
there, / Makes perfect sense; one set / Of wishes can be met, / One coffin filled. // But
counting up to two / Is harder to do; / For one must be denied / Before it's tried." [Philip
Larkin, Counting, September? 1955]
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the energy axis coincide with the energies of the (N± l)-electron states of the
system as measured from the energy of the iV-electron GS, i.e., the one-particle
excitation energies. In general, for extended systems comprised of large num¬
bers of electrons, excited states are highly (nearly) degenerate: from simple
dimensional considerations it follows that for a system of linear dimension L,
the separations between the energy levels scale like L~2 (Landau and Lifshitz
1980a, p. 14). As a consequence of this massive exact or almost exact degen¬
eracy of the excited states of the many-electron systems, it follows that for
systems in the thermodynamic limit the description of the excitation spectra,
such as the one contained in the spectral function corresponding to the single-
particle GF (Subsecs. 4.4 and 6.1), in terms of isolated exact excitations is
no longer meaningful, for the reason that individual excitation energies can¬
not be experimentally resolved. In fact from the mathematical point of view,
the procedure of taking the thermodynamic limit leads to the "smearing" of
poles into branch cuts (see Sec. 2). In practice, in particular in interpreting
experimental observations, it is common to identify the sharp and prominent
features in the spectra with excitation energies of new types of particles, quasi
particles (QPs), such as (Abrikosov, Gorkov and Dzyaloshinski 1963, Pines
and Nozieres 1966, Ashcroft and Mermin 1981, Landau and Lifshitz 1980b,
Kittel 1986): "excitons", "magnons", "plasmons", "polarons", "polaritons" ,
"quasi electrons", "quasi holes", "rotons", etc. (see Sees. 6.1, 6.3 and 8.7).
The width of one such sharp peak in a spectrum will then be associated with
the degree of de-coherence, or lifetime, of the corresponding excitation. The
broadness of a peak can be accounted for by assigning an imaginary part to
the corresponding excitation energy.

The complex "poles" of correlation functions (see Sees. 2, 6 and 8) that are
associated with the excitation energies of a system in the thermodynamic limit,
are not necessarily approximate devices introduced for the sake of convenience
inreproducing the broad spectra. This is clarified by the following observation:
Intaking the thermodynamic limit, correlation functions become in general ill
defined if the external energy parameter £ in the respective expressions is kept
to be real-valued. On the other hand, no problem can arise when the ther¬
modynamic limit is taken while the energy parameter is made into a complex
variable, z (Subsec. 2.2). This process is not reversible in that npon approach¬
ing the real energy axis from the complex plane, subsequent to having taken
the thermodynamic limit, correlation functions are seen not to have main¬
tained their poles of the pre-thermodynamic-limit stage. Rather, these poles
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108 Electron Correlation in the Solid State

conduction electrons in metals, semi-metals and heavily-doped semiconduc¬
tors (Ashcroft and Mermin 1981, Kittel 1986). The Fermi-liquid theory in its
original form (Landau 1957a, 1957b, 1959) had concerned homogeneous sys¬
tems, however its underlying concepts admit generalisation to inhomogeneous
systems (Luttinger 1960). Thus the routinely-calculated electronic band-
structures in solids are nothing but energies that in some approximate frame¬
work are associated with the QP energies. The one-particle-like equations
employed in these calculations are often5 simplified forms of a Schrodinger-
type equation for QPs (Sec. 6). The simplifications amount to replacing the
energy-dependent non-Hermitian SE operator by a static Hermitian operator
that in an effective way is supposed to take account of the interaction effects.
Insuch static effective theories, QPs behave like non-interactingelectrons (e.g.,
they have infinite lifetimes) with renormalised or effective parameters (such as
an effective mass). Thus systems of particles of effective theories (such as the
Hartree and Hartree-Fock theories — in general, "mean-field" theories) are by
construction Fermi liquids (excluding anomalies), provided of course that they
possess a Fermi surface which may be possibly multi-sheeted (Sec. 6). Hence
systems that are known to have non-Fermi-liquid-like behaviour are beyond
the reach of static effective theories (or, "band theories").

In this work we present a self-contained framework within which the single-
particle Green function G of an interacting system can be determined (see
Sec. 4). This function can be used to calculate a non-negligible number of
properties corresponding to the GS of this system; these include all properties
whose corresponding operators involve one-body terms, which may be local
or non-local (Fetter and Walecka 1971, pp. 66 and 67). The expression for
the GS total energy due to Galitskii and Migdal (1958) shows that even this
quantity, which involves the two-body electron-electron interaction, can be fully
expressed in terms of the single-particle GF (Subsec. 9.7). To calcnlate G it is
necessary that we deal with a numher of other correlation functions which, due
to their physical significance, have been given specific names. These inclnde
the density-density correlation function y, the polarisation function P, the
dielectric function e, the pair-correlation function g, the SE operator E and
the vertex function T. In this work in addition to G we eonsider x, P, 9 and
E in some detail.

5For very fundamental reasons, the one-particle Kohn-Sham (1965) (KS) equation does not
belong to the category of approximate QP equations.
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Froma formal spectral representation for G(e), where e denotes the external
energy parameter which through the Fourier transform is reciprocal to the
time parameter t, known as the Lehmann (1954) representation (Fetter and
Walecka 1971), it becomes evident that the information concerning the one-
particle excitation spectrum6 of the interacting system is contained in G(e).
However, for systems in the thermodynamic limit — which are systems of our
main interest in the present work —, determination of G(e) must of necessity
(see above) be based on that of G(z), with z a complex-valued energy variable,
from which G(s) is obtained according to G(e) = limÿoG(s ± it]), for s >
p and e < p; here p stands for the "chemical potential" (see Subsec. 4.2),
We refer to G(z) as the analytic continuation of G(e) into the physical RS
of the complex z-plane (Subsec. 2.2). The many-valuedness of G(z) implies
that there are other branches corresponding to G(s) which through analytic
continuationof G(c) or G{z) across the branchcuts (Sec. 2) can be constructed;
we denote all these other functions collectively by G{z) and refer to them as
analytic continuations of G(s) or G(z) into non-physical RSs. We consider the
analytic properties of G(z) in the complex z-plane and present a so-called bi-
orthonormal representation (Morse and Feshbach 1953, pp. 883-886, Layzer
1963) for it which is in terms of the left and right eigenvectors of a non-
Hermitian operator Hqp(z). We demonstrate this to be the "Hamiltonian" for
the "Landau quasi-particles" (a "one-body" picture!). This "Hamiltonian" is
general and its meaningfulness is independent of whether the system to which
it corresponds is a Landau Fermi liquid or not.

The energy-dependent non-Hermitian term in Tirip{z) is the SE operator
E(z) which is the analytic continuation into the physical RS of the physical SE
operator E(e); the correspondence between E(z) and E(e) is exactly the same
as that between G(z) and G(e) presented above. In Sec. 5 we give a detailed
discussion of the analytic properties of E(z).

InSec. 6 we consider solutions of the one-particle Schrodinger-likeequation
corresponding to the above-mentioned QP "Hamiltonian" ,Hqp(z). On the
basis of some analytic property of E(z), we arrive at the conclusion that this
Schrodinger-like equation either has solutions corresponding to QPs with real-
valued energies or it has no solution. For obtaining solutions corresponding
to QPs with complex-valued energies, the SE operator in the Schrodinger-
like equation has to be replaced by an analytic continuation of E(e) into a

6For the precise definition see Subsec. 4.1.
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non-physical RS. This has significance for determining the complex-valued QP
energies and their spectral "weights", which are in consequence also complex-
valued. We discuss these issues in Sec. 6.1under the heading "the quasi-particle
approximation." To make contact with physics of real materials, we apply the
results thus-far obtained to asystem about which a great deal is known,namely
the uniform-electron system. Thus we revisit some well-known theorems due
to Migdal (1957) (Luttinger 1960) and Luttinger (1961) (Luttinger and Ward
1960), making appropriate distinction between the different branches of the
functions that we encounter in the course of our analyses. Here we critically
analyse a theorem due to Luttinger (1961) which has played an important
role in characterising Fermi-liquid systems. We show that due to in particular
one tacit assumption by Luttinger (1961), it is not necessary that non-Fermi-
liquid behaviour in the low-temperature properties of a system should signal
breakdown of the many-body perturbation theory (PT) for this system.

In Sec. 7 we briefly deal with various methods of determination of G and
S. We give especial attention to the many-body PT. We present various
ways in which a many-body perturbation expansion for G can break down
(Subsees. 7.4 and 7.4.1) and present a sufficient condition for the validity
of the zero-temperature many-body PT. It turns out that provided the GS
electronic density of the interacting system under consideration be pure-state
non-interacting u-representable,7 the zero-temperature many-body perturba¬
tion expansion in terms of the pertinent Kohn-Sham (1965) (KS) Hamiltonian
does not break down (Farid 1997a, 1999b).8

In Subsec. 7.4.2 we present an argument, first advanced by Dyson (1952),
which has shed much unfavourable light on the PT ever since its publication.
InSubsec. 7.4.3, making use of some arguments and examples put forward by
Simon (1970), we attempt to remove some of the misconceptions with regard
to the domain of applicability of the many-body PT.

7Briefly, non-interacting v-representability of the GS charge density nsignifies that it can be
reproduced as the GS charge density of a "non-interacting" Hamiltonian, the Kohn-Sham
(1965) (KS) Hamiltonian; "pure-state" refers to the requirement that the GS of the KS
Hamiltonian in question be a single Slater determinant. All physical densities are so-called
ensemble v-representable. For a comprehensive review see (Dreizler and Gross 1990).
8We have to emphasise that by this we do not mean that a finite-order perturbation ex¬
pansion in terms of the pertinent KS Hamiitonian should be sufficient for all purposes.
"Breakdown" here refers to the condition in which predictions of the theory are not in ac¬
cord with the actual facts after summation over all the terms in the perturbation series. In
this light, a PT that predicts an actually insulating state to be metallic, has been subject to
a breakdown.
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112 Electron Correlation in the Solid State

Inrecent years an approximation for the SE operator, referred to as the GW
approximation (Hedin 1965), has attracted considerable amount of interest. In
Sec. 9 we deal with this approximation. The general aspects concerning the
exact SE operator, discussed in earlier Sections (Sees. 5, 7), are made explicit
in Sec. 9. An aspect which we have not considered in full detail in Sees. 5, 7
(due to technical complications), concerns the large-|e| behaviour of E(s). In
Sec. 9 we take up the task of explicitly calculating the first three terms in the
asymptotic expansion of Eaw(e) for large |e|. Both these and the first two
energy moments of EGW"(e) — the branch-cut discontinuity of EGW(z) —
make explicit, for yet another time, how prominent the role played by the GS
electron density n(r) and the GS single-particle reduced density matrix p(r,r')
is in the many-body theory. It turns out that as far as the mentioned terms
in the asymptotic expansion of T,GW(s) and the energy moments of T,GW"(e)
are concerned, EGIV(£) is almost identical to EGolVo evaluated in terms of the
Go and Wo pertaining to a non-interacting Hamiltonian Ho whose correspond¬
ing no(r) and po(r,r') [the Dirac-Fock reduced density matrix] are identical
to n(r) and p(r,r'), the latter pair pertaining to the fully interacting system.
This makes us to turn our attention again to the DFT. It is seen that such
a "non-interacting" Hamiltonian is an integral part of a DFT first considered
by Gilbert (1975). Further, we present a list of references that covers research
activities involving EGW over a relatively long period of time — regrettably,
due to limitation of space we restrict ourselves to works that in the main con¬
cern three-dimensional solids. Finally, given the fact that EGH' is merely an
approximation to E, we briefly consider the question as to the extent to which
EGM can account for the electron-electron interaction effects. We are of the
opinion that the overwhelming success of the GW approximation (GWA) in
yielding accurate results for the low-lying single-particle excitation energies of
semiconductors and insulators may be for a non-negligible part due to a can¬
cellation of errors: that the inaccuracies due to G0 and Wo (almost invariably
corresponding to the KS Hainiltonian in terms of the local-density approxima¬
tion (LDA) for the exchange-correlation potential [Kohn and Sham 1965]) and
those due to the GWA itself, largely cancel (Farid 1997a). We indicate the
desirability of future detailed and systematic studies on the subject.

In Sec. 10 we summarise our work and present some conclusions. Of the two
Appendices that follow Sec. 10, Appendix A concerns the (notational) conven¬
tions with regard to the representations that we employ in the present work,
while Appendix Bserves to emphasise the relationship between the asymptotic
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behaviour of a function of s at large \e\ on the one hand, and the behaviour of
the inverse-Fourier transform of this function in the limit of small |t| (t denotes
the time) on the other. Following the Appendices, we have included two lists,
one of mathematical symbols and the other of abbreviations and acronyms of
the frequently-used words in the present work.

As is evident from this introduction, inour work we rely quite substantially
on a variety of mathematical concepts. To make our text self-contained, we
devote Sec. 2 to a brief exposition of these (Farid 1999a). Inchoosing the illus¬
trative examples in this Section, we have endeavoured that these involve such
elements as those which we encounter in the subsequent Sections of the present
work. In Subsec. 2.4 we present the physical motivation for the concepts that
we introduce in Subsecs. 2.1, 2.2 and 2.3.

2. Mathematical Preliminaries
In this work we frequently encounter a number of mathematical notions. This
Section serves to make our text self-contained.

2.1. Types of singularity

A point at which a function of complex variable z, say g{z), is not analytic
(analytic, regular and holomorphic are interchangeable) is called a singular
point of g(z). Such singular point, say z0, can be (Whittaker and Watson
1927, pp. 102 and 104; Titchmarsh 1939, pp. 89-95; Knopp 1945, pp. 117-139;
Spiegel 1974, pp. 67, 68, 144 and 145) either isolated or non-isolated; zo is
isolated if there exits a 6 > 0 such that within the circle \z — zo| = 6, zo is the
only singular point of g(z). Otherwise zo is non-isolated.

Singularity of g(z) at the point of infinity corresponds to that of g(l/C) at
£ = 0. A function which is analytic everywhere with the exception of the point
of infinity, is referred to as entire or integral (thus exp(z) is entire).

A singularity can be removable; such singularity corresponds to a point zo
at which g(z) is not defined, but limz_>Zo g(z) exists. Thus z = 0 is a removable
singularity of g(z) :=sin(z)/z.

Non-isolated singularities, such as limiting or accumulation points of a
sequence of poles, are not classified as poles and thus are considered as essential
singularities. For instance the sequence of poles of g(z) := +
a2nz2]), with a > 1, have z = 0 as their limiting point: z = 0 is a non-isolated,
and thus an essential, singularity of <?(z); this function has no Laurent (or
Taylor) series expansion through any region which has z = 0 as its interior.
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Let g(z) be single-valued throughout a region Dwhich contains the point zq
at which g(z) is singular. Suppose the principal part of the Laurent expansion
of g(z) around z — zq terminates with the term a_n/(z - z0)n. In such case,
zo is called a pole of order n of g(z). Poles are thus by definition isolated
singularities. Functions whose singular points consist in a finite set of poles
are called meromorphic.

If the principal part of the Laurent expansion of g(z) around z = zo does not
terminate (i.e., if n in a_n/(z -zo)n goes to infinity), z0 is an isolated essential
singularity of g(z). A theorem due to Casorati, Weierstrass and Picard (Knopp
1945, p. 128) establishes that for any two positive numbers <Sj and <52, and any
complex number C, there exists a z inside the circle jz — zo| = 6\ ,with zo an
isolated essential singularity of g(z), for which holds \g{z) — C| < <?2- That is,
by approaching z0 in different ways, g(z) can take on any arbitrary value. As
an example, consider g(z) :=exp(z) which has an isolated essential singularity
at the point of infinity. One can easily verify that by an appropriate choice for
r and 6 in rexp(i9) =: (, g(l/() indeed attains any arbitrary value as r —» 0.

According to a theorem due to Cauchy, but commonly referred to as the
Liouville theorem (Whittaker and Watson, 1927, p. 105), a function that is
analytic everywhere, including the point of infinity, must be a constant; when
one allows unbounded functions in the class of analytic functions, a generalised
version of the "Liouville theorem" establishes that only finite-order polynomi¬
als can be analytic everywhere. Thus all entire functions, with the exception
of finite-order polynomials, have essential singularities at the point of infinity.

Branch points belong to the class of singular points and concern multi¬
valued functions. Suppose g{z) is one such function. By traversing a closed
contour which circumscribes only one branch point of g{z), one obtains a value
different from the initial value upon arriving at the starting point, indicating
that the initial branch of g(z) is interchanged by a different branch; for a
branch point zq of order p, the original branch is recovered after completion of
p full rotations along the mentioned contour. Thus (z-zq)1/3 has a third-order
branch point at z = z0. Functions can possess branch points of infinite order;
for ln(z), z =0 is one such point.

2.2. Many-valued functions: Physical and non-physical
Riemann sheets

An n-valued function of complex variable z (Whittaker and Watson 1927,
pp. 96-98; Titchmarsh 1939, pp. 138-164, Knopp 1947, pp. 93-118) over
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domain D may be thought of as consisting of nbranches of single-valued func¬
tions fi(z), i— 1,2,...,n,over D. Alternatively, this n-valued function can be
considered as a single-valued function over the extended domain consisting of
a union of n replicas of D; since these domains signify the same region on the
complex plane, they are distinguished as being on different sheets, Riemann
sheets (RS), of the complex plane. We denote by fF(z) the union of all fiizYs
over the larger domain of n RSs. Riemann sheets corresponding to T{z) are
connected together along the branch cuts of fF{z). We denote that branch of
T(z) which has direct physical significance (see further on) by f(z). Conse¬
quently, we refer to f(z) as "JF(z) on the physical RS", and to other branches
as "T{z) on the non-physical RSs". Inthe text of the present work we denote
all the latter branches by f(z).

Let e be real-valued. Let there be the function /(e) defined over A :=
(si,£2) such that

f(z) -> /(e) as 2-t£. (1)

Suppose that f(z) approaches /(e) uniformly9 when z -> e, i.e. that for a
given <5i > 0 there exists a <52 > 0, independent of e inside A, such that for
ji/| < &2 (with y real-valued), |/(e+ iy)) - /(e) | < <5;. In such an event f(z)
is called the analytic continuation of /(e) into the complex z-plane; a function
like /(e) to which an analytic function f(z) in the above sense corresponds, is
referred to as being "analytically continuable" into the complex z-plane.10 It
is important that in the case the interval A is part of a branch cut of f(z),
the process of analytic continuation of f{z) from, say, the upper half-plane
can be extended, through the real interval A, into the lower half-plane. The
thus-obtained function coincides with a branch of T{z) which is different from
f(z). Thus if f(z) were the physical branch, the new branch would be a non-
physical branch. One could equivalently state tbat in moving z from the upper
half-plane through the branch cut into the lower half-plane, we have moved
from the physical RS into a non-physical one. See Fig. 1.

9The condition of uniformity can be shown, a posteriori, to be redundant: the existence
of the limit in Eq. (1), with f(e) continuous over A, implies uniformity of the limit (see:
Streater and Wightman 1964, p. 75).
i0Some analytic functions, referred to as lacunary functions, cannot be analytically con¬
tinued from inside to outside of their domain of definition (Whittaker and Watson 1927,
p. 98).
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Fig. 1. The peak of function f ( e )  dong the real energy axis (a) may be thought of as corre- 
sponding to  a comptez pole of the azalytic continuation of f ( ~ )  into the p h y s i d  Ftiemann 
sheet (RS) of the complex z-plane, f(z). On the physical RS of the z-plane (b) there is no 
pole to be found, only a branch cut {the shaded section of the &-axis). In (c), part of the 
physical RS is “removed” (indicated by the grey area which is part of the non-physical RS 
which is dzrectiy accessible from the upper-half of the physical RS). The peak of f(6) is seen 
to correspond t o  a pole of F ( z )  (indicated by the bold dot) on the non-physical Rs. For the 
mathematical details see Subsec. 2.2. 

An example should clarify the above notions. Consider f(&) := lnfa), 
with E > 0. It can be shown that Infz} =: F(z) is the analytic continua- 
tion of $(&) from the positive real axis (= A} into the z-plane.l’ Now if f ( e )  
denoted some physical quantity (say, the frequency-dependent optical con- 
ductivity as measured experimentally), ffz), defined above, would coincide 
with the physical branch of F(z ) ,  i.e. it were 3 ( z >  on the physical RS. Let 
Ln,(z) := In IzI + i{arg(z) + 2mz)  with -7r 5 arg(z) < 7 ~ .  The function 3 ( z )  
in the present case coincides with the union of Ln,(z) for all n, (i.e., 7~ negative, 
zero and positive), and f (z )  E Ln,,o(z). If we were given Ffz)  and asked to 
find the physical branch, i.e. y(z ) ,  we needed to find that Ln,(z) which yielded 
f ( ~ )  when z + E > 0 (see Eq. (1) above). This procedure of selecting the phys- 
ical branch out of many (possibly, infinitely many) branches of a many-~lued 
f ~ n c t i ~ n  is not subject to arbitrariness. This is owing to a uniqueness theorem 

- 

l l I t  is somewhat unfortunate that customarily all s ~ u n d a ~  functions, such as In, sin, cos, 
etc., whether their arguments be real or complex, are denoted by the same symbol. 
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all singularities of g(z) of which z0 is the limiting point, it is possible to con¬
struct a Laurent expansion around zo which is valid for some non-vanishing
region. As an example consider g(z) := VÿL0 l/(n![l + a'2nz2}), with a > 1.
In Subsec. 2.1 we have mentioned that z = 0 is a non-isolated singularity of
g{z). For \z\ > 1, g(z) has the following Laurent series expansion (Whittaker
and Watson, 1927, p. 105): g{z) = — 1)"+1exp(l/fz2*l)/zr2n.

A specific feature of Taylor and Laurent expansions is their uniformity:
once their validity has been established for z = rexp(id), corresponding to a
fixed value of 6, it follows that they are valid for all 9 e [0,27r).

Branch points belong to the set of possible singular points of g(z). However,
with zo a branch point of g{z), g(z) does not allow for a uniform representa¬
tion, such as a Laurent expansion, in a neighbourhood of zq. To use our above
terminology, the set {(z - zo)n | ...,-2, -1,0, 1,2, . ..} does not form a com¬
plete basis for representing functions, in a neighbourhood of zo, that possess
a branch point at zq. Nonetheless, this set has a significance in the context of
asymptotic expansion of g(z) for z —> zq. We note that if two branch points
of g(z) that are connected by a branch cut can be circumscribed by a circle of
finite radius, then g(z) can be represented by a Laurent series valid for some
region exterior to this circle. If, on the other hand, one of these branch points
is the point of infinity, it is no longer possible to construct a uniform series
expansion around any point on the branch cut. Thus, for instance, it is not
possible to obtain for ln(z) a uniform series expansion around z = 0, or some
point along the negative real axis.

Asymptotic expansions (Whittaker and Watson 1927, Ch. VIII, Copson
1965, Lauwerier 1977, Dingle 1973) are with respect to some so-called asymp¬
totic sequence. An asymptotic sequence, e.g. {<f>n(z)\n = 0,1,...}, has the
property that in the asymptotic region, specified through z —» zo, has the
property that <f>n+i(z)(4>n(z) -» 0; this is denoted by 4>n+i{z) = o((f>n(z))-
Thus {(z - z0)n \n = 0, 1,.. .} represents an asymptotic sequence for z —> z0.
A theorem from the theory of asymptotic analysis states that (Copson 1965,
pp. 5 and 6, Lauwerier 1977, p. 13) if a given function, say g{z), has an
asymptotic expansion [in Poincare's sense — the sense according to which
all our asymptotic expansions in subsequent sections are carried out] of order
Mwith respect to some given asymptotic sequence, say {<pn(z)}, meaning that
9(z) = Ysn-Qan4>n{z) +o(ÿm(z)), then the coefficients (a„|n = 0,1,...,M}
of the asymptotic expansion are unique. For M — oo this series does not
need to be convergent (even for z -> zq), however; in fact in some texts
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E(fcj?;z) around z =sf, the asymptotic expansion of this function with respect
to the asymptotic sequence {(2 -Sf)n|n = 0, 1,...} will be divergent when ex¬
pansion is continued to infinite order (see above); the possibility of convergence
of this series would contradict non-analyticity of E(kp\z) at z = £f-

2.4. Physical motivation
Below by means of a simple example we motivate our above detailed consid¬
erations. This example embodies many of the aspects that are shared by the
correlation functions pertaining to many-particle systems, several of which we
shall encounter in the subsequent Sections of the present work.

Consider /(e; N,ft) := ft-1]Cÿv{0(es-eo)-0(£3-ei)}/(£s-£), £s+i > £s,
whose form in essential ways is similar to that in, e.g., Eqs. (11) and (100).
Here eo and e,\ are finite constants for which we assume eo < £s < ei for
some values of s; N,ft indicate that / is a function of the number N of the
particles as well as the volume ft of the system. In the "thermodynamic limit"
(corresponding to N -» 00, ft -> 00 and a finite concentration C := TV/ft), /
is a function of C, and thus we denote it by /(e;C). For finite N and ft, it is
seen that /(e;TV, ft) has poles at all ea in the interval [eo,ei]-

If /(s; N,ft) described some property of a physical system, the quantities
e, could be viewed as energies of the natural modes of that system. Since these
modes are infinite in number, Af is infinitely large.12 Moreover, if this system
were in free space (i.e., not placed inside an impenetrable box), the spectrum
would be partly continuous, and thus s would be in part a continuous variable.
To avoid unnecessary complications, we restrict our present considerations to
confined systems. Since, however, jV is infinitely large, the "spectrum" of
such a confined system must at. least have one accumulation point; this follows
from the Bolzano-Weierstrass theorem (Whittacker and Watson 1927, pp. 12
and 13). Thus some singular points es of /(e;jV,ft), es e [eo,ei], may not
be isolated but non-isolated (see Subsec. 2.1). As an example, consider the
energies of the bound states of the Hydrogen atom. Since these converge to¬
wards zero as the principal quantum number n approaches infinity, zero, is an
accumulation point in the spectrum of the bound states of Hydrogen.

We now take the "thermodynamic limit". Since upon doing so, in gen¬
eral (i.e. disregarding some possible "gaps" in the spectrum), \cs+m — £a| 4, 0
for any finite M, the function /(e; N,ft) will be ill-defined for real values

ÿThis necessarily follows from the completeness of the eigenstates of such systems — de¬
scribed by self-adjoint energy operators.
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of e inside [eo,ei] — as e may be "pinched" by two adjacent poles. This
necessitates that the "thermodynamic limit" be taken not of /(e;iV, ft) but of
/(z;N,ft) s f(z;N,ft) with Im(z) ÿ 0, unless Re(z) happens to be inside some
gap. We observe that, in general (i.e., excluding the cases where e is inside
some possible gap or e g [eo,ei]), evaluation of the thermodynamic limit can
give rise to a meaningful /(e; C) provided this be defined as the limit of f(z; C)
with |Im(z)| —> 0. For f(z; C) to qualify as the physical branch — as /(z; C) is
only one branch out of possibly infinite number of branches of a many-valued
function —, it is required that in regions where /(e; C) is well-defined (for
instance inside the gaps, or, in the present case, in the regions e < eo and
e > Ci), the two functions /(e; C) and f{e;C) coincide (see Subsec. 2.2 where
we considered f(s) := ln(e), e > 0).

Suppose now that poles of f{z;N,ft) are uniformly distributed and that this
property persists into the "thermodynamic limit",with the density of poles per
unit energy approachingthe constant value Aft. Suppose further that eo and ei
remain finite in the "thermodynamic limit". Under these conditions, the sum
in the definition of /(z;N,ft) transforms into an integral, which in the present
case can be evaluated analytically. We have: f(z;N,ft) = A f** de'/(e' - z)
= A{ln(z—ex)-ln(z-eo)} =: /(z;C). InFig. 2 we depict the analytic structure
of this function. We point out that here ln(z) stands for the principal branch
of the logarithm function. That this choice indeed renders /(z;C) the physical
branch is seen as follows:

The complex z-plane and the analytic structure of/{z;C) :=A{ln(z-ei)-ln(z—eo)}-9of }{z\ l) ln(:Fig. 2. The complex _ _ - -
The shaded part of the real axis indicates the branch cut of f(z\ C) which joins the branch

analytic•plane and the structure ez-

points eo and ej.
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implies existence of a QP with "energy" e*k. This is in violation of the prin¬
ciple of causality. This contradiction would be resolved if ImE(/c;£(.) = 0, in
which case £k would correspond to an excitation with infinite lifetime, which
contradicts our original assumption. Hence the only complex QP energies can
lie on the non-physical RSs. For obtaining these energies, one has to solve
Ek(z) = z.

3. Generalities
In this Section we introduce the Hamiltonian of the interacting system which
we shall be considering throughout this work.

Consider the many-body Hamiltonian H for spin-less electrons in the
second-quantisation representation,

stand for the kinetic energy, the energy due to the external potential and the
electron-electron interaction energy, respectively. In Eq. (5), vc(r - r') :=
e2/(47T€o||r — r'||) stands for the Coulomb potential14 with e2 the electron
charge — e (< 0) squared and e0 the vacuum permittivity. The operators i/d, tp
are, respectively, creation and annihilation field operators in the Schrodinger
representation and satisfy the well-known fermion anti-commutation relations
(Fetter and Walecka 1971, p. 19). The real symmetric function u(r,r') stands
for the external potential which for the sake of generality we consider to
consist of a local and a strictly non-local contribution, i.e.

H:=T +U+V , (2)

where

u[r,r') := u(r)<5(r - r') +w(r,r') . (6)

14Inprinciple one may choose some other appropriate two-body potential. Further, it should
be realised that the instantaneous nature of nc(r - r') in Eq. (5) signifies the fact that H
has been written in the Coulomb gauge (Mahan 1981, pp. 60 and 66).
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/O poo
dt eist/hG(rt, r'O) ; Gp(r,r';e) := / dt eistÿG{rt,r'O) .

ÿoo Jo
(10)

Prom now onwards we shall employ operator notation alongside the coordinate
and wave-vector (momentum) representations (see Appendix A). It can be
shown (Titchmarsh 1939, p. 99) that Gh(z) (Gp(z)) is analytic in the lower
(upper) part of the complex z-plane. Here Gh(z) and Gp(z) are obtained by
replacing e (which is supposed to be real-valued) in Eq. (10) by the complex-
valued variable z\ for Gh(z) it must hold Im(z) < 0 and for Gp(z), Im(z) >
0 (for some subtle aspects concerning this direct substitution of z for e in
the Fourier-integral representations, see Subsec. 4.8). The correctness of this
procedure can be verified by demonstrating that for z -4 e, Gh(e) and Gp(e)
are (uniformly) recovered from Gh(z) and Gp(z), respectively (see Subsec. 2.2).

4.1, The Lehmann representation for G(e)
Here we consider a well-known representation for G(e), the Lehmann (1954)
representation (Fetter and Walecka 1971, pp. 72-79), which is particularly
useful for its exposition of the physical relevance of G(e). It also helps us to
construct the analytic continuation of G(e) into the physical RS. This represen¬
tation follows through writing down the states and operators in Eq. (8) in terms
of their Schrodinger-picture counterparts and making use of the completeness
relation for the simultaneous eigenstates of Hand the number operator N in
the Fock space, i.e. J2m,s = A where M =0,1,,.. denotes the
number of electrons and s the remaining quantum numbers that specify an
eigenstate of H, with s — 0 symbolically denoting the GS. This representation
reads as follows:

8(es - p.)C<r,r';e) = *£/,(r)/?(ÿ) + e3+ir) MO), (11)

where
( (*w-i,j|#(r)|*wto>» whene, < n,/.(r) :=< ÿ (12)
I(ÿAr.olV'WIÿjv+i.i) , when es > p,

a "Lehmann amplitude" , and

(ENio -En-i,„ , when es < p,
(13)

En+1,3 ~ En,o , when e3> p;
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"pinch" singularities for e € ([An+i,MJv)- As the name indicates, "pinch sin¬
gularities" (Itzykson and Zuber 1985, pp. 302, 303) 17 would "pinch" the con¬
tour along which G(e) has been defined, so that in transforming G(e) to the
time domain [for obtaining G(f)] one would encounter a non-integrable func¬
tion; non-pinch singularities, contrary to pinch singularities, can be avoided
through deformation of the contour of integration. The condition pat = pn+i,
or eg = 0, also corresponds to a pinch singularity in the integral representation
for G(t) in terms of G(s). We therefore conclude that in all cases it must hold
[IN < [an+i, so that (pig,Pn+i) ÿ always a finite (even though infinitesimally
small) open interval. See Fig. 3.

4.3. Sums involving the Lehmann amplitudes and energies

The sets {|ÿr jv— i,a)|Vs}, {|$rAH-i,»)|Vs} are not complete in the Fock space.
They are, however, complete in the subspaces corresponding to, respectively,
N- 1- and N+ 1-electron states. Thus whereas
in suchÿ expressions as £s(®jv,o|ÿt(r0i*jv-i,»){*iv-i,s!$(r)l®iv,o) and

N,o\ÿ(r)\ÿn+i,s) n+i,s\ÿ(r')\ÿn,o),the completeness relation can be ap¬
plied. Whence the following two results

ÿMr)fs(r>) = £s)fs(r)fZ(r') + ~ M)/«W/a*(r')
3 S 3

= £(*„,o|?(r')l¥*-l,,><«y-l,a|£(r)|¥tf,o>
3

+53('tjv,o|ÿ(r)|'tjv+i,5)(ÿ,jv+i,a|V't(r,)|'tjvio)
S

S (Vpjv,o\$(r')$(r) +ÿ(r)ÿ(r')lÿw,o) = Stf ~ r) , (15)

5>(M-*.)/.(r)/;(r') sÿ n,o)
S 3

= (ÿJv,o|?(r'Mr)|ÿ,o) =: ÿ(r',r)
s -iG(rt,r't+). (16)

17In, e.g., dx/(x2 + r;2), x = 0 becomes a "pinch" singularity for r? = 0.
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Here p(r',r) stands for the one-particle reduced density matrix; the pre-factor
|originates from the fact that the index s does not involve the spin-coordinate
of the electrons; including this, which amounts to an additional trace over the
two spin states of the electrons, removes this pre-factor. The last result in
Eq. (15) follows from the anti-commutation relation for the field operators,
and is the statement of the completeness of the set of Lehmann amplitudes.
This completeness can be expressed as fsft = I,where Istands for the
unit operator in the space of one-point functions, with /„(r) = (r|/,s, and
consequently /* (r) = /j|r). We note, however, that ingeneral /]/.,' ÿ 53iS>) for
diminishing values of the coupling constant of the electron-electron interaction,
ftfa' —> <S,5,3< , when eg / e3>, and the limit is exactly achieved when this
coupling constant is identically vanishing.

Making use of the definitions for the Lehmann amplitudes and energies (see
Eqs. (12) and (13)), it can easily be shown that

Using the anti-commutation relations for the field operators, the following are
readily obtained

H<(r,r') ;= ÿ(9(/i - ea)egfa(r)f*(rr)

- <*w|£V)[ff,£(r)]_|¥A,l0>,
E>(r,r') := - p)eafa(r)f*(r')

(17)

(Skÿol [H,?(r)]_ÿt(r')|ÿo). (18)

Mf)]- =-[ÿV2]ÿr)
tD„,ÿ(r)]_ = -v(r)ip(r) ,

(19)

[V, r)]_ =-jd3r"vc(t - r")ÿf(r")ÿ(r")ÿ(r) .
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Thus,

2<(r,r') = A j|_Av2+u(r) p(r,r') +Jd3r"w(r,r")p(r",r')|
+Jd3r"vc(r~r'')(tyNio$Hr')$f(r")ifi(r")$(r)\yNfo) , (20)

5(r - r') +w(r, r')

- \ { [ÿ'V2 +v(r)| p(r,r') +Jd3r"w(r,r")p(r",r')J
+ y«i3r"i;c(r-r")(ÿAr,olÿt(r")'0(r")ÿ(r)ÿt(r')IÿAr,o). (21)

The two terms involving vc in the above expressions cannot be explicitly ex¬
pressed in terms of such GS quantities as nor p. However, a simple decoupling
approximation yields18

Jd3r"vc(r - r")(Tiv,ol'0t(r')ÿt(r")'?(r"),?(r)lÿiv,o)

—— / d3r"vc(r - r")g{r,r") «ÿUtf(r; [n])n(r) , when r = r',

Kv//(r; [«]) - uc(r - r'))p(r',r) ,

Jd3r"vc{r - r''){yNfi\ft(r")$(r'')$(r)$(r')\<f>N>o)

«vh(r; [n]) (s(r -r') - ip(:r',r)j ,

vH(r; [n]) := Jd3r"vc(r — r")n(r")

when r ÿ r',
(22)

(23)

where
(24)

18ln Eq. (22) the distinction between the cases corresponding to r = r' and rÿr' arises
from the process of normal ordering (Wick 1950, Klein and Prange 1958) which for simplicity
we have not systematically taken care of in the present work (thus, for instance, rather than
working with H, we must have been working with :H:). For the case of r = r' we have
explicitly enforced the normal ordering.
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spin-compensated systems the first contribution is identically vanishing. Since,
however, H in the present work does not involve the Zeeman term, this contri¬
bution is in our case vanishing by construction. In the Coulomb or transverse
gauge20 V • A = 0 (Mahan 1981, p. 62), and in the absence of an exter¬
nal magnetic field, the second contribution is also vanishing. When the GS
possesses time-reversal symmetry (in absence of external magnetic field), the
physical particle flux density is identically vanishing, so that in the present
case where the first two contributions to the physical particle flux density
are vanishing, it must hold that jp(r) = 0. Now the time-reversal symmetry
implies that to each elementary "current" jP:s(r) must correspond a counter
current, the time-reversed current, jp;a(r) = -jp;s(r) [call this, property (a)]
with ey = et [call this, property (b)]. This degeneracy, whose occurrence em¬
bodies Kramers' theorem (Landau and Lifshitz 1977, pp. 223-226, Callaway
1964, pp. 52-54),21 maintains the thermodynamic balance between "currents"
and "time-reversed currents". Prom property (a) we have fj(r) = e<e»/*(r),
with 0a real and independent of r, so that Bs(r,r') := (r)/*(r')+fj(t)/|(r')
is a real-valued symmetric function of r and r'. Let now F(x) be an arbitrary
function. From properties (a) and (b) it follows that not only jp(r) = 0, but
also that F(es)fs(r)f*(r') = ÿ'sF(es)Bs(r, r') is a symmetric function of
r and r'; here a denotes a summation involving either s or its time-reversed
counterpart a, but not both. In particular we have (the F(es) involved here is
the term enclosed by the curly brackets on the KHS of Eq. (11))

G(r,r';e) = G(r',r;e). (25)

Prom the same line of reasoning leading to Eq. (25), one further obtains (see
Eq. (16))

P(r,r') — P(r'>r) ÿ (26)

20The instantaneous nature of the Hartree potential i>//(r;[n]) follows this choice for the
gauge. See Footnote 14.
21Kramers' theorem guarantees degeneracy of the energy levels for cases where the spinors,
or the irreducible representations of the symmetry group of the Schrodinger equation, are
essentially complex. This applies specifically to systems with odd number of electrons (which
are spin-1/2 particles) and generally to those in which the sum of spins of the constituent
particles is half-integer. For systems of spin-less fermions in the thermodynamic limit, sub¬
jected to the box- or the periodic-boundary condition, Kramers' theorem applies exclusively
on account of the irreducible representations of the translation group (whether discrete or
continuous) being essentially complex. For a detailed discussion of the significance of the
time-reversal symmetry in solids see Cornwell (1969), Ch. 5, Sec. 7.
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For illustration of the above details, consider a non-interacting uniform-
electron system enclosed in a macroscopic box of volume ft. For this sys¬
tem we have (see Appendix A) fs(r) «-> /k(r) := exp(ik • rj/ft1'2, £s O
£ÿ:—h2k2/(2me), for both e£ < and e£ > /t° where ju° := h2kp/(2me) with
kp the Fermi wave-number; ]T)S(. • •) (ft/[27r]3) f d3k(. ..). With s <-> k, we
can identify s with -k: we have both e°_k = e£ and /-k(r) = /£(*")• With
reference to our above considerations, the latter equality is in general only
satisfied up to a phase factor: at different k-points, the wavefunctions can be
solved under different gauge conditions. By considering the momentump = hk
as a dynamical variable, we observe that -k «-> s indeed corresponds to the
"time-reversed" state associated with k <-> s.

4.5. Analytic continuation of G{e), G(z)
We now define the following function22

G(ryiz):=hy£Ml)f:EiT') ÿ (27)
Z oss

This function has the property

limG(e ± irj) = G(e) , when e // . (28)

Hence G(z) in Eq. (27) is the analytic continuation of G(e), as represented in
Eq. (11), into the physical RS of the complex z-plane (Subsecs. 2.2 and 2.4).
One cau in all calculations involving G, replace this by G provided that on
taking the limit Im(z) —> 0, Re(z — fi) x Im(z) > 0 is satisfied. For instance,
in transforming G(e) to the time domain, the integral along the e-axis of G(e)
can be replaced by one along a contour C in the complex z-plane of G(z), on
the condition that on each point along C, Re(z — fi) x Im(z) > 0 is obeyed (see
Fig. 4); since singularities of G(z) are all along the real axis (see Eq. (27) —
Luttinger 1961), it is not necessary that along C, Im(z) —> 0.

From Eqs. (27) and (25) it follows that (see Luttinger 1961)

G(r,r';z*) = G*(r,r';z), (29)

i.e. G(z) possesses reflection symmetry with respect to the real energy axis.
In the theory of functions of complex variables, functions which are analytic

22G(z) = hZsfsf}/(z-e3); see text following Eq. (16) above.
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A
M- c-=»-

-g>

Fig. 4. The Contour of integration on the physical Riemann sheet of the complex z-plane.
When the Imaginary parts of the points on this contour are made to approach zero, a function
such as /(z) on C approaches the physical function f(e). Recall that f(e) = limr)ÿ0 }(e ±trj),
for e > ft and__s < p._The shaded sections of the real axis signify branch cuts of /(z).
Examples for f(z) are G(z) and £(z).

everywhere on the complex plane and are real-valued on some finite interval of
the realaxis, possess a similar reflection property, Schwarz's reflection property
(Titchmarsh 1939, p. 155, Spiegel 1974, p. 266). In the light of this, the
reflection property of G(z) can be understood by the observation that G{z) is
analytic everywhere on the complex z-plane, excluding some points or intervals
on the real axis, and is real-valuedover the finite, albeit possibly infinitesimally
small (in the thermodynamic limit), interval (pÿ,£i;v+i) — see Subsec. 4.2.

We define the physical spectral function (whence the subscript p) as follows

Ap(r,r';e) := fim {G(r,r';£ +ir]) -G(r,r';£ - ?i?)|
= ±hY,fs(r)f*a(r')S(e~£s), £ÿp. (30)

3

This deviates from the commonly-used definition where the upper signs are
taken, irrespective of the value of e; our definition takes account of the change
in sign attached to it] in the Lehmann representation for G{e) as s is increased
from below p to above p. The "physical" spectral function satisfies the follow¬
ing zeroth-order sum-rule:

/+oo deAp(r,r';£) = h{6{r -r') -p(r,r')} • (31)
ÿOO

Inthe equivalent sum-rule for the standard spectral function, one only encoun¬
ters hS(r - r') on the RHS.
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4.6. Large-|e| Behaviour of G(e)
Prom the Lehmann representation for G(e) it directly follows that

G(e) OOl v-7002+ Go , for |e| —> oo ,
£ £'

where (see Eqs. (15), (17) and (18))

Gooi(r,r') := M(r - r') ,
Goo2(r,r') := ftÿ£s/g(r)/s*(r') =: h(E<(r,r') +H>(r,r')) •

(32)

(33)

It can easily be shown that

G,002 'tJ.+00
d££G"(e + irf), r] 4- 0 . (34)

Here G"(z) := {G(z) — G*(z)}/(2i). Thus Goo2 is equal to the first energy
moment of G"(e +irj) which for e < p, is equal to — G"(e) and for e > p equal
to G"(e).

Introducing Eqs. (20) and (21) into Eq. (33) and some algebra yields

Goo2 (r,r') = h< -h2

2m,
V2 +v(r) +vh{r;W) 8(r - r') +w(r, r')

- 2Uc(r~ r>(r,r') > • (35)

The last term in Eq. (35) is nothing but the non-local exchange (or Fock)
potential which occurs in the Hartree-Fock equation. It must be noted, how¬
ever, that the p here is the exact p and not that which is calculated within
the Hartree-Fock framework (see Subsec. 9.7). Since vh{r,[n]) and vc(r — r')
both vanish for the vanishing strength of the electron-electron interaction, from
Eq. (35) one directly infers that for the non-interacting counterpart of Goo2,
namely Go;0o2 1 it must hold

Gq;oo2 (r,r') = h- -h2
2m, V2 +v{r) <5(r - r') +w(r,r')| . (36)
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It is then interesting to realise that

ÿ{-Go;oo2(r,r') + Goo2(r,r')}

= J»«(r; [n})6(r - r') - -ÿi>c(r - r')p(r,r')

= Ehf(v,r') := £"(r,r') +£F(r, r') , (37)

where HHF stands for the SE operator within the Hartree-Fock scheme (see
Subsecs. 5.1, 6.3 and 9.6), with SH(r,r') := h~xvn(r\ [n])<5(r — r') the Hartree
SE and £F(r,r') := (~2h)~1vc(r - r')p(r,r') the Fock SE. As we have men¬
tioned above, p here is the exact one-particle reduced density matrix.

4.7. G(z) is invertible

Inview of our interest concerning analytic properties of the SE operator in the
complex energy plane (Subsec. 5.1), here we inspect whether G(z) can have any
zero(s) in the complex energy plane (since G(z) is an operator, "zero(s)" here
means "zero eigenvalue(s)") — see Luttinger (1961). For z = e' +is", with e'
and e" (e" / 0) both real-valued, G{z) can be written as Q'{s',s")+iQ"(e',s").
This is effected through application of l/[z -£.,] = (s' -£,)/[(£' -£«)2 +e"2\ -
ie"/[(e'-ea)2+e"2] in Eq. (27). It follows that Q"{s',s") cannot have any zero
(i.e. zero eigenvalue) for s" 0. This is demonstrated as follows: Since (see
Footnote 22) with aa —s"/[(s' -sa)2 f s"2], we have Q" = as/s/|, for
an arbitrary one-particle state vector (/?), (0\G"\/3) — hYl, \(P\f»\2 holds.
Following the fact that (/a(r)} is a complete set (though not orthogonal — see
Eq. (15) and text following Eq. (16) above), |(/3|/s|2 > 0 for some s, so that
as 5ÿ0 for all s implies that {{3\Q"\/3} ÿ 0. This completes the demonstration
that no eigenvalue of Q" can be vanishing for s" ÿ 0, for if this were not the
case, then by choosing \0) to be the eigenvector corresponding to the vanishing
eigenvalue, the latter inequality would be violated.

Now since Q"(s',e") is Hermitian, it has real-valued eigenvalues and our
above consideration implies that Q"{e',s") is negative (positive) definite for
e" > 0 (c" < 0). Further, since Q'(s',e") is also Hermitian, it has similarly real
eigenvalues which, however, can be of any sign. Now, owing to the imaginary
unit in Q Q' -I- iQ", the expectation value of Q(e',s") = G(z), for e"
0, with respect to any single-particle state (like the above |/?)) has a non-
vanishing imaginary part, so that the single-particle GF cannot possess zero
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eigenvalues on the physical RS of the complex z-plane, that is G(z) is invertible
for Im(z) ÿ 0.

4.8. Connection between analytic continuation and choice
of representation

It is in place that we pause for a while and consider some specific aspect related
to the analytic properties of G(z), Gh(z) and Gp(z). Above we have mentioned
that the latter two functions can be obtained through a direct substitution of z
for e in their defining expressions in Eq. (10); it is required, however, that in the
case of Gh(z), Im(z) < 0 and in the case of Gp(z), Im(z) > 0. A substitution of
this kind in the defining expression for G(e) in Eq. (9) for any eomplex z gives
rise to a non-existent (i.e. divergent) integral; in the cases of Gh(z) and Gp(z)
we encounter the same difficulty for Im(z) > 0 and Im(z) < 0, respectively. Yet
inspite of these restrictions, it is readily verified that G(z) inEq. (27) is nothing
but G(z), that is G(z) is obtained by substituting z for e, which is real-valued, in
the Lehmann representation for G(s). Similarly, Gh(z) and Gp(z) are obtained
by direct substitution of z for e in their respective expressions determined from
the Lehmann representation (see text following Eq. (13) above). Inparticular,
from the expressions for G(z), Gh(z) and Gp(z) as derived from the Lehmann
representation for G(e), it can readily be deduced that these functions are
bounded over the entire complex z-plane corresponding to Im(z) / 0. A most
natural question would be: why in obtaining the analytic continuation for, say,
G(e) a direct substitution of z for e in one representation for G(e) (namely, the
Fourier-integral representation) is not valid, while in a different representation
(namely, the Lehmann representation) such substitution is legitimate? Are not
different representations of a function supposed to be equivalent?

The answer to the above questions lies in the fact that while exp(izt/h)
is bounded for real values of z (we have \ exp(izt/h)\ — 1), it is unbounded
when: (i) t € (—00,00) and Im(z) 7ÿ 0; (ii) t e (—00,0) and Im(z) > 0; (iii)
t € (0, 00) and Im(z) < 0. For the Fourier integral (integral in the sense of
a Riemann sum) to exist, it is necessary that when Im(z) / 0, the function
with which exp(izt/h) is multiplied turns the integrand absolutely integrable.
Since magnitude of G(rt,r'0) does not decrease exponentially, for the existence
of the Fourier integrals, in the light of (i)-(iii), we are to impose restrictions
upon Im(z). That despite this, substitution of z (with Im(z) ÿ 0) for s in the
Lehmann representation for G(e) yields a bounded result, is to do with the
fact that even though for an inappropriately chosen z (i.e., chosen in disregard
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5. The (Proper) Self-Energy E(e) and its Analytic
Continuation E(z)

The self-energy operator plays the role of a "scattering potential" through
whose action the behaviour of the single-particle Green function of a system
of "non-interacting" electrons is modified into that of the fully interacting
system. In this Section we deal with this operator and a number of its salient
properties.

5.1. Analyticity of E(z) and some consequences

In Subsec. 4.7 we arrived at the conclusion that for Im(z) ÿ 0, G(z) is in-
vertible, i.e. G-1(z) is bounded. The same holds for G0(z), i.e. for Im(z) ÿ 0,
Gq1(z) is bounded. Thus the Dyson equation,

G(z) = G0(z) +G0(z)£(z)G(z) , (38)

can be written in the alternative form

E(z) = Go1W-G"1(z). (39)

From Eq. (39) it follows that £(z) is bounded for Im(z) ÿ 0. Through
differentiating both sides of Eq. (38) with respect to z (recall that G(z) and
Go(z) are analytic everywhere, with the possible exception of the real energy
axis, and thus infinitely many times differentiable at any complex z), we observe
that for dT,(z)/dz to be unbounded at some complex z, it is necessary that
G(z) should vanish at that z. Since G(z) does not vanish for any complex
z (Subsec. 4.7), it follows that d£,(z)/dz is bounded for all complex z. By
differentiating both sides of Eq. (38) an arbitrary number of times, along the
above line of reasoning we arrive at the conclusion that nowhere on the physical
RS, with the possible exception of the real axis, E(z) can be singular.

Further, owing to the relations in Eqs. (39), (25) and (29), which equally
hold for Go(e) and Gq(z), we have (see DuBois 1959a, Appendix B; Luttinger
1961)

£(r,r';e) = £(r',r;e); E(r,r';z*) = E*(r,r';z) , lm(z)ÿ0. (40)

Here the "physical" self-energy E(e) is defined through

E(e) = limE(e ± iq) , for e ÿ p.
T)10

(41)
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The analyticity of E(z) in the complex z-plane implies a pair of Kramers-
Kronig-type relations {or Hilbert transforms — see Morse and Feshbach 1953,
pp. 370-373 and 944) between the "real" and "imaginary" parts of £(z). Inor¬
der to obtain these relations, it is required that we first establish the behaviour
ofE(z) for |z| —y oo {Fand 1999a). To this end let )ÿ) ÿ /o+/l/2+/2/z2H ,
for |z | —> oo. Then provided /o ÿ 0, it holds (Copson 1965, pp. 8 and 9):
!//(>) ~ l//o + 7i/z + J2/z> + ÿÿÿ, for \z\ -> 00, where J1 =
fj — {fx — /0/2)//o ' etc- Through these results, making use of (c.f. Eq. (32))
G(z) ~ hl/z + Goaÿjz2 + • • • and Gq(z) ~ hl/z + Gq-ooÿ/z2 + • • • , from the
expression for E(z) in Eq. (39) we obtain the following general result

E(z)-EOO0 +— + + , as \z\ -> 00 . (42)z z*
Explicit calculation reveals that

= ÿ{~Go;cx>2 +G00i} = EHF , (43)

the last relation being that given in Eq. (37).
The result in Eq. (43) can also be derived through analysing the Feynman

diagrams for the SE operator. Briefly, due to the conservation of energy, all
skeleton SE diagrams26 (contributingto E(e)) beyond the first order inthe bare
electron-electron interaction inevitably involve at least one GF whose energy
argument contains e. By "inevitably" we mean that it is not possible entirely
to displace e from the argument(s) of the GF(s) — through transformation of
variables (or what is the same, reassigning energy variables inthe diagrams) —
to arguments of the electron-electron interaction function, which is independent
of energy. This property holds true also for all those second and higher-order
non-skeletondiagrams that do not contribute to the Fock diagram (a first-order
diagram) in the process of partial summation of the non-skeleton diagrams,
leading to the skeleton SE diagrams. Since we have G(e) ~ hije (for the
case one employs non-skeleton SE diagrams, (?o(e) ~ hl/e), for [e\ -> 00, the
integrands of these second- and higher-order SE contributions can be made as
small as desired and thus only EHF survives as the leading-order asymptotic
term in the expansion of E(s) for large |e|.

26Skeleton diagrams (Luttinger and Ward 1960, Nozieres 1964, p. 221) are those proper
SB diagrams that do not contain any SE sub-diagrams that can be removed from them by
"cutting" two GF lines. When in a perturbation expansion for the GF or the SE operator,
skeleton diagrams are used, the directed lines in these that ordinarily would represent an
unperturbed GF, Go, must represent the full GF, G.
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Fig. 5. The contours of integration employed for obtaining the Kramers-Kronig-type of
relations for the physical self-energy operator 11(c). The upper contonr is employed when
Im(z) > 0 (as in the Figure) and the lower contonr when Im(z) < 0. It should be realised
that when along A'B' and AB Im(z') is made to approach zero, only on sections A'p. and
pB one has E(z') —> S(e').

From Eqs. (42) and (43) it follows that

Er(z) := E(z) - £HF ~ ÿSi. + + • .. , for \z\ -> oo . (44)z z

Hence on integrating T,r(z')/(z' - z) along the contours C and C in Fig. 5,
the contributions of, respectively, the semi-circles BDA and B'D'A' to the
total integral will become vanishingly small when the radii of the semi-circles
are made infinitely large (and consequently AB -a (—oo, oo) and A'B' -a
(—oo, oo)). Now depending on whether Im(z) > 0 or Im(z) < 0, we carry out
integration along C or C', respectively, and obtain (below if 0)

ÿr(2) =ÿ/I ' Im(z) ÿ 0 ' (45>

Inarriving at this expression we have made use of the Cauchy residue theorem
(Titchmarsh 1939, p. 102), relying on the fact that Er(z'), similar to E(z'), is,
with the possible exception of the real energy axis, analytic everywhere on the
physical RS. Through substituting z = e ±it], with r;!0, in Eq. (45), making
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use of l/(x — xo ± it?) — V(l/[x — a*o]) T itrS(x — xq) we obtain

~ , , . 1 f°° ,Er(s' ±irj) , .Er(e± irj) = ±—T> / <fe ——-. (46)
ÿ J—oo S €

Let

E;(z):=i{E,(z)+£*(*)}, and E'r'(z) := I{Er(z)-£*(*)} (47)

be the "real" and "imaginary" parts of Er(z).27 The result in Eq, (46) can be
written as the following pair of the Kramers-Kronig-type expressions

~. , 1 /°° ,E"(e'±iT?)E' (e ± it?) = ±-V / de --,W-oo e'-e
(48)

°° ,S'r(e'±it?)E(.'(s±i7?) = T-P /°° de'ÿÿ
7r y.oo £' -

This pair is easily verified correctly to conform with the exact relations

%(**) = E:'r(z), E»(*•) = -£?(*), (49)

which are direct consequences of E).(z) = £,.(z*) — c./. Eq. (40). We remark
that the expressions in Eq. (48) are not in terms of solely the physical SE. For
obtaining a pair of expressions entirely in terms of the latter, we make use of
Eq. (49). After some algebra, from Eq. (48) the desired Kramers-Kronig-type
of relations for the physical SE operator (see Eq. (41)) are shown to be

J™ (50)
%(e) = /7T y_<

j-Tsgn(p — g)S(.(g')

Finally, according to a theorem due to Luttinger and Ward (1960), the
following relations (one obtained from the other through integration by parts

27We have to emphasise that Er(z) is an operator so that E'r(z) and E"(z) may not be real-
valued inspecific representations — in addition, upon a gauge transformation, a real-valued
representation of, say, E'r(z), can easily be made complex-valued. This comment applies to
all other operators, like x'(z) and x"(z)> that we encounter in the present work — note,
however, that contrary to G, x 's gauge invariant.
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— the asymptotic behaviour of the functions involved lead to vanishing end-
point contributions) are satisfied

(51)

Although for the exact G(z) and E(z) these expressions amount to identities, in
approximate frameworks these can best be violated (see Subsec. 9.2). Therefore
Eq. (51) lends itself for use as a "self-consistency" condition in approximate
calculations.28 The expressions in Eq. (51) are closely related to the Friedel
sum-rule for interacting electrons (Langer and Ambegaokar 1961).

5.2. A "local-density" approximation for E(e)
Sham and Kohn (1966) have shown that at least for systems with almost
uniform electronic density (such as ideal metals), E(r,r';£) has an interest¬
ing short-range property. By writing E(r,r';e) = h~1VH(r; [n])<5(r — r') +
M(r,r';e -vh(jo] [n])), where ro := (r -I- r')/2, these authors have shown that
owing to one of the Ward identities (corresponding to the long wavelength
behaviour of the static density-density correlation function), SM(r,r';e -
vh{roi [n]))/(Sn(r"), taken at the uniform density n, is a relatively short-ranged
function of r0-r", implyingthat the difference between M(r,r';c—vh(jo', [n])),
pertaining to the inhomogeneous system (with almost constant density) and
Mh{r — r';e — w//(r0 [n]);n), pertaining to the wm/orm-electron system,29 is
mainly determined by the deviation from the average value of the charge den¬
sity in the close vicinity of ro. This finding has been the basis for construction
of the following "local-density approximation" for the SE operator (Sham and
Kohn 1966)

XLDA(r, r';e) := ÿvH{r;N)<*(r - r') +Mh(r - r';e - vH(r0; [n]);n(r0)) ,

r0:=ÿ(r +r')- (52)

28In this connection we should like to emphasise that the Dyson equation (see Eq. (38)),
in reality is also an identity, expressing a relationship amongst the exaet G, Go and the
corresponding exact E. It becomes an equation, however, when either G or E is approximated
(in the former case an equation for E and in the latter an equation for G).
29Here the last argument n denotes the constant density of the system to which Afi,
corresponds.
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Suppose that 2 does not coincide with a "pole" of Gq(z), that is z is not equal
to a one-particle excitation energy of the non-interacting system described by
Ho, or, what is the same, det(zl- H0) / 0. In this case we can write Eq. (54)
in the alternative and equivalent form det((?Q J(z) — E(z)) = 0, or

det(z/ - [H0 + ftS(z)]) = 0 • (56)

The possible solutions z = z3 of this equation are eigenvalues of the (ingeneral)
non-Hermitian "quasi-particle" Hamiltonian

Hqp(z) := Ho +ht(z). (57)

_ The non-Hermiticity of Hqp(z) implies that its set of right eigenfunctions
{tps(z)} is not orthogonal. It can however be shown (Morse and Feshbach
1953, pp. 884-886) that when the sets of left and right eigenfunctions of H.qj,(z),
{4>s(z)} and {tp9(z)}, respectively, have been arranged insuch a way that 4>s(z)
and ips(z) correspond to the same eigenvalue Es(z), i.e.30

Hqp(z)tjjs(z) = Es(z)tps(z) , (58)

4>\(z)Hqp(z) = Es(z)4>\(z) 4==> U\p(z)4>s(z) = E*s(z)4>s(z) , (59)

then for Es(z) ± Es>(z), (<j>s(z),i/js>(z)) = 63<s, (here we have assumed nor¬
malisation to unity). In the case of degeneracy, i.e. Es(z) — Esi(z) for s ÿ s',
the degenerate left and right eigenfunctions can be made orthogonal through
a Gram-Schmidt orthogonalisation procedure, however, it is possible that the
resulting left and right eigenvectors may not span the original space (Golden-
feld 1992, p. 255) — see further on as well as Appendix A. From Eq. (56) it
follows that for the eigenvalues (eigenfunctions) of Eq. (58) to coincide with
the QP "energies" ("wavefunctions") it must hold

Ea(z) = Z] (60)

with this, Eq. (56) turns into det(£),(z)/ - Hqv(z)) = 0. We thus refer to
Eq. (60) as the equation for the QP energies.

From the above considerations it follows that Hqp(z) can be expressed in
the following bi-orthonormal spectral representation

Hqp(r,r';z) = ]T Es(z)ÿs(r;z)<?*(r'; z) . (61)

30It can be shown (Morse and Feshbach 1953, p. 885) that sets of left and right eigenvalues
are, up to ordering, identical.
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and (j>s(z) are normalised for all values of z, i.e. $»'{*)) =
"poles" of G(z) cannot be due to the functions in the numerator in Eq. (63).

The regularity of E(z) on the physical RS (see Subsec. 5.1) has some in¬
teresting consequences. For instance, from Eq. (57) we observe that Hqp{z)
is analytic in exactly the same region of the z-plane where £(z) is analytic.
This, through Eq. (58), or Eq. (59), implies that Es(z) is analytic everywhere
on the physical RS, with the possible exception of the real axis (recall that
the left and right eigenstates of Hqp{z) are bounded through normalisation).
We point out that if Es(z) were unbounded at some complex z, say at z = z0,
then form Eq. (63) it would follow that G{z) would be vanishing at z — z0l
which contradicts the finding in Subsec. 4.7.

For our further discussions we define

K(z) := \{E,(z) + E;(z)} , E'Jiz) := i{Es(z) -E*s(z)} . (64)

The 'physical' Es(e) is obtained from

E,(e) = limEs(e±irf) , e ÿ fi. (65)
V4-0

Through comparing the representation in Eq. (63) with the Lehmann repre¬
sentation in Eq. (11), we deduce the following conditions:31

E"(e) 5 0 , for e p. (66)

Violation of these inequalities signifies breakdownof the causality, or instability
of the GS due to its collapse into a lower-energy state.

From the second expression in Eq. (64) and the last expression in Eq. (62)
it is evident that for Im(z) -> 0, E'J(z) measures the amount of discontinuity
inEg(z) across its possible branch cuts along the real energy axis. It is obvious
that unless 23"(e) = 0, Eq. (60) for the QP energies, i.e. Es{e) = e, cannot
be satisfied. For systems in the thermodynamic, limit, 23"(e) is non-vanishing,
except for isolated regions of the real axis. Therefore, for these systems the
QP equation in general does not have real-valued solutions; such solutions can
only occur on the mentioned isolated intervals of the real energy axis. As
for the complex-valued solutions, these are excluded by the fact that G(z) is

31Despite the similarities between the Lehmann representation in Eq. (11) and the bi-
orthonormal representation in Eq. (63), the two are not identical; they are, however, both
exact.
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such a way that the total energy of the system retains its constant value in the
course of time. It should be noted that here the thermodynamic limit plays a
crucial role, since prior to taking this limit, one would be able in principle to
excite a single eigenstate of the system, which in the ideal case would remain
stationary for an indefinite duration of time.32

6.1. The quasi-particle approximation
In Sec. 6 we observed that the possible solutions of Es(z) = z are the energies
of un-damped one-particle excitations of the interacting TV-electron system,
i.e. the energies of undamped QPs. For systems in the thermodynamic limit
such solutions, if at all existent, describe only a negligible part of the structure
that one observes in, for instance, the photo-emissionor inverse photo-emission
spectra. Here we will elaborate on issues that link theory with experiment.

Consider the spectral function as defined inEq. (30) and calculated interms
of the bi-orthonormal representation for the GF in Eq. (63) (see Eq. (65)),

In arriving at Eq. (67) we have made use of the expressions in and following
Eq. (62). It is the behaviour of this function along the (real) energy axis that
is to be compared with experimentally-measured one-particle spectra. Often,
however, the experimental data are not spatially fully resolved, so that for
comparison with these data, some part of the spatial information contained in
-Ap(r,r';£r) has to be integrated out. This is best done by first Fourier trans¬
forming the spectral function into the wave-vector space (see Appendix A),
which is suitable from the experimental point of view, since far (on atomic
scale) outside the sample, momentum is a good quantum number (one may
think of the angle-resolved photo-emission experiments, whereby the disper¬
sions of the QP-energy bands as functions of the wave-vector of the incident
particle can be measured); see Cohen and Chelikowsky (1988). Let us for the
moment neglect the entire spatial or wave-vector resolution through equat¬
ing r' in Ap(r, r';e) with r and integrating r over the normalisation space of

32In practice, however, the coupling between the field of the electrons and the free electro¬
magnetic field in vacuum, or, in solids, the field of phonons (both of which we have neglected
in our considerations), renders even these excitations non-stationary.

S

(67)
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{tp3(r\z)} and {<A,(r; 2)}. Because of the bi-ortho-normality of and
{(j>s(z)} (see text following Eq. (59)) one obtains

P<E>:=Tpm{_kw}' (68)

which for "non-interacting" systems (i.e. those for which the SE operator
is energy independent and Hermitian) reduces to the well-known electronic
density of states (DOS) (or density of levels), concerning both "occupied"
(e < fi) and "unoccupied" (e > p) states. This is easily seen by employing
Im{l/(a-- xq ± irj)} = qpnS(x — x0), for r\ I0.

Equation (68) suggests that the peak structure observed in V(e) for certain
values of energy e, corresponds to those energies which satisfy the following
set of requirements (see Eqs. (64) and (65)):

E'M=e,
dE'a'(e)/de =0,

d2E'J{e)/de2 ÿ 0 , for £ ÿ ft . (69)

These c's may be termed the "experimental quasi-particle energies" ,as at these
e's the amplitude of the DOS is maximal. We point out that when a solution
of the first of the above three requirements satisfies E'J(e) =0, the remaining
two conditions must be relaxed since this solution coincides with the energy of
an un-damped QP in the system. Further, the second and third of the above
expressions are merely formal statements indicating that at the "experimental"
quasi-particle energies, |JS"(e)| is minimal. This observation is important from
the point of view of the fact that E'J(e) may not be differentiate. This is the
case for instance at the "band edges" and at the locations of the van Hove
singularities, which are branch points (Subsec. 2.1) of E„(z) along the real
energy axis (see Subsecs. 6.2 and 6.5).

Incases where E„{z) is free from branch points in the neighbourhood of an
"experimental" QP energy, say e®x, through Taylor expanding E,(z) around
z = e3x, one obtains the analytic continuation of Es(z) into a limited regionof a
non-physicalRS (see Subsecs. 2.3 and 2.4). Denoting this analytic continuation
by Ea(z), one can subsequently seek to solve E,(z) = z. Because Es{z) has
been obtained through an analytic continuation around an "experimental"
QP energy, it is likely that the latter equation indeed has a solution close to
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coincide, the Taylor expansion of £a(z) around this multiple solution (from
which expansion, in the case of ns = 1, Eq. (70) has been obtained) must be
continued up to and including the msth order. Second, the pole in the expres¬
sion on the RHS of Eq. (70) can never lie on the physicalRS, since, unless zs be
real-valued, zs can never satisfy Es(z) = z. Third, when zs is complex-valued,
the approximation in Eq. (70) breaks down for those points on the physical
RS that lie outside the radius of convergence of the Taylor expansion of £s(z)
around z = zs. The severity of the consequences of this failure, on the calcu¬
lated low-energy properties,35 depends on how large the ratio Im(zs)/Re(zs)
is. The smaller this ratio, the less severe are the consequences.

When the entire peak structure in Ap(e), or T>(e), or indeed G(e), is sub¬
jected to the approximation inEq. (70), then the resultingexpression is referred
to as the "quasi-particle approximation" for Ap(e), etc. Although possibly rea¬
sonably accurate for certain regions of energy, this approximation is in general
poor. In particular, strict adherence to it gives rise to violation of very funda¬
mental energy ("frequency") sum-rules (see, e.g., Eq. (34) above).

6.2. Quaai-particle energies: Poles and non-isolated singularities

Above we have established that equation Ea(z) = z has either no solution,
or if it has one (or some), this (these) must be real-valued. Now it may
happen that while E„(z) — z has a real-valued solution, this coincides with
a singular point36 of Es(z). In such an event, one must realise that the QP
approximation described in Subsec 6.1 may break down, in which case the
approximation presented in Eq. (70) and, in particular, such quantity as gs in
Eq. (71) becomes meaningless. Let us illustrate this situation by means of a
simple example. Consider /(x) := (x - l)1/2 + 1whose analytic continuation
into the complex z-plane is f(z) = (z—l)l/2+l. This functions has two branch
points, one at z = 1and the other at the point of infinity (Subsec. 2.1), i.e. at
1jz = 0. We cut the complex plane along (~oo,1], and of the two branches
choose the one for which holds /(x) = /(x) for x > 1; this is what defines

35For instance, application of the approximation in Eq. (70) to the low-energy peak struc¬
tures in©(e) pertaining to a semiconductor or insulator leads to a non-vanishing density of
levels inside the QP gap.
36Recall that (Subsec. 2.1) when, say, g(z) is analytic at z = zo, 2o is interior to an open
region in which g(z) is regular. The same is valid when zq is an isolated singularity of g(z)-.
there exists an open neighbourhood of zo where zo is the only singularity of g(z). Branch
points of g(z), by definition, cannot be interior to any open region in which g(z) would be
analytic.
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f(z); the other branch, according to the notational convection adopted in this
work, should be denoted by f(z) (see Subsec, 2.2). Consider now the equation
f(z) — z, to be compared with the equation for the QP energies, Eq. (60).
The two solutions of this equation are z\ = 1and 22 = 2, which are both real-
valued. However, Z\ coincides with the branch point (Subsec. 2.1) of f(z) in the
finite part of the complex 2-plane. We further observe that df(z)/dz diverges
as z —» z\. This complication may also occur while solving E3(z) = 2 (i.e. the
solution may lie on the boundary of the region of analyticity of E3(z)}. For
this reason it is important to establish the radius of convergence of the series
through which Es{z) is calculated. As a matter of course, any solution outside
this radius is false.

The consequence of the above-discussed possibility is that not all singular
points of G{z) (or those of its associated functions, such as the spectral func¬
tion) can be identified with energies of QPs (see in particular Footnote 51).

6.3. Quasi-particles in homogeneous systems

Inthe wave-vector representation (see Appendix A) for the non-interacting GF
holds

G0(t,z) = —-g, (72)
z efc

where
£° ÿ- Jÿ-k2 (73)

2me
stands for the non-interacting-electron energy at k. From the Dyson equation,
Eq. (38), it thus follows that

G(k;z) =- * ÿ (74)
z - [e(l+ hE{k-,2)]

Hence Es(2), now denoted by Ek(z), is defined as

Ek(z) :=eg +«£(*;*). (75)

As we have demonstrated earlier (Subsec. 5.1), for \z\ —> 00, E(fc;z) ~ EHF{k),
the Hartree-Fock SE.37 The exact form of this SE is unknown, but through
37For translation-invariant systems, the contribution of the Hartree part of the self-energy
EH(fc) (see Eq. (37)) to £HF(fc) is infinite but is cancelled against equally infinite contribu¬
tion due to interaction of electrons with the positively-charged uniform background. Hence,
here £HF(fc) and EÿF(k) are identical with UF(fc) and EF(fc), respectively.
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approximating the GS wavefunction by a single Slater determinant, one obtains
the following form (Ashcroft and Mermin 1981, p. 334)

V?F(k) = -~kFf(k/kF), (76)
7rn

where
. 1 1- x2 , 1+x I

This function decreases monotonically from 1at x — 0, to 0 as x -> oo, while
T{1) — 1/2. Above the subscript s indicates the underlying single-Slater-
determinant approximation. Inorder to draw attention to the possibility that
E*tF(k) may substantially deviate from the exact £HF{k), we point out that
the pair-correlation function g(r) (see Subsec. 8.8) as calculated in terms of
a single Slater determinant of plane waves, non-negligibly departs from that
calculated using a correlated GS wavefuuction. For instance gs(r) (i.e., g(r)
within the single-Slater-determinant approximation scheme) approaches 1/2
as r -* 0 (Glick and Ferrell 1959, Ueda 1961, March, Young and Sampanthar
1967, p. 12), whereas g(r -+ 0), depending on the value of electron density, can
(due to the eleetron-electron repulsion) be substantially smaller than 1/2 (Ueda
1961, Singwi, Tosi, Landand Sjolander 1968, Singwi, Sjolander, Tosi and Land
1970). From the point of view of the many-body perturbation expansion, EHF
and T,FF differ in that the former is evaluated in terms of G, while the latter
in terms of Go-

Luttinger (1961) has shown that, as e -*ÿ eF [this result had been suggested
earlier by Hugenholtz (1957, p. 544) and DuBois (1959b, p. 51)],38

£"(fc;e) ~ ¥«*(£ - £p)2 , e ÿ eF , (with a*. > 0) . (78)

38The result in Eq. (78) is, except for change of some symbols, exactly that presented in
the work by Luttinger (1961). For the following reason, this result is somewhat inconsistent
with our assertions: Whereas in the present work we distinguish between p, pjv (= eF)
and pjy+i (see Subsec. 4.2), with Pa? < p < PAt+i, in Luttinger's work, on account of the
thermodynamic limit, the quantities and p/v+i are identified with p. According to our
considerations, E(z) is real-valued and analytic in the open interval (pn,Pn+i)> whereas
according to Luttinger's no such open interval exists. If we were consistent, then we had
written (in what follows J? 4-0) :H"(k;e) = E"(k;e) = 0 fore € Cpn,Pn+i); E"(k;e+iq) =
E"(fc;e) ~ -ajt(e -pn+i)2 for e > pn+i"> S"(fc;e - itj) s E"(fc;e) ~ +ajt(e - pn)2 for
C <MJV-
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Employing this, the following asymptotic result, for small values of \e— eÿl, can
be obtained from the first of the Kramers-Kronig-type relations in Eq. (50):

E'(fc;e) ~ E(k-,£F) +pk(e-£F), (with 0k < 0) , (79)

where
£(fc;sF) = ZHF(k) + Ec(fc;sF) , (80)

with £c the "correlationpart" (as opposed to the "exchange part", i.e. Y,HF) of
the SE operator. Perhaps partly due to Eqs. (78) and (79), a large body of the
literature on the subject known to the present author invokes the suggestion
that E(z) were analytic for z in the vicinity of z = sF. This is not the case,
however. This can be seen in the following two alternative ways. First, the
very fact that z = eF is a branch point of £(z) implies that at z = eF we
must have to do with a non-isolated singularity (Subsecs. 2.1 and 2.2), from
which it moreover follows that neither a Taylor series expansion nor even a
Laurent series expansion can give a correct description of £(z) around this
point (see Subsec. 2.3). Second, through explicit calculation of the next-to-
leading-order term (that is the term following the one presented in Eq. (79))
in the asymptotic expansion for E'(e), for |e - eF\ —> 0, one directly observes
that this term involves (e ~-eF)2 In \e -ejr|.39 This logarithmic term underlines
our above statement.

Let us now consider some of the consequences of the asymptotic expressions
exposed above. Consider the equation for the QP energies on the real axis (see
Eqs. (60) and (75)). We have Ek(e) = e, where, following Eqs. (78) and (79)
for e -> sF, Ek(e) ~ e°k +h{E(k\£F) + 0k(e - eF) T iak(e - eF)2}, when
e ÿ eF. It can readily be verified that this asymptotic equation has a (real-
valued) solution only if e = £k + hE(k;£F) = eF. The second of the latter
equalities, namely

s9 + ftE(k\eF)=eF, (81)
is the equation defining the Fermisurface (Galitskii aud Migdal 1958,Luttinger
1960, Eqs. (6) and (94) herein).40 In analogy with the non-interacting theory,

30Notice the logarithm function in Jdxxn/(a 4- bx) = (-a/byxn~i/{n — j) -f
(-a/6)n ln|o 4- 6s|}/6, for n > 1(Gradshteyn and Ryzhik 1980, p. 58).
40Note that the definition of the Fermi surface involves E, whereas that of Zkp (see Foot¬
notes 34 and 51) a derivative of E. Evidently, therefore, one can have a Fermi surface even
when Zkp = 0.
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in which £? plays the role of the energy of a "quasi-particle" , and for which
£°< £p, with

£0 --ÿ J-2£F-2mekF (82)

the free-electron Fermi energy, defines the interior of the Fermi sea, we define
the interior of the interacting Fermi sea as those regions of the momentum
space where the LHS of Eq. (81) is less than the RHS (Luttinger 1960).

The isotropy of the problem at hand implies that the interacting Fermi
surface, like that of the free-electron system, is spherical. However, there is a
difference that can fundamentally alter the topology of the interacting-electron
Fermisurface. Contrary to £°k which is a monotonieally increasing function of k,
interaction effects can in principle render + ftE(fc;£p) a non-monotonically-
increasing function of k (see Subsec. 6.5, in particular Footnote 51). If so,
then the Fermi surface may consist of concentric spheres (see Footnote 6 in
Luttinger 1960), each two of which in general alternatively enclose regions
where e% + hH(k;eF) < ep and where sk + hT,(k;ep) > ef (see Fig. 6). This
sequence of alternating Fermi surfaces will be broken if solutions k of Eq. (81),

zl+Ti 2,(k ;fly)

Pig. 6. A sketch of c" +KE(k;p,v) — recall that /rjv = ep and that pjv < p < /r/v+l-
Sections of the /c-axis corresponding to + h£(fc;/r/v) < UN, defining the interior of the
Fermi sea, are indicated in bold. In the present case the Fermi sea consists of two concentric
spherical parts. In a uniform system where ek oc A:2, the segmentation of the spherical
Fermi sea of the non-interacting system (defined through ek<p°N) is entirely due to the
interaction effects. According to a theorem by Luttinger (1960) (Luttinger and Ward 1960),
volume of the Fermi sea is not affected by interaction effects. We point out that contrary
to the statement by Luttinger, a discontinuity in the momentum distribution function is not
prerequisite to the existence of a Fermi surface, a fact that follows from Luttinger's (1960)
own analysis; only it is necessary that E(fc;ÿjv) be real-valued for all k.
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to which we shall refer as zeros, are of even order (here we restrict ourselves
to the regular type of solutions), corresponding to a vanishing Fermi velocity
(see Footnote 51); zeros k of higher than the second order are excluded, since
such zeros will render G(k\s) non-integrable over the wave-vector space (see
Eq. (74)). Further, at the largest k for which Eq. (81) is satisfied, it must hold
3{£-°+/iE(fc;c/r)}/9fc > 0. It is interesting to note that, whatever the arrange¬
ment of the Fermi surface, the total volume of its interior is exactly equal to
the volume of the non-interacting Fermi sea (Luttinger 1960, Luttinger and
Ward 1960). Through neglecting £c in Eq. (80) and approximating ~ZHF(k)
by T,ÿF(k) as presented in Eq. (76), the Fermi surface is seen to consist of a
single surface, i.e. it retains the topology of the non-int.eracting-electron Fermi
surface, whose radius is equal to kp. It can readily be shown that the energy
dispersion +hH',F(k) gives rise to a divergent Fermivelocity for the Landau
QPs on the Fermisurface (Ashcroft and Mermin 1981, p. 337; see Footnote 51).

6.4. Fermi versus non-Fermi liquid; a Luttinger's
theorem revisited

Now we should like to comment on Luttinger's result as presented in Eq. (78)
above (Farid 1999a). To this end, it is appropriate that we first briefly describe
the strategies and, most importantly, assumptions that have been instrumental
to obtaining this result. Before proceeding we mention that our following
considerations have direct bearing on three-dimensional homogeneous systems;
Luttinger, in the work that we are about to discuss (Luttinger 1961), except
for a brief remark restricts his considerations to such systems. Inthis remark it
has been indicated how Eq. (78) fails to be valid inone-dimensional interacting
systems (now referred to as "Luttinger-liquids" — Haldane 1981).41

Luttinger has obtained the result in Eq. (78) in the following manner: The
proper SE operator (for a uniform-electronsystem) has been expanded in terms
of skeleton diagrams (see Footnote 26). Describing the SE operator in terms of
skeleton diagrams, implies a representation for the proper SE operator which
implicitly (through the exact GF) depends upon the proper SE operator itself.
After pointing out that E(fc;e) owes its energy dependence to diagrams of
second and higher order in the bare electron-electron interaction, Luttinger
evaluates £"(&;s) for e close to ep by considering in detail the contribution of a

41For in-depth discussions of one-dimensional systems see Solyom (1979) and Voit (1994);
see also Subsec. 4.4 in Mahan (1981).
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k

Fig. 7. A second-order proper self-energy diagram in terms of the bare particle-particle inter¬
action (the broken lines) employed by Luttinger (1961). The solid lines stand for either Go
or G, the single-particle Green functions pertaining to the non-interacting and interacting
system, respectively. The external and internal wave-vectors, k and kj, k2 and k3, respec¬
tively, are shown. Due to the conservation of momentum, one of the internal wave-vectors,
say k3, can be eliminated; k3 = kj + ka — k.

second-order skeleton SE diagram (we have reproduced this diagram inFig. 7).
Of importance is that Luttinger proceeds by evaluating this contribution first
in terms not of G but of Gq. Up to a multiplicative constant, this contribution
turns out to be exactly that presented in Eq. (78). After this, under the as¬
sumption of general validity of Eq. (78),42 Luttinger succeeds indemonstrating
that the considered second-order SE skeleton diagram in terms of G(e) yields
the same quadratic behaviour for E"(k;e). From this, Luttinger concludes
that the leading-order contribution to E"(fc;e), for e approaching ep, does not
depend on whether the skeleton SE diagrams are determined in terms of G or
Go- This simplifying result enables Luttinger to show that to all orders in the
perturbation expansion, Eq. (78) is valid.43

Two general comments are in place. First, as is obvious from the above
summary, Luttinger's result (Eq. (78)) has been obtained within the framework
of the many-body PT. It has been pointed out (text preceeding Eq. (52) in
the paper by Luttinger (1961); see also, e.g., the work by Mattuck (1976),
p. 207) that Eq. (78) is therefore valid so long as the underlying many-body
PT is valid. In other words, Eq. (78) may not be a priori universal since the
many-body PT may break down.

42Roughly speaking, this assumption provides justification for replacing a Lorentzian by a
Dirac i-function (see Eqs. (68) and (69) in Luttinger 1961).
43This conclusion is arrived at by explicitly demonstrating that any skeleton SE diagram
(in terms of Go) of the 2nd and higher order in the bare electron-electron interaction makes
a contribution to £"(fc;e) which is proportional to (e - ep)2m where m > 1.
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The problem of the break-down of the zero-temperature (T = 0) many-
body PT, in particular in homogeneous systems, has been addressed by Kohn
and Luttinger (1960) and subsequently by Luttinger and Ward (1960), follow¬
ing the observation that in general the GS total energy as obtained from the
T -> 0 limit of the perturbation expansion for the grand potential (Bloch and
De Dominicis 1958) involves non-vanishing contributions that are identically
vanishing within the framework of the zero-temperature many-body PT for
the GS total energy (Goldstone 1957).44 Kohn and Luttinger have shown that
up to the second order of the PT, the two many-body PTs are identical for
homogeneous systems (with spherical Fermi surfaces) of fermions of spin less
than or equal to 1/2 (see Footnote 10 in the work by Luttinger and Ward
(I960)). This result has subsequently been shown to be valid to all orders
of the PT by Luttinger and Ward (1960). Since in the present work we are
dealing with either spin-less Fermions or spin-compensated systems of spin-1/2
particles, we shall therefore not encounter a break-down of the perturbation
expansion.45 We point out that the unusual (i.e. non-Fermi-liquid-like) be¬
haviour of the high-Tc compounds in their normal states has been associated
with the low-lying excitations of these compounds forming a Luttinger liquid
(Anderson 1990, 1991, 1992, 1993) —- as opposed to a Fermi liquid —, and
this in turn has been ascribed to the break-down of the many-body PT as
applied (Engelbrecht and Randeria 1990, 1991) to these systems. We shall not
explicitly touch upon this problem here.46

Second, the expansion concerning £"(&;£), for e —> £>, of which the
leading-order term we have presented in Eq. (78), cannot be a Taylor expan¬
sion with some non-vanishing radiusof convergence, since ep is a (non-isolated)
singular point (Subsec. 2.1) of £(fc; z). Rather it is an asymptotic expansion
(see Subsec. 2.3). The logarithmic corrections (Nozieres 1964, p. 93) to the
results in Eqs. (78) and (79) — see text following Eq. (80) above — make the
validity of this statement evident.

Now we present a number of remarks on the technical aspects of Luttinger's
work. First, the second-order diagram chosen by Luttinger (reproduced in

44The diagrams corresponding to these non-vanishing contributions are referred to as
"anomalous" diagrams. These have vanishing contributions for finite systems, however.
45Except that for sufficiently low electron densities, where the charge density of the non-
interacting GS is uniform in contrast to that of the interacting system which is a Wigner
crystal. In this regime of densities, the PT based upon a translation-invariant state naturally
breaks down.
46Nonetheless, some elements of our present analyses are relevant to the on-going discussions
on this subject.
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Fig. 7) is in fact divergent for such long-range interaction functions as the
Coulomb one. This is because both of the interaction lines in this diagram
transfer the same amount of wave-vector, k - ki. Since in three dimensions
vc(k) oc k~2, the integral over ki diverges for vanishingly small ||k — ki||; by
choosing the origin at k, in the spherical-polar coordinate system (ki,<f>,9) we
have d3k\ = dk\d(pd9 fcfsin(0), from which it is seen that in principle only
poles of at most second order can be integrated over. Although the divergence
of the second-order diagram adopted by Luttinger cancels by the contribu¬
tions of a set of equally singular higher-order, random-phase approximation
(RPA), diagrams (see, e.g., Pines and Nozieres 1966, pp. 300-304, Mattuck
1976, pp. 185-192), it may be rightly questioned whether properties valid for
the individual terms (e.g. oc (e -£f)2) in such a highly singular infinite series
necessarily survive the infinite summation. Inthis connection we mention that
for series that are convergent, but not absolutely convergent, the sum depends
on the order of summation (Whittaker and Watson 1927, pp. 18 and 25). Fur¬
ther, for series which are not uniformly convergent, the analytic properties of
the sum may not coincide with any of those of the individual terms inthe series
(Whittaker and Watson 1927, pp. 91 and 92, Titchmarsh 1939, pp. 95-98). As
for the problem under consideration, since a series whose terms are not finite
cannot be absolutely or uniformly convergent (leaving aside that any finite sum
of such a series is devoid of meaning), it is by no means clear whether the result
in Eq. (78) can be of general validity for, say, the Coulomb systems.47

The divergent SE terms to which we have referred above, are those which
involve at least two bare Coulomb interaction lines which carry the same wave-
vector. Those diagrams that are attached through two bare interaction lines to
the proper SE diagrams are by definition polarisation diagrams (Hubbard 1957,
Fetter and Walecka 1971, p. 110). Since by conservation of wave-vector these
two interaction lines must carry the same amount of wave-vector, it follows
that all proper SE diagrams that contain polarisation insertions are therefore
divergent (see Mattuck 1976, p. 188).

47It has been shown (Fukuyama, Narikiyo and Hasegawa. 1991; Fukuyama, Hasegawa and
Narikiyo, 1991) that for the two-dimensional Hubbard model, within the t-matrix approxi¬
mation (whose validity, in principle, is restricted to the low-density limit), E"(fcp;£ +irj)
(e — ef) ln|e — £f|, asc— with p 4- 0, which still signifies a Fermi-liquidbehaviour (see
Footnote 4). This logarithmic modification with respect to (e — ep)2, which has been known
from the earlier works by Hodges, Smith and Wilkins (1971) and Bloom (1975), signifies
the fact that even for short-range interactions it is not a safe procedure to draw conclusions
with regard to E"(fc;e) from the behaviour of the individual terms in a perturbation series
expansion of E(fc;e); for this to be a safe procedure, it is required that the uniformity of
convergence of the latter series be ascertained (see Titchmarsh (1939), p. 95).
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If we now analyse the proper SE diagrams in terms of the dynamic screened
interaction function W (such analysis must then discard all proper SE diagrams
that involve polarisation insertions — otherwise certain processes are multiply
counted) ,48 we readily observe that even in the lowest order of the perturbation
expansion (see Subsec. 9), the behaviour of E"(k;e), in particular for e —t ep,
crucially depends on the charge-neutral excitation spectrum (as distinct from
the single-particle, i.e. charged, excitation spectrum, which is contained in G)
of the interacting system. Determination of this excitation spectrum, which is
contained in the dynamic density-density correlation function x(ÿ) (see Sec. 8
and in particular the closing paragraph of Subsec. 9.4), is as intractable a task
as that of the single-particle excitation spectrum.49

6.5. Breakdown of the many-body perturbation theory?

Inaddition to the above, there is a technical aspect associated with the evalua¬
tion of E"(fc;e) corresponding to the second-order diagram dealt with explicitly
by Luttinger (see Fig. 7) that we find worth mentioning and commenting on.
Conservation of wave-vector (or momentum) implies that of the three internal
wave-vectors kj, k2 and k3, one is fully fixed by the other two; we have namely
k3 = ki +k2 — k. Mathematically, this restriction follows from the fact that
for the matrix element of the Coulomb potential (see Eq. (57) in the work by
Luttinger (1961)) (k,k3|ve|ki,k2) = Vc(k_kj)<Sk-ki,k2-k3 holds. This implies
that of the three 3-wave-vector integrals the one over, e.g., k3 can be elimi¬
nated. If one proceeds in this way, then the subsequent algebra becomes quite

48In uniform systems (more generally, in all systems without a gap in their single-particle
excitation spectrum — i.e. in systems with a Fermi surface) the static screened interaction
function is shorter-ranged than the bare Coulomb interaction. Within the approximate
Thomas-Fermi theory of screening, the static screened interaction is exponentially short-
ranged (Fetter and Walecka 1971, pp. 175-178; Ashcroft and Mermin 1981, pp. 340-342),
W(|jr — r'I) ;0) oc exp(—fcrF||r — r'||)/||r — r'||, where &tf stands for the Thomas-Fermi
wavenumber; for metallic densities ranges between 7.5 and 13.0 A. This renders W(k;0)
finite for k -> 0. More accurate calculation, within the random-phase approximation (RPA),
yields however a power-law decay for large j|r — r'|| : W(||r- r'||;0) cos(2fcF||r -r'||)/||r —
r'||3 (Fetter and Walecka 1971, pp. 178 and 179; Ashcroft and Mermin 1981, p. 343), to be
compared with vc(r-r') oc l/||r-r'||. This is sufficient to rendering W(fc; 0) finite for k -4 0;
recall that W(k\ 0) = e_l(fc;0)tic(fc), where e(k;e) stands for the dynamic dielectric response
function (Subsec. 7.5), and that within the RPA (see Eq. (5.65) inPines and Nozieres (1966)),
e(fc;0) ~ k%,F/k2, as fc -> 0; with vc(k) oc 1/fc2, it is readily seen that indeed W(fc;0) is
finite for k —> 0.
48Whereas E"(e) is a measure for the density of the excited interacting N± 1-states, x"(e)
— see Eq. (112) — is a measure for the density of the excited interacting IV-particle states.
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tedious. Luttinger, in evaluating E"(k\e) corresponding to the diagram in
Fig. 7 in terms of Go, proceeds by transforming the wave-vector integrals over
ki, k2 and k3 to those over the single-particle energies of the non-interacting
problem £°kl , £kj and £ks .50 From Eq. (73) and the above expression for k3
it is readily seen that s°k3 = eki + £ki +£l + (ÿ2/me){ki • k2 -k • ki - k •

k2}. From this it is clear that in spatial dimensions higher than one, the
orientational freedom of ki and k2 with respect to each other as well as k
permits independent variation of £°ka alongside independent variations of
and over non-vanishing intervals, in spite of the fact that k3 is completely
fixed by ki and k2. It is due to this possibility of independent variations in
£k. 's over non-vanishing intervals that for systems extending over more than
one spatial dimension, Eq. (78) can hold — here, as far as contribution of the
diagram in Fig. 7 in terms of Go is concerned.

Let us now in evaluating the contribution of the diagram in Fig. 7 in terms
of G follow Luttinger in all respects. The QP energies being ek, following
Luttinger, we will have to transform the integrals over wave-vectors ki, k2
and k3 by those over £kl , £k2 and £ks ,51 to be compared with those over ,

50ln the spherical polar coordinate system (k,tj>,B) we have d3k = k2su\{d)dkdtj>d0. With
as given in Eq. (73), it follows that d3k = |(2me//i2)3/2 sin(0)deÿd4>d9- Thus

d?k oc <ie°.
51Following Eqs. (60) and (75), ek is to satisfy ek = sk + fi£(k;ek). As discussed in Sec. 6,
for such ek to exist it is necessary that < ek < pa'+iÿ In the present case only eki 's close
to p/v seF play a role. Therefore, leaving aside problems with regard to the differentiability
of the functions involved, one can easily solve ek from the above equation to linear order in
(k — kp) — such solution is of nature asymptotic. With ek = ep 4- dek/dklk-kF(k — kp) +
O ((fc - kp)2}, some simple algebra yields dek/dk\k=kF — Zkpd{ek +hT,(k\ sp)}/dk\k=kF

where Zkp'— (l— h8H(kp\e)/de|e=eF) ' — see Subsec. 6.6. In view of our discussions
and remarks in Subsecs. 6.1 and 6.2, it is possible that Zkp = gkf. (see Eq. (71)) may
be vanishing, in which case one observes that to linear order in (fc — kp), ek is a constant
(unless d"E(k;sp)/dk -t oc for k kp — see however further on). This behaviour of
£*: is fundamentally different from that of ek, for which holds = ekp + (h2kp/me)
{k -kp)+ (H2/[2me])(k - hp}2. For the effective mass m* of the quasi-particle with energy
£fc at fc = kF we have := h2kp/(dek/dk\k-kF), so that a vanishing dek/dk\k-kf.
would imply a diverging effective mass. However, one must be aware of the fact that this
divergence merely signals the breakdown of the notion of quasi-particles on the Fermi surface
(see Subsec. 6.2). Since for the Fermi velocity of the quasi-particle with energy ek at fc = kp
we have vp := h~ldek/dk\k-kf. = hkpjm*, the above expansion for ek can alternatively
be written as ek = ep + hvp(k — kp) + O ((fc — kp)2). It is the linearised version of
this expression that is invariably used for describing the behaviour of G{k\e) close to the
Fermisurface (see, e.g., Migdal 1957, Nozieres 1964, p. 93). Now let both fft{kp;e)/de and
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with j = 1,2,3. Now unless we make an explicit assumption concerning the
dependence of £*, upon k, such as for instance £k = h2k2/[2m*], with m* the
renormalised mass of the QPs (see Footnote 51), it is not possible to ascertain
whether Sk3, with k3 = ki + k2 - k, can arbitrarily — i.e. independent of
variations in £*,, and Sk3 —, be varied over some finite interval (i.e. similar
to what is the case for £®3). If in a certain circumstance this is not the case,
or range of variation in £k3 is infinitesimally smaller than ranges of variation
in £fcj and £fc3 (taking into account the requirement of the conservation of
energy), for £ fep we may then have £"(e) (e -£p)1+7 where 7 € [0, 1).
We observe that Luttinger's derivation of Eq. (78) ina way implicitly excludes
"non-Fermi-liquid" behaviour.52 In other words, barring all possible problems
associated with the derivation of Eq. (78) from the proper SE diagrams in
terms of the hare Coulomb interaction (which we have discussed above), it is
not incorrect to state that the result in Eq. (78) constitutes a possible self-
consistent result, but by no means the only result that can be derived within
the framework of the many-body PT. This implies that observation of non-
Fermi-liquid behaviour in the low-energy (or low-temperature) properties of a
homogeneous interacting system does not necessarily entail the breakdown of
the many-body PT.

3S(fc;sF)/9fc be unbounded for e = ep and fc = hp, respectively. Although formally the
above expression for dek/dlfc)fc=kF may be used to obtain vp = -ft""1 dY:(k;ep)/dk\kÿk F/
dH(kp;e)/de)t=Cp (which may or may not be finite), it should be evident that in doing so
one is neglecting the possibility that for, e.g., k f. kp it may be the case that, for instance,
E(k;ep) ~ E(fcp;cf)+cr(fc-hp)",with or e (0, X) (recall that a function's asymptotic series
may not be uniform — see Subsec. 2.3); one is equally neglecting the possibility that for e 1
«f it may happen that, for instance, E(fcF",®) ~ E(fcF;£F)+jd (E-ep)+7(e — ep) ln(e-ep).
Insuch cases, vp is clearly an altogether unsubstantial quantity and cannot be defined: In
order to define vp, it is necessary that for k —ÿ kp one can write ek =rp+hvplk—kp)+it(fc) ,
where R(fc) = o(k - kp)-, although R{k) may be a singular function of fc at fc = hp, the
property It(fc) = o(k - hp) ensures existence of a finite first derivative of Sfc at fc = kp. At
least one of the above typical asymptotic expressions for E(k;ep) and E(fcp;£) 's sufficient
to cause that no such R(k) exists and therefore render ek = ep + flvp(k — hp) + R(k)
devoid of any meaning. In the proof of Luttinger's theorem no account has been taken of
the above possibilities, which cannot be a priori ruled out. Finally, it is important to point
out that Galitskii's (1958) results, for the real and imaginary parts of ek close to fc = kp,
obtained through solving the Galitskii integral equations, yielding a linear behaviour for the
former and a quadratic one for the latter (linear and quadratic in (fc - kp)), are explicitly
determined for short-range fermion-fermion interactions (see Earid 1999a).
52Using the Kramers-Kronig relation in Eq. (48), it can be shown that E"(s) |e — ep\",
as e —ÿ ep, implies the following for E'(e) - E(sf): M (e ~ eF) when 1< a < 2; (2)

(e — ep) In |e — sf| when a — 1("marginal Fermi-liquid" behaviour); (3) (e — ep)"
when 0 < or < 1.
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6,6. Momentum-distribution function; a Migdal's
theorem revisited

Inview of the above discussions it is instructive that we consider a well-known
result due to Migdal (1957); this result has also been obtained, through a
somewhat alternative approach, by Luttinger (1960).

Migdal (1957) first establishes that the momentum-distribution function
n(fc) (to be precise, here "wave-number distribution function") in the GS of a
uniform electron system,

n(fc) := iv.o |ÿ jv.o) . (83)

is directly related to the hole part of the GF, Gh (see Eq. (10)) in the momen¬
tum representation. From this, upon deformation of the contour of the energy
integration along the real axis into the complex energy plane, Migdalobtains53

n(k) = ilcÿid(k;z)' (84)

where C denotes the contour as depicted in Fig. 8. Now Migdal states that
for k infinitesimally less than kp, denoted by kp, G(k;z) has a pole, with
an infinitesimal imaginary part (due to £"(fc; e) — see Eq. (78)), enclosed by
contour C in Fig. 8, and that through increasing k to kp(kp > hp), the imag¬
inary part of the mentioned pole changes sign, upon which the pertinent pole
leaves the interior of C.54 Aside from this singular part (the singularity being,
according to Migdal, a simple pole), the GF hers also a regular or incoherent
part which does not contribute to n{hp) — r\(kp) — because of it being regular.
Thus it follows that (see Eqs. (79))

n(M— — %kp "= (1 — hfikp) 1
1 (85)

53The notation here is ours — Migdal does not employ G(k;z). Further, the convention
adopted by Migdal for G differs from ours by a minus sign.
54Strict application of the notation of the present work would demand that we denoted kp
by kp, the latter via Eq. (81) corresponding to ep = pp. Thus we would only need to
define fcj corresponding to ej =un+i- As we have mentioned earlier (see Subsec. 4.2 and
Footnote 38), in our case p. is interior to an open, albeit infinitesimal, interval on the e-axis
where both G(k;z) and E(fc;z) are analytic.
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popular statement, that the Landau theory of Fermi liquids relies upon the
implicit assumption that eigenstates of H stand in a one-to-one correspon¬
dence with those of H0 (Landau 1957a). This assumption is justified (in an
asymptotic sense) a posteriori by Eq. (78) for the low-energy excitations of
the many-electron system; this clarifies the reason for the applicability of the
Landau theory (if it is applicable at all) to describing properties corresponding
to low-laying excited states of interacting systems.

Another point of some relevance is the following. Suppose that by some
means £${z) = z has been solved and that the solution zs happens to be close
to in particular that |Im(zs)| <c |Re(z„)|. Insuch an event, one might wish
to obtain the "physical" counterpart of z3, i.e. es (this is not necessarily the
same energy that features in the Lehmann representation for G(e) in Eq. (11)),
through iteratively (DuBois 1959a, pp. 208-210) solving the first equation in
Eq. (69), adopting a finite-order Taylor expansion for Ea(e) := Ea(e +sgn[e —
p)irj) (see Eq. (65)) around e = with i= 0, 1,. where Here
the requirement for "iteration" arises from the non-linearity of Ea(e) [around
£ÿ], leading to the general property that ÿ e1/1 for i> 1. Let us for
simplicity make use of a first-order Taylor expansion. The linear equation thus
obtained has the following solution

e(i+1) = + Re(Es(ejl))) ~ Rf(gJ(fÿ))#
1-Re(El(eP))

ÿe°s+ Re(Es(<?«)) +Re(£,(e«))Re(#(#)) , (86)

where E'a(e) := dEa(e)/de. In what follows we assume e° to be very close to
es so that <4'+iÿ with i= 0 is to a high degree of accuracy equal the desired
real-valued solution.56

For uniform systems of electrons, Es{z) <-> e°k + hT.(k; z) (see Eq. (75))
so that El(z) hd'E(k;z)/dz. For these systems, DuBois (1959a, pp. 208-
210; see also DuBois (1959b, pp. 66 and 67)) has shown that derivatives like
dTSmÿ{k,z)/dz = dEÿ(z)/dz in the above expression, with Eÿm\k',z) de¬
noting the total contribution of the mth-order SE diagrams (including both
skeleton and non-skeleton diagrams) in the perturbation expansion for E(fc; z)
in terms of the dynamically-screened electron-electron interaction, gives rise to

56That this procedure can produce real-valued solutions, is not at variance with our earlier
statement that Es(z) = z in general has no solution. This is because taking the real part
of a complex function is not an analytic process.
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(a) (b)
Fig. 9. Two self-energy (SE) diagrams in terms of the single-particle Green function Gq
of some "non-interacting" Hamiltonian (solid directed line) and the dynamic screened in¬
teraction function W (wavy line). Diagram (b) is not skeleton but contributes to the SE
operator due to use of Go- The derivative with respect to the external energy parameter e
of diagram (a) gives rise to a contribution that partly cancels contribution of diagram (b) to
E(e). When E(e) is approximated by a finite-order perturbation series, 8E(e)/9s involves
incompletely-compensated contributions.

contributions that cancel some terms in E(ifc;z) originating from Sÿm+1ÿ(z).57
Thus for i = 0, there is a (partial) cancellation between Re(i?,(£®)) and
Re(E$(£ÿ))Re(El(eÿ)) in the second expression on the RHS of Eq. (86). As
an example, the derivative with respect to e of diagram (a) in Fig. 9 gives rise
to a contribution that counters some contribution due to diagram (b) in the
same Figure.

Two conclusions may be drawn from the above considerations:58
First, when E(e) has been obtained through a finite-order perturbation

expansion in terms of some Go, derivatives of E(e) involve contributions that
in the exact theory do not contribute, due to the above-mentioned cancella¬
tion. Since such cancellation is not complete when a finite-order perturbation
expansion for E(e) has been employed, it is consequently appropriate to use

«s® +Re(jEs(e®)) and neglect the term involving Re(jF/(e8)) on the RHS
of Eq. (86) — (Rice 1965, second paragraph on p. 111). For a specific example
of such cancellation, concerning low-temperature heat capacity of a degenerate
uuiform-electron system, see DuBois (1959b, pp. 66 and 67).

57It can be directly verified that d(s\Go(z)\s')/dz = -fi(s|Go(2)Go(z)ls')- We have, more-
ova-, E,(z) «o<s|ffois)o+o(slE(z)ls)o- Here (js)} denotes any (complete) set of one-electron
states, and {|s)0} that of normalised eigenstates of Ho-
58Lack of space prevents us from doing due justice to the subject matter, so that here we
essentially quote other authors.
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Second, in a perturbative calculation of the GF, the SE diagrams and the
vertex-function diagrams (see Subsec. 7.5) should be concomitant or "corre¬
sponding"; this on account of certain cancellation property (Mahan 1994).59

Self-energy diagrams have two external points and the vertex-function dia¬
grams three (see Subsec. 7.5). Concomitant SE and vertex diagrams give rise
to contributions in, say, the polarisation function that largely cancel (Ma¬
han 1994). The criteria put forward by Baym and Kadanoff (1961) and Baym
(1962) on the one hand, and the Ward (1950) identities (Nozieres and Luttinger
1962, Nozieres 1964, Mahan 1992) on the other, provide means by which to
select out sets of vertex-function diagrams that are concomitaut with a given
set of SE diagrams.

7. Determination of The Single-Particle Green Function
In this Section we review several methods for calculating the GF of an inter¬
acting system. We give our main attention to the many-body perturbation
theory.

7.1. Exact approach

The single-particle Green function G(rt,r't') can in principle be determined
from its defining equation, Eq. (8). This implies, amongst others, knowledge of
the GS wavefunction, so that this approach becomes impracticable for systems
with even a moderate number of electrons. For completeness, for describing
the time-dependence of the field operators in the Heisenberg picture, here use
should be made of the Trotter formula (Negele and Orland 1988, p. 337).60 In
doing so, since G(rt, r't') is a function of t — t!, the time argument of one of
the field operators can be held fixed.

7.2. Equation-of-motion approach and truncation of hierarchy

The equation-of-motion (EOM) for G directly follows from the EOM for the
annihilation field operator (or its Hermitian conjugate, the creation field

59We draw attention of the reader to misprints in (Mahan 1994). For instance, on pp. 346
and 347 of this work, the Hubbard G(fc) within the LDA is mentioned to be equal to —Kxc
while in reality this G(fc) is equal to -Kxc/vc{k). Further, we should like to mention that
the screened interaction W$ suggested in (Mahan 1994) is incorrect on physical grounds —
see (Farid 1997a).
69For a realisation of this approach (in combination with a Monte-Carlo technique for inte¬
gration) for applications to systems involving coupled boson-fermion fields see Blankenbecler,
Scalapino, and Sugar (1981).
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Scalapino (1989), Bickers and White (1991), Serene and Hess (1991), Dahm
and Tewordt (1995a,b), Micnas, et al, (1995) and Dahm, Manske and Tewordt
(1997).

7.4. Many-body perturbation theory, and its breakdown
The GF can in principle be determined through application of the many-body
PT (for technical aspects see, e.g., Fetter and Walecka 1971, Negele and Orland
1988). Elsewhere (Farid 1997a, 1999b) we have in some detail discussed the
problems from which the many-body PT can suffer. Therefore here we shall
be brief and mention that a perturbation expansion can fail because (i) the
perturbation series may diverge as a whole; (ii) some of the terms contributing
to the perturbation series may be divergent; (iii) after having summed all
terms of the series — barring possible difficulties due to problems (i) and
(ii) —, the outcome may be unrelated to the sought-after single-particle GF
("bogus convergence").

7.4.1. In defence of the many-body perturbation theory

Problem (i) can be understood by analogy with the following simple example.
Consider S„{x) := 1+ x + ÿ • • + xn. For n —ÿ oo this series is absolutely
convergent only when |x| < 1 (it is, however, conditionally convergent for
x < 1, in the sense of being Borel summable (Whittaker and Watson 1927, pp.
154 and 155, Lauwerier 1977, pp. 45-50, Negele and Orland 1988, pp. 373-
376)),62 and it diverges otherwise. Thus although Sn(x) for n —> oo is formally
a series expansion for (1 — x)"1, it has no validity when x lies outside some
specified domain. Inthe same way, a many-body perturbation expansion for G
in terms of some "reasonable" non-interacting Green function Go can become
invalid when interaction, or perturbation, becomes too "strong".63

82For other summation techniques (like Cesaro's and that by Riesz) see {Whittaker and
Watson 1927, pp. 154-156).
63There is a subtlety involved here. Contrary to an ordinary series, a many-body pertur¬
bation series involves products of matrix elements of the "perturbation" with respect to
the initial, intermediate and final many-electron states. Hence the "strength" of the per¬
turbation is not solely determined by the "perturbation" itself — in the second example in
Subsubsec. 7.4.3 we shall see that, for a particular model, irrespective of the magnitude of
the coupling constant \ of perturbation, but as long as \ > 0, the Rayleigh-Schrodinger
perturbation series yields the exact GS total energy. In some cases (such as that concerning
a uniform system of electrons), the perturbation Hamiltonian may involve a multiplicative
dimensionless parameter through which the "strength" of the perturbation can be regulated.
However, the perturbation series in powers of such parameter may not be convergent, but
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Problem (ii) arises quite generally. However, for the so-called re-normal-
isable field theories (Collins 1984), divergent terms can be made harmless
through partial summation of specified classes of perturbation terms. Inother
words, divergent terms in such field theories have always counter-terms. For
the theory adopted here, as described by Hin Eqs. (2)-(5), the possible singu¬
lar terms in the perturbation expansion for G arise from certain polarisation
terms (diagrammatically represented by the so-called "loop" diagrams — see
Subsecs. 6.4 and 8.4): due to the long rangeof the bare Coulomb interaction, in
the momentum space this interaction is singular in the long-wavelength limit,
so that the mentioned terms may involve divergent momentum integrals cor¬
responding to "zero"-momentum-transfer polarisation processes ("infra-red"
divergence). Now we can distinguish between two types of systems: those that
do not have gap in the low-energy part of their single-particle excitation spec¬
trum (such as metals) and those that do have a gap in this spectrum (such as
semiconductors and insulators). In the former systems, where one encounters
divergent momentum integrals, the partial summation over the polarisation
diagrams results in a screened electron-electron interaction function which is
shorter-ranged than the bare Coulomb interaction (see Footnote 48) and, in
addition, is energy dependent. This screened interaction renders divergent mo¬
mentum integrals convergent. Therefore through a partial summation over the
polarisation diagrams — which amounts to expressing the perturbation series
in terms of the dynamic screened interaction function, as opposed to the static
bare Coulomb interaction function —, the theory is renormalised. In the latter
case, existence of a fundamental gap in the single-particle excitation spectrum
renders contributions of all polarisation diagrams finite.64 We emphasise that

asymptotic and divergent (Subsec. 2.3), no matter how small the parameter — see Subsub-
sec. 7.4.2. A divergence of this type may be circumvented by performing the perturbation
expansion in terms of a "non-interacting" Hamiltonian that implicitly depends upon the
interaction, so that the resulting perturbation series is not merely a power series in the
perturbation parameter. See Footnote 69.
64This can be understood by recalling the fact that in applying perturbation theory to a
manifold of degenerate states, it is required first to construct a suitable linear combination
of these states, for otherwise a perturbation, no matter how weak, gives rise to divergent
contributions. For states corresponding to non-degenerate energy levels, no similar measure
need be taken. In elementary quantum mechanics these subjects are dealt with under the
headings of "degenerate perturbation theory" and "perturbation theory" , respectively. In
the present case, systems with a Fermisurface (whose "occupied" energy levels are infinitesi-
mally below p [i.e. at pjv and lowerj and "un-occupied" energy levels infinitesxmally above p
[i.e. at hn+land higher]) present us with a situation comparable with one where "degenerate
perturbation theory" needs to be applied ("perturbation" here being the electron-electron
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|$jv,o) through the process of "adiabatic switching-on" of H-Ho. Inthis way,
despite the possible convergence of the many-body perturbation series for G,
the calculated function is unrelated to the actual G for which the perturbation
series has been set up (see the second example in Subsubsec. 7.4.3).

In a way the above problem is related to that which arises in solving the
non-linear EOM for G to which we have referred in Sec. 7.2. The connec¬
tion is readily seen as follows: As mentioned above, the EOM for G(rt,r't')
is obtained from that for ip(rt). Here one multiplies both sides of the latter
equation (Eq. (87)) by $(r't') and subsequently applies the time-ordering op¬
erator to the resultingequation. After some algebraic manipulations, one takes
the expectation values of both sides of the thus-obtained operator-valued equa¬
tion with respect to I'Jjv.o), upon which the sought-after EOM for G(rt,r't'}
is obtained. Obviously, the only aspect in this equation that hints at it be¬
ing the EOM for the single-particle GF is the mere appearance of the symbol
"G(rt,r'f')" in it! Had we bracketed the mentioned operator-valued EOM for
-iT {ip(rt)ipl(r't')} between any normalised IV-electroneigenstate of the num¬
ber operator N,say, \Xn) (or, more generally, had we bracketed the mentioned
operator-valued equation between (Vjv| and |X,v) with (Yjvl-Xjv) ÿ 0), we had
obtained a similar-looking EOM for —i(Ajv|T{t/'(rt)t/d(r't')}|XN)/{A'iv|.X'jv}
which is distinct from G(rt,r't'), unless \Xn) = |T'at.o) - This implies that each
of the multiplicity of solutions of the EOMfor G may in fact correspond to one
such amplitude. Assuming |Xn) to be, in addition, a simultaneous eigenstate65
of H, we immediately observe how the possibility of adiabatic disconnection
of the GS of Ho from that of H, leading to the breakdown of the many-body
PT for G, on the one hand and the multiplicity of the solutions of the EOM
for G on the other, are closely related.

Problems (i) and (iii) can in principle be overcome through a suitable
choice for the non-interacting Hamiltonian: one whose GS is "adiabatically
connected" with the GS of H. In (Farid 1997a, 1999b) it has been shown that
provided some specific condition(s) be satisfied (see further on), one such non-
interacting Hamiltonian can even be explicitly calculated. Briefly, within the
framework of the DFT appropriate to a specific system, one has to do with a
well-specified set of GS properties that uniquely determine the many-body GS.
For instance, for a system of spin-less fermions with non-degenerate GS, the
GS is a unique functional of the GS charge density n(r) (Hohenberg and Kohn

65The adiabatic evolution of the GS of Ho always results in an eigenstate of H — see
(Gell-Mann and Low 1951, Fetter and Walecka 1971, pp. 61 and 64, Farid 1997a).
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7.4.2. Dyson's argument

Here we draw attention to an argument pnt forward by Dyson (1952)68 to
the effect that in general perturbation series (in powers of the coupling con¬
stant of interaction) should be divergent asymptotic series (for definition see
Subsec. 2.3). Although this may be the case in some circumstances, Simon
(1970) has demonstrated the incorrectness of Dyson's argnment in its gener¬
ality. Aside from this, the following two observations have to be taken into
account: (i) Divergent asymptotic series can be summed (by various sum¬
mation techniques — see Subsec. 2.3), yielding functions that are analytic in
specific sectors of the complex plane of the pertinent expansion parameter
(here, a coupling-constant parameter); the divergence of these series is then
seen to correspond to singularities of these analytic functions;69 (ii) In prac¬
tice, perturbation expansions are almost never carried out around the GS of
the truly non-interacting Hamiltonian (take for instance the expansion around
the GS of the KS Hamiltonian [whose use within the context of the many-
body PT we have advocated in Subsubsec. 7.4.1], which takes account of the
electron-electron interaction to infinite order). That is, in practice many-body
perturbation series are almost never in powers of the coupling constant of the
bare electron-electron interaction.

7.4.3. Simon's argument; two counter examples
According to Simon (1970), Dyson's (1952) arguments are based on two "folk
theorems" : (i) that analytic continuation of an eigenvalue in the complex plane
68We have to emphasise, however, that Dyson (1952) has qualified his argument as follows:
"The argument here presented is lacking in mathematical rigour and in physical precision.
It is intended only to be suggestive, to serve as basis for fnrther discussions." Nonetheless,
this "argument" is frequently used in disregard to its apparent limitations.
69Consider the energy per electron, in Eydberg, of a uniform system of interacting electrons
(Gell-Mann and Brueckner 1957, Pines and Nozieres 1966, p. 304): Enÿ/N = 2.21/r2 —
0.916/f» -I- 0.062 ln(r„) — 0.096 + ar, + bfs ln(rs) 4- erf + • • • , where r„ := rs/ao, with
rs := (9-rr/4)1'3/kjr, the Wigner-Seitz radius, and ao := h2f[mee2} the Bohr radius (one
thus observes that indeed rs oc e2, the electron-charge squared, i.e. the coupling constant of
the electron-electron interaction). The first two terms in this expression are the uncorrelated
kinetic and exchange energy, respectively, and the remainingterms account for the correlation
energy. Were it not because of the terms involving ln(r„) (which has a branch point at r,=
0), the energy density of electrons had a second-order pole at rs = 0 on the complex rs-plane.
Because of the terms involving ln(rs), one observes that Bftfi/N cannot be described in terms
of a Laurent series in r». Nevertheless, the above expression for En,o/N has been obtained
from a perturbation series, involving infinite number of divergent terms. Compare with
the asymptotic and divergent series in Subsec. 2.3, corresponding to the analytic function
z-1exp(l/z)r(0, 1/z).
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r(l,2; 3) = <5(1, 2)5(1, 3) +Jd(4)d(5)d(7) *£(1,2)
5G(4, 5)

x G(4,6)G(7,5)r(6,7;3). (93)

Here t+ It, uc(l,2) := uc(n - r2)5(ti - h) and 5(1,2) := 5(ri - r2)5(fi -
<2)- The functions P, W and T are the polarisation function, the dynamic
screened interaction function and the vertex function, respectively. The pre-
factor of 2 on the RHS of Eq. (90) is due to a trace over an internal spin degree
of freedom of electrons (for spin-s particles, the pre-factor would be 2s 4- 1).
These expressions are made complete through the Dyson equation in Eq. (38).
The equation for W, first derived by Hubbard (1957) through application of
the many-body perturbation theory, can equally be expressed in terms of the
inverse of the dielectric function, e-1, as follows

W{1,2) =Jd(3)e~\1,3>c(3, 2) (94)

where
e_1(1,2) = 5(1,2) + Jd(3K(l+,3)x(3,2), (95)

with x denoting the dynamic density-density correlation function,

-2i6G(rt, rt+; [y>])X(rt.r't') := 8<p(r't')

-2i
tp=0

(ÿAr,o|T{p//(rf)p//(r'<')}|ÿÿ,o) • (96)

The pre-factors 2 on the RHS of Eq. (96) are due to a trace over the two spin
states of an electron. In Eq. (96) [y?] indicates that G is a functional of the
external source term. In Eq. (96), pn{rt) stands for the charge-fluctuation
operator (with respect to the GS charge density n(r)) in the Heisenberg rep¬
resentation (see Eqs. (119) and (120) below)

pH{rt) := $H{rt)$H(rt) - ÿn(r) . (97)

Above, as in the defining expression for the GF in Eq. (8), T stands for the
fermion time-ordering operator, although contrary to and ip, p is a bosonic
operator as it involves a product of an even number of fermionic field operators.
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Fig. 10. (a) D i ~ r ~ m a t i c  representation of the polarisation function P(1,2) and (b) of 
the self-energy operator T3(1,2) excluding the Hartree part CH(l, 2). A solid line directed 
from j to i stands for G(d,j) and a wavy line between j and i for W ( i , j )  - owing to 
W(r’, ria) = W(r, r‘; s) and W(r, r’; - E )  = W(r, r’; E ) ,  direction of this line is immaterial. 
In (c) the diagrammatic representation of the integral equation for W(1,2) is given. The 
broken line between j and i represents vc(i, j )  = vc(ri - rj ) f ( t i  - t j )  - direction of this line 
is also immaterial. The triangle in (a) whose coroners are numbered 3, 4 and 2 stands for 
the vertex function I’(3,4; 2) - the first (second) argument can only be attached to  a GF 
line which is directed from (towards) it, whereas the last argument (corresponding to the 
marked corner of the triangle) can only be attached to an interaction line. Note the different 
ways in which I’ enters in the diagrams for P and C. 

We note in pmsing that the dielectric function c, whose inverse is presented in 
Eq. (951, is one of a p u p  of three f u n ~ t i o ~  that often are designated by the 
same name, namely “dielectric function’’ (Kleinman 1968). The function in 
Eq. (95) is more completely designated as the “electron-test-charge dielectric 
function” whose characteristic feature is that in it x is pre-multiplied by the 
bare electron-electron interaction function v,. 

In Fig. 10 we present the diagrammatic representations for P(1,2), C(1,2) 
(excluding the Hartree part, CH) and W(1,2) in Eqs. (go), (91) and (92). 
The d i ~ ~ a m m a t i c  representatio~ of the perturbation exp~nsion for I’(l,2; 3) 
in terms of G and W is presented in Fig. 11. 

In closing this Section, we point out that a self-consistent solution G of 
Eqs. (90)-(93), supplemented by the Dyson equation, will suffer from the same 
type of problem that we have indicated in Subsec. 7.2 (see also the second 
half of Subsec. 7.4.1): the solution not being unique (due to the apparent 
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Fig. 11. Diagrammatic representation of the perturbation series expansion for r(l,2;3) in
terms of the single-particle Green function G (solid line) and the dynamic screened electron-
electron interaction W (wavy line). Diagrams up to and including the second-order in W
are shown. The solid dot directly following the equal sign stands for <5(1, 2)<S(1, 3) where
S(i,j) = <5(ri — r,)<5(ti — tj). Incorporation of only this contribution in the expression for P
gives rise to the Random-Phase Approximation (RPA) for the polarisation function, and in
the expression for S, to the dynamically-screened exchange, or GW, approximation for the
self-energy operator.

non-linearity of the equations), one can obtain such solutious that are entirely
unrelated to the actual G. To dispose of this problem, it is necessary that some
subsidiary conditions (i.e., the "inequality constraints" defined in Subsec. 9.8)
be imposed on the solution (such as the GS total energy corresponding to G
— see Eq. (214) below —, be minimal).

7.6. Two functional forms for the self-energy operator,
£<°> and

Traditionally, the SE operator E that, for instance, features in the Dyson
equation G — Go + GoEG is defined under the assumption that the non-
interacting Hamiltonian Ho, whose GF is Go, does not in any way depend
upon the electron-electron interaction vc, that is Ho is both explicitly and
implicitly independent of vc ÿ Although such Ho is in almost all cases of any
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interest a very poor starting point from the perspective of the PT, nevertheless
it frees E from the ills of multiple definition in different texts. Thus, e.g., the
electrostatic Hartree potential vh is always accounted as being part of KE.
Now if, for instance, Go corresponds to a "non-interacting" Hamiltonian that
incorporates the Hartree potential vh, the appropriate Dyson equation should
be denoted by G = Go + G0E1G, where Si stands for E - K~1vh. More

/S

generally, if Hq besides vh takes into account some other potentials, a local
one vl (such as the exchange-correlation potential vxc that features in the
"non-interacting" KS Hamiltonian— see Eq. (135) below) and a non-local one
vnl (such as the Fock part of the SE — see Eq. (37) above and Eq. (212)
below), one has

Ei :=E- -(vh +vl+vhl) . (98)

It is evident that KEi is nothing but the deviation of fiE from the effective
potential in Ho that in some average way represents the electron-electron in¬
teraction. Since h~xvn explicitly occurs in the perturbation expansion for E,
(E — h~lvn) is independent of vn\ we shall express this fact by enclosing
E — h~lvn by a pair of parentheses. Further, since i>i and vÿl are supposed
to be potentials contributing to Hq, it is necessary that vl+vnl be Hermitian.

Let us for a moment leave aside problems related to the general invalidity of
the many-body perturbation for an arbitrary choice for the "non-interacting"
Hamiltonian (see Subsubsec. 7.4.1). From the structure of the perturbation
series for E, as represented by the pertinent Feynman diagrams, it can read¬
ily be observed that E, and thus also Ei, is a functional of Go; we denote
this functional by Eÿ°l[Go]. On the other hand, by restricting the set of per¬
turbation diagrams for the SE operator to that of the skeleton diagrams (see
Footnote 26), the SE is seen to be a functional of G, which we therefore denote
by Eÿ[G] (see Fig. 10(b) in conjunction with Fig. 11). Evideutly Eÿ°ÿ[F]

E01[F] for any function (or operator) F that functionally is equivalent with
Go or G (i.e., in the rf-representation, F is a function of two spatial variables
r and r' and one time variable t - t'). These remarks apply to G, and, in the
cases where Ho is explicitly or implicitly dependent upon vc, also to Gq. From
this we draw two important conclusions: First, all functionals in Eqs. (90) —
(93) are, in our just-introduced notation, those with superscript {1}. Second,
the Ei that we have introduced in Eq. (98), stands for either
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(Eÿ> - 7TV)[G] - i(Vi+vNL) =: Ep}[G] or

(E*°> -h-lv„)[G0} - \(vL +vNL) =: Ef}[Go] . (99)

The distinction between Epÿ [F] and Ej1'[Fj arises from the second andhigher-
order SE terms in the PT (see Sec. 9). By assuming vc = vxc, with vxc the
exact exchange-correlation potential as defined within the framework of the
DFT (see Eq. (132)), and vnl = 0* we have vh[G) =v#[Go].

8. The Density-Density Correlation Function x an(l the
Polarisation Function P

For the time-Fourier transform of x in Eq. (96), along the same lines as for the
GF, one obtains the following Lehmann-type representation

X(r, r';£) = 2£&(r)S;(0 { ~7ÿÿ} ' (I°0)
s v

where (owing to (9N,o\ÿN,a) = <5«,o)

(0, when s = 0 ,
ÿ ÿ (101){VN,o$Hr)$(r)\VN,i) , when s ÿ 0 ,

and
es:=EN,3-EKO>0; (102)

the non-degeneracy of the GS implies that es > 0 for all s ÿ 0. Thus we observe
that the "poles" of the dynamical density-density correlation function are the
energies of the iV-electron excited states, as measured with respect to the N-
electron GS energy ("neutral" excitations). We recall that for the "poles" of
the GF we have, depending on whether sa < ft or e3 > ft,, es = /in — ea, with
Sa = - Fjv-1,0, and es ~ Hn+i + with s3 = Fjv+i.j - En+i.o,
respectively (see Subsec. 4.2). It is interesting to compare these two e3's with
es in Eq. (102). From Eq. (100) it is obvious that x(£) caa be written as
X(s) = x(£) +x(~£), with x(r,r';e) := 2J2S 0s(r)g*(r')/(e - es + irj), from
which it follows that x(~s) = x(£)-

Since the Hamiltonian of the system under consideration is time indepen¬
dent (after having set the possible <p(rt) in Subsec. 7.5 equal to zero), the
two-point functions that occur in Eqs. (90)-(95) are functions of difference of
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their time arguments. Thus in the energy domain these functions depend only
on one energy parameter. In this way Eq. (92) is directly transformed70 into
W{e) = vc + vcP{e)W(e). Similarly Eqs. (94) and (95) are transformed into
W{e) = t~l{e)vc and e-1(£) = I+vcx(e), respectively. Prom these expressions,
by formal algebraic manipulations, one obtains

X(e) = P(e)(I-vcP(b))~1 & (p-'ie) -vc)~l , (103)

or equivalently,

P(e) = (I+x(e)vc)~lx(£) = 0fl(e) +vc)~l ÿ (104)

From this result and x(—fr) = X&) H follows that P(—e) = P{e).

8.1. Symmetries of x ant* P
From the many-body perturbation expansion for P(r,r';e) in terms of either
Go or G (in the latter case only the skeleton self-energy diagrams [see Foot¬
note 26] are to be taken into account — see Fig. 10(a) and Fig. 11), and the
symmetry property for these as presented in Eq. (25), it can be shown that (in
absence of spin-polarisation and magnetic field [in the Coulomb gaugej — see
Footnote 14 and Subsec. 4.4)

P(r,r';£) = P(r',r;£). (105)

From this and Eq. (103) it follows that

X(r,r'\£) = x(r',r-,e). (106)

There is one elegant way of demonstrating that under the above-mentioned
conditions, the relationinEq. (106) is indeed satisfied inthe static limit (i.e. for
£ = 0). This method is based on some elements of the DFT (Hohenberg and

70We have to emphasise one important aspect involved here. The Fourier transform F(e)
of /(f) when back transformed, yields /(f), excluding a set of measure zero: at point to,
where /(f) has a finite discontinuity,' the back transformation yields |{/(tj)+ /(tg )} —
recall that for /(f) to have a Fourier transform, it is required that /(f) possesses at most
a finite number of finite discontinuities. This problem can be circumvented by prescribing
a specific form for the contour of the energy integration in the complex energy plane for
obtaining /(f) from F(e) (better, from F(z)), which of course requires analytic continuation
of F into the z-plane (Subsec. 2.2). See, e.g., Fig. 4. This is important, since most of
the correlation functions that we encounter in the many-body theory involve time-ordering
operation, implyingdiscontinuity in the f-domain. This explains the origin of Eqs. (28), (41)
and (111).
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Kohn 1964). Since in the present work we frequently encounter the DFT, it
is useful to present this alternative demonstration. To this end we assume
«/(r,r') = 0, which is prerequisite71 for having a DFT in terms of the GS
electronic density n(r). Owing to the one-to-one relationship between the GS
density n(r) and the local external potential v(r), the usual expression for the
GS total energy functional within the DFT (Hohenberg and Kohn 1964),

Ev{n] =Jd3rv(v)n(r) + F[n] , (107)

with F[n] a universal functional of the density (i.e., F[nj does not explicitly
depend on the external potential v), can be viewed as a Legendre transform
(Lieb 1983) between n(r) and v(v). Let therefore E[v\ denote Ev[n] when the
GS total energy is viewed as a functional of v. From Eq, (107) we have

Now since x(r, r';s = 0) := Sn(r)/Sv(r'), from Eq. (108) we obtain

x<ryie=o)=foB!w' <io9)

Since for a twice-differentiable functional the order of carrying out the (func¬
tional) differentiation is immaterial, Eq. (109) demonstrates the symmetry
relation in Eq. (106) concerning e = 0. For £ ÿ 0, one can similarly proceed
by making use of a Legendre transform that is analogous to that, in Eq, (107)
within the framework of the time-dependent DFT. We shall encounter this
theory in Subsubsec. 8,6.2.

8.2. Analytic continuation of xie)> x(z)> analyticity
and its consequences

Let us define72
Hr,rÿ,:=4£e.®2. (HO,

s 3

It is easily verified that x(£) on the RHS of

limx(e ± 177) = x(e) , when e ÿ 0 (111)
71io

71Only a local external potential can be in a one-to-one correspondence with n(r).
72Similar to e, in Subsec. 4.4, here for every s there exists an s for which holds ey = e« —
Kramers' degeneracy (see specifically Footnote 21).
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coincides with x(e) in Eq. (100). Thus x(z) is the analytic continuation of
x(e) into the the physical RS of the complex z-plane (see Subsec. 2.2). From
Eq. (110) it is obvious that x(—z) — x(z), i-e- similar to x(s)i x(2) is an even
function of its argument.

Since x(z) is analytic everywhere on the complex z-plane, with the possible
exception of the real axis, and since, following Eq. (110), x(z) decreases like
1/z2 for \z\ —> oo, there exists an identical expression for x(z) as for £r(z)
that we have presented in Eq. (45). Let therefore (see Footnote 27)

X'(z) := l{x(z) +x'(z)} , x"(z) := ÿ(x<2) -Xÿ2)} (112)

be the "real" and "imaginary" parts of x(z). The counterpart of Eq. (45) for
x(z) can be written as the following pair of Kramers-Kronig-typeof expressions
(c.f. Eq. (48))

00 d£lrÿ_±in)
oo £'-£

1 fx'(e±M?) =±-VJ_

x"(£ ± iri) = r . (113)
71 J— oo e -£

This pair is verified correctly to satisfy

x'(2*) = x'(2) , x"(2*) = ~x"(2) ; (114)

these expressions are direct consequences of xHz) = x(2*) — this relation
follows from Eqs. (106) and (110). The expressions in Eq. (113) are not ex¬
clusively in terms of the physical density-density correlation function. For
obtaining a pair of expressions entirely in terms of the latter, we make use of
Eq. (114). After some algebra, from Eq. (113) the desired Kramers-Kronig-
type of expressions for the physical x (see Eq. (100)) are shown to be

°° sgn(—e/)x"(g/)1 7CX'(e) = ~-Tj
x"(S) =i vr . („5)

77 J— oo ÿ &

These expressions are, except for a p whose place has been taken by zero,
formally identical to those in Eq. (50).
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where the factor 2 on the RHS accounts for the trace over the spin states of
an electron. Note that since n(r) and n(r') commute, the RHS of Eq. (118)
is indeed symmetric with respect to transposition of r and r'. Through some
straightforward algebra, making use of the anti-commutation relations for the
field operators, one obtains73

[[?,n(r)j-,n(r')]_ = f-V ÿ [n(r)VA(r-r')] ,
TTlg

[[t/„,n(r)]-,n(r')]-=0,

[[£/„,,n(r)]_,n(r')]- = 6(r-r')Jd3r"w(r,r"){$(r")$(r) +$(r)$(r")}

- iu(r,r'){ÿ(r)ÿ(r') +ÿ(r')f(r)} ,
[[F,n(r)]_,n(r')]- = 0. (121)

Thus Eq. (118) can be written as

_ fc2
lira £2x(r,r';e) =: X<x>2(r,r') = —V • [n(r)V5(r - r')] - 2<S(r - r?)

|e|-+oo me

x Jd3r"w(r,r?')p(r",r) + 2w(r,r')p(r,r') , (122)

where the reduced single-particle density matrix p(r,r') has already been de¬
fined in Eq. (16). In arriving at the above result we have explicitly made use
of the symmetry relation in Eq. (26).

From Eq. (117) it follows that

lim e2{x(e)-P(e)} =0 x-' X002 =PX)J ) (123)
j£[ —>-00

so that the RHSs of Eqs. (118) and (122) also apply to Poo2(r,r').

73As a hint, we mention that the double commutation expressions in Eq. (121), inparticular
the first one [which, because of the V2 in T, may be experienced as un-inviting], are easiest
obtained through employing the representations of the creation and annihilation field opera¬
tors in terms on a complete set of one-particle wavefunctions, namely: j/d (r) = )T\ ?/>* (r)c7
and xi>(v) = £ttk(r)F«, where the operators c|, ci satisfy the fermionic anti-commutation
relations [c|,e)]+ =5lJt [c],cj]+ =0 and [ci,c)]+ = 0.
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positively-chargedbackground. Consequently, for the uniform-electron system,
Gq within the self-consistent Hartree approximation is (up to a global gauge
transformation) identical with that of the non-interactingelectrons. Therefore,
for this system the RPA for P coincides with the Lindhard (1954) polarisa¬
tion function (Ashcroft and Mermin 1981, pp. 343 and 344). In the following
Sections we shall denote P0[G'o] by xo when Go coincides with the GF of the
'non-interacting' KS Hamiltonian (see Eq. (135) below). For a system with a
uniform GS charge density, the effective potential in the associated KS Hamil¬
tonian is a constant, so that (up to a trivial phase factor) Gÿs is identical
with the Go pertaining to the uniform system of non-interacting electrons.
Therefore the xo pertaining to a uniform KS system is also identical with the
Lindhard polarisation function.

8.5. Random-Phase Approximation,RPA,and large (ej
For the time being we shall specifically deal with Po[G], From Po(l,2) =
(-2i/h)G(l,2+)G(2, 1) for Po(r,r';e) we have:

P0(r,r;e) = --j ÿG(r>r'ie')G(r'> ri£' ~ t)eir,'e'/h , (r/I0) , (124)

where the exponential function (which is due to 2+ in G(l,2+)), can be set
to unity. This is because in 2+ is the remnant of an ad hoc measure
taken for avoiding the time-ordering ambiguities that arise in consequence of
the instantaneous nature of the bare two-particle (Coulomb) interaction. Here
changing 2+ into 2 does not lead to any ambiguity. This is closely related
to the fact that G(e')G(£' — e) ~ h2I/e'2 for |e'| —> oo, so that Po(rf,r't'),
which is a function of r := t — t', is continuous at r = 0 (see Appendix B).
Employing the Lehmann representation for G(e) in Eq. (11) and making use of
the Cauchy residue theorem (Titchmarsh 1939, p. 102) it can readily be shown
that similar to x(e),

P0(r,r';e) = Pofor'je) +P0(r,r'; -e) , (125)

where

P,(,y;£) 2±£ , (,4.0). (126)
ÿ s

Here we have introduced the short-hand notations (...) and 53?(• • •) f°r
53s #(£« -M)(- - • ) and 53s- Kl1~ e«')(- • •)> respectively.
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Let us now investigate the asymptotic behaviour of Pa(e) for |e| -> oo.
Through some simple algebra (in particular by making explicite use of the
symmetry relation P(r,r'-,s) = P(r',r;e) — Eq. (105)), it follows that

lim e2P0(r, r';e) = 4 ]T ]T(£3 - )f,(r)f* (r')/a* (r) . (127)
Id—vac z

Using the definitions for the Lehmann amplitudes and energies (Eqs. (12) and
(13)) we readily obtain (see Eqs. (118), (123) above and Eq. (152) below)74

lim e2P0(r,r';£) =: P0ioo2(r,r')
{£]—VOQ

= -2($Wio|[[ÿ,n(r)]_,n(r')]_|$Wio) + jF?!(r,r')

= Poo2(r,r') + R{r,r') = Xoo2(r, r') +R(r,r') , (128)

where75

P(r,r') := uc(r - r')p(r,r')

<5(r - r') . (129)

The explicit dependence of R(r,r') on vc, as exposed by the RHS of Eq. (129),
is due to our evaluation of Po in terms of the exact GF. This implies that the
pertinent expression for Po;0o2 [Go] functionally differs from that inEq. (128) by
the abseuce of a corresponding R in it,even for cases where G0 would implicitly
depend on vc (such as is the case for, e.g., the G0 pertaining to the Hartree
one-particle Hamiltonian which depends implicitly on vc via the Hartree po¬
tential). As a consequence of this and in view of Eqs. (122)76 and (128), we

741am indebted to Professor Lars Hedin for pointing out an omission in the original version
of this expression.
75In arriving at Eq. (128) we have made use of Jd3r"vc(r — r")(<I'/v.obP (r)ip(r"pp
•(r")V'(r)l*w,0> = / dV'tfc(r-rw){tfWt0|«(r)n(r'')|,J,jv,o) = |n(r)uw(r; [n])+Jd3r"vc(r-
r")I2 /Cs Cs (r)f*(r")l- We have multiplied the RHS of this expression by 2 in order to ac¬
count for the internal spin degree of freedom. Further, the second expression follows from
the first after application of the process of normal ordering.
76Note the important fact that the RHS of Eq. (122) has no explicit dependence on the
electron-electron interaction function vc.

j 4Jd3r"vc(r - r") 2£>(rK(r")
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arrive at a most remarkable result, namely that provided Go yields the exact
ground-state n(r) and p(r.r') [see further on], PojoojfGo] exactly reproduces
the leading-order asymptotic term of x(£) f°r M °°; from Eq. (123) it
follows that in such an event, Po;oo2K*o] also exactly reproduces the leading-
order asymptotic term of P(e) for |e| ->ÿ oo. For cases where w(r, r') = 0, a
Go that yields the exact n(r) will suffice. Such a Go is by definition the GF
of the non-interacting KS system, i.e. Gks77 that features within the context
of the ground-state DFT (Hohenberg and Kohn 1964, Kohn and Sham 1965)
— Subsecs. 8.1 and 8.6. For construction of a Go that would yield the exact
p(r,r'), one would have to resort to the DFT for non-local external potentials,
first introduced by Gilbert (1975); inSubsec. 9.7 we shall briefly encounter this
formalism. Within the framework of the latter DFT, it is however necessary
to deal with an ensemble of eigenstates of the pertinent "non-interacting" KS
Hamiltonian.78

The above considerations lead us to a further important result, namely
that when calculation of P(e) is restricted to the zeroth-order term Po(e), it is
preferable, at least when w(r, r') = 0, to evaluate Po(e) in terms of Gks rather
than G (assuming that G were known): When w(r, r') = 0, Po;oc3[Gjcs] = Poo3
but Po;ooa[G] ÿ Pÿ. We recall that xq:=Po[Ga's], so that, following Eq. (123)
above, we equivalently have: Xo-,oo2 = Xoo2> that is, for large |e|, the leading-
order asymptotic contribution of the density-density response function of the
"non-interacting" KS system is identical with that of the interacting system
(Farid 1999b).

8.6. On aspects of the density-functional theory

Inview of the importance of Grs, the GF of the KS Hamiltonian (see partic¬
ularly Subsec. 8.5), below we briefly present two DFTs. Inboth cases we have
to make the assumption that w(r,r') = 0. In Subsec. 9.7 we touch upon the
DFT appropriate to the cases where w(r, r') ÿ 0.

77Recall our convention in Subsec. 8.4, that for Go coinciding with Gjcs, we denote Po[Go]
by xo- See Subsec. 8.6.1.
78We have to point out that in this context "KS Hamiltonian" is not an appropriate desig¬
nation. This is owing to the fact that within Gilbert's framework, the pertinent Schrodinger
equation for the "natural orbitals" directly follows from the Euler-Lagrange equation for the
total-energy functional, without reliance on the intermediate step of introducing Ts[n], the
kinetic-energy functional pertaining to the KS system of ficticious non-interacting particles;
in Gilbert's formalism one encounters the kinetic energy of the interacting system, which is
an explicit functional of p.
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dynamic xo ÿ This function, Xo(r, r';e), is obtained from Eqs. (125), (126) by
means of replacing f3(r) by i/><(r) and es by £<, where ipi(r) and £, are the one-
particle eigenfunctions and eigenvalues of the self-consistent KS Hamiltonian:

Here ft is determined by the requirement ®(lJ- ~ £*) — N. By retaining C in
Eq. (133) as defined in Eq. (134), but replacing the static xo by the dynamic
Xo(e) we have the following approximate x{e):

X(0) -4- XgaOO := (/ -Xo(e)C) lXo(e) = Xo(e)(/ - C"Xo(e)) 1
> (136)

which yields the exact x(0) as JeJ -4 0 ("gs" denotes "ground state"). More¬
over, owing to Eq. (128) and the above-discussed property (Subsec. 8.5 — see
text following Eq. (129)) concerning Po(e) as evaluated in terms of Gks (which
coincides with xo(e)), we observe that Xgs(c) yields also the leading-order term
pertaining to x(ÿ) as |e| -4 oo. It follows that the DFT is not only an exact
theory concerning je| -4 0, but, as far as the charge response of the system is
concerned, also one concerning l/\e\ -4 0. It is interesting to note that since
x(e) and Xo(e) are even functions of e, the deviation of Xgs(£) from the exact
x(e) concerns terms of order e2 and 1/e4 for small and large values of je|,
respectively.

The above observations are in support of our statement in Subsubsec. 7.4.1
that many-body PTs based on the pertinent KS "unperturbed" Hamiltonians
are unconditionally valid (assuming of course that certain GS densities, such
as n(r), are pure-state non-interacting u-representable).

Prom Fig. 10(a) and Fig. 11 it is obvious that the difference between P
and Pq (i.e. Pi — see Subsec. 8.4) originates from the difference between the
vertex function r(l,2; 3) and £(1,2)5(1, 3). The first, attempt to incorporating
this difference is due to Hubbard (1958). It turns out that the approximate
approach introduced by Hubbard (1958) can be put on a firm theoretical basis
within the framework of the (ground-state) DFT: Inthe static limit, Hubbard's
local-field function, the so-called G-function, can be shown to be related to Kxc

(135)
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Ng and Singwi (1987)), C(e) exists only for |e| < emjn, where emjn denotes the
lowest neutral-excitationenergy of the system. Thus in general Xtd(e) # x(£)-

8.6.3. The local-field function G
Inthe past, many attempts have been devoted to evaluating G(k) and G(k;e)
— which is associated with C(e) in Subsubsec. 8.6.2 —, the static and dynamic
local-field-correction functions, respectively, pertaining to the uniform-electron
system, For a review see the work by Farid, Heine, Engel and Robertson
(1993). Concerning the behaviour of G(fc;0) = G(k), for small values of k
all the available models correctly81 yield G(fc;0) a k2. This is in particular
the case within the framework of the LDA, where Kxc is a negative constant,
i.e. independent of k, so that from Eq. (137) it follows that GLDA{k) oc k2 for
all values of k. This behaviour, that GLDA(k) > 1for large values of k (i.e., for
k »kp), had for long been considered as "completely wrong" (Taylor 1978).
This judgement has its origin in two expressions — relating the behaviour
of G(k) at large k with that of the electronic pair-correlation function for the
interactingsystem, g(g), at small distance g := ||r—r'|| (see Subsec. 8.8) — due
to Shaw (1970) and Niklasson (1974). The Shaw relation reads G(k -4oo) =
1_ 9{q 0), and that by Niklasson G(fc —ÿ oo) = 2[1 - g(g —ÿ 0)]/3. Both of
these imply that, since g{g) € (0, 1), 0 < G(k -> oo) < 1. Holas (1987, 1991)
has shown that these two relations are consequences of partial incorporation of
correlationeffects in the expressions for xo as employed by Shaw and Niklasson
— in other words, while often not fully realised (as evidenced by a wealth of
incorrect results in the literature), the G-function in different works describe
different correlation effects.82 Thus Holas has shown that G(fc —> oo;0) ~ 7k2,
with 7 some constant, is not unphysical. This behaviour has found support in
studies concerning stability of the Wigner electron lattice against transverse
acoustic (TA) phonon modes (Tozzini and Tosi 1993). For an accurate model

one-dimensional constant subspace from the representationspace for x(c = 0) and xo(e =0),
it is seen that C is well-defined, as in this reduced space both x(~ = 0) and xo(- = 0) are
negative definite and thus invertible. See, e.g., works by Car, Tosatti, Baroni and Leelaprute
(1981) and Mearns and Kohn (1987).
81Otherwise the compressibility sum-rule (Pines and Nozieres 1966, p. 209), which involves
x{k -» 0;e =0), and thus G(fc —> 0;e = 0) — see Eqs. (133), (134) and (137) —,would be
violated.
82A consequence of not makingdistinction between Pl0l[Go] and pf11[G] — see Subsec. 8.4.
We point out that in view of Eqs. (133), (134), (137) and our closing remark in Subsec, 8.4,
the G(fc;0)-functiou that we encounter in the present work is exactly the G(fe;0)-function
that has been considered by Holas.
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for G(fc;0) see the work by Farid, Heine, Engel and Robertson (1993), and for
a recent "diffusion quantum Monte Carlo"-based calculation of G(A;;0) see the
paper by Moroni, Ceperley and Senatore (1995). A key element in the work
by Holas is his use of Xtd(£) (see Eq. (138)), rather than Xgs(£) (see Eq. (136)),
in enforcing the energy (frequency) sum-rules concerning the imaginary part
of x(£)- Hence, considerations by Holas are (implicitly) deeply rooted in the
time-dependent DFT and consequently the validity of the treatment by Holas
should crucially depend on that of the latter theory for arbitrary values of s (see
Subsubsec. 8.6.2). For typical forms of G(fc;e), within various approximation
schemes, see the works by Holas, Aravind and Singwi (1979), Devreese, Brosens
and Lemmens (1980), Brosens, Devreese and Lemmens (1980) and Brosens and
Devreese (1988).

8.7. Quasi particles; collective charge excitations (Plasmons)
Let us now consider x{z) in a similar fashion as we did G(z) in Subsec. 6. We
first re-write Eq. (103) as

x(z) = -V~l/2(I- [vy2p(z)vy2]-'l)-1v-i/2 . (139)

Here, as in other parts of this work, a (fractional) power of an operator rep¬
resents an operator that is obtained from the spectral representation of the
original operator through raising the eigenvalues (i.e. the spectral weights) to
the pertinent power. Let, for instance, A be a symmetric operator, with {A,}
and {u;} the corresponding eigenvalues and eigenvectors, normalised accord¬
ing to u- • Uj = Sij. We have A = XÿAjUjiit, so that Aa = X)t Afu,u*.
The summation over i is symbolic, in that imay be a continuous, or a par¬
tially continuous, variable and therefore ÿ is to be understood as implying
also integration. Further, it may occur that in a certain representation, Aa
is not an ordinary function but a distribution (e.g. involving the ÿ-function

and its derivatives). For this, consider the Fourier representation for vc in the
coordinate representation:

„ (r-r') = / e2/e° e<kre_ik r' (140)M ' J (2tt)3 ||k||2 ' K '
where Jd3fc/[27r]3 is to be compared with (e2/eo)/||kjj2 with At andexp(ik-
r) with ut.83 It is obvious that by viewing the RHS of Eq. (140) as an ordinary

83In fact, (r|uk = exp(ik - r), the usual Q-1/2 (see Appendix A) is missing because the
Fourier-mtejrai representation does not involve the box normalisation condition.
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— 1/2function, as opposed to a distribution, for instance vc would be meaningless;
already (r|(uc)°|r') = (r|/|r') = 5(r — r'), which is a distribution.

The geometric series expansion of x(z) in Eq. (139) in "powers" of Q~l(z),
with

Q(z) ÿÿ= [vl/2P(z)vl/2] (141)
diverges when

det(/ -Q~1(z)) = 0 . (142)
This eqnation is similar to that in Eq. (54). As we shall see, solutions of this
equation, or the equation obtained from it through the process of analytic con¬
tinuation of Q~1(z) into a no-physical RS, are of physical significance — they
correspond to excitations of the charge density in the iV-electronsystem, i.e. to
charge-neutral excitations. This is explicit inthe Lehmann-type representation
for x(e) inEq. (100).

Solutions of Eq. (142) are related to eigenvalues of the following eigenprob-
lem in a way that will become clear shortly:

Q(z)l(z) =Da(z)Uz), (143)

Ci(z)Q(z) = D.{z)<*(z) <=ÿ QH*)?.(*) = D*a(z)l(z) . (144)

Here &(z) and £,(2) are, respectively, the right and left eigenfunctions of
Q(z) corresponding to eigenvalue Ds(z) (we assume that these eigenfunc¬
tions have been appropriately ordered — see Footnote 30). In cases where
Da(z)_ÿ Da'(z), these eigenfunctions are bi-orthogonal and can be normalised,
i.e. (£s(z),Cs'(2)) = • In cases of degeneracy, a Gram-Schmidt orthogo-
nalisation procedure can be applied to achieve that the latter property holds
for all £t(z) and (s'(z). For some relevant further details see text following
Eq. (59) above.

Since for a general z, Q(z) is non-Hermitian (it holds however that
<9(r,r';2) = Q(r',r;z)), the two sets of left and right eigenfunctions of Q(z)
do not coincide, nor are the eigenfunctions within each of the two sets orthogo¬
nal. The spectral representation of Q(z) should therefore be a bi-orthonormal
representation (Morse and Feshbach 1953, pp. 884-886, Farid, Engel, Daling
and van Haeringen 1991) as follows

Q(r,r';z) = Ds{z)ls{r;z)Q(r';z) .
S

(145)



z * ) .  
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belong to different unitary irreducible representation of the mentioned group,
the two functions are orthogonal (Cornwell 1984, pp. 81-83).

Some remark concerning the asymptotic behaviour of the above quantities
for |z| -+ oo is in place. From Eqs. (117) and (118) it follows that P(z) dimin¬
ishes like 1/z2 for large \z\. Normalisation of the eigenfunctions implies that
for the Eqs. (143), (144) to be valid in this asymptotic regime, it is necessary
that Ds(z) 1/z2 for \z\ —> oo. From Eq. (148) we deduce that therefore
D,(z) z2. Substituting this result in the representation in Eq. (146) we ob¬
tain, consistently (since the functions in the numerator are normalised), that
indeed x(z) approaches zero like 1/z2 (see Eqs. (110) and (118)).

When 7)s{zi) = 0, we have in addition Ds(-Zi) = 0. This follows from the
equivalence between solutions of Eqs. (142) and (149), and the fact that P(z),
and therefore Q(z), is an even function of z. Thus near each z,, Ds(z)
z2 - zf, in conformity with the Lehmann-type representation in Eq. (110).

Concerning the physical significance of the solutions of Eq. (142) (or of
Eq. (143)), {zi}, and the corresponding eigenfunctions £3(zj), we mention
that according to Eq. (96), x(rt, r't') describes, to linear order, the change
in the density of the electrons at the space-time point rt in response to a
change in the local external potential at the space-time point r't'. Equivalently,
we have <5n(z) = x(z)5fp{z). The closer the "energy" z to energies at which
x(z) is singular, the smaller the amplitude of the required external potential
needs to be in order to bring about oscillations of a given amplitude in the
electronic distribution of the system, so much so that at the singularity Zi,
the charge density undergoes self-sustained oscillations, without the agency of
an external potential. Self-sustained charge oscillations inan electronic system
are termed piasmons. Thus solutions of Eq. (142) are plasmon energies. Tradi¬
tionally, the solutions of det[e(e)] =0 are considered to signify these energies.
Since according to Eq. (95), e~1(z) =I+vcx(z), and since vc is positive defi¬
nite, it follows that det[€_1(z)] = 1/det[?(z)J =det(/ +vlÿx(z)vcÿJ» so that
indeed det[e*(z)] =0 •*=>• l/det[x(z)] =0 <=> Ds(z) =0 for some s.

From 5n(z) = x(z)5<p(z) it follows that at the possible plasmon energies
{zf'} we must have x~l(z/l)Sn(zJ/1) = 0, that is, in the case of non-degeneracy
8n(zf) is a multiple of the right eigenvector of x(z) — note that the left and
right eigenvectors of an operator and of its inverse are identical —; in the case
of degeneracy, 8n(sf) is a linear superposition of the degenerate right eigen-
states. It should be mentioned that such analysis as the above, aimed at the
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determinationof the resonant energies of a system, is based on a liuear-response
theory and therefore cannot determine the amplitudes 6n(z?') of the charge
excitations. However, for the linear-response theory to be applicable, these
amplitudes must be small — for otherwise non-linear effects (i.e. mode-mode
coupling effects) cannot be neglected. In reality it is owing to these effects that
amplitudes of the excitation modes are bounded.

It is interesting to enquire as to the origin of the apparent privileged role
that the right eigenfunction, as opposed to the left eigenfunctions, of x play
in the context of plasmon excitations; the same may be enquired with regard
to the right eigenfunctions of Hqp(z), which play the role of the QP "wavefunc-
tions" — see Eq. (58). The origin of this bias lies in the fact that Eq. (149)
has either real-valued solutions or it has no solution. This condition is iden¬
tical with that which we have encountered in our discussions concerning QPs
and their corresponding energies in Sec. 6. Here, owing to the reflection prop¬
erty Ds(z*) = D*s(z), Ds{zi) = 1for some complex-valued. z* implies that also
Ds(z*) = 1. That is, the possible complex-valued solutions of Ds(z) = 1, if
any, must occur in complex-conjugate pairs. This is in violation of the causal¬
ity principle — recall that x(rL r'l') is defined as the GS expectation value of a
time-ordered product of the density-fluctuation operators. Therefore, the ener¬
gies of the damped plasmonexcitations, if any, must lie on a non-physical RS of
the z-plane; with Ds(z) an analytic continuation of Ds(z) into a non-physical
sheet (see Subsec. 2.2), the complex-valued solutions satisfy D3(z) = 1. For the
real energy c* to be a solution of Ds{z) = 1, it is necessary that ImZ?s(£,•) = 0.
For such an £j, x(£i ii-v) = x(£i) (see Eq. (Ill)) is Hermitian, so that the
sets of left and right eigenfunctions of x(z) coincide and therefore there is no
bias. Let us now disregard the fact that Ds(z) = 1 eannot have complex-
valued solutions, and thus assume that z, and z* were two complex conjugate
solutions of this equation. Becanse of the properties in Eq. (150), it follows
that the right eigenfuuetion of x(z) at z;, i.e. <fs(zi) — see Eqs. (143) and
(147) —, is identical with the left eigenfunction of x(z) at z*, i.e. Cs(z*) — see
Eqs. (144) and (147). Thus even in this hypothetical case, corresponding to
complex-valued solutions for D„(z) = 1, there is no privileged position taken
by the right eigenfunctions of x(z).

In closing this section, we mention that the technique of analytic continu¬
ation of x(z) into a non-physical RS (Farid, Engel, Daling and van Haeringen
1991) has been employed for obtaining the complex plasmon energies in real
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semiconducting materials (Daling, van Haeringen and Farid 1991, 1992). The
analytically continued response functions evaluated on the real energy axis
yield very reliable results, including those that can be experimentally probed,
such as the electron loss function or the dynamical electron structure fac¬
tor. This approach has been successfully employed for obtaining dynamical
response functions of semiconductors (Daling, van Haeringen and Farid 1991,
1992), metals (Maddocks, Godby and Needs 1994a, 1994b) and cuprate super¬
conductors (Dadachanji, Godby, Needs and Littlewood 1995).

8.8. Pair-correlation functions
From Eqs (110), (111) and (112) — or from Eq. (100), through applying l/(x—
xq ± irj) =V (l/(x — x0)) itrS(x — xq), with 77 4- 0 — it follows that for x"(£)
in x'(e) +ix"(£) =x(e)

X"(r,r';e) = -2irÿ0s(r)ÿ(r'){5(£ -et) + S(e + es)} (151)
S

holds. Since e$ > 0 for all s ÿ 0 (see Eq. (102)), from Eq. (151) the following
expressions are readily obtained

—1 r°°— / dsx"(r,r';e) = 2Y]e»(r)g*(r')
Tjr j0

= 2(*w,0|n(r)n(r')|*W,o) - ÿn(r)n(r') ; (152)

-2 f°° x~~— / d££x"{r,r';e) = 4Ve4&,(r)p*(r')
Jo ,

= lim e2x(r,r';e) =:Xoo2(r, r') . (153)
jej—>00

The LHSs of Eqs. (152) and (153) are the zeroth and first energy ("/requency")
moments of x"(£)i respectively. In fact through combining Eqs. (153) and
(122), one arrives at the well-known /-sum rule (Nozieres 1964, Johnson 1974,
Schiilke 1983, Taut 1985a,b, Engel and Farid 1993) for the density-density
correlation function.

One interesting aspect of the result in Eq. (152) is the following. The static
pair-correlation function is defined as follows

9M:= 1~{2(*Ni0\n(r)n(r>)\*N>0) -n(r)6(r - r')} ÿ (154)
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Making use of Eq. (101) one obtains

sKr>0 = ÿ + in(r)n(r') -n(r)<5(r-r')|
= N(N- 1) {~V Jo d£x"ÿr' r';£) + ÿn(r)n(r') - n(r)S(r - r')

(155)

Thus the zeroth energy moment of x"(r> r'"> £) is closely related to the electronic
pair-correlation function g(r,r').

For systems in the thermodynamic limit (below signified by means of "="),
the quantity of interest is g(r,r') := fi2<?(r,r'), for which

<?(r,r') = ÿ(2('FN,o|n(r)n(r')|ÿN,o) - n(r)<5(r - r')} (156)

holds, where n := N/Cl (= C — see Subsec. 2.4) is the average density of
electrons, or concentration. We shall have occasion to use

2ÿes(r)e*(r') = ~fl(r,r') - ÿn(r)n(r') +n(r)6(r - r') , (157)
S

which follows from Eqs. (152) and (154).
For systems without off-diagonal long-range order, ODLRO (Reichl 1980,

pp. 202-205), i.e. those involving no superconductivity or superfluidity, one
has84

lim (ÿw.olnWÿr'JIÿTV.o) = iU(r)n(r') , (158)
||r— r' —loo 6

so that the correlation function

n2g(r, r') := , . . 77 g(r,r') (159)
n(r)n(r)

pertaining to such systems has the property that <j(r,r') —ÿ 1when ||r — r'|| —t
00. In the literature there are at least two different pair-correlation functions
in use. One of these is the van Hove (1954a,b) pair-correlation function gvH

84Here we have summed over the internal spin degree of freedom, without which the 1/2 on
the RHS would have been 1/4.
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Now provided g(s) does not change sign for e € (£min,£max), f{z) can be
represented in terms of a continuedfraction (Ince 1926,pp. 178—185) of infinite
order (Cheney 1966, p. 186).88 It can be shown that truncating this expansion
at a finite order M, yields a function /a* (z) which can be represented in the
following form (Cheney 1966, p. 186)

, M
(165>

m=l

where {wm\rn = 1,2,...,M} is the set of some well-specified coefficients, and
{em|m = 1,2,...,M) that of zeros of a polynomial of order M, obtained from
a recurrence relation (which generates orthogonal polynomials) whose coeffi¬
cients are junctionals of g(e) (Szego 1967, Hochstrasser, U.W., in Abramowitz
and Stegun 1972, Ch. 22). We point out that emjn < em < £max for all values
of m. Now we define

9m(£) •- £7 {7m(e +in) -7m(s- in)} ÿ (166)

From Eq. (163) the parallel between <?m(£) and 9\e) is apparent. Two interest¬
ing properties of /m(z) are that: (i) for Im(z) / 0, }m{z) converges to f(z) for
increasing Mand (ii) for a polynomial h(e) of degree not larger than 2M— 1,
the following is exact:

MfCmox JfC/ d£g{s')h(e') = V wmh{em)
Jemln m=l

max

= / ds'gM(s')h(e')- (167)

The first of these relations is a Gaussian quadrature rule (Stoer and Bulirsch
1980) for the general weight function g(e).S9 From Eq. (167) we observe that as

88The restriction on g(e) in having a definite sign (positive or negative), is imposed for
avoiding semi-definite "norms" which in the process of evaluating the coefficients of the
continued-fraction expansion may give rise to zero denominators. For treatment of cases
where g(e) changes sign, we refer the reader to the paper by Engel and Parid (1992).
89Orthogonal polynomials are "orthogonal" over some well-specified interval and with re¬
spect to some well-specified weight function. For instance, the Chebyshev polynomials
Tm(x), m — 0, 1,...,are defined over [—1, 1] and are mutually orthogonal with respect to the
weight function (1- x2)~ 1/2, fÿdx(1— x2)~1l2Tm(x) Tn(x) = 4m,n. See Hochstrasser,
U.W., in (Abramowitz and Stegun 1972, Ch. 22).
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far as integrals of polynomials of degree not higher than 2M— 1are concerned,
the weight function g,w is equivalent to g. In other words, the first 2M— 1
energy (i.e. e) moments of sm(e) and g(e) are identical. Returning to x"(£)>
as far as the energy moments of this function up to some finite order are
concerned, x"(£) can be represented in terms of a discrete sum over a finite
number of (ÿ-functions along the real energy axis (c.f. Eq. (165) in conjunction
with Eq. (166), taking z = e ± it] with 77 4- 0); under the conditions for which
Eq. (162) is valid, such a representation for x"(£) can yield very accurate
x(c), even for a small M. Although in this way the behaviour of x"(£) aloug
the real £-axis may not be correctly represented (recall that for systems in
the thermodynamic limit, there are branch-cut discontinuities along the real
energy axis), nonetheless the energy moments of x"(£) UP to some finite order
are exactly reproduced. We shall not enter into details here, but mention
that through introduction of a so-called terminating function (Nex 1985), or
through displacement of the branch cuts form the real axis into the complex
plane (Engel, Farid, Nex and March 1991),90 it is possible to construct a x(£)
that has the correct behaviour on the real axis. These techniques have been
successfully applied in obtaining the plasmon energy bands of inhomogeneous
systems (Engel, Farid, Nex and March 1991, Engel and Farid 1992); for a
review see the paper by Farid, Engel, Daling and van Haeringen (1994).

8.10. A plasmon-pole approximation
Consider the following function of z (Engel and Farid 1993)

XpP{z) := (z2X™2 + X'ÿO))'1 1 (168)

for X002 see Eqs. (118), (122), (123) and (128) — see also Subsec. 8.5. Clearly,
Xpp(z) bas the property that at two limits z -* 0 and \z\ -t 00 yields the
results corresponding to the exact x- Inparticular because of the latter, Xpp(£)
satisfies the /-fum rule (see Eq. (153) and Subsec. 8.9). Certain approximate
expressions that yield the "exact" static x in the static limit and moreover
satisfy the /-sum rule are referred to as "plasmon-pole" (pp) models for X- In
the course of years a number of such models have been proposed and applied.
The above model has a number of advantages that are not shared by other
models. For details we refer the reader to the original work.

"Branch cuts, contrary to branch points, can be displaced. In other words, the precise
location of branch cuts of an analytic function is a matter of convention.
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It is important to point out that for systems inwhich w(r, r') =0, Xo(e)i «r
has the property (see Subsec. 8.5) X0;oo2 = Xoo2, so that Xpp(z)

in Eq. (168) is manifestly fully determined in terms of the ingredients of the
GS DFT (for x(0) see Eqs. (133) and (134) above).

The plasmon-pole model in Eq. (168) can be expressed in terms of the
eigenfunctions and eigenvalues of the following generalised eigenvalue problem
(Engel and Farid 1993)

X(0)<i = -4xoo2C« (169)
ei

subject to the normalisation condition

(IxoaO = SiJ . (170)

It can easily be verified that x(z) has the following spectral representation

%»(*) » (171)
. z ei

which has the form of the exact Lehmann-type representation in Eq. (110). In
Eq. (171),

r7jXoo2<i- (172)
2e*'

Since both x(0) and ~Xoo2 are negative semi-definite (see text following
Eq. (116)), e4 is indeed non-negative (similar to es in Eq. (102) above), so
that the square root in Eq. (172) is real-valued. The dynamical part of the
screened-interaction function associated with Xpp(z)> '-e- Wpp(z) is easily ob¬
tained (see Eq. (175) below). Using the fact that x(e) = limÿox(e ± it]) —
Eq. (Ill) —,depending on whether e > 0 or e < 0, from Eq. (171) we readily
obtain

-FTÿ} P">

The similarity betweenthis expression and the Lehmann-type representation in
Eq. (100) is apparent. Plausibility arguments, supported by numerical as well
as experimental results (Engel and Farid 1993), suggest that {eÿ} {e<(k)},
with k € 1BZ, to a high degree of accuracy should coincide with positions of
peaks in the energy-loss spectra for (periodic) crystals, i.e. with the plasmon
band energies.
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— what has now become Feynman's path-integral formalism (Feynman and
Hibbs 1965, Negele and Orland 1988); for a comprehensive review of Feyn¬
man's principle and Schwinger's dynamical principle in their historical setting
see Yourgrau and Mandelstam (1968, Gh, 12). Hedin's work, however, is con¬
structed within the canonical (i.e. Hamiltonian) formulation of quantum me¬
chanics and thus differs from the path-integral description which is based on
the Lagrangianformalism. An "on-the-mass-shell" approximationto the GWA
(SGW(k;e) I)GW{k;e®)) is due to Quinn and Ferrell (1958). Pratt (1960)
in his search for generalising the Hartree-Fbck theory, has arrived at an eigen¬
value problem which involves the screened exchange, i.e. GW, SE operator.
Starting from an expression for the correlation energy due to Hubbard (1958),
Phillips (1961) has also arrived at the screened-exchange, GW, approximation.

9.2. Details of the GW approximation exposed (Part I)
For SGMr in terms of the exact G and W (see Sec. 9) we have

SGW(rt,rY) = ÿG(rt,r't')W(rtVt'),
lb

SGW(r,r';s) = ÿ / ÿrG(r,r';e -£')W(r,r';£-')e_l£'f?/R , (q10) .
hJ-oo

(174)

The + sign in the argument of W in the first expression, and thus the exponen¬
tial function on the RHS of the second expression, has its root in the discontinu¬
ity of the GF at t' — t (see Eq. (8); see also Appendix B) and the instantaneous
part of W(rt,r't') (or the energy independent part of W(r,r';e)) that would
otherwise render the above expressions ambiguous. We have W(rt,r't') =
vc(r -r')5{t -1') +W{rt,r't'}, and thus

W(r,r';e) - vc(r - r') +W(r,r';e) . (175)

Making use of Eqs. (94), (95) and (100) we have91

(176)

9lFor |e| -* oo, W(e) diminishes like 1/e2.
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where
ws(r) := 21/2j<Pr'vc{v -t')qs{t')\ (177)

thus ws(r) is the electrostatic potential due to the deviation of the charge
distribution in an /V-electron excited state with respect to that in the TV-
electron GS. With this expression and the Lehmann representation for G(e)
in Eq. (11), using Cauchy's residue theorem (Titchmarsh 1939, p. 102) the
s'-integral in Eq. (174) is easily evaluated, leading to

XGW(r,r';£) = £Guc(r,r') + EGW(r,r'-,e) , (178)

where

£G"c(r, r') := =±vc(r - r') -£,)/,(r)/;(r')
8

= ~ÿvc(r - r')p(r,r') ,

XGW(ry;e) := \ ÿ/s(r)/;(r')%(r)<(r')
8,8'

f + 1 (179)( £ - £s ~ e„' + irj e - e„ + es> - it] J
The static contribution £G"c is exactly the Fock exchange self-energy T.F (see
Subsecs. 4.6, 5.1 and 6.3 where we have £HF(r, r') = ft-1u//(r; [n])d(r - r') +
£F(r, r'))- Since es> > 0 for all s', the first (second) term inside the braces on
the RHS of Eq. (179) is finite, i.e. non-singular, for e < p(e > /i) — notice
that the ÿ-function restricts the range of £s-values contributing to each term.
Let now £v(£c) correspond to the largest (smallest) £s below (above) p (for our
earlier reference to £v aud ec see Subsec. 4.2). Let in addition

emin := min{es/}|a/#Q , (180)

where we have excluded the trivial es=o-92 It follows that the singularity —
i.e. "braneh point" for systems in the thermodynamic limit (see Subsecs. 2.1
and 2.2) — of YPW (e) closest to p from below is located at

£< .=£v emin (181)

92From Eq. (101) we observe that Qs=o(r) =0 — for systems with non-degenerate GS,
emin ÿ 0.
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and the one from above ft at

£> st + emin - (182)

Compare £< and e> with pn and ftN+i in Subsee. 4.2, respectively. It can
explicitly be shown that for e 6 (£<,£>), EGlv(£) is Hermitian. In case W
has been evaluated within the RPA, making use of the same GF as has been
employed inthe calculationof HGW (which may be a Go), it holds (see Eq. (14)
above and the text following it): emjn = (ec - £„). Insuch a case we have

£> — £< = (ec — £„) -4- 2emjn = 3(sc — £v ) . (183)

Hence, within the GWA, making use of a Go and the corresponding WRPA
(by which we mean the W obtained through approximating P by Po[Go] in
W — vc + vcPW — see Eq. (92) and Subsec. 8.4), the passible QPs whose
energies may turn out to lie inside the interval (£<,£>) possess infinite lifetimes.
Inview of the above (see in particular the text directly following Eq. (179)) it
follows that

ZGW(r,r';*) :=iÿ/,(r)/;(r'K(rK,(r')
8,8*

X J »('.-<ÿ) + IQ'-'.) ) (184){z -£a - e„> z - es + es> J
is the analytic continuation of EGW(e) into the complex 2-plane: we have
indeed

EGW(e) = limHGW(e ± irj) for s ÿ ft ; (185)

when e € (e<,£>), r\ can be put identically to zero. It can explicitly be shown
that similar to the exact E(z), £GW(z) satisfies the relation (c.f Eq. (40))

VGW(z*) =XGW\z). (186)

By explicit calculation, the relations inEq, (51) can be shown to besatisfied
by T,gw(z) provided that for the G(z) inEq. (51) use is made of the expression
in Eq. (27), i.e. of the same expression that we have employed in determining
T.GW{e) in Eq. (174) and thus EaW{z) in Eq. (184).
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on the other hand, leads to the "physical" W(e - e3) for all (e - it leads
to the "unphysical" G(e - es> + irj') for s - e3< < p, however.

9.3. Some sum-rules concerning y£,GW

Consider
EG""(z) := 1{EGW(z) - EGWt(z)} . (189)

Fromthe analyses following Eq. (179) — that for e < /t, 0(es-p)S(e-e3~es') =
0, and for £ > p, 6{p - es)5(s - ss + e3>) = 0 —, the following sum rules are
readily obtained (we make use of Eqs. (185) and (186))

- r d£EGW"(r,r';e) = ~p(r,r')Wj (r,r') , (190)
7T J-oo In

ÿ jT+°° rfeEGÿ"(r,r';e) = J {d{r - r') - ÿ(r,r')) Wÿr,r') , (191)

iJ" dee?,GW"(r,r>-,e) = ÿ |s<(r,r')>V1(r)r') - ÿ(r,r')W2(r1r')| ,
(192)

1 /.+OQ _ 1 f— j desXGW"(r,r';e) = ÿ j Hÿr.rOWÿr.r')

+ ÿ(r - r') - ip(r,r')) W2(r, r')j , (193)

where93

Wi(r,r') := ]Tuv(r)iiv(r') , (194)
Sf

W2(r,r') := ÿe,-w,-(r)<-(r'). (195)
9'

For E<(r,r') and 5>(r,r') see Eqs. (17) and (18).

93Note that Ws(r, r') = :=| s2W(r, r';e).
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9.5. Some approximation schemes within the GW approximation

Complete neglect of SGM/ on the RHS of Eq. (178) amounts to one of the
possible approximations within the GWA scheme. In this way one recovers
the Fock exchange SE of the conventional Hartree-Fock method.

A more sophisticated approximation is the so-called COHSEX, COulomb
Hole with Screened EXchange (Hedin 1965). _This is obtained through sup¬
pression of the energy dependence of W (or IF) in the expressions for Esx
and Ech (see Eqs. (178), (188) and (197)). By doing so, Exc transforms
into a form similar to EGu° (see Eq. (179)), with vc however replaced by
vc + W(s = 0) = IF(e = 0). In other words, in this scheme Esx reduces
to the Fock-exchange SE in terms of the static screened Coulomb interac¬
tion function. As for the "Coulomb-hole" part of the SE, as presented in
Eqs. (188) and (198),97 it can be easily shown that within this approximation
Ecff(r,r';s) -> (l/(2fi])VF(r,r'*,0) /«(r)/J(r'). Making use of the com¬
pleteness of the Lehmann amplitudes (Eq. (15)), one arrives at

ECOHSEX(r,r') = -ÿrVF(r,r';0)p(r,r') + ÿTF(r,r;0)<5(r - r') . (201)
lift &rt

The second term on the RHS of Eq. (201) has an interesting physical inter¬
pretation (Hedin 1965). Consider two point charges held fixed at r and r'. If
there were no screening, then the potential energy of the point charge at r due
to that at r' amounted to uc(r - r').98 Because of the polarisation effects, in
reality this energy amounts to VF(r,r';0). The difference between the two en¬
ergies, i.e. IF(r,r';0) (see Eq. (175)), is thus the induced potential energy. The
force F on the point charge at r associated with the latter potential energy is
equal to -VW(r,r';0). By taking the limit r' -> r,one obtains the force Fon
the point charge at r brought about by its own presence, through polarising its
surrounding; F := - linv_>r VW(r, r';0). Because of the symmetry property
(see Eqs. (175), (176) and (106)) VF(r,r';e) = W(r',r;e), for this self-induced
force F = -V{ÿIF(r,r;0)} holds. Thus we observe that the contribution of
Ech to EGVV' within the COHSEX approximation describes the self-induced
static force exerted on a point charge introduced into the system (compare the

97Fbr £ = ea, the RHS of Eq. (188) involves )T),/ w4iti)t,/(-e4i), which from Eq. (176) is seen
to be equal to lW(0). Alternatively, inEq. (198) we have W(0) de'/{2-ni[c—s' — £»]) =
lsgn(e-£,)W(0). Using [0(e - es) - §sgn(e -£„)] = 1,we again obtain |W(0).
®8Note the e2 in the definition for vc.
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term enclosed by the curly braces in the expression for F with the second term
on the RHS of Eq. (201)).

Evaluationof the e'-integral along the imaginary energy axis on the RHS of
Eq. (198) is not, from the practical point of view, a difficult task: here one has
to do with a very smooth integrand which, moreover, decreases like e'-3
for large values of |e'|. Thus one might consider to retain the dependence
on e' of W(e') in the integral along the imaginary energy axis, but replace
W(e -1.,) in the expressions for Ssx (Eq. (188)) and £<?// (Eq. (198)) by its
static counterpart; in doing so, the 8(e -£,) which pre-multiplies this W(0) in
Eq. (198) must be retained (see text immediately following Eq. (200) above).
This approximation which has been introduced by Toet (1987), is referred to
as the Static-Pole Approximation (SPA). From the discussions in Subsec. 9.4
(in the paragraph following Eq. (200)), it is clear that knowledge of W(e') for
e' within the interval [0, \p — e\\ suffices to calculate the contribution due to
W(e — e„) to HGW(e). From the fact that for small values of |e'|, W(e') —
W(0) + o(l), it follows that for sufficiently small values of \p — e\, indeed
W(e — ea) to a very good approximation can be replaced by W(0).

9.6. Large-js| behaviour of £c;v(e)
In Subsec. 8.3 we studied in some detail the large-|e| behaviour of x(£), P{e)
and some related functions (operators). The explicit expression for Y,gw(e)
as presented in Eq. (179) gives us the opportunity also to expose some of the
interesting features of £cw (e) for |e| —> oo. Here we consider three leading
asymptotic terms of Ec;lv(e),

yGW yGW
£gw(£) ~ £Gu<! + -2£i- + ; for |e| _> oo , (202)

where £Gÿ and EGÿ are independent of e. Making use of Eqs. (15), (194),
(195) and some simple algebra one obtains

£G1>,r') = ÿ(r - r')Wj(r,r') , (203)

(r> r') = Goo2(r,r') - ÿ{p(r, r') - <5(r -r')}W2(r,r') . (204)

Note that according to Eq. (31), —h{p(r,r') — <5(r — r')} is equal to the zeroth
energy moment of Ap(r, r';e). From Eq. (203) we observe that is fully
determined by the zeroth energy moment of x"(£) — see Eqs. (194) and (196).
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is referred to at the "correlation potential". Above we have denoted the single-
particle reduced density matrix corresponding to the KS equation (Eq. (212)),
i.e. the Dirac-Fock reduced density matrix, by po(r,r'), to indicate that this is
not identical to the exact one-particle density matrix, although po(r,r) =n(r),
the exact GS electron density. The reason for this lies in the fact that in
arriving at Eq. (212), only variations in n(r) around the GS charge density
have been considered; for obtaining a KS equation (see Footnote 78) whose
eigenfunctions yield the exact p(r,r') through ]T)i it is necessary
that variations of p around the p corresponding to the GS are considered
(Gilbert 1975; see also Donnelly and Parr (1978) and Valone (1980)), inwhich
case the pertinent KS equation will aquire an explicitly non-local correlation
potential." Nevertheless, it is interesting to note that through choosing Ho to
coincide with the explicitly non-local KS Hamiltonian inEq. (212), inaddition
to preserving the important property rio(r) = n(r), it is ensured that the
corresponding Go;002 incorporates a non-local term involving vc. However,
there are two differences between this Go;0o3 and Goo3 : (i) the expression for
Go;oo3 involves vc(r; [n]), which does not feature in the expression for Gooa', 00
the one-particle reduced density matrix in Go;003 is po(r,r') whereas that in
Eq. (35) is p(r,r').

Inview of the above considerations, it is instructive to consider the following
expression for the GS total energy due to Galitskii and Migdal (1958)100

En,o = -i f d3r Urn f°° ÿeÿh
J r'-+rj-oo 21th

x |jc - 2~~ÿ2 +w(r) G(r,r';e) +Jd3r"ta(r,r")G(r",rOc)| ,
(214)

where we have suppressed the energy due to the inter-ionic (or background)
interaction; in addition, we have multiplied the RHS of this equation by 2 in

"That po p, is easiest shown by pointing out that unlike p, po is idempotent:
/ cfV'po(r,r")po(r",r') = p0(r,r'), whereas f d3r"p(r, r")p(r",r') < p(r,r'). See, e.g.,
the work by Dreteler and Gross (1990, p. 47). The non-idem-potency of p(r,r') manifests
itself in the deviation of Aj from either zero or unity. This implies that the density-functional
framework for constructing the exact p is an ensemble formalism, to be contrasted with a
pure-state formalism.
100For some technical details concerning application of this expression see the paper by
Farid, Godby and Needs (1991).
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order to account for the trace over the spin of the electrons. An aspect of sub¬
stantial practical interest is that the total energy is determined by the zeroth-
and first-order ÿ-moments of G(e). In the present work we have attempted to
expose the intimate connections that exist between the energy moments and
the large-|e| behaviour of various correlation functions on the one hand, and the
relationship between these and the GS charge density and the single-particle
reduced density matrix on the other. Equation (214) provides yet another ev¬
idence for this. Through making use of (below i) I0) — see Eqs. (16), (17)
and (26) —

/+°° jc 1ei£r}/hG(r,r';e) = ~iG(rt,r't+) = -p{r,r'), (215)

/+oo J

„ 2Vh ei£V/hsG(r> r':£) = =2<(r,r') ,

(216)

while employing both the exact and the approximate expression on the RHS
of Eq. (22), it can readily be verified that101

En,o — Jd3rv(r)n(r) +Jd3rcfir'w(T,r')p(r,r1)

P(r,r')+ I(fir lim | V2
r'-»r/' 2me

, N(N-l)Jd3rd3r'vc{r - r')p(r,r') , (217)

N{N2 Jd3rd3r'vc(r-r')g(r,r')

w ijd3rd3r'vc(r - r')n(r)n(r') = En[nj . (218)

From the considerations in Subsec. 8.8 we know, that for systems without
off-diagonal long-range order (i.e., involving no superfluidity or superconduc¬
tivity), for ||r - r'|| -¥ oo we have N(N- l)g(r,r') —>• n(r)n(r'), so that the
101For a similar expression see the books by March, Young and Sampanthar (1967, p. 10),
and Dreizler and Gross (1990, Appendix A).
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(Hartree) approximation in Eq. (218) is seen to correspond to neglect of the
short-range correlation effects.

Our above considerations demonstrate that calculation of HGW in terms of
Go and Wo (= WflpA[Gxs] — see text following Eq. (183)) corresponding to
the KS "non-interacting" Hamiltonian, whose ground-state n(r) is identical to
that of the fully interacting system, incorporates such correlation effects that
are very specific to Egvv[G], i.e. the EGW as evaluated in terms of the exact
G and W.

9.8. Self-consistent calculations
Consider the following unconstrained self-consistent procedure for the calcula¬
tion of G (or E): Start with a given "non-interacting" Hamiltonian Ho which
in addition to vh contains vl +vÿi. Calculate Egiv[Go], ie. EGW in terms
of the GF pertaining to Ho (see Subsecs. 7.6 and 9). Through solution of
the Dyson equation calculate G{,=1}, with G{,-+i} = (I-GoEfvv[G{1)])~1Go,
where (see Subsec. 7.6) Efw[G{<}] := EGVV[G{i}] - h~l{vL +vNL), with G{i}
the GF corresponding to the ith iteration, i= 0, 1,...,Msc (Gpq = Go).
Here Msc is the number of iterations beyond which the changes in the ma¬
trix elements of, say, Gÿy are negligible. In practice, it may happen that this
straightforward process of iteration does not converge (a known fact concern¬
ing iterative solution of non-linear equations), in which case one has to employ
a more refined scheme. A strategy that is not sophisticated and in other con¬
texts has proved to be useful (Kerker 1981, Dederichs and Zeller 1983 — for
completeness, see the paper by Ho, Ihm and Joannopoulos (1982)), consists in
calculating G{,+1}, for i> 1, in terms of Efw[(l — q)Gÿ_.1j + aG{<}] with
a 6 (0,1] (for small values of i, a 1) rather than EGVV[G{j}]. We note
that for the linear combination (1- a)Gÿiy + qGÿj to be meaningful, it is
necessary that the values of p corresponding to G{j_!} and G{jj are identified
before the two functions are linearly combined.

It should be evident that there is no a priori reason for considering the con¬
verged G, as obtained according to the above strategy, in any sense superior to
the non-self-consistent G, i.e. G{ij. The following two points should clarify this
statement. First, the non-linearity of the problem at hand implies existence of
a multiplicity of solutions for G, so that "the" self-consistent G may be entirely
different from that which one has set out to calculate (see Sec. 7). We have
to emphasise that even though there is no compelling argument in favour of
G{1}, one may argue that if Go has been a "good" zeroth-order approximation
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to G, the contribution of Spvv to G should amount to a "minor" correction,
in which case appropriately takes this correction into account. Second,
disregarding the first point, in order to assess the accuracy, or even qualitative
correctness, of the self-consistent G, one needs to know the significance of those
contributions in (E - h"lvn) that have been neglected in Tpw : a G that is
self-consistent within an approximate framework, is not necessarily "closer" to
the exact G than a non-self-consistent G.

From the above we conclude that for performing reliable self-consistent
calculations, one has to define some appropriate norm (which can be differ¬
ent depending on the nature of the questions being addressed) which imposes
constraints on the self-consistent solution. These constraints can be either so-
called "equality constraints" or "inequality constraints", or some combination
of both. To the former class of constraints belongs the requirement that the GS
charge densities corresponding to the non-interacting and interacting systems
he equal (sec Subsubsecs. 7.4.1 and 8.6.1), and to the latter that the GS total
energy of the self-consistent G be minimal (see Subsec. 9.7). We shall now
argue that a self-consistent calculation must involve at least one "inequality
constraint". Obviously, since the functional form of EGW is fixed, it follows
that for satisfying the "equality constraints" it is necessary that Ho be ad¬
justed, through variations in (vÿ +vÿl) — in this way Go is varied and thus
also £giv[Go]. Therefore within an "equality-constraint" scheme one adjusts
the non-interacting Hamiltonian, with respect to which perturbation expan¬
sion is carried out, until the required equality is satisfied (by, say, G{jj,where i
may take on the value 1if for whatever reason G{i} is preferred above G{m,c})-
Such constraint cannot in itself guarantee even the qualitative correctness of
the self-consistent solution. This follows from the obvious fact that the quan¬
tities on both sides of an "equality constraint" are to be calculated in parallel,
so that at self-consistency one may be satisfying an incorrect equality. Thus
one comes to realise that the self-consistent G must, for instance, yield the
lowest GS total energy (in so far as possible within the GWA) for it to be at
least qualitatively correct.

In applying the above strategy for the self-consistent calculation of G, it
is important that the "equality constraints" are mutually compatible and that
they can indeed be enforced. Here the known theorems of the DFT can be
of substantial value. For instance, if for a given system one can assume that
its GS electronic distribution n(r) is non-interacting v-representable (see Foot¬
note 7), one can immediately draw the significant conclusion that the mapping
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betweenvl(r) and n(r) is invertible (Hohenberg and Kohn 1964). This implies
that (i) it is possible to impose the "equality constraint" that the GS charge
density of the non-interacting system be identical to that, of the interacting
system; (ii) that vi is uniquely determined (up to a trivial additive constant).
We recall the very important role played by the GS charge density and the
reduced one-particle density matrix in determining the large-t. behaviour of
various correlation functions as well as the values for the e-moment integrals
corresponding to the "imaginary" parts (i.e., the branch-cut discontinuities) of
these functions (see Subsecs. 4.6, 8.3, 8.8, 8.9, 9.3 and 9.6).

As for the compatibility of the constraints, the freedom in adjusting vnl
suggests that in principle it should be possible that, for self-consistency
also some say, static two-point correlation function pertaining to the non-
interacting system be made to coincide with that of the interacting system.
However, since the local part of vnl has been absorbed in vl, this require¬
ment may not be compatible with the one that is to be enforced by vl- We
point out that even the requirement that both no(r) and po(t,r') correspond¬
ing to the non-interacting system be identical to those corresponding to the
interacting system cannot be met, despite the fact that n(r) = p(r,r). This
is due to the non-idempotency of p (see Footnote 99) that rules out the pos¬
sibility of describing p in terms of a pure state; for imposing the condition
po a p, an ensemble formalism for the many-body perturbation theory must
be adopted. Nevertheless, one can attempt to find an optimal vnl such that
the corresponding p0 resembles p as closely as possible (according to some
well-specified norm). This constitutes an "ineqnality constraint".

It is interesting to note that since HGW{e), similar to the exact E(e), is
Hermitian at e = p (see Subsec. 6.4 and 9.4) —- of course the p corresponding
to EGW is different from the exact p, corresponding to E —, it is possible
to impose the "equality constraint" that at £ = p, T,GW(e) and h~1(vL +
vnl) be identical (see Eq. (98)). Such a constraint, provided accompanied by
an appropriate "inequality constraint", should give rise to a non-interacting
Hamiltonian that at energies close to p describes the behaviour of the QPs
relatively accurately.

All self-consistent methods (such as those described above) are rendered
impracticable (except for relatively simple systems) by the fact that at vari¬
ous stages of calculation, a number of integrations have to be carried out. If
these integrals are not evaluated with sufficient accuracy, it is most likely that
the consequent errors will eventually dominate the outcomes which have to be
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where

Zk,k>(G,G';k,k';e)

][ÿ,k-k'(K)4k_k,(K'J -£/(k -k,)KG-K,G'-K'(k')
I

+[6(ft - ef(k - k')) - 0(e -e«(k - k))]WG-K,G<~K'<k';e -e<(k - k'))

the (G,G')-matrix element of the Coulomb interaction function in the wave-
vector representation; {d/ik(K)}K denotes the set of Fourier coefficients corre¬
sponding to the periodic part of a Bloch-type eigenfunction of Ho, normalised
according to dÿ;ic(K)<iJ.k(K) = 1;Idenotes the band index and k € 1BZ.
The k-summation over the 1BZ is replace by a k-integration according to
]CkeiBz(---) (ÿ/[27t]3) /ibzÿ3ÿ (•••)> with fl the volume of the crystal.
When appropriate (see further on), this integration is subsequently replaced
by a finite summation. The most commonly-used summation method is one
based on the so-called special-points technique (Baldereschi 1973, Chadi and
Cohen 1973, Monkhorst and Pack 1976). For amy lattice structure, the theory
underlying this technique prescribes a well-specified set of (finite) sampling
points within the 1BZ over which the integrand is to be averaged, with each
sampling being weighed by a well-specified symmetry-related weight factor.
There are a number of different procedures for generating these points, each
of which gives rise to different sets of "special points" and the associated sets
of weight factors. We shall not go into the details of these methods, however
there is one crucial aspect concerning "special points" to which we should like
draw attention:

All "special-points" methods deal with evaluation of integrals of the form
/ke iBzd3fc#(k) =: 1, where B(k) is assumed to be periodic over the entire
reciprocal space, repeating the form it has over the 1BZ, and to have the
complete lattice point-group symmetry. A typical example for B(k) is the band
energy £<(k). Consequently, B(k) can be expanded into a symmetrised discrete
Fourier series. The constant term in this series is the sought-after X. The

(222)

with
(223)
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First, as indicated above, the BZ-integration in Eq. (221) is most likely to
be evaluated by means of one or another type of averaging technique over a
discrete set of k'-points. In view of this, the following should be taken into
consideration:

(i) As is apparent from Eq. (223), the Coulomb interaction matrix element
*>c;G,G(k) is singular at k -f G = 0 (for k in the interior of the 1BZ, this
equation is satisfied only when G = 0). Consequently, the integrand of the
k'-integration has to be regularised prior to applying any discrete summation
technique; the BZ-integral corresponding to the singular part (which in the
processof regularisationhas been taken apart) has to be evaluated by means of
some appropriate method — for instance a sampling approach in the spherical
polar coordinate system, with the origin being centred at the singular point
of the integrand. In view of our above remarks concerning limitations of the
"special-points" method, it is advantageous for the convergence rate of the
BZ-integral in Eq. (221), as function of the number of the "special points",
that the "regularised" nc;G,G(k) be free from discontinuities or sharp "edges".

(ii) The screening potential W is short-ranged only inmetallic systems (see
Footnote 48); for semiconducting or insulating systems, the screening is not
complete and therefore W, like vc, is singular (see however Subsubsec. 7.4.1
and Footnote 64). Moreover, the behaviour of WG,G'(k;e) close to its singu¬
larity (i.e., for k -+ 0 — see further on, however) is in general anisotropic,
i.e. it depends on the direction of k along which k —ÿ 0, cubic crystals being
exceptional in this respect; see works by Falk (1960), Pick, Cohen and Martin
(1970), Baldereschi and Tosatti (1978, 1979) and Baldereschi, Car and Tosatti
(1979). To analyse the behaviour of Wc.cfk;ÿ, it is necessary to examine
that of the matrix elements of the polarisation operator P(e). With

Pg,g>(k;e) =n0(G,G';e) +nl(G,G';e) ÿ k

+k-n2(G,G';e)-k+0(||k||3), (224)

for k close to 0, the following relations can be shown to hold

n0(0,0;£) =0; n,(0,0;s) =0; (225)

n0(G,0;e) = 0 ; n0(0,G';c) =0. (226)

That is, the "head" element of P(k;s) (i.e. that corresponding to G = G' = 0)
and "wing" elements (i.e. those corresponding to either G = 0, G' ÿ 0 or
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G / 0, G' = 0) are vanishing for k —>• 0, the former quadratically and the
latter linearly in ||k||. In general, the tensor g2 has a full Cartesian matrix
representation. For cubic crystals, however, it is, in this representation, a
multiple of the unit matrix. From these results, taking into account the sin¬
gular behaviour of cc;G,G(h) for k 4- G -* 0, and application of the Sherman-
Morrison-Woodbury formulae (Press, Teukolsky, Vettering and Flannery 1996,
pp. 65-70) for inversion of matrices by partitioning (Pick, Cohen and Martin
1970), one arrives at the conclusion that the "head" element of W(k;e) has
a l/||k||2 type of singularity, the "wing" elements diverge like l/||k||, and the
"body" elements are regular. Again, except for cubic crystals, the divergence
in the pertinent matrix elements of W(k;e) is non-isotropic. We should em¬
phasise that distinction has to be made between k -> 0 and k = 0 (Baldereschi
and Tosatti 1978, 1979 — for some comments on this subject see the paper
by Fhrid, Heine, Engel and Robertson (1993), Sec. IV). Inour case, the point
k = 0, in combination with either G = 0 or G' = 0 (or both) has no signifi¬
cance: the matrix elements Wg.oO* = 0;c) and Wo,G'(k = 0;£) are vanishing,
since an infinite periodic system cannot respond to a spatially constant per¬
turbation without violating the charge conservation (see Footnote 80).103 For
some technical details see works by Gygi and Baldereschi (1986), von der Lin¬
den and Horsch (1988, Appendix C to this work) and Hott (1991).

(iii) In metals, the function 9(fi - £/>(k — k')) in Eq. (222) necessitates
accurate knowledge of the Fermi surface in the k'-space. It should be realised
that also W in Eq. (222) is dependent on the geometry of the Fermi surface
(see, e.g., Pq in Subsec. 8.5). Therefore, except for the simple metals, for
which one may anticipate nearly spherical Fermi surfaces, accurate evaluation
of Egvv(£) is computationally extremely demanding.

9.10. A survey of computational works within the GW
approximation

Hedin (1965) has applied the GWA to calculate a variety of properties pertain¬
ing to the uniform-electron system. Inparticular he has calculated a number of
parameters of the Landau Fermi-liquid theory. Rice (1965) at the same time as
Hedin, starting from an expression due to Hubbard (1958) for the correlation-
energy in terms of the SE operator, has calculated a number of Fermi-liquid

103Recall that by charge neutrality, vC;G,G(k) must be set equal to a constant (convention¬
ally zero), when G = 0 and k = 0.
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parameters. In his treatment, Rice has further considered some static local-
field function (accounting for the vertex correction) that is neglected within
the GWA. This static contribution is the Hubbard local-field function that we
have discussed in Subsubsec. 8.6.3 (see Footnote 79).

There have been subsequent applications of the GWA to the uniform-
electron system by a number of authors. In some of these, the vertex func¬
tion has been approximately taken into account. Applications of the GWk to
uniform-electron system are by Hedin (1965) and Lundqvist (1967, 1968, 1969).
The latter author has calculated such functions as the momentum distribution
function and the spectral function. Lundqvist and Samathiyakanit (1969), us¬
ing the Galitskii-Migdal expression, have calculated the GS total energies at a
number of metallic densities. Petrillo and Sacchetti (1988) have studied some
consequences of the static local-field function on the results based on the GWA.
This has been also subject of studies by Mahan and Sernelius (1989) and Frota
and Mahan (1992). The last two works have been in part motivated by some
controversies that seem to exist concerning the experimental values for the QP
bandwidths in alkali metals in comparison with those calculated within the
framework of the GWA and within a framework in which the vertex function
has been taken into account (in an approximate way) only in the calculation
of the screened interaction function W and not in that of the SE operator. As
we observe from Fig. 12, within the standard GWA the vertex function T is
neglected both in the expression for the polarisation function (this amounts
to the RPA for this function — see Subsec. 8.4) and in that for the SE oper¬
ator. The discussions in Subsec. 6.7 indicate that by a partial incorporation
of the vertex function in the polarisation function, and neglect of it in the SE
operator, the results may become less reliable as a consequence of disrupting
the balance between the errors that otherwise would cancel. The numerical
studies made so far on this issue (Mahan and Sernelius 1989, Frota and Mahan
1992) rely on very simple approximations for the local-field function G. For
instance, these are energy independent and, moreover, do not have the correct
behaviour at large values of k (see Subsubsec. 8.6.3).

The review article by Hedin and Lundquist (1969) gives an in-depth survey
of the theory underlying the GW formalism as well as of a variety of related
and relevant material. In particular, it contains some details concerning the
core-polarisation effects and ways of incorporating these in approaches that
primarily focus on the interaction amongst the valence (as opposed to the
core) electrons. To this date this article remains the major reference source on
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the. subject. In the intervening time the following brief surveys on the GWA
have appeared: von Barth and Hedin (1974), Hybertsen and Louie (1987b),
Godby (1992), Mahan (1994), Hedin (1995), Louie (1996). In Chapter 7 of the
book by Inkson (1984), the method is described, and in Chapter 9 of the book
by Fulde (1995), the approach is presented and further some applications of it
to real solids are discussed.

Brinkman and Goodman (1966) in calculating the energy bands for sili¬
con have applied the GWA, using the further approximation to which we in
Subsec. 9,5 have referred as the COHSEX (Hedin 1965). In addition, the au¬
thors neglect the non-diagonal elements of the screened-interaction function
W. Thus Brinkman and Goodman conclude "The results are not an improve¬
ment over the Slater approximation." Kane (1971) in his work entitled "Need
for a Nonlocal CorrelationPotential inSilicon" arrived at the conclusion that a
"local approximation to exchange and correlation is inadequate for silicon" and
that "screened Hartree-Fock exchange may provide the non-locality required
to overcome . .. difficulties." In a subsequent work, Kane (1972) applied the
GWA to Si, using the Penn (1962) model for the dielectric function in the
calculation of W. Subsequently, Inkson (1973) and Bennett and Inkson (1977,
1978), Inkson and Bennett (1978) and Sterne and Inkson (1984) have employed
Tpw, using simplifying approximations in order to study effects of exchange
and correlation on the energy bands of semiconductors. Brener (1975) has
applied the COHSEX for calculating energy bands of diamond. Guinea and
Tejedor (1980) have calculated E6M/ for a model of a semiconductor, taking
into account the dynamic screened interaction function as determined accord¬
ing to a plasmon-pole model.

Perhaps the first contribution that gave rise to the intensified activities that
have extended to this date, concerning application of the GWA to realistic
models of crystals, is due to Strinati, Mattausch and Hanke (1982). Works
by Wang and Pickett (1983) and Pickett and Wang (1984) based on the local
approximation for TPW due to Sham and Kohn (1966) (see Subsec. 5.2) has
been important inbringingout a salient feature of the SE operator ("dynamical
correlation — explicit excitation-dependent correction") that is relevant to a
correct description of the QP energy bands in solids. The mentioned activity
has gathered momentum ever since the work by Hybertsen and Louie (1985)
has appeared. The following, which most likely is an incomplete list, serves to
indicate the activities in this area over a period of more than ten years:
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Lannoo, Schliiter and Sham (1985) (quasi one-dimensional model semicon¬
ductor); Hybertsen and Louie (1985) (QP energies in Si), (1986) (C, Si, Ge,
LiCl);Godby, Schluter andSham (1986, 1987, 1988) (QP energies of Si, GaAs,
AlAs); Gygi and Baldereschi (1986) ("COHSEX", Si)- Northrup, Hybertsen
and Louie (1987) (QP energies in Na and Li), (1989) (Li, Na and Al); Hy¬
bertsen and Louie (1987a) (surface states of As and Ge(lll)); von der Linden
and Horsch (1988) (QP energies in Ge, and a generalised plasmon-pole model);
Hybertsen and Louie (1988) (surface states; Ge(lll) : As and Si(ll1) : As);
Farid, Daling, Lenstra and van Haeringen (1988); Surh, Northrup and Louie
(1988) (QP bandwidth of K); Gygi and Baldereschi (1989) (a simplified model
for HGW; results obtained for Si, Ge, GaAs and AlAs); Zhang, Hybertsen,
Coben, Louie and Tomanek (1989) (ultrathin AaAs/AlAs(001) superlattices);
Zhang, Tomanek, Cohen, Louie and Hybertsen (1989) (work on semicon¬
ductors without inversion symmetry); Zhu, Zhang, Louie and Cohen (1989)
(work on relaxed GaAs(llO) surface); Godby and Needs (1989) (pressure-
induced metal-insulator transition in Si); Saito, Zhang, Louie and Cohen
(1989) (small metal clusters, using a jellium-sphere background); Hamada,
Hwang and Freeman (1990) (Si, using "full-potential linearised augmented-
plane-wave, FLAPW, method"); Farid, Godby and Needs (1990) (work on the
ground-state total energy, Si); Engel, Farid, Nex and March (1991) (quasi one-
dimensional model semiconductor); Hott (1991) (C, Si, Ge, Ga, As and InP);
Chacham, and Louie (1991) (solidHydrogenat Mbar pressures); Zhu and Louie
(1991) (QP band-structures of thirteen semiconductors and insulators: Si,
LiCl, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP,InAs, InSb, AlQ.5Ga0.5As,
fno.53Gao.47As); Aryasetiawan (1992) (work on Ni); Shirley, Zhu and Louie
(1992) (effects of core polarisation on QP energies; Si, Ge, AlAs and GaAs);
Shirley and Louie (1993) (solid Ceo); Charlesworth, Godby and Needs (1993)
(band-gap narrowing at an A//GaAs(110) interface); Rohlfing, Kriiger and
Pollmann (1993) (work on, amongst others, SiC); Farid (1994) (self-consistent
GWA); Palummo, Reining, Godby, Bertoni, and Bornsen (1994) (electronic
structure of cubic GaN); Rubio and Cohen (1995) (work on GaAs\-xNx and
AlAsX-xNx ordered alloys); Engel, Kwon and Martin (1995) (comparison of
results based on the GWA and those by Monte-Carlo techniques in a two-
dimensional crystal); Backes, Bobbert and van Haeringen (1995) (plasmon
and QP band energies in 0 - SiC); Wenzien, Kackell, Bechstedt and Cap-
pellini (1995) (QP bands in SiC polytypes); Verdozzi, Godby and Holloway
(1995) (work on a Hubbard cluster); Rohlfing, Kruger and Pollmann (1995a)
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(QP band-structure of CdS — prototype of a II— VI semiconductor; the GW
results turn out to be satisfactory only after including "the complete cationic
N shell in the pseudopotential"); Rohlfing, Kriiger and Pollmann (1995b)
(QP band-structure of bulk Si and the Si(001) — (2 X 1) surface — mak¬
ing use of a Gaussian-orbital basis set); Aryasetiawan and Gunnarsson (1995)
(work on NiO); Onida, Reining, Godby, Del Sole and Andreoni (1995) (Na4,
Sodium tetramer); Aryasetiawan and Karlsson (1996) (work on Gd and NiO)-,
Farid (1997a) (self-consistent GWA); Massidda, Continenza, Posternak, and
Baldereschi (1997) (work on NiO and CaCuO-j).

A main conclusion that may be drawn from the above contributions is
that for obtaining reliable results for the QP energies, it is important that
both the energy dependence and the non-locality of JlGW (that for r ÿ r',
Ecff(r,r';£) ÿ 0) be taken into account. Moreover, in solids it is essential
that the W employed in the evaluation of T?w takes account of the Umklapp
scattering events, also referred to as the "local-field" effect (Falk 1960, Adler
1962, Wiser 1963), a manifestation of the fact that inelectron-electron scatter¬
ing processes inside a periodic lattice, wave-vectors are conserved only up to a
RLV. It is due to recognition of these three issues to which the GWA owes its
present-day widespread applications.

9.11. Simplified schemes and suggestions

As the brief exposition in Subsec. 9.9 should have made evident, determina¬
tion of the ground and excited-states properties of systems within the GWA is
relatively demanding, in terms of both the necessary computation times and
the required computing facilities. Hence, truly large-scale applications of the
GWA will become possible when T,GW can be cast into a simplified form that
preserves the physically essential aspects contained in Haw. In this connec¬
tion it is relevant to mention that in a number of cases, the SE corrections
(according to the GWA) to the LDA direct band-gaps over the entire BZs of
semiconductors and insulators have turned out to be nearly dispersion-less.
This observation has given rise to the notion of "scissors operator" . This has
been applied, for instance, to calculate the linear and second-harmonic optical
succeptibilities for the III- V semiconductors AlP, AlAs, GaP and GaAs
from the LDA-based electronic-structure results (Levine and Allan 1991a,b).
One of the first successful attempts in the direction of simplifying Ypw is due
to Gygi and Baldereschi (1989).
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Recently, Rojas, Godby and Needs (1995) have successfully employed a
strategy called "real-space-imaginary-time approach", which, owing to the
multiplicative structure of the expressions for both EGVV" and PRPA in the rt-
representation,with advantage makes use of the technique of multi-dimensional
fast-Fourier transform (i.e., FFT), thus reducing the number of required arith¬
metic operations, and consequently computation time, by considerable amount.

Concerning the static dielectric matrix, from which W is determined (see
Eqs. (94) and (95)), a model due to Levine and Louie (1982) has proved (Hy-
bertsen and Louie 1988, Zhu and Louie 1991) to be very reliable. We recall
that for construction of W{e) within a plasmon-pole approximation in cases
where the external potential is local (i.e. w — 0), it is sufficient to know the
static dielectric matrix and the GS charge density (see Subsecs. 8.9 and 8.10).

InSubsecs. 8.9 and 8.10 we have discussed the so-called plasmon-pole model
for the description of the s-dependence of the density-density correlation func¬
tion, and consequently of the dynamic screened interaction function W(e). In
fact, almost all of the contributions cited in Susbec. 9.10 make use of one or
another type of the plasmon-pole model. In the work by Engel, Farid, Nex
and March (1991), all of these models have been brought under the unifying
scheme of the continued-fraction expansion for the branch-cut discontinuity
(i.e., the "imaginary" part) of the dynamic density-density correlation func¬
tion (see Subsec. 8.9). In the theory of the continued-fraction expansion, mo¬
ments (here energy moments) of the branch-cut discontinuities of functions
play a vital role. In Subsec. 9.3 we have presented explicit expressions for the
first two e-moments of HGW"(e) (= HGW"(e)) which can be used to construct
models for describing the e-dependence of EGlv(£).104 Such attempt has been
made with considerable success by Kajueter and Kotliar (1996) in calculat¬
ing the spectral properties of some lattice models (the asymmetric Anderson

104I should like to acknowledge and thank Dr G. E. Engel who around 1992 brought up
to me the idea of constructing such models for EGW'(e). No details were worked out at
this time, however. In the paper by Engel, Farid, Nex and March (1991), it has been
shown that for all energy moments of 1iaw"(s) up to order m (including the zeroth-order
moment) to be correct, it is necessary that all energy moments of W (e) up to order m
(including the zeroth-order moment) be correct. Since the commonly-used plasmon-poie
models only reproduce the exact first energy moment (i.e. the /-sum rule) for the density-
density correlation function, in the work by Engel, et al. (1991) it has been concluded that
therefore none of the energy moments of TPw"(e) calculated through use of these plasmon-
pole models is in principle correct.
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—, the authors should have demonstrated that contribution of the GW self-
energy to the non-interacting orbitals were small. In fact the calculations
reported in (Farid 1994, 1997a) indicate that in general this cannot be the
case. In their work, using the same model as employed in (Farid 1994), de
Groot, Bobbert and van Haeringen (1995) conclude that vertex correction
should be important. We note in passing that due to the non-locality and
energy dependence of the SE operator in the QP equation (Eq. (58) above),
the plasmon-pole model employed by de Groot, Bobbert and van Haeringen
(1995) is not appropriate. Therefore it still remains an open question why
the GWA has been so remarkably successful inaccurately reproducing the QP
band-gap energies of the thus-far studied semiconductors and insulators.

Finally, we mention that the spectral function (according to the notation
in the present work, Ap(s:) — see Eqs. (30) and (67)) as evaluated within the
GWA, fails to reproduce the satellite structure observed in the photo-emission
spectra (see Hedin and Lundqvist 1969, Aimbladh and Hedin 1983) of even
such simple metals as Na and Al (Aryasetiawan, Hedin and Karlsson 1996);
see also Aryasetiawan and Gunnarsson (1995), Aryasetiawan and Karlsson
(1996) and references herein. Since the satellite structure in the spectral func¬
tion is of crucial influence on the energy moments of this function, analyses of
Subsecs. 9.3 and 9.6 demonstrate that unless the non-interacting Hamiltonian
in terms of which YPW is evaluated, is capable of accurately reproducing such
quantities as the exact GS electron density «(r) and the exact reduced single-
particle density matrix p(r,r') [here we leave aside the fact that for interacting
systems, no Dirac-Fock po can be equal to p], it is not possible unequivocally
to establish the share of T,GW in the mentioned shortcoming of the associated
spectral function. Our work (Farid 1994, 1997a) suggests, for instance, that a
H0 which produces accurate GS charge density, is likely to yield a Egh/[Go]
according to which the fundamental QP gap is farther from the experimental
value than that according to Egm,[Gks-lda1. Inview of this and with refer¬
ence to our discussions inSubsec. 9.8, we point out that it is most likely that for
different applications — if one is to employ the SE operator within the GWA.
—, one needs to perform appropriately chosen types of self-consistent calcula¬
tion, where the condition(s) to be met at self-consistency should be motivated
by the nature of the application that one has in mind. It appears that as far
as the energies of the low-lying single-particle excitations in semiconductors
and insulators are concerned, the Go corresponding to the KS Hamiltonian
within the LDA of the DFT qualifies as an "appropriate" choice with which
to calculate Egiv[Gq].
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10. Summary and Concluding Remarks
In this work we have dealt with a number of basic elements from the the¬
ory of interacting fermions (specifically electrons). We have explicitly con¬
sidered the single-particle Green function G(e), the SE operator £(e), the
density-density correlation function x(e), the polarisation function P(e) and
the pair-correlation function g (which by definition is independent of e). We
have analysed both some symmetry properties of these functions in the coor¬
dinate representation and their general behaviour as functions of the energy
variable e. We have given particular attention to two limits of the energy,
those of small and large |s|.

Since for e -* 0 the density-density correlation function x(s) coincides
with the functional derivative of the GS charge density n with respect to the
static external potential v. and since n is the basic quantity within the frame¬
work of the GS density-functional theory (DFT), we have briefly outlined the
salient features of this theory. Of particular relevance to the present work is
that while the vertex function F(l,2; 3) pertaining to an inhomogeneous time-
independent system is a function of three independent spatial coordinates and
two independent energy (or time) variables, as far as the static x is concerned,
the influence of F is formally accounted for by an energy-independent function
of two independent spatial variables. This function, C(r,r'), is the first func¬
tional derivative of the effective Kohn-Sham (KS) potential with respect to
the GS charge density (Subsubsec. 8.6.1). It must be emphasised that for such
a C to exist, it is necessary that the GS charge density of the system under
consideration is non-interacting v-representable (see Footnote 7).

That x(£) in the static limit, corresponding to e = 0, is closely connected
with the ground-state DFT, should not be surprising. However, that this is
also the case for very large values of |e| (Subsecs. 8.3, 8.4 and 8.5), if not
unexpected, is at least interesting. The same turns out to be the case for
other correlation functions that we have considered in this work. By explicit
calculation of the leading and next-to-leading asymptotic terms of these func¬
tions for |e| -4 oo, we have established that these terms correspond to the
GS properties that can in principle be addressed within the framework of
the Hohenberg-Kohn-Sham DFT. Since the one-particle reduced density
matrix p turns out to play a role in almost all asymptotic expressions that
we have dealt with in the present work (those corresponding to the large-|s|
limit), we have devoted some space to the discussion of two alternative KS (-
type) formalisms inwhich the one-particle reduced density matrix plays a role.
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of the system with respect to the GS energy of the iV-electron system; they
correspond to the_ "single-particle excitation" energies. However, upon taking
the limit tj 4- 0 inG(e±ir/) pertaining to a system inthe thermodynamic limit, it
becomes apparent that ingeneral at no point along the reale-axis the function
is unbounded.111 Thus, the equations from which the mentioned excitation
energies are to be obtained (the "quasi-particle equations") in general do not
have solutions (Subsecs. 6.1 and 8.7). Possible solutions are to be sought on
a non-physical RS, requiring analytic continuation of the pertinent functions
(such as T,{z) and x(z)) across the branch cuts into the non-physical RSs.

The above inference has a number of consequences which we have discussed
insome detail in the main text. First, in the thermodynamic limit, excitations
in general do not correspond to one-particle stationary states of the many-
electron system. Second, a solution of the quasi-particle (QP) equation on
a non-physical RS corresponds to some superposition of a (macroscopically-
) large number of stationary states of the interacting system. Such a one-
particle-like excitation, a QP, cannot in consequence stand in any one-to-one
correspondence with a single one-particle eigenstate of a non-interacting sys¬
tem. The assumption with regard to a one-to-one correspondence between the
mentioned two states stands central in the phenomenological theory of Landau
for Fermi liquids (Sec. 1).

The phenomenological Landau Fermi-liquid theory finds its theoretical jus¬
tificationwithin the framework of the many-body PT,Further, the phenomeno¬
logical parameters that feature in Landau's theory can be determined in terms
of the correlation functious pertaining to the interacting system, such as the
single-particle GF. A characteristic feature of conventional Landau Fermi-
liquid systems is the quadratic decrease of the imaginary part of the corre¬
sponding SE operators when the energy parameter e approaches the Fermi
energy (a Luttinger's theorem — Subsec. 6.4 and 6.5).112 This implies that
QPs in Fermi-liquid systems become the more well-defined the closer their en¬
ergies are to the Fermi energy. Thus, on the Fermi surface of such systems, the
QP excitations correspond to one-particle "stationary" states of the interacting
Hamiltonian.113

This of course depends on the dimension of the spatial space; here we are mainly con¬
sidering three-dimensional systems.
112With some modifications to this quadratic behaviour, one still may speak about aLandat
Fermi liquid (Farid 1999a) — see Footnotes 47 and 52. We recall that a gapless effect™
non-interacting system, corresponding to an energy-independent Hermitian SB operator, U
a Fermi liquid system — see Sec. 1.
113This is true in an asymptotic sense: as we have discussed in Subsec. 4.2, the singularity
of G(k;z) at z = is not an isolated singularity, and thus not a pole.
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The mentioned behaviour of the SE operator in the close vicinity of the
Fermi surface has some far-reaching consequences. One is a finite amount of
discontinuity (less than unity) in the momentum distribution function at the
Fermimomentum. The relationship between the magnitude of this discontinu¬
ity and the behaviour of E(e) for e approachingthe Fermienergy, is established
by a celebrated theorem due to Migdal, which we have discussed in some detail
in Subsec. 6,6. In doing so we have given particular attention to a number of
delicate issues.

The above-indicated characteristic property concerning the imaginary part
of the SE operator E(e) pertaining to (conventional) Fermi-liquid systems has
been obtained within the framework of the many-body PT (Luttinger 1961,
Luttinger and Ward 1960; see also Hugenholtz 1957, and DuBois 1959b). The
behaviour of the SE operator for e close to the Fermi energy is of vital in¬
fluence on the thermodynamic as well as quasi-static transport properties of
the corresponding systems at low temperatures. Therefore, a system whose
low-temperature thermodynamic and quasi-static transport properties differ
from those expected from the Landau Fermi liquids, must by implication cor¬
respond to a SE operator whose behaviour in the close vicinity of the Fermi
energy is non-Fermi-liquid like. This deviation is often held as evidence for the
breakdown of the many-body PT for the systems concerned (Subsecs. 6.4 and
6.5).

We have critically analysed the work by Luttinger (1961) which establishes
Eq. (78). We have put forward a number of reasons to the effect that a non-
Fermi-liquid behaviour does not necessarily imply breakdown of the many-
body PT (Farid 1999a). The following is a summary of our analyses:

(i) All the diagrams treated by Luttinger involving polarisation insertions
are individually divergent for systems of particles interacting through the long-
range Coulomb interaction. For such systems, the diagrams must first be
partially summed and expressed in terms of the dynamic screened interaction
function. By doing so, the mathematical approach adopted by Luttinger can
no longer be effective, following the fact that for this an a priori knowledge
concerning the energies of the neutral excitations of the interacting IV-electron
system becomes indispensable. The difficulty in arriving at such a knowledge
stands on a par with that in arriving at the kuowledge with regard to the
single-particle excitation energies of the interacting system that one has set
out to determine iu the first place.



* .  

a~teTa&~z~g 

~ ~ ~ - G o ~ s ~ s ~ ~ ~ ~  
non-Fermi-liquid-like 

€or 

ident i f i~~  

s ~ ~ g ~ ~ p a ~ t i c ~  

~ ~ r ~ - ~ ~ ~ t ~  

s o i u t ~ ~ n ”  
‘ ‘ ~ ~ ~ - ~ ~ ~ j s ~ e ~ ~  ~ n c i d e n t ~ ~ ~ ~ ~  

~ ~ ~ ~ ~ o ~ ~ ~ n s a ~  



246 Electron Correlation in the Solid State

expansion in terms of the associated KS Hamiltonian is unconditionally valid
(Farid 1994, 1997a,b, 1999b). We have presented several indirect evidences in
support of this statement. With reference to some arguments andexamples put
forward by Simon (1970), we have made explicit that criticisms raised against
the many-body PT are often expressions of prevailing prejudices rather than
outcomes of well-founded reasonings.

Indirect evidence that the KS Hamiltonian indeed should play a crucial
role in the applications of the many-body PT, is abundant. Take for instance
the asymptotic behaviour of the correlation functions pertaining to interacting
systems that we have dealt with in the present work: invariably in all of these,
for both e —»• 0 and 1/e —> 0, the GS charge density makes an appearance. It
follows that, use of the "non-interacting" KS Hamiltonian in applications of
the many-body PT has the effect that, in the mentioned limits, it is as if the
many-body perturbation series were evaluated in terms of the exact GF of the
interacting system. Our analyses further establish that, the "non-interacting"
Hartree-Fock-like KS Hamiltonian (as distinct from the commonly-employed
Hartree-like one — Subsec. 9.7) may be a better choice in applications of the
many-body PT, as through it a certain contribution to the SE operator in the
large-|ej limit is more accurately reproduced. For two reasons, however, this
still falls short of being the absolute ideal choice (an "ideal" which of course
is not achievable, at least not within the framework of our present work),
namely (i) the single-particle reduced density matrix as determined within the
Hartree-Fock-like KS formalism is a Dirac-Fock density matrix and therefore
cannot be identical with that of the interacting system; (ii) the Hartree-Fock-
like KS Hamiltonian involves a local correlation potential, i.e. vc, which does
not explicitly occur in the large-|e| asymptotic series expansions of correlation
functions. We have to pointed out (Subsec. 9.7) that the appropriate theoreti¬
cal formalism for determination of p pertaining interacting systems is the DFT
for non-local external potentials, first put forward by Gilbert (1975); see also
Donnelly and Parr (1978) and Valone (1980). However, a direct application
of this formalism within the many-body PT is hampered by the fact that p in
Gilbert's approach corresponds to an ensemble of the many-body eigenstates
of a "non-interacting" KS Hamiltonian (see Footnote 78).

We have discussed in considerable detail an approximate form of the SE
operator E, namely the first-order term in the expansion of E in terms of the
dynamic screened interaction function W. 'Since this SE operator involves one
single-particle Green function G and one W, it is usually referred to as the GW
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presented here further brings out the importance of analysing the asymptotic
behaviour of correlation functions in regions e ->• 0 and |e| -> oo when explicit
calculations of these functions are being considered.

Appendix A: On the representation spaces and some conventions

Here we present the various representations that we encounter in this work.
We restrict ourselves to systems in the thermodynamic limit.

As a typical example of a correlation function, consider the single-particle
Green function G(r,r';e). This function is the coordinate representation of
the Green operator G(e). Thus G'(r, r';e) := {r|G(e)|r'), where |r) and |r') are
normalised eigenstates of the r operator; we have r|r) = r|r), with (r|r') =
5(r - r'). In the same spirit, G(k,k';e) stands for (k|G(e)|k'), where |k) and
|k') are normalised eigenstates of the one-particle wave-vector operator, k|k) =
k|k), with (k|k') = <5k,k''117 We have (r|k) = n-1/2exp(tk • r). In a crystal,
where, e.g., G(r + R,r' + R;e) = G(r,r';£), for any primitive translation
vector R of the underlying Bravais lattice, we have G(k,k';e) = 0 unless
k — k' = K, with K some RLV associated with the mentioned lattice. We
therefore ignore all these symmetry-bound zero matrix elements and denote
the remaining matrix elements by Gg,c(k;e) which is the short for G(k +
G,k+G';e). Here G and G' are RLVs and k is restricted to lie inside the first
Brillouinzone (1BZ). For a given k € 1BZ, {|k+G)} satisfies the normalisation
condition, (k + G|k -f G') = Sg,g'- In these systems, by choosing the one-
body functions (the "wavefunctions" ) to be simultaneously basis functions of
the unitary irreducible representations of the underlying lattice translation
group of the Hamiltonian (Cornwell 1984, pp. 81-83), the index s attached to
such functions as i/-'s(r; z) can be replaced by the pair of indices (£,k), with
k G 1BZ, and £ a "band index"; t/v,k(r; z), a Bloch function, is then said
to transform according to the k irreducible representation of the underlying
lattice translation group. Inthe extended-zone representation, where kextends
over the whole reciprocal space, time-reversal symmetry implies that if s e-t k,
then s f-t —k. The association s (£,k), does not imply s (£, —k),
however, following the fact that indices of the "bands" at different points inside

*17In the solid-state physics it is customary separately to consider the momentum vector p
and the corresponding wave-vector k = p/h. Note that, here we employ the "box" boundary
condition, so that the allowed wave vectors form a discrete set and whereby (2rr)3<S(k —
k')/B rr <5k,k'i where fl denotes the macroscopic volume of the system (in works concerning
systems in d spatial dimensions, 3 in (2rr)3 changes into d).
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the 1BZ need not be related; s o (£,k) implies that there exists an £' such
that s *4 (£',—k); when "bands" are not disrupted by gaps, it is possible,
by means of an analysis of the symmetries of the states at different k-points
(this is the so-called "compatibility analysis"), to assign indices to the bands
in such a way that s (£. k) indeed implies s <-» (I,-k). Making use of
the representations ÿr,k(r\z) = exp(tk • r)«r,k(r;z) and <f>e,k(r'<z) = exp(ik •

r)?£,k(r;z), with ue,u and vt,k periodic functions of r, from Eqs. (58) and
(59), making use of £(r,F;z) = E(r',r;z) in Eq. (40), the result concerning
the Kramers degeneracy of states (Landau and Lifehitz 1977, pp. 223-226,
Callaway 1964, pp. 52-54; see Footnote 21), namely Et,k(z) = Epj-k(z), can
be directly verified.

For systems with continuous translation symmetry,118 G(r,r';£) is a func¬
tion of ||r - r'||. Dependence on r — r' implies that G(k,k';e) = 0 unless
k = k'. The dependence on the norm of r — r' further implies that G(k,k;e)
is a function of k := j|k||, with k £ [0,oo). For these reasons, for spatially
uniform systems we employ the notation G(k;e).

Appendix B: Discontinuity in the Time Domain versus Asymptotic
Behaviour in the Energy Domain
In this Appendix we demonstrate some close connections between the be¬
haviour of fit) for |t| 0 and that of its Fourier transform F(e) for |e| -» oo.
In view of our extensive analyses with regard to the large-|e| behaviour of
various correlation functions, exposition of these connections should prove
interesting.

First we recall that 6{t) = ih cfc/(27r/i) exp(-iet/h)/(e -I- it}), rj 4- 0.
Now consider F(e) whose leading asymptotic term for |e| -4 oo is of the form
a/e, with a independent of e. By adding and subtracting a/(e+ir}) from F(e),
making use of the. above representation for 6(t) and the relation 1/(e + irj) =
V(l/e) - in5(e), with V the Cauchy principal value, we obtain

/W = -ÿrsgn(t) +p/ ~{f(£)~ jjexp(-i£t/ft). (B.l)

Since by definition e(F(e)-a/e) =o(l) when |e| oo, say (F(e)—a/e) ~ b/ea
with a > 1and b a constant with respect to e, it follows that the last term

118Because of the assumed non-degeneracy of the GS, this symmetry, which is that of the
many-body Hamiltonian, is also the symmetry of the GS.
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on the RHS of Eq. (B.l) is a continuous function of t. This is a consequence
of the fact that the principal-value integral of the term inside the curly braces
converges uniformly (Whittaker and Watson 1927, pp. 75 and 70, Titchmarsh
1939, p. 22) and that exp(—iet/h) is continuous everywhere (see Whittaker
and Watson 1927, p. 73); the principal-value sign implies that the infinitesimal
neighbourhood of s = 0 is not part of the integration region. Thus we observe
that the discontinuous part of /(<), i.e. the first term on the RHS of Eq. (B.l),
is entirely determined by the coefficient a of the (l/e)-term in the asymptotic
expansion of F{e) for e\ —¥ oo (the imaginary unit i reflects the fact that
asymptotically F(e) behaves like an odd function of s). Along the same lines
we can prove the following general statements: Let F(e) ~ a/sn for |e| —> oo,
with a a non-zero constant with respect to e and nsome positive integer. Then
(when n-2 > 0) dn~2f (t)/dtn~2 is continuous at t = 0 and (when n— 1>0)
dn~lf(t)/dtn~l has a finite discontinuity at t = 0.
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LIST OF SOME SYMBOLS

= /(x) =g(x), f and g are identical over the entire range of definition
:= f(x) := g(x), / is defined according to g, i.e. f{x) is by definition

equal to g(x)
=: f(x) =:g{x), g is defined according to /

f(x) rsj g(x) for x -+ Xq (say, xo = o°), f(x) is asymptotically
equivalent with g(x), i.e. f(x)/g{x) -> 1when x -> x0
f(x) g(x), for x Xo! similar to /(x) ~ g(x) except that
f(x)/g(x) -> C when x x0, with C independent of x

oc f(x) oc g(x), f is proportional to g for all x
— f — 5) / approaches g in the thermodynamic limit
« / ss g, f is approximately equal to g

—> a; -> xo, x approaches xq
~ M~ m, Mis on the order of m
4. ij4 0, r) approaches 0 from above, i.e. r? is positive infinitesimal
<=> Si Sa, statement S\ implies statement S2 and vice versa

a«6, within a particular context 6 is to be identified with a
O A Landau's symbol (E.G.H. Landau); /(x) = 0(g(x)), there exists

a constant C such that |/(x)( < C\g(x)\
o A Landau's symbol (E.G.H. Landau); /(x) = o(ff(x)) for x -4 xo

implies /(x)/p(x) ->ÿ 0 for x —ÿ xo
||.|| Cartesian norm; c./. ||r[| =:r = (x2 + y2 +z2)1''2
e Real-valued energy parameter
z Complex-valued energy parameter; unless otherwise stated,

Im(z) 0
e',e" Real and imaginary parts of z, z =e1 + ie"
f(z) Analytic continuation of /(e) into the physical Riemann sheet;

c.f. E(e) and E(z)
f{z) Analytic continuation of /(e) or /(z) into a non-physical Riemann

sheet; c.f. E(z) and E(z)
!F{z) Unless otherwise stated, union of /(e), f(z) and all f(z)
O'(z) 6'(z) := \{0{z) +Ot(z)}; c.f. *'(z)
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0"(z) 0"(z) := ±{0(z) -&(z)}; c.f. x"(z)
I Unit operator (in a space to be specified, explicitly or implicitly)
[a,b] Closed interval between a and b\ x e (a,6] implies a < x <b
[a,b) Semi-closed interval between a and b; x 6 [a,b) implies a <x <b
(a,b] Semi-closed interval between a and 6; x € (a,b] implies a < x <b
(a,b) Open interval between a and 6; x € (a,6) implies a < x <b

LIST OF ABBREVIATIONS AND ACRONYMS

1BZ The first Brillouin zone
BZ Brillouin zone
DFT Density-functional theory
DOS Density of states
EOM Equation of motion
GF Green function; if not explicitly specified, the single-particle GF
GS Ground state
GWA GW approximation for the self-energy operator
KS Kohn-Sham
LDA Local-density approximation
LHS Left-hand side
PT Perturbation theory
QP Quasi particle
RHS Right-hand side
RLV Reciprocal lattice vector
RPA Random-phase approximation
RS Riemann sheet
SE Self-energy



R., Scalapino, Sugar, Phys. 



254 Electron Correlation in the Solid State

Bloch, C., and De Dominicis, C., 1958, Nuclear Phys. 7, 459.
Bloom, P., 1975, Phys. Rev. B 12, 125.
Bobbert, P. A., and van Haeringen, W., 1994, Phys. Rev. B 49, 10326.
Bohm, D., and Pines, D., 1953, Phys. Rev. 92, 609.
Boyd, W. G. C., 1990, Proc. Roy. Soc. Land. A 429, 227.
Brener, N. E., 1975, Phys. Rev. B 11, 929.
Brinkman, W., and Goodman, B., 1966, Phys. Rev. 149, 597.
Broer, L. J., 1943, Physica 10, 801.
Brosens, F., and Devreese, J. T., 1988, Phys. Stat. Sol. (b) 147, 173.
Brosens, F., Devreese, J. T., and Lemmens, L. F., 1980, Phys. Rev. B 21, 1363.
Callaway, J., 1964, Energy Band Theory (Academic, New York).
Car, R., Tosatti, E., Baroni, S., and Leelaprute, S., 1981, Phys. Rev. B 24, 985.
Chacham, H., and Louie, S. G., 1991, Phys. Rev. Lett. 66, 64.
Chadi, D. J., and Cohen, M. L., 1973, Phys. Rev. B 8, 5747.
Charlesworth, J. P. A., Godby, R. W., and Needs, R. J., 1993, Phys. Rev. Lett. 70,

1685.
Cheney, E. W., 1966, Introduction to Approximation Theory (McGraw-Hill, New

York).
Cohen, M. L., and Chelikowsky, J. R., 1988, Electronic Structure and Optical Prop¬

erties of Semiconductors (Springer, Berlin).
Collins, J., 1984, Renormalization, Cambridge Monographs on Mathematical Physics

(Cambridge Uuiversity Press, Cambridge).
Copson, E. T., 1965, Asymptotic Expansions (Cambridge University Press, Cam¬

bridge).
Cornwell, J. F., 1969, Group Theory and Electronic Energy Bands in Solids (North-

Holland, Amsterdam).
Cornwell, J. F., 1984, Group Theory in Physics, Volume I(Academic, London).
Dadachanji, Z., Godby, R. W., Needs, R. J., and Littlewood, P. B., 1995, Phys. Rev.

B 52, 16204.
Dahm, T., Manske, D., and Tewordt, L., 1997, Z. Phys. B 102, 323.
Dahrn, T., and Tewordt, L., 1995a, Phys. Rev. Lett. 74, 793.
Dahm, T., and Tewordt, L., 1995b, Phys. Rev. B 52, 1237.
Daling,R., Unger, P., Fulde, P., and van Haeringen, W., 1991, Phys. Rev. B 43, 1851.
Daling, R., and van Haeringen, W., 1989, Phys. Rev. B 40, 11659.
Daling, R., van Haeringen, W., and Farid, B,, 1991, Phys. Rev. B 44, 2952.
Daling, R., van Haeringen, W., and Farid, B., 1992, Phys. Rev. B 45, 8970.
Daniel, E., and Vosko, S. H., 1960, Phys. Rev. 120, 2041.
Davies, B., 1985, Integral Transforms and their Applications (Springer, New York).
Dederichs, P. H., and Zeller, R., 1983, Phys. Rev. B 28, 5462.
de Groot, H. J., Bobbert, P. A., and van Haeringen, W., 1995, Phys. Rev. B 52,

11000.
Del Sole, R., Reining, L., and Godby, R. W., 1994, Phys. Rev. B 49, 8024.
Devreese, J. T., Brosens, F., and Lemmens, L. F., 1980, Phys. Rev. B 21, 1349.



I n t e ~ ~ t a t a o n  

(Sprin~er, 

38, 

S ~ n a ~ ~ o ~ d ~ € o ~ s ,  

~ a ~ y - P a ~ ~ c l e  



256 Electron Correlation in the Solid State

Gell-Mann, M., and Brueckner, K. A., 1957, Phys. Rev. 106, 364.
Gell-Mann, M., and Low, F., 1951, Phys. Rev. 84, 350.
Gilbert, T. L., 1975, Phys. Rev. B 12, 2111.
Glick, A. J., and Ferrell, R. A., 1959, Annals of Physics: 11, 359.
Godby, R. W., 1992, in Unoccupied Electronic States, Edited by J. C. Fuggle and

J. E. Inglesfield (Springer, Berlin), pp. 52-88.
Godby, R. W., and Needs, R. J., 1989, Phys. Rev. Lett. 62, 1169.
Godby, R. W., Schliiter. M., and Sham, L. J., 1986, Phys. Rev. Lett. 56, 2415.
Godby, R. W., Schliiter, M., and Sham, L, J., 1987, Phys. Rev. B 35, 4170.
Godby, R. W., Schliiter, M., and Sham, L. J., 1988, Phys. Rev. B 37, 10159.
Goldenfeld, N., 1992, Lectures on Phase Transitions and the Renormalization Group

(Addison-Wesley, Reading).
Goldstone, J., 1957, Proc. Roy. Soc. Lond. A 293, 267.
Gradshteyn, I. S., and Ryzhik, I. M., 1980, Table of Integrals, Series, and Products

(Academic, Orlando).
Gross, E. K. U., 1990, Adv. - Quant. Chern. 21, 255.
Gross, E. K. U., and Kohn, W., 1985, Phys. Rev. Lett. 55, 2850.
Gross, E. K. U., Mearns, D., and Oliveira, L. N., 1988, Phys. Rev. Lett. 61, 1518.
Guinea, F., and Tejedor, C., 1980, J. Phys. C: Solid State Phys. 13, 5515.
Gunnarsson, O., and Lundqvist, B. I., 1976, Phys. Rev. B 13, 4274.
Gygi, F., and Baldereschi, A., 1986, Phys. Rev. B 34, 4405.
Gygi, F., and Baldereschi, A., 1989, Phys. Rev. Lett. 62, 2160.
Haldane, F. D. M., 1981, J. Phys. C 14, 2585.
Hamada, N., Hwang, M., and Freeman, A., 1990, Phys. Rev. B 41, 3620.
Hamann, D. R., Schliiter, M., and Chiang, C., 1979, Phys. Rev. Lett. 43, 1494.
Harris, J., 1984, Phys. Rev. A 29, 1648.
Harris, A. B., and Lange, R. V., 1967, Phys. Rev. 157, 295.
Haydock, R., 1980, in Solid State Physics, Edited by H. Ehrenreich, F. Seitz and

D. Turnbull (Academic, New York).
Hedin, L., 1965, Phys. Rev. B 139, A 796.
Hedin, L., 1995, Int. J. Quantum Chem. 56, 445.
Hedin, L., and Lundqvist, S., 1969, in Solid State Physics, Vol. 23, Edited by F. Seitz,

D. Turnbull and H. Ehrenreich (Academic, New York).
Ho, K.-M., Ihm, J., and Joannopoulos, J. D., 1982, Phys. Rev. B 25, 4260.
Hodges, C., Smith, H., and Wilkins, J. W., 1971, Phys. Rev. B 4, 302.
Hohenberg, P., and Kohn, W., 1964, Phys. Rev. 136, B 864.
Holas, A., 1987, in Strongly Coupled Plasma Physics, Edited by F. J. Rogers and

H. E. Dewitt (Plenum, New York), pp. 463-482.
Holas, A., 1991, in Electronic Structure of Solids, Edited by P. Ziesche (Nova Science,

New York), pp. 6-11.
Holas, A., Araviud, P. K., and Singwi, K. S., 1979, Phys. Rev. B 20, 4912.
Hott, R., 1991, Phys. Rev. B 44, 1057.
Hubbard, J., 1957, Proc. Roy. Soc. A 240, 539.
Hubbard, J., 1958, Proc. Roy. Soc. A 243, 336.



~ ~ o n - ~ l a t a v a s t ~ c  



258 Eleetron Correlation in the Solid State

Lauwerier, H. A., 1977, Asymptotic Analysis, Part I, 2nd Printing (Mathematisch
Centrum, Amsterdam).

Layzer, A. J., 1963, Phys. Rev. 129, 897.
Lehmann, H., 1954, IINuovo Cimento 11, 342.
Lehmann, G., and Taut, M., 1972, Phys. Stat. Sol.(b) 54 469.
Levine, Z. H., and Allan, D. C., 1991a, Phys. Rev. Lett. 66, 41.
Levine, Z. H., and Allan, D. C., 1991b, Phys. Rev. B 43, 4187.
Levine, Z. H., and Louie, S. G., 1982, Phys. Rev. B 25, 6310.
Lieb, E. H., 1983, Int. J. Quant. Chem. 24, 243.
Lindhard, J., 1954, Kgl. Danske Videnskab. Selskab Mat.-Fys. Mcdd. 28, No. 8.
Louie, S. G., 1996, Quantum Theory of Real Materials, Edited by J. R. Chelikowsky

and S. G. Louie (Kluwer, Boston), pp. 83-99.
Lundqvist, B. I., 1967, Phys. kondens. Materie 6, 206.
Lundqvist, B. I., 1968, Phys. kondens. Materie 7, 117.
Lundqvist, B. I., 1969, Phys. Stat. Sol. 32, 237.
Lundqvist, B. I., and Samathiyakanit, V., 1969, Phys. kondens. Materie 9, 231.
Luttinger, J. M., 1960, Phys. Rev. 119, 1153.
Luttinger, J. M., 1961, Phys. Rev. 121, 942.
Luttinger, J. M., 1963, J. Math. Phys. 4, 1154.
Luttinger, J. M., and Ward, J. C., 1960, Phys. Rev. 118, 1417.
Maddocks, N. E., Godby, R. W., and Needs, R. J., 1994a, Europhys. Lett. 27, 681.
Maddocks, N. E., Godby, R. W., and Needs, R. J., 1994b, Phys. Rev. B 49, 8502.
Mahan, G. D., 1981, Many-Particle Physics (Plenum, New York).
Mahan, G. D., 1992, Int. J. Mod. Phys. B 6, 3381.
Mahan, G. D., 1994, Comments Cond. Mat. Phys. 16, 333.
Mahan, G. D., and Sernelius, B. E., 1989, Phys. Rev. Lett. 62, 2718.
March, N. H., Young, W. H., and Sampanthar, S., 1967, The Many-Body Problem in

Quantum Mechanics (Cambridge University Press, Cambridge).
Martin, P. C., and Schwinger, J., 1959, Phys. Rev. 115, 1342.
Massidda, S., Continenza, A., Posternak, M., and Baldereschi, A., 1997, Phys. Rev.

B 55, 13494.
Matsubara, T., 1955, Progr. Theor. Phys. 14, 351.
Mattis, D. C., and Lieb, E. H., 1965, J. Math. Phys. 6, 304.
Mattuck, R. D., 1974, A Guide to Feynman Diagrams in the Many-Body Problem

(Dover, New York, 1992).
McLeod, J. B., 1992, Proc. Roy. Soc. Lond. A 437, 343.
Mearns, D., and Kohn, W., 1987, Phys. Rev. A 35, 4796.
Methfessel, M. S., Boon, M. H., and Muller, F. M., 1983, J. Phys. C 16, L949.
Methfessel, M. S., Boon, M. H., and Muller, F. M., 1987, J. Phys. C 20, 1069.
Micnas, R., Pedersen, M. H., Schafroth, S., Schneider, T., Rodrlgues-Nunez, J. J.,

and Beck, H., 1995, Phys. Rev. B 52, 16223.
Migdal, A. B., 1957, Soviet Phys. — JETP 5, 333.
Minnhagen, P., 1974, J. Phys. C: Solid State Phys. 7, 3013.
Monkhorst, H. J., and Pack, J. D., 1976, Phys. Rev. B 13, 5188.



~ ~ ~ t ~ t ~ ~ ~  

Ground and Loui-Lying Excited States of . 259

Moroni, S-, Ceperley, D. M., and Senatore, G., 1995, Phys. Rev. Lett. 75, 689.
Morse, P. M., and Feshbaeh, H., 1953, Methods of Theoretical Physics (McGraw-Hill,

New York).
Negele, J. W., and Orland, H., 1988, Quantum Many-Particle Systems (Addison-

Wesley, Redwood City).
Nex, C. M. M., 1985, in The Recursion Method and its Applications, Edited by D.G.

Pettifor and D.L. Weaire (Springer, Berlin).
Ng, T. K., and Singwi, K. S., 1987, Phys. Rev. Lett. 59, 2627.
Niklasson, G., 1974, Phys. Rev. B 10, 3052.
Noble, B., 1958, Methods based on the Wiener-Hopf Technique for Solution of Partial

Differential Equations (Pergamon, London).
Nolting, W., and Oles, A. M., 1987, Physica 143 A, 296.
Northrup, J. E., Hybertsen, M. S., and Louie, S. G., 1987, Phys. Rev. Lett. 59, 819.
Northrup, J. E., Hybertsen, M. S., and Louie, S. G., 1989, Phys. Rev. B 39, 8198.
Nozieres, P., 1964, Theory of Interacting Fermi Systems (W. A. Benjamin, New York).
Noziferes, P., and Luttinger, J. M., 1962, Phys. Rev. 127, 1423.
Noziferes, P., and Pines, D., 1958, Phys. Rev. Ill,442.
Onida, G., Reining, L., Godby, R. W., Del Sole, R., and Andreoni, W., 1995, Phys.

Rev. Lett. 75, 818.
Palummo, M., Reining, L., Godby, R. W., Bertoni, C. M., and Bornsen, N., 1994,

Europhys. Lett. 26, 607.
Penn, D. R., 1962, Phys. Rev. 128, 2093.
Perdew, J. P., Parr, R. G., Levy, M., and Balduz, J. L., 1982, Phys. Rev. Lett. 49,

1691.
Petrillo, C., and Sacclietti, F., 1988, Phys. Rev. B 38, 3834.
Phillips, J. C., 1961, Phys. Rev. 123, 420.
Pick, R. M., Cohen, M. H., and Martin, R. M., 1970, Phys. Rev. B 1, 910.
Pickett, W. E., and Wang, C. S., 1984, Phys. Rev. B 30, 4719.
Pines, D., and Bohm, D., 1952, Phys. Rev. 85, 338.
Pines, D., and Nozieres, P., 1966, The Theory of Quantum Liquids, Normal Fermi

Liquids, Volume I(Addison-Wesley, Redwood City — Reprinted 1989).
Platzman, P. M., and Wolff, P. A., 1973, in Solid State Physics Supplement 13,

(Academic, New York).
Pratt, G. W., 1960, Phys. Rev. 118, 462.
Press, W. H.,Teukolsky, S. A., Vettering, W. T., and Flannery,B. P., 1996, [reprinted

with correction], Numerical Recipes in Fortran 77: The Art of Scientific Comput¬
ing (Cambridge University Press, Cambridge).

Pryce, M. H. L., and Stevens, K. W. H., 1951, Proc. Phys. Soc. (London), A 63, 36.
Quinn, J. J., and Ferrell, R. A., 1958, Phys. Rev. 112, 812.
Rath, J., and Freeman, A. J., 1975, Phys. Rev. B 11, 2109.
Reichl, L. E., 1980, A Modern Course in Statistical Physics (Edward Arnold).
Rice, T. M., 1965, Annals of Physics: 31, 100.
Rickayzen, G., 1980, Green's Functions and Condensed Matter (Academic, London).
Rohffing, M., Kriiger, P., and PoUmann, J., 1993, Phys. Rev. B 48, 17791.





Ground and Excited States 

~ n c ~ ~ o ~  

63, 

View publication statsView publication stats


