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Chapter 3

Ground and Low-Lying Excited States of
Interacting Electron Systems; A Survey
and Some Critical Analyses*

BEHNAM FARID

Maz-Planck-Institut fir Festkérperforschung, Heisenbergstrafle 1,
70569 Stuttgart, Federal Republic of Germany

Abstract

In this contribution we deal with a number of theoretical aspects concerning
physics of systems of interactiug electrons. Our discussions, although amenable
to appropriate generalisations, are subject to some limitations. To name,
we deal with systems of spin-less fermions — or those of spin-compensated
fermions with spin —, with nondegenerate ground states, and those in which
relativistic effects are negligible; we disregard ionic motions and deal with “nor-
mal” (not superconducting, for instance) systems that are in addition free from
randomly distributed impurities. We restrict our considerations to the absolute
zero of temperature. The Green and response functions feature in our theoreti-
cal considerations. Here we give especial attention to the analytic properties of
these functions for complex values of energy. We discuss how, both fundamen-
tally and from the practical viewpoint, ground and low-lying excited-states
properties can be obtained from these correlation functions. Characterising
low-lying excited states by means of elementary excitations, we deal with both
those that are particle-like (the Landau quasi-particles) and those that are

*Dedicated to the memories of Dr Caroline P. Bammel, née Hammond, Fellow and Lecturer
in Classics of Girton College and Reader in Early Church History of the University of Cam-
bridge, United Kingdom, and Dr Dr Ernst Bammel, Reader Emeritus in Early Christian and
Jewish Studies of the University of Cambridge and Professor of Theology of the University
of Miinster, Federal Republic of Germany.
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collective (plasmons, excitation in the total distribution of electrons). We
devote some space to discussions concerning the domain of validity and break-
down of the many-body perturbatiou theory, specifically that for the single-
particle Green function and the self-energy operator. Extensive analysis of the
asymptotic behaviour of dynamic correlation functions in the limits of small
and large energies reveal the significance of the Kohn-Sham-like Hamiltonians
within the context of the many-body perturbation theory. In view of this, at
places we pay especial attention to a number of the existing density-functional
theories (including the ones for the single-particle reduced density matrix and
time-dependent external potentials). We discuss in some detail a number of
issues that are specific to the (phenomenological) Landau Fermi-liquid theory
and their justification within the framework of the many-body perturbation
theory. In doing so we touch upon a number of characteristic features specific
to Fermi-liquid (as oppsed to marginal Fermi- and Luttinger-liquid) systems.
Finally, we put one particular approximation scheme for the self-energy oper-
ator, known as the the GW scheme, under magnifying glass and observe it in
many of its facets.

1. Introduction

The two-body Coulomb interaction amongst electrons can never justifiably be
neglected in any theoretical consideration. It can however happen that its main
effects may be subsumed in some one-body effcctive potential. Whether such
effective theories can be constructed, and if so, how the residual interaction
can be accounted for, are questions that are addressed within the framework
of the many-body theory.

The need for an effective description of interacting systems arises for two
reasons, of which one is perceptual and the other practical. The former is
related to the way in which we are able to conceive of things.! Perceptually,
one may be able to conceive of the correlated state of a two-particle system,
however beyond this one does not seem to have the ability to forming concrete
ideas concerning the statc and of what it possibly can represent. On the
practical side, the larger the number of the particles, the greater the effort
that has to be spent in order to calculate a correlated state and extract from

L «Thinking in terms of one / Is easily done — / One room, one bed, one chair, / One person
there, / Makes perfect sense; one set / Of wishes can be met, / One coffin filled. // But
counting up to two / Is harder to do; / For one must be denied / Before it’s tried.” [Philip
Larkin, Counting, September? 1955
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it information concerning properties of the system. Whence the popularity of
such effective one-body theories as the Hartree and Hartree—Fock and a wealth
of other alternative methods. But from where do these methods derive their
formal justification? We shall, amongst other things, address this question in
the present work.

Before entering into details, we should clarify what we exactly mean by
“properties” of a system. A “property” can be the expectation value of a cer-
tain operator with respect to some eigenstate of the Hamiltonian of the system
under consideration, or it can be an average of such expectation values over
some ensemble of eigenstates of the mentioned Hamiltonian, such as a thermal
ensemble. For keeping our discussions transparent, in this work we shall be
dealing with non-degenerate ground states (GSs) and properties correspond-
ing to these (there are many realistic many-electron systems that possess such
GSs). It turns out that knowledge concerning GSs of such systems is sufficient
for deducing not only the GS properties, but also those of the excited states.
Our knowledge concerning the excited states will not be complete, however:
we will not be able in principle to relate a calculated excited-state property to
any definite excited eigenstate.

Green functions (GFs) are mathematical constructs that formally come
close to meet both of the demands indicated above. An n-particle GF (think
of n =~ 1) pertaining to an N-particle system (possibly N =~ 10?%) may be
considered as an effective wave function of this system in that as far as certain
properties of the system are concerned, it yields exactly the same results as the
exact wave function, however contrary to the wave function it cannot directly
inform us about certain other properties. This is often an advantage, for
from the experimental point of view there are always a very limited number
of properties that are or can be probed and all the additional information
about the system may at all not be conductive to a better understanding of
the processes underlying the observed phenomena. In the present work we
will mainly be interested in the single-particle Green function G (Sec. 4) as
well as some reduced forms of the two-particle GF, such as the density-density
correlation function x and the polarisation function P (Sec. 8).

Consider the single-particle GF which is the expectation value of a time-
ordered product of two field operators with respect to the N-electron ground
state of the system (Sec. 4). It is well-known that poles? of this function along

2Until we have specified different types of singularities in Sec. 2.1, we shall follow the common
practice and for all types of singularities employ the designation “pole”.
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the energy axis coincide with the energies of thc (N + 1)-electron states of the
system as measured from the energy of the N-electron GS, i.e., the one-particle
excitation energies. In general, for extended systems comprised of large num-
bers of electrons, excited states are highly (nearly) degenerate: from simple
dimensional considerations it follows that for a system of linear dimension L,
the separations between the energy levels scale like L=2 (Landau and Lifshitz
1980a, p. 14). As a consequence of this massive exact or almost exact degen-
eracy of the excited states of the many-electron systems, it follows that for
systems in the thermodynamic limit the description of the excitation spectra,
such as the one contained in the spectral function corresponding to the single-
particle GF (Subsecs. 4.4 and 6.1}, in terms of isolated exact excitations is
no longer meaningful, for the reason that individual excitation energies can-
not be experimentally resolved. In fact from the mathematical point of view,
the procedure of taking the thermodynamic limit leads to the “smearing” of
poles into branch cuts (see Sec. 2). In practice, in particular in interpreting
experimental observations, it is common to identify the sharp and prominent
features in the spectra with excitation energies of new types of particles, quasi
particles (QPs), such as (Abrikosov, Gorkov and Dzyaloshinski 1963, Pines
and Nozieéres 1966, Ashcroft and Mermin 1981, Landau and Lifshitz 1980b,
Kittel 1986): “excitons”, “magnons”, “plasmons”, “polarons”, “polaritons”,
“quasi electrons”, “quasi holes”, “rotons”, etc. (see Secs. 6.1, 6.3 and 8.7).
The width of one such sharp peak in a spectrum will then be associated with
the degree of de-coherence, or lifetime, of the corresponding excitation. The
broadness of a peak can be accounted for by assigning an imaginary part to
the corresponding excitation energy.

The complez “poles” of correlation functions (see Secs. 2, 6 and 8) that are
associated with the excitation energies of a system in the thermodynamic limit,
are not necessarily approximate devices introduced for the sake of convenience
in reproducing the broad spectra. This is clarified by the following observation:
In taking the thermodynamic limit, correlation functions become in general ill
defined if the external energy parameter € in the respective expressions is kept
to be real-valued. On the other hand, no problem can arise when the ther-
modynamic limit is taken while the energy parameter is made into a complex
variable, z (Subsec. 2.2). This process is not reversible in that npon approach-
ing the real energy axis from the complex plane, subsequent to having taken
the thermodynamic limit, correlation functions are seen not to have main-
tained their poles of the pre-thermodynamic-limit stage. Rather, these poles
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are turned into branch cuts or branch points (Sec. 2). Analytic continuation
through these cuts reveals that the experimentally observed peaks correspond
to poles of the pertinent analytically-continued functions (Subsec. 6.1); it is
then said that these complex poles are located on a non-physical Riemann
sheet (RS), (Subsec. 2.2). These poles, with non-vanishing imaginary parts,
cannot lie on the physical RS (Subsec. 2.2): owing to a reflection property
with respect to the real energy axis, occurrence of poles on the physical RS
(excluding hereby the real energy axis itself) implies violation of the principle
of causality.

For low excitation energies, and in particular for systems that are classi-
fied as Fermi-liquid® systems (Sec 6.3), Landau QPs (Landau 1957a — see:
Abrikosov and Khalatnikov 1959, Abrikosov, Gorkov, and Dzyaloshinski 1963,
Nozigres 1964, Pines and Noziéres 1966, Platzman and Wolff 1973, Baym and
Pethick 1978, Landau and Lifshitz 1980b, Rickayzen 1980, Negele and Orland
1988, Fulde 1995) turn out to be well defined: for a homogeneous degenerate
Fermi liquid and small external energies £ — as measured with respect to the
Fermi energy £p —, the imaginary part of the self-energy (SE) operator X(g)
behaves like ~' (¢ — er)?, implying that for sufficiently small |¢ — £}, Landau
QPs are fairly long-lived excitations. Such property gives rise to some universal
behaviour in the thermodynamic properties of the corresponding systems at
low temperatures (Luttinger 1960). For instance the behaviour yT'+ 6T In(T"),
with « and & constants, is particular to the specific heat at low temperatures
(T) of Fermi liquids (Amit, Kane and Wagner 1967, 1968). The low-energy
behaviours of SEs of systems classified as marginel Fermi liquids (Varma, Lit-
tlewood, Schmitt-Rink, Abrahams and Ruckenstein 1989}, or Luttinger liquids
(Footnote 5 in Luttinger 1961, Luttinger 1963, Mattis and Lieb 1965, Haldane
1981; see Voit (1994)) differ from that just presented.?

Our above description of Fermi-liquid systems suggests that these must
have gap-less excitations. In this sense semiconductors and insulators can-
not be classified as Fermi-liquid systems (see however further on). Examples
of normal Fermi liquids are (Pines and Nozieres 1966): 3He above 4 mK,

3Here “liquid” is the short for “quantum liquid”, to be distinguished from a “classical liquid”.
The distinction between the two stems from the fact that in quantum liquids the degeneracy
of the constituent particles (that, in the present case, their equilibrium distribution is a
Fermi-Dirac distribution) plays a significant role. For both types of liquids, however, the
interparticle interaction is of crucial import (and in this “liquids” are distinct from “gases”).
4From the present point of view, even ImE(e — ep) ~' (e ~ep)?, ¢ > 1, or ~ (e —
er)? Inle - ep|, o > 1, signify Fermi liquids (Farid 1999a).
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conduction electrons in metals, semi-metals and heavily-doped semiconduc-
tors (Ashcroft and Mermin 1981, Kittel 1986). The Fermi-liquid theory in its
original form (Landau 1957a, 1957b, 1959) had concerned homogeneous sys-
tems, however its underlying concepts admit generalisation to inhomogeneous
systems (Luttinger 1960). Thus the routinely-calculated electronic band-
structures in solids are nothing but energies that in some approximate frame-
work are associated with the QP energies. The one-particle-like equations
employed in these calculations are often® simplified forms of a Schrodinger-
type equation for QPs (Sec. 6). The simplifications amount to replacing the
energy-dependent non-Hermitian SE operator by a static Hermitian operator
that in an effective way is supposed to take account of the interaction effects.
In such static effective theories, QPs behave like non-interacting electrons (e.g.,
they have infinite lifetimes) with renormalised or effective parameters (such as
an effective mass). Thus systems of particles of effective theories (such as the
Hartree and Hartree—Fock theories — in general, “mean-field” theories) are by
construction Fermi liquids (excluding anomalies), provided of course that they
possess a Fermi surface which may be possibly multi-sheeted (Sec. 6). Hence
systems that are known to have non-Fermi-liquid-like behaviour are beyond
the reach of static effective theories (or, “band theories”).

In this work we present a self-contained framework within which the single-
particle Green function G of an interacting system can be determined (see
Sec. 4). This function can be used to calculate a non-negligible number of
properties corresponding to the GS of this system; these include all properties
whose corresponding operators involve one-body terms, which may be local
or non-local (Fetter and Walecka 1971, pp. 66 and 67). The expression for
the GS total energy due to Galitskii and Migdal (1958) shows that even this
quantity, which involves the two-body electron-electron interaction, can be fully
expressed in terms of the single-particle GF (Subsec. 9.7). To calcnlate G it is
necessary that we deal with a numbher of other correlation functions which, due
to their physical significance, have been given specific names. These inclnde
the density-density correlation function y, the polarisation function P, the
dielectric function ¢, the pair-correlation function g, the SE operator ¥ and
the vertex function I'. In this work in addition to G we eonsider x, P, g and
2. in some detail.

SFor very fundamental reasons, the one-particle Kohn-Sham (1965) (KS) equation does not
belong to the category of approximate QP equations.
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From a formal spectral representation for G(¢), where ¢ denotes the external
energy parameter which through the Fourier transform is reciprocal to the
time parameter ¢, known as the Lehmann (1954) representation (Fetter and
Walecka 1971), it becomes evident that the information concerning the one-
particle excitation spectrum® of the interacting system is contained in G(¢).
However, for systems in the thermodynamic limit — which are systems of our
main interest in the present work —, determination of G(g) must of necessity
(see above) be based on that of G(z), with z a complex-valued energy variable,
from which G(¢) is obtained according to G(g) = limy)o G(e + in), for € >
4 and € < u; here u stands for the “chemical potential” (see Subsec. 4.2).
We refer to é(z) as the analytic continuation of G(e} into the physical RS
of the complex z-plane (Subsec. 2.2). The many-valuedness of G(z) implies
that there are other branches corresponding to G{¢) which through analytic
continuation of G(¢) or G(z) across the branch cuts (Sec. 2) can be constructed;

we denote all these other functions collectively by G(z) and refer to them as
analytic continuations of G(g) or G(z) into non-physical RSs. We consider the
analytic properties of 5’(:4) in the complex z-plane and present a so-called bi-
orthonormal representation (Morse and Feshbach 1953, pp. 883-886, Layzer
1963) for it which is in terms of the left and right eigenvectors of a non-
Hermitian operator ’f{qp(z). We demonstrate this to be the “Hamiltonian” for
the “Landau quasi-particles” (a “one-body” picture!}. This “Hamiltonian” is
general and its meaningfulness is independent of whether the system to which
it corresponds is a Landau Fermi liquid or not.

The energy-dependent non-Hermitian term in ﬁqp(z) is the SE operator
f)(z) which is the analytic continuation into the physical RS of the physical SE
operator ¥(g); the correspondence between %(z) and I(e) is exactly the same
as that between 5’(2) and G(e) presented above. In Sec. 5 we give a detailed
discussion of the analytic properties of £(z).

In Sec. 6 we consider solutions of the one-particle Schrodinger-like equation
corresponding to the above-mentioned QP “Hamiltonian” #Hy,(z). On the
basis of some analytic property of ﬁ(z), we arrive at the conclusion that this
Schrodinger-like equation either has solutions corresponding to QPs with real-
valued energies or it has no solution. For obtaining solutions corresponding
to QPs with complex-valued energies, the SE operator in the Schrodinger-
like equation has to be replaced by an analytic continuation of X(¢) into a

6For the precise definition see Subsec. 4.1.
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non-physical RS. This has significance for determining the complex-valued QP
energies and their spectral “weights”, which are in conseguence also complex-
valued. We discuss these issues in Sec. 6.1 under the heading “the quasi-particle
approximation.” To make contact with physics of real materials, we apply the
results thus-far obtained to a system about which a great deal is known, namely
the uniform-electron system. Thus we revisit some well-known theorems due
to Migdal (1957) (Luttinger 1960} and Luttinger {1961) (Luttinger and Ward
1960), making appropriate distinction between the different branches of the
functions that we encounter in the course of our analyses. Here we critically
analyse a theorem due to Luttinger (1961) which has played an important
role in characterising Fermi-liquid systems. We show that due to in particular
one tacit assumption by Luttinger (1961), it is not necessary that non-Fermi-
liquid behaviour in the low-temperature properties of a system should signal
breakdown of the many-body perturbation theory (PT) for this system.

In Sec. 7 we briefly deal with various methods of determination of G and
3. We give especial attention to the many-body PT. We present various
ways in which a many-body perturbation expansion for G can break down
{(Subsecs. 7.4 and 7.4.1) and present a sufficient condition for the validity
of the zero-temperature many-body PT. It turns out that provided the GS
electronic density of the interacting system under consideration be pure-state
non-interacting v-representable,” the zero-temperature many-body perturba-
tion expansion in terms of the pertinent Kohn-Sham (1965) (KS) Hamiltonian
does not break down (Farid 1997a, 1999b).8

In Subsec. 7.4.2 we present an argument, first advanced by Dyson (1952),
which has shed much unfavourable light on the PT ever since its publication.
In Subsec. 7.4.3, making use of some arguments and examples put forward by
Simon (1970), we attempt to remove some of the misconceptions with regard
to the domain of applicability of the many-body PT.

7 Briefly, non-interacting v-representability of the GS charge density n signifies that it can be
reproduced as the G8 charge density of a “non-interacting” Hamiltonian, the Kohn-Sham
(1965} (KS) Hamiltonian; “pure-state” refers to the requirement that the GS of the KS
Hamiltonian in question be a single Slater determinant. All physical densities are so-called
ensemble v-representable. For a comprehensive review see (Dreizler and Gross 1980).

8We have to emphasise that by this we do not mean that a finite-order perturbation ex-
pansion in terms of the pertinent K8 Hamiltonian should be sufficient for all purposes.
“Breakdown” here refers to the condition in which predictions of the theory are not in ac-
cord with the actual facts after summation over all the terms in the perturbation series. In
this light, a PT that predicts an actually insulating state to be metallic, has been subject to
a breakdown.
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In view of the importance of the dynamic screening effects in interacting
systems, and in view of the important role that these play in the determina-
tion of G and X, in Sec. 8 we present the pertinent response functions, such as
x and P. Here we present a bi-orthonormal representation for x(z) in terms
of the left and right eigenfunctions of a non-Hermitian operator. Our treat-
ment here runs parallel to that for 5’(3) in Sec. 4. Here we derive an equation
which is reminiscent of the QP equation in Sec. 6, whose solutions we show
to be associated with the plasmon excitations in interacting systems. Again
it turns out that this equation can only yield real-valued plasmon energies
(which may not exist) and that for obtaining complex-valued plasmon ener-
gies it is required that x(e) be analytically continued into a non-physical RS.
In this Section, through analysing the behaviour of x(¢) and the related func-
tions (such as P(¢)) at small and large values of |¢|, we expose the crucial role
that the ground-state charge density plays in determining dynamic screening
properties of interacting systems. This indirectly shows the merits of the KS
Hamiltonian in applications of the many-body PT (see above and Sec. 7): It
turns out that at the zeroth order of the PT, the response functions in the limit
of large |¢|, yield the same results as is expected from the exact response func-
tions. We further emphasise the close relationships between the e-moments
integrals of the branch-cut discontinuity (the “imaginary part”) of the exact
x(€) and such properties as the GS charge density and the electronic pair-
correlation function. Here we consider the density-functional theory (DFT)
for GSs (Hohenberg and Kohn 1964) and that for time-dependent external po-
tentials (Runge and Gross 1984). We draw attention to the fact that within
these frameworks the effect of the electron-electron interaction can rigorously
be taken into account in describing such correlation functions as x(¢ = 0) and
x(e # 0). We indicate some fundamental restriction within the framework of
the time-dependent DFT that stands in the way of incorporating interaction
effects in x(e) for arbitrary €. Further, we expose the links between the mo-
ments expansion of x(¢) (as a typical example from a large class of correlation
functions) and the continued-fraction expansion of the branch-cut disconti-
nuity of ¥(z2). Truncated continued-fraction expansions have an interesting
property in view of their association with the method of Gaussian quadrature
for integration (Stoer aud Bulirsch 1980, pp. 142-151). This association is
of utmost importance in connection with the e-integrations that occur in the
expressions that lead to correlation functions. We also present a plasmon-pole
model for ¥(z). This model (Engel and Farid 1993) serves to illustrate a variety
of concepts that we have encountered in the earlier Sections.
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In recent years an approximation for the SE operator, referred to as the GW
approximation (Hedin 1965), has attracted considerable amount of interest. In
Sec. 9 we deal with this approximation. The general aspects concerning the
exact SE operator, discussed in earlier Sections {Secs. §, 7), are made explicit
in Sec. 9. An aspect which we have not considered in full detasl in Secs. 5, 7
{(due to technical complications), concerns the large-|¢] behaviour of L(¢). In
Sec. 9 we take up the task of explicitly calculating the first three terms in the
asymptotic expansion of W (¢) for large |g|. Both these and the first two
energy moments of £¢%"(g) — the branch-cut discontinuity of ficw(z) R
make explicit, for yet another time, how prominent the role played by the GS
electron density n(r) and the GS single-particle reduced density matrix p(r, r’)
is in the many-body theory. It turns out that as far as the mentioned terms
in the asymptotic expansion of 6% () and the energy moments of ¢V (¢)
are concerned, 6% (¢) is almost identical to £°%° evaluated in terms of the
Go and Wy pertaining to a non-interacting Hamiltonian Hg whose correspond-
ing ne(r) and po{r,r’') [the Dirac-Fock reduced density matrix] are identical
to n(r) and p(r,r'}, the latter pair pertaining to the fully interacting system.
This makes us to turn our attention again to the DFT. It is seen that such
a “non-interacting” Haniiltonian is an integral part of a DFT first considered
by Gilbert (1975). Further, we present a list of references that covers research
activities involving ZW over a relatively long period of time — regrettably,
due to limitation of space we restrict ourselves to works that in the main con-
cern three-dimensional solids. Finally, given the fact that W is merely an
approximation to X, we briefly consider the question as to the extent to which
$GW can account for the electron-electron interaction effects. We are of the
opinion that the overwhelming success of the GW approximation (GWA) in
yielding accurate results for the low-lying single-particle ezcitation energies of
semiconductors and insulators may be for a non-negligible part due to a can-
cellation of errors: that the inaccuracies due to Gg and Wy (almost invariably
correspouding to the KS Hamiltonian in terms of the local-density approxima-
tion (LDA) for the exchange-correlation potential [Kohn and Sham 1965)) and
those due to the GWA itself, largely cancel (Farid 1997a). We indicate the
desirability of future detailed and systematic studies on the subject.

In Sec. 10 we summarise our work and present some conclusions. Of the two
Appendices that follow Sec. 10, Appendix A concerns the (notational) conven-
tions with regard to the representations that we employ in the present work,
while Appendix B serves to emphasise the relationship between the asymptotic
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behaviour of a function of £ at large |¢| on the one hand, and the behaviour of
the inverse-Fourier transform of this function in the limit of small |¢| (¢ denotes
the timne) on the other. Following the Appendices, we have included two lists,
one of mathemnatical symbols and the other of abbreviations and acronyms of
the frequently-used words in the present work.

As ig evident from this introduction, in our work we rely quite substantially
on a variety of mathematical concepts. To mnake our text self-contained, we
devote Sec. 2 to a brief exposition of these (Farid 1999a). In choosing the illus-
trative exainples in this Section, we have endeavoured that these involve such
elements as those which we encounter in the subsequent Sections of the present
work. In Subsec. 2.4 we present the physical motivation for the concepts that
we introduce in Subsecs. 2.1, 2.2 and 2.3.

2. Mathematical Preliminaries

In this work we frequently encounter a nuinber of mathematical notions. This
Section serves to make our text self-contained.

2.1. Types of singularity

A point at which a function of complex variable z, say g(z), is not analytic
(analytic, regular and holomorphic are interchangeable) is called a singular
point of g(z). Such singular point, say 2, can be (Whittaker and Watson
1927, pp. 102 and 104; Titchinarsh 1939, pp. 89-95; Knopp 1945, pp. 117-139;
Spiegel 1974, pp. 67, 68, 144 and 145) either isolated or non-isolated; zp is
isolated if there exits a § > 0 such that within the circle |z — 29| = 4, 29 is the
only singular point of g(z). Otherwise zp is non-isolated.

Singularity of g(2) at the point of infinity corresponds to that of g(1/¢) at
¢ = 0. A function which is analytic everywhere with the exception of the point
of infinity, is referred to as entire or integral (thus exp(z) is entire).

A singularity can be removable; such singularity corresponds to a point z
at which g(z) is not defined, but lim,_, ,, g(z) exists. Thus z = 0 is a remnovable
singularity of g(z) := sin(z)/z.

Non-tsolated singularities, such as limiting or accumulation points of a
sequence of poles, are not classified as poles and thus are considered as essential
singularities. For instance the sequence of poles of g(z) = 5 o 1/(nl{l +
a®"2%]), with @ > 1, have z = 0 as their limiting point: z = 0 is a non-isolated,
and thus an essential, singularity of g(z); this function has no Laurent (or
Taylor) series expansion through any region which has z = 0 as its interior.
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Let g(z) be single-valued throughout a region D which contains the point zg
at which g(z) is singular. Suppose the principal part of the Laurent expansion
of g(z) around z = 2 terminates with the term a_,/(z — 20)™. In such case,
zo is called a pole of order n of g{2). Poles are thus by definition isolated
singularities. Functions whose singular points consist in a finite set of poles
are called meromorphic.

If the principal part of the Laurent expansion of g(z) around 2z = z does not
terminate (i.e., if nin a_, /(2 — 20)" goes to infinity), 2o is an isolated essential
singularity of g(z). A theorem due to Casorati, Weierstrass and Picard (Knopp
1945, p. 128) establishes that for any two positive numbers é; and 62, and any
complex number C, there exists a z inside the circle |z — 2| = 81, with 25 an
isolated essential singularity of g(z), for which holds |g{z) — C| < §2. That is,
by approaching zq in different ways, g(z) can take on any arbitrary value. As
an example, consider g(z) := exp(z) which has an isolated essential singularity
at the point of infinity. One can easily verify that by an appropriate choice for
r and 8 in rexp(if) =: {, g(1/() indeed attains any arbitrary value as r — 0.

According to a theorem due to Cauchy, but commonly referred to as the
Liouville theorem (Whittaker and Watson, 1927, p. 105), a function that is
analytic everywhere, including the point of infinity, must be a constant; when
one allows unbounded functions in the class of analytic functions, a generalised
version of the “Liouville theorem” establishes that only finite-order polynomi-
als can be analytic everywhere. Thus all entire functions, with the exception
of finite-order polynomials, have essential singularities at the point of infinity.

Branch points belong to the class of singular points and concern multi-
valued functions. Suppose g{z} is one such function. By traversing a closed
contour which circumscribes only one branch point of g(z), one obtains a value
different from the initial value upon arriving at the starting point, indicating
that the initial branch of g(z) is interchanged by a different branch; for a
branch point zy of order p, the original branch is recovered after completion of
p full rotations along the mentioned contour. Thus (z— 2p)'/? has a third-order
branch point at z = z5. Functions can possess branch points of infinite order;
for In(z), 2 = 0 is one such point.

2.2. Many-valued functions: Physical and non-physical
Riemann sheets

An n-valued function of complex variable z (Whittaker and Watson 1927,
pp. 96-98; Titchmarsh 1939, pp. 138-164, Knopp 1947, pp. 93-118) over
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domain D may be thought of as consisting of n branches of single-valued func-
tions ﬁ:(z), i=1,2,...,n, over D. Alternatively, this n-valued function can be
considered as a single-valued function over the extended domain consisting of
a union of n replicas of D; since these domains signify the same region on the
complex plane, they are distinguished as being on different sheets, Riemann
sheets (RS), of the complex plane. We denote by F(z) the union of all ﬂ(z)’s
over the larger domain of n RSs. Riemann sheets corresponding to F{(z) are
connected together along the branch cuts of F(z). We denote that branch of
F(z) which has direct physical significance (see further on) by f(z). Conse-
quently, we refer to f(z} as “F(z) on the physical RS§”, and to other branches
as “F(z) on the non-physical RSs”. In the text of the present work we denote

all the latter branches by f(z).
Let ¢ be real-valued. Let there be the function f(e) defined over A =
(e1,€2) such that

f(z)éf(e) as z €. (1)

Suppose that f(z) approaches f(g) uniformly® when z — ¢, i.e. that for a
given §; > O there exists a §3 > 0, independent of ¢ inside A, such that for
ly| < 8 (with y real-valued), |f(c + iy)) — f(¢)| < 81. In such an event f(2)
is called the analytic continuation of f(€) into the complex z-plane; a function
like f(e} to which an analytic function fi (z) in the above sense corresponds, is
referred to as being “analytically continuable” into the complex z-plane.1® It
is important that in the case the interval A is part of a branch cut of f(z),
the process of analytic continuation of f(z} from, say, the upper half-plane
can be extended, through the real interval A, into the lower half-plane. The
thus-obtained function coincides with a branch of F(z) which is different from
f(z). Thus if f(z) were the physical branch, the new branch would be a non-
physical branch. One could equivalently state that in moving z from the upper
half-plane through the branch cut into the lower half-plane, we have moved
from the physical RS into a non-physical one. See Fig. 1.

9The conditlon of uniformity can be shown, a posteriori, to be redundant: the existence
of the limit in Eq. (1), with f(e)} continuous over A, implies uniformity of the limit (see*
Streater and Wightman 1964, p. 75).

183ome analytic functions, referred to as lecunary functions, cannot be analytically con-
tinued from inside to outside of their domain of definition (Whittaker and Watson 1927,

p. 98).
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f(e){

(a)

Fig. 1. The peak of function f(¢) along the real energy axis (a) may be thought of as corre-
sponding to a complez pole of the analytic continuation of f(e) into the physical Riemann
sheet (RS) of the complex z-plane, f(z). On the physical RS of the z-plane (b) there is no
pole to be found, only a branch cut (the shaded section of the e-axis). In (c), part of the
physical RS is “removed” (indicated by the grey area which is part of the non-physical RS
which is directly accessible from the upper-half of the physical RS). The peak of f(¢) is seen
to correspond to a pole of F(z) (indicated by the bold dot) on the non-physical RS. For the
mathematical details see Subsec. 2.2.

An example should clarify the above notions. Consider f(g) := In(e),
with € > 0. It can be shown that In(z) =: f(z) is the analytic continua-
tion of f(¢) from the positive real axis (= A) into the z-plane.}' Now if f(g)
denoted some physical quantity (say, the frequency-dependent optical con-
ductivity as measured experimentally), f(z), defined above, would coincide
with the physical branch of F(z), i.e. it were F(z) on the physical RS. Let
Ln,(z) := In|z| + i{arg(z) + 2an} with —7 < arg(z) < 7. The function F(z)
in the present case coincides with the union of Ln,,(2) for all n (i.e., n negative,
zero and positive), and f(z) = Ln,=o(2). If we were given F(z) and asked to
find the physical branch, i.e. f(z), we needed to find that Ln,(z) which yielded
f(¢) when z — € > 0 (see Eq. (1) above). This procedure of selecting the phys-
ical branch out of many (possibly, infinitely many) branches of a many-valued
function is not subject to arbitrariness. This is owing to a uniqueness theorem

111t is somewhat unfortunate that customarily all standard functions, such as In, sin, cos,
etc., whether their arguments be real or complex, are denoted by the same symbol,
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(Titchmarsh 1939, p. 139): two analytic functions that are defined on the same
region of the complex plane (in the present case, the entire complex plane, with
the exception of the origin}, and are equal on a line (here, the positive real
axis), or over a set of points that has a point of accumulation, are identical. In
the present case, for instance, this theorem implies that there exists only one
n (which we know to be n = 0) for which lim,.>0 Ln,(2) = f(¢) can hold.

If we choose z in the argument of f(z) to satisfy Re(z) < 0, while let Im(2)
change from some positive (negative) value to some negative (positive) value,
we will achieve that f(z) is analytically continued into Lnp=1(2) (Lop=-1(2)).
For Im(z) |. 0 we have lim, _;5{]?(2:) —f(z"}/ (27) = 0, 7, depending on whether
Re(z) > 0 or Re(z) < 0. The non-vanishing value for the case Re(z) < 0 is the
consequence of the branch cut of f(z) along the negative real axis; this branch
cut connects the two branch points of In(2), one at 2 = 0 and the other at
1/z=0.

2.3. Series and asymptotic series

If g(z) is analytic at z = zp, then, owing to the fact that notion of analyticity
is defined by means of a pair of differential equations {(Riemann-Cauchy’s),
there is an open region D which has 2 as its interior and in which f(z) is
analytic. Within a circle centred around z and embedded inside D, g(z)
can be represented in terms of a Taylor series (Whittaker and Watson 1927,
pp. 93 and 94, Titchmarsh 1939, pp. 83 and 84): g(z) = 320 san(z — z0)",
with a, = (1/nDd"g(2}/d2"|;~,,- The coefficients a, are unique. We have
explicitly presented this series for bringing out the fact that for g(z), and
thus all functions that like g(z) are analytic at z = z, there exists a finite
region around zo where {(z — zp)" |[n = 0,1,...} forms a complete set of basis
functions. For functions that possess an isolated singularity at z = zp, this set
is not complete, but can be made into one by allowing n to take on negative,
in addition to zero and positive, integer values. The series in terms of this
extended set of basis functions is the well-known Laurent series (Whittaker
and Watson 1927, p. 100, Titchmarsh 1939, pp. 89-91); the series involving
the negative values of n is referred to as the principal part of the Laurent
expansion.

For g(z) which has a non-isolated singularity at z = 2z, no Laurent expan-
sion can be constructed centred around z = zg for a region that contains zy
as interior. However, by excluding the circular region around 2o that contains
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all singularities of g(z) of which zp is the limiting point, it is possible to con-
struct a Laurent expansion around 2p which is valid for some non-vanishing
region. As an example consider g(z) := ¥ oo o 1/(n![1 + a®™2%]), with a > 1.
In Subsec. 2.1 we have mentioned that z = 0 is a non-isolated singularity of
g(z). For |z| > 1, g(z) has the following Laurent series expansion (Whittaker
and Watson, 1927, p. 105): g(z) = Y oo (~1)** ! exp(1/a?)/ 2",

A specific feature of Taylor and Laurent expansions is their uniformity:
once their validity has been established for 2z = r exp(i8), corresponding to a
fized value of 9, it follows that they are valid for all 8 € [0,27).

Branch points belong to the set of possible singular points of g(z). However,
with zp a branch point of g(z), g(z) does not allow for a uniform representa-
tion, such as a Laurent expansion, in a neighbourhood of 2g. To use our above
terminology, the set {(z — z0)* |...,—-2,~1,0,1,2,...} does not form a com-
plete basis for representing functions, in a neighbourhood of zp, that possess
a branch point at zp. Nonetheless, this set has a significance in the context of
asymptotic expansion of g(z) for z — zp. We note that if two branch points
of g(z) that are connected by a branch cut can be circumscribed by a circle of
finite radius, then g(2) can be represented by a Laurent series valid for some
region exterior to this circle. If, on the other hand, one of these branch points
is the point of infinity, it is no longer possible to construct a uniform series
expansion around any point on the branch cut. Thus, for instance, it is not
possible to obtain for In(z) a uniform series expansion around z = 0, or some
point along the negative real axis.

Asymptotic expansions (Whittaker and Watson 1927, Ch. VIII, Copson
1965, Lauwerier 1977, Dingle 1973) are with respect to some so-called asymp-
totic sequencc. An asymptotic sequence, e.g. {#n(z)ln = 0,1,...}, has the
property that in the asymptotic region, specified through 2 — 2y, has the
property that ¢n+1(2)/én(z) — 0; this is denoted by ¢,+1(2) = o(dn(2)).
Thus {(z — z)™ |[n = 0,1,...} represents an asymptotic sequence for z — zp.
A theorem from the theory of asymptotic analysis states that (Copson 1965,
pp. 5 and 6, Lauwerier 1977, p. 13) if a given function, say g¢(z), has an
asymptotic expansion [in Poincaré's sense — the sense according to which
all our asymptotic expansions in subsequent sections are carried out] of order
M with respect to some given asymptotic sequence, say {¢n(2)}, meaning that
g(z) = ZnM;o anPn(2) + o(@dr(2)), then the coeflicients {anjn = 0,1,..., M}
of the asymptotic expansion are unigue. For M = oo this series does not
need to be convergent (even for z — 2), however; in fact in some texts
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(e.g., Whittaker and Watson 1927) the designation “asymptotic series” is re-
served for those series which are both asymptotic (in the sense of being in
terms of an asymptotic sequence) and divergent. Nor is it necessary that
a function has a uniform asymptotic series. Functions with non-uniform
asymptotic series for 2 — zp, are those which possess different asymptotic
series for different sectors of the z-plane around zp. Consider, for instance,
9(z) := exp(z) + exp(—z) tanh(1/z) which has the following asymptotic series
for z = 0: g(2) ~ 2cosh(z) ~ 2+ 22+ - -, for Re(z) > 0, and g(z) ~ 2sinh(2)
~ 2z +23/3 +..., for Re(z) < 0 {Lauwerier 1977, p. 11). This, that in differ-
ent sectors around a point in the complex plane a function can have different
asymptotic expansions with respect to the same asymptotic sequence, is re-
ferred to as the Stokes phenomenon {Watson 1052, Berry 1966, 1989, 1990,
1991a,b, Dingle 1973, Boyd 1990, McLeod 1992).

The Taylor series of analytic functions based on point 2y are convergent
asymptotic expansions for 2 — z5. It can be shown that even to divergent
asymptotic series corresponding to the asymptotic sequence {(z — 2)"|n =
0,1,...} an analytic function can be associated of which the given (divergent)
series is the asymptotic expansion (Lauwerier 1977, pp. 12-14). Thus, for in-
stance, after Borel (or Euler) transformation (Whittaker and Watson 1927,
pp. 154 and 155, Lauwerier 1977, pp. 45-50, Negele and Orland 1988, pp. 373~
376, Dingle 1973, pp. 405-408) of the divergent series f(z) := Y oo (—1)"*nlz",
one obtains the fp(z) := 3 00 ,(—1)"2™ = (1+ z)~!. Through the Borel back
transformation (Lauwerier 1977, p. 49, Negele and Orland 1988, p. 374) of
fB(2), Fu(z) == [;° dz exp(—z)fs(xz), one obtains a function, i.e. fp(2),
which is analytic in the sector —7 < arg(z) < = of the z-plane; it can
be shown that fg(z) = 2z~ 'exp(1/2)(0,1/z) where I'(a,z) denotes the in-
complete Gamma function (see Davis, P.J., in Abramowitz and Stegun 1972,
p. 260). Through replacing fp(xz) by its formal geometric series expansion
1 — zz + (x2)? — -+- and evaluating the above integral term-by-term, the
original divergent series is recovered. We observe that the divergence of the
original asymptotic series is closely associated with the restricted sector of
the z-plane around z = 0 for which f g{2) is analytic. We point out that diver-
gent asymptotic series can be useful, as they yield very accurate results when
they are truncated at some optimal order (see Copson 1965, Dingle 1973).

In our considerations concerning analytic properties of L(kp; z) (see Sub-
secs. 2.4 and 6.3), we will establish that this function has a branch point at
z = ep. This indicates that not only there can be no Taylor expansion for
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fl(icp; z) around z = £, the asymptotic expansion of this function with respect
to the asymptotic sequence {(z —¢g)?|n = 0,1,...} will be divergent when ex-
pausion is continued to infinite order (see above); the possibility of convergence
of this series would contradict non-analyticity of L(kr; z) at z = ep.

2.4. Physicol motivation

Below by means of a simple example we motivate our above detailed consid-
erations, This example embodies many of the aspects that are shared by the
correlation functions pertaining to many-particle systems, several of which we
shall encounter in the subsequent Sections of the present work.

Consider f(e; N, Q) 1= Q71 30 {#les—e0)—0(zs—e1)}/(€s—€), €a41 > &5,
whose form in essential ways is similar to that in, e.g., Egs. (11) and (100).
Here e¢p and e; are finite constants for which we assume ¢; < &5 < e; for
some values of s; N,§ indicate that f is a function of the number N of the
particles as well as the volume {2 of the system. In the “thermodynamic limit”
(corresponding to N — 00, {§ —+ 0o and a finite concentration C := N/Q)}, f
is a function of C, and thus we denote it by f(e;C). For finite NV and , it is
seen that f(e; N, ) has poles at all &, in the interval [eg, e3].

If f(e; N, Q1) described some property of a physical system, the quantities
€5 could be viewed as energies of the natural modes of that system. Since these
modes are infinite in number, N is infinitely large.}? Moreover, if this system
were in free space (i.e., not placed inside an impenetrable box), the spectrum
would be partly continuous, and thus s would be in part a continuous variable,
To avoid unnecessary complications, we restrict our present considerations to
confined systems. Since, however, N is infinitely large, the “spectrum” of
such a confined system must at least have one accumulation point; this follows
from the Bolzano-Weierstrass theorem (Whittacker and Watson 1927, pp. 12
and 13). Thus some singular points €, of f(g; N, 82}, €, € [eo, €1], may not
be isolated but non-isclated (see Subsec. 2.1}). As an example, consider the
energies of the bound states of the Hydrogen atom. Since these converge to-
wards zero as the principal quantum number n approaches infinity, zero, is an
accumulation point in the spectrum of the bound states of Hydrogen.

We now take the “thermodynamic limit”. Since upon doing so, in gen-
eral (i.e. disregarding some possible “gaps” in the spectrum), |eg4nm — &5] 1 0
for any finite M, the function f(e;N,Q} will be ill-defined for real values

127This necessarily follows from the completeness of the eigenstates of such systems - de-
scribed by self-adjoint energy operators.
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of ¢ inside [eg,e;] — as £ may be “pinched” by two adjacent poles. This
necessitates that the “thermodynamic limit” be taken not of f(g; N, ) but of
flz; N, Q) = f(z; N, 2) with Im(2) # 0, unless Re(z) happens to be inside some
gap. We observe that, in general (i.e., excluding the cases where ¢ is inside
some possible gap or ¢ ¢ [ep, €1]), evaluation of the thermodynamic limit can
give rise to a meaningful f(¢; C) provided this be defined as the limit of (%0
with {Im(z)| — 0. For f(z;C) to qualify as the physical branch — as f(z;C) is
only one branch out of possibly infinite number of branches of a many-valued
function —, it is required that in regions where f(¢;C) is well-defined (for
instance inside the gaps, or, in the present case, in the regions € < ep and
£ > e3), the two functions f(e; C) and f(g; C) coincide (see Subsec. 2.2 where
we considered f(g) := In(e), € > 0).

Suppose now that poles of i (z; N, Q) are uniformly distributed and that this
property persists into the “thermodynamic limit”, with the density of poles per
unit energy approaching the constant value AQ. Suppose further that eg and ey
remain finite in the:‘thermodynamic limit”. Under these conditions, the sum
in the definition of f(z; N, (}) transforms into an integral, which in the present
case can be evaluated analytically. We have: f(z; N,Q) = A f;’ de'/(e! — 2)
= A{ln(z—e;)~In(z—e0)} =: f(2; C). In Fig. 2 we depict the analytic structure
of this function. We point out that here In(2) stands for the principal branch
of the logarithm function. That this choice indeed renders f(z; C) the physical
branch is seen as follows:

\ |

afg(zj eg) ‘\

arg(z - e;)

Fig. 2. The complex z2-plane and the analytic structure of flz C} = A{ln(z~e1)—=In{z—eg)}.
The shaded part of the real axis indicates the branch cut of f(z; C) which joins the branch
points ep and ej.
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Consider f(e +in;C) = f ‘L de’' /(¢! — € T in), with 5 | 0. Making use of
the Cauchy theorem, or what here is the same, 1/(¢'—eFin) = P{1/(e'~€)} £
iwd(e' — &), with P the Cauchy principal value, one readily obtains f(e =+ in; C)
= A{lnle; —e| —Inleg — |} +inAf(e — e9)f(e; — €). Hence for € < €y and
€ > e;, the “physical” f(s +47;[C]), n 4 0, must be real valued, while for
e < € < e, fle+in Q) - Fle — in; C) = 2miA; the interval [eg,e;] is the
branch cut of f(z;C). These conditions can be verified to be fulfilled, provided
the above logarithm functions with complex argument are the principal branch
of the logarithm function.

Let us now for the sake of better understanding the details, determiue some
analytic continuations of the above f(z;C) into non-physical RSs. In accor-
dance with our convention, we denote these “non-physical” extensions collec-
tively by f(z;C). Let §(z2) := A{Lni{z ~ e1) — In(z — eo)}. It is easily verified
that for ey < € < ey, limpo{ f(e+in; C)~g(e—in)} = 0, which implies that g(z)
is the analytic continuation of f(2;C) from the upper-half plane through the
branch cut [eg, e;] into the lower-half plane of a non-physical RS (1}3 is helpful to

use Fig. 2 as a visual aid). Thus §(z) qualifies to be denoted by f(z;C C) — see
Subsec. 2.2. Similarly, it cau be shown that as long as € € (eg, e1), for h(z)

A{Ln_;(z—€;) —In(z—eg)} holds lun,,w{f( e—in; C)—h{e+in)} = 0, i.e. h(z)
is the analytic continuation of f (z C) from the lower-half plane through the
branch cut [eg, e1] into the upper-haif plane of another non-physical RS (thus

also h(z) qualifies to be denoted by f(z; C)). Since §{(z) # h(z), the two corre-
sponding RSs are different, which is another way of stating that g(z) and E(z)
are two different branches of F(z; C).

Although the transition to the “thermodynamic limit” leads to condensa-
tion of poles into branch cuts, in some cases and in certain representations, the
singularities of correlation functions of systems in the thermodynamic limit
can show up as poles. The conservation laws corresponding to the symme-
tries of the problem are responsible for this, namely owing to the existence
of conserved quantities, one has the possibility to decompose the physical
processes in the interacting system (i.e. the virtual transition events) into
digjoint classes, each class corresponding to a specific (set of) allowed value
{values) for the conserved quantity (quantities);!” this can be achieved through
using the bases corresponding to the irreducible representations of the

13The possibility of fixing more than one conserved quantity depends on whether the asso-
ciated symmetry groups commute.
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underlying symmetry group(s). For instance, in a uniform system — with
continuous translation symmetry —, the linear momentum in each virtual
scattering event is conserved. For such a system, therefore, scattering events
can be classified in terms of the wave-vector k transferred. Specialising our
above example to a uniform system, the sum over s can be replaced by one
over k (see Appendix A); clearly, for a given k (which, because of being a
conserved quantity, is physically well-defined) and €5 < € < e;, we have to
do with a simple pole at z = gi. If the underlying symmetry of the system is
a discrete translation symmetry (such as is the case in infinite crystals), wave-
vector is conserved only up to a reciprocal-lattice vector (RLV). Nevertheless,
since in this case ) (...) can be replaced by 3, ¢1pz > c(.-.) and the inner
summation is over the discrete set of RLVs, for a given reduced wavevector k
inside the first Brillouin zone (1BZ) we have to do with poles; in the thermo-
dynamic limit 37, _,p, transforms into an integral, giving rise to “smearing”
of these poles into branch cuts. We should emphasise that not always use of an
appropriate representation will help exposing the singularities of a correlation
function as poles. This happens when, in interacting systems, the functions
under consideration describe higher than the first-order interaction processes.
For instance, when second-order processes are taken into account, we encounter
expressions that involve two nested summations: Y, 3", (...). It follows that
even if we represent this as ), Y {3 S -(...)}, the inner k’-sum, which
in the thermodynamic limit transforms into an integral, changes the possible
poles due to the summand of the G’-sum into branch cut(s) so that singling
out processes corresponding to the reduced wavevector k is of no avail. This
simple consideration suggests that finite lifetimes of quasi-particles (in uni-
form and periodic systems) should originate from the second- and higher-order
interaction processes (see Subsec. 6.4).

Before closing this section, we present an example which brings out the rel-
evance of the above considerations to our subsequent discussions in the present
work (see in particular Sec. 6). In Subsec. 6.3 we shall see that for a uniform-
electron system, solution z = z, = & of E‘k (z) = z, with Ek(z) == sg—&—ﬁﬁ(k; z),
corresponds to the energy of a QP. Here 9 := h?k%/(2m.) and % (k; z) denotes
the SE operator in the wave-vector representation (see Appendix A). Sup-
pose for the QP energy &5 holds Im¥(k;e,) # 0. Then from the requirement
Eq {z = ex) = &1, it follows that £ cannot be real-valued. It can be shown that
Exl(z*) = E’}:._‘ (z) — reflection symmetry with respect to the real energy axis,
Eq. (62) —, so that the existence of a QP with complcz-valued “energy” e
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implies existence of a QP with “energy” ¢j. This is in violation of the prin-
ciple of causality. This contradiction would be resolved if ImE(k ex) =0, in
which case €, would correspond to an excitation with infinite lifetime, which
contradicts our original assumption. Hence the only complex QP energies can
lie on the non-physical RSs. For obtaining these energies, one has to solve

Erlz) = 2.

3. Generalities

In this Section we introduce the Hamiltonian of the interacting system which
we shall be considering throughout this work.

Consider the many-body Hamiltonian H for spin-less electrons in the
second-quantisation representation,

H=T+U+V, (2)
where
7 e [ i ]«Z(r), 3)
U= / dPrd®r’ § (c)u(r, v )H(r'), (4)
{7 1 313,471 T NN T
Vim 5 [ dra PP oele ~ £)B D) (5)

stand for the kinetic energy, the energy due to the external potential and the
electron-electron interaction energy, respectively. In Eq. (5), vc(r —r') =

e?/(4meo|lr — r'||) stands for the Coulomb potential'® with e? the electron
charge —e (< 0) squared and ey the vacuum permittivity. The operators 1/)" 1/)
are, respectively, creation and annihilation field operators in the Schrodinger
representation and satisfy the well-known fermion anti-commutation relations
(Fetter and Walecka 1971, p. 19). The real symmetric function u(r,r’) stands
for the cxternal potential which for the sake of generality we consider to
consist of a local and a strictly non-local contribution, i.e.

u(r,r') := v(r)é(r — r') + w(r,r'). (6)
141y principle one may choose some other appropriate two-body potential. Further, it should

be realised that the instantaneous nature of ve(r — r') in Eq. (5) signifies the fact that H
has been written in the Coulomb gauge (Mahan 1981, pp. 60 and 66).
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In the calculations concerning solids, where often ionic potentials are replaced
by pseudo-potentials, v and w correspond to respectively the local and non-
local parts of the ionic pseudo-potentials (Hamann, Schliiter and Chiang 1979,
Kerker 1980, Bachelet, Hamann and Schliiter 1982). We explicitly assume that
v(r) and the real symmetric w(r,r') do not involve any differential operators
acting on the functions of r, and r/, to their right sides. For later use we
introduce

0y i= [ @i,
(7)
Uy = / d&rd®r ¥t ()w(r, v )P(r').

4. The Single-Particle Green Function

In this Section we deal in some detail with the single-particle Green function
G corresponding to the interacting system described by H in Eq. (2). We
give especial attention to the analytic properties as well as the asymptotic
behaviour of this function for large values of the energy parameter ¢.

The single-particle Green function G(rt,r't') is defined as follows (Fetter
and Walecka 1971, pp. 64 and 65)

Glxt, v't') i= —i(Un o T{Dr(rt)d}, ('t ) H¥ w0} - (8)

Here |¥ n,0) (short for [¥ n,0) i) stands for the normalised (to unity) N-electron
ground state of H in the Heisenberg representation, and 7 for the fermionic
time-ordering operator. The field operators with subscript H are the Heisen-
berg representations of the field operators in Sec. 3. Due to the time-ordering
operator, the single-particle GF has a finite discontinuity at ¢ = t’ (see Ap-
pendix B). For the time-Fourier transform of G(xt,r’t’), which is a function of
t — ¢, we have

(o +]
G(r,r;€) 1= f dte @ (rt,r'0) = G(r,v';€) + GP(r,v';¢), (9)
~00

where the “particle” (GP) and the “hole” (G*) part of G are defined as follows
(Thouless 1972, pp. 84-89)'%

151 this reference, the terms “advanced” and “retarded” have been used for what we have
called “particle” and “hole”, respectively. Our choice is effected by the fact that commonly
(see, e.g., Fetter and Walecka 1971, pp. 77-79) “advanced” and “retarded” parts of the GF
are defined differently.
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0
G*(r,r';¢) 1= [

OO

oG
dte*thG(rt,1'0); GP(r,1';e) == f dte*/*G(rt, 1'0)
0

(10)

From now onwards we shall employ operator notation alongside the coordinate
and wave-vector (momentum) representations (see Appendix A). It can be
shown (Titchmarsh 1939, p. 99) that G*‘(z) (GP(2)) is analytic in the lower
(upper) part of the complex z-plane. Here G*(z) and GP(z) are obtained by
replacing ¢ (which is supposed to be real-valued) in Eq. (10) by the complex-
valued variable z; for G"(z) it must hold Im(z) < 0 and for G?(z), Im(z) >
0 (for some subtle aspects concerning this direct substitution of z for ¢ in
the Fourier-integral representations, see Subsec. 4.8). The correctness of this
procedure can be verified by demonstrating that for z — ¢, G" (¢} and GP(g)
are {(uniformly) recovered from G*(z) and GP(z), respectively (see Subsec. 2.2).

4.1. The Lehmann representation for G(c)

Here we consider a well-known representation for G{e), the Lehmann (1954)
representation (Fetter and Walecka 1971, pp. 72-79), which is particularly
useful for its exposition of the physical relevance of G(g). It also helps us to
construct the analytic continuation of G{¢e) into the physical RS. This represen-
tation follows through writing down the states and operators in Eq. (8) in terms
of their Schrédinger-picture counterparts and makmg use of the completeness
relation for the simultaneous eigenstates of H and the number operator N in
the Fock space, i.e. 3 p [Wa,s){¥n,s| = I, where M = 0,1,... denotes the
number of electrons and s the remaining quantum numbers that specify an
eigenstate of H, withs=0 symbolically denoting the GS. This representation
reads as follows:

Glr,v'se) = ﬁZmr)fs(r}{g(“ ), 9(““‘*‘”.)}, (40), (11)

-1 £ —&g+1n

where
(‘I’le’.g;&;(r}lw_{\r,@) 3 When 53 < »“f
fslr) = { " (12)
(‘I‘N,GW(I‘)%‘I’N+1,3)3 when g, > 22
a “Lehmann amplitude”, and
Enog—En-1s, whene, <y,
6y = N0 N-1, H (13)
EN+1,3 - EN,g , wheneg, > i
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Eu s denotes the eigenenergy corresponding to {¥ar,,) and p the “chemical
potential” (see Subsec. 4.2). The first term on the right-band side (RHS) of
Eq. (11) corresponds to G"(£) and the second to GP(g); the designations “hole
part” and “particle part” are seen to indicate the “backward” and “forward”
propagations of the particles in time, respectively. Mathematically, the positive
infinitesimally small “energy” =in has its root in the Fourier representations for
8(t —t') and 9(t’ — t); we have 8(7) = +ih [*_de/(2rh) exp(Fict/h)/(e +in).
For macroscopic and open systems, the summation over s in Eq. (11) involves
integrals corresponding to the continuous part of the single-particle spectrum
(see Subsec. 2.4).

4.2. On the “chemical potential” p

The “chemical potential” p in the above expressions should be viewed in the
light of the following considerations. For the cases corresponding to ¢, < p,
from Eq. (13) we have: ¢, = uny — %5, where puy := En,o — Ey-1,0 and
€s:= En_15— En-1,0 2 0, from which it follows that £, < pn. For the cases
corresponding to £, > u we have: €5 = py41 + s, where pn 41 = Enyy 09—
Enp and & := Eny1s — Enyi0 2 0, implying &5 > py41. We observe that
introduction of y is justified only if uy < un+1, so that py < # £ un4+1 can
apply. Here we shall provide this justification; in fact, as we shall see, we have
even gy < 41

In anticipation of what follows, let £, := py41 — gy, which can be re-
written as

€ = (En+1,0 — Eno) — (Eno — En-1,0). (14)

Since the electronic many-body states, {{¥as5)}, that we consider here corre-
spond to one and the same ionic or background external potential, for M #
N these are not charge neutral; for M > N(M < N) they correspond to
negatively- (positively-) charged systems. The non-negativeness of ¢4, there-
fore, amounts to the statement that it is energetically ai least as costly to
add one electron to a charge-neutral system as is to a singly positively-charged
system (below we shall show that it is in fact more costly, albeit even by an
infinitesimal amount, to do so). In atomic and molecular physics —puy is re-
ferred to as the first ionisation potentiel (denoted by I(Z) where Z denotes the
atomic number, or number of the protons in the system — for charge neutral
systems Z = N), and —un+1 as the electron affinity (denoted by A(Z)), so
that ¢, = I(Z)— A(Z); see, e.g., Perdew, Parr, Levy and Balduz (1982). Iu the
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solid-state physics pun.; is the lowest (quasi-particle) conduction-band energy
(denoted by ¢.) and un the highest (quasi-particle) valence-band energy (de-
noted by &,), so that £, = £ — &,; see, e.g., Sham and Schliiter (1985). Hence,
introduction of a single constant, y, in Eq. {11) is justified. For a system in the
thermodynamic limit and without gap in its low-lying single-particle-excitation
spectrum, un+1 is the chemical potential and further un41 = uy + O(NP),
where p > 0.16 1t is interesting to point out that the largest electron affinity
and the smallest first ionisation potential in nature amount to 3.62 eV (per-
taining to element Cl) and 3.89 eV (pertaining to element Cs), respectively
— see, e.g., Dreizler and Gross (1990), p. 24. This implies that as far as the
elements in the periodic table are concerned, min{I{Z) - A(Z)} 2 0.27 eV. As
for systems in the thermodynamic limit (say, periodic crystals), if un+1 < pin,
from the Lehmann representation in Eq. (11) it would follow that G(g) were
ill-defined, as in such a case G(g) would possess a continuous set of so-called

B A

A uN uN—é—I

o I A

C D

Fig. 3. The complex z-plane and the locations of un, u and puy41, satisfying uy < u <
tn+1- Although in the thermodynamic limit uy and upny4y are infinitesimally close for
metallic systems (uy = punv+1 + O(N7P), with p > 0), nonetheless the open interval
(~+ 4N +1) remains non-vanishing. In the interior of this interval G(z) and X(2) are ana-
lytic (see Subsecs. 4.5 and 5.1). For systems with a fundamental gap in their quasi-particle
(QP) spectrum, uxy4+1 — pn is finite and {at the absolute zero of temperature) u can take
on any value within (un, un+1). For semiconductors and insulators un coincides with the
energy of the top of the valence band and gy 41 with that of the bottom of the conduction
band; thus uny4+1 — un amounts to the QP gap. For finite systems, such as atoms and
molecules, —un coincides with the first tonisation potential and —pn 41 with the electron
affinity. Following our convention concerning the time-energy Fourier transforms, a physical
function (say, f(€)) is obtained from its analytic continuation on the physical Riemann sheet
AUBUCUD (i.e. f(2)) through approaching the real energy axis from quadrants A and C.

16 The value p = 1 as given in Fetter and Walecka (1971), p. 75, is incorrect.
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“pinch” singularities for € € (un+1, #n). As the name indicates, “pinch sin-
gularities” (Itzykson and Zuber 1985, pp. 302, 303)7 would “pinch” the con-
tour along which G{¢) has been defined, so that in transforming G{(g) to the
time domain [for obtaining G(f)] one would encounter a non-integrable func-
tion; non-pinch singularities, contrary to pinch singularities, can be avoided
through deformation of the contour of integration. The condition uy = pn+1,
or g4 = 0, also corresponds to a pinch singularity in the integral representation
for G(t) in terms of G(¢). We therefore conclude that in all cases it must hold
UN < pN+1, 50 that (un, uy41) is always a finite (even though infinitesimally
small) open interval. See Fig. 3.

4.3. Sums involving the Lehmann amplitudes and energies

The sets {|¥n-1,5}|Vs}, {|¥n+1,s)|Vs} are not complete in the Fock space.
They are, however, complete in the subspaces corresponding to, respectively,
N — 1- and N + l-electron states. Thus whereas ), }\IIN:H sH{¥N+1,6| # 1,

in such expressions as 3, (\IfN ()hbT ("N 1, )TNy slw(r [¥no) and Y,
(Tn, 0|‘¢(t)|‘I’N+1 MU N 1|9 ) ¥ N,0), the completeness relation can be ap-
plied. Whence the following two results

S AEAE) = 00 - ) fu @) + 30 - W)
= 3 (@ ol () U1, (1,6l D) v 0}

1) ¥ w o)

*““Z(‘I’N,Oﬁ(r)i‘l’z\fﬂ,s)(‘1’N+1,s

= (Unol9' (2)P(r) + PP ()T w0) = 8(F —x),  (15)

S0 — e fo ) () = 3 (T w0l (XN U N1, e} (¥ 1,5[(x) | ¥ v 0)

= (Un,ol¢! (¢ )P(r)| U 0) = -;-p(r’,r)

= —iG(rt, x't+). (16)

Tn, e.g., fj: dz/(z? + n?), = = 0 becomes a “pinch” singularity for 5 = 0.



130 Electron Corrclation in the Solid State

Here p(r’, r) stands for the one-particle reduced density matrix; the pre-factor
% originates from the fact that the index s does not involve the spin-coordinate
of the electrons; including this, which amounts to an additional trace over the
two spin states of the electrons, removes this pre-factor. The last result in
Eq. (15) follows from the anti-commutation relation for the field operators,
and is the statement of the completeness of the set of Lehmann amplitudes.
This completeness can be expressed as Y_, fsff = I, where I stands for the
unit operator in the space of one-point functions, with f(r) = (r|fs, and
consequently f;(r) = flr). We note, however, that in general f! for # 8,,; for
diminishing values of the coupling constant of the electron-electron interaction,
f;f fer — Js5, when €, # €4, and the limit is exactly achieved when this
coupling constant is identically vanishing.

Making use of the definitions for the Lehmann amplitudes and energies (see
Egs. (12) and (13)), it can easily be shown that

E<(I’, r,) == Z 9(/‘ - Es)gsfs(r)f; (rr)

= (Unoldt () H, P()]-|¥n,0), (17)

Es(r,r') 29(53 p)es fs(r) fs (r )

-~

= (¥l [,5(0)] #')1¥n0)- (18)

Using the anti-commutation relations for the field operators, the following are
readily obtained

£50)- == [5ev] o,

Uy, (1)) = —v(r)d(x),

o ) (19)
(O B()] = — / (e, 2B,

7,30 j @3 — Y () B (Y )
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Thus,

2m

B2
Eclr, ) = % {[——’%Vz + v(r)} p(r,r’) + /d3r”w(r, r”)p(r”,r’)}
+ / d*r'"ve(r — ¢ )(Wn o9 ()P (YD V() 0) , (20)

32
Es(r,r) = [i—n’i—evg + 'u(r)] §(r — ') + w(r,r’)

|7+ o] sty + [ Erute ot}

2m,

+ j B3 = YU ot DD DT ) o). (21)

The two terms involving v, in the above expressions cannot be explicitly ex-
pressed in terms of such GS quantities as n or p. However, a simple decoupling
approximation yields!®

/ 1" ve(x — £ (W, [P ()9 ()P ) (x) [ ¥ 0)

= Mfﬁl [ @3r"v(r — )g(r, ") ~ %vg(r; [n])n{r), when r= r,
~ 5 n(s ) = vele = ¥))p(e’, ), when r 1,
(22)
[ dr"ve(e — "YUl ()PP ()P ()] ¥ ,0)
= vy (r;[n)) (6(1‘ —r')— % p(r’,r)) , (23)
where
v (r; [n]) = / &' ve(r — r")n(r") ' (24)

181n Eq. (22) the distinction between the cases corresponding to r = ¢/ and r # r' arises
frora the process of normal ordering {Wick 1950, Klein and Prange 1958) which for simplicity
we have not systematically taken care of in the present work (thus, for instance, rather than
waorking with H, we must have been working with : H:). For the case of r = r' we have
explicitly enforced the normal ordering.
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stands for the Hartree potential and g(r, r”’) for the (van Hove) pair-correlation
function presented in Eq. (154) below. We shall see in Subsec. 4.6 that although
the RHS of Egs. (22) and (23) are approximate, their sum, i.e. vg(r; [n]}o(r —
') — —lz-vc(r — 1’} p(r',r), is the exact result for the sum of their left-hand
sides (LHSs). We have to point out that in arriving at Egs. (22) and (23) we
have multiplied the contributions leading to vy (r; [n]) by a factor of two. This
factor accounts for a trace over an internal spin degree of freedom; if we had
adopted the notation in which the electron fleld operators are furnished with
spin index, then such an ad hoc introduction of this factor were not needed.

4.4. A symmetry property of G

Here we demonstrate a symmetry property of G(r,r’;}; in the process of this
demonstration, we encounter a number of important issues that are closely
tied with the time-inversion symmetry of the GS of the system under con-
sideration. To this end let Qazzexp(z’aér . p/h), where ér :=r' —r and p
stands for the one-particle momentum operator {see Appendix A). Thus Qa
is the translation operator, transforming functions of r, along dr, to those of
r’ when « is increased from 0 to 1. We have f,(r') = Q1 f,(r). We define now
Aso = fs (r)[éa fa(r))- [Qa fs(r)]fs(r), which for @ = 1 measures the amount
by which f,(r)f; (') differs from f,(x')fr(r). Obviously A, = 0. By some
straightforward algebra it can be shown that for n > 1, 8" A, /00" |a=0 =
(30t - P/R)""10As.0/00la=0. Thus, if 84;,a/0ala=0 = 0, it follows that
Aga = 0, so that f(r)fi(r') = fs(r')fi(r). It can easily be verifled that
OAs.0/00)a=0 = —2imh~0r - jp.4(r), where jp,s(r) stands for the paramag-
netic particle flux density!® corresponding to the Lehmann amplitude f(r).
The total paramagnetic particle flux density corresponding to the GS of the
interacting system under consideration is equal to j,(r) = >, (1 — €5)jp;s(r).
This flux density is not gauge invariant.

The gauge-invariant, or physical, particle flux density in the GS of the
N-electron system, i.e. j(r) := e '§Eno/8A(r), in general consists of three
contributions (Landau and Lifshitz 1977, pp. 472 and 473): one is propor-
tional to the gradient of the difference of densities of electrons corresponding
to different spins (Zeeman contribution}, one is proportional to the product
of the total charge density and the external vector potential A, and the last is
the above-mentioned paramagnetic particle flux density j,(r). In general, for

19The paramagnetic current density is —€jp;s(r), with —e < 0 the electron charge.
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spin-compensated systems the first contribution is identically vanishing. Since,
however, H in the present work does not involve the Zeeman term, this contri-
bution is in our case vanishing by construction. In the Coulomb or transverse
gauge?® V . A = 0 (Mahan 1981, p. 62), and in the absence of an exter-
nal magnetic field, the second contribution is also vanishing. When the GS
possesses time-reversal symmetry (in absence of external magnetic field), the
physical particle flux density is identically vanishing, so that in the present
case where the flrst two contributions to the physical particle flux density
are vanishing, it must hold that j,(r) = 0. Now the time-reversal symmetry
implies that to each elementary “current” jp;{r) must correspond a counter
current, the time-reversed current, j,3(r) = —jp;,(r) [call this, property (a)]
with €z = €, [call this, property (b)]. This degeneracy, whose occurrence em-
bodies Kramers’ theorem (Landau and Lifshitz 1977, pp. 223-226, Callaway
1964, pp. 52-54),?! maintains the thermodynamic balance between “currents”
and “time-reversed currents”. From property (a) we have f5(r) = &% f2(r),
with 8, real and independent of r, so that B,(r,r') := fo(r)fr (') + f3(r) f2(r')
is a real-valued symmetric function of r and r’. Let now F(z) be an arbitrary
function. From properties (a) and (b) it follows that not only j,(r) = 0, but
also that 3= F(e,) fo(r)f2(r)) = Y, F(e4) Bs(r, r') is a symmetric function of
r and r’; here 3', denotes a summation involving either s or its time-reversed
counterpart 3, but not both. In particular we have (the F{e,) involved here is
the term enclosed by the curly brackets on the RHS of Eq. (11))

G(r,v';e) =G, r;€). (25)

From the same line of reasoning leading to Eq. (25), one further obtains (see
Eq. (16))
p(r,r') = p(r',r). (26)

20The instantaneous nature of the Hartree potential vz (r;[n]) follows this choice for the
gauge. See Footnote 14.

21Kramers’ theorem guarantees degeneracy of the energy levels for cases where the spinors,
or the irreducible representations of the symmetry group of the Schrédinger equation, are
essentially complex. This applies specifically to systems with odd number of electrons {which
are spin-1/2 particles) and generally to those in which the sum of spins of the constituent
particles is half-integer. For systems of spin-less fermions in the thermodynamic limit, sub-
jected to the box- or the periodic-boundary condition, Kramers’ theorem applies exclusively
on account of the irreducible representations of the translation group {whether discrete or
continuous) being essentially complex. For a detailed discussion of the significance of the
time-reversal symmetry in solids see Cornwell (1969), Ch. 5, Sec. 7.



134 Electron Correlation in the Solid State

For illustration of the above details, consider a non-interacting uniform-
electron system enclosed in a macroscopic box of volume 2. For this sys-
tem we have (see Appendix A) f,(r) ¢ fi(r) := exp(ik - r)/QY2, &, &
£):=h%k%/(2m,), for both &) < u° and ) > p® where p° := h2k%/(2m.) with
kr the Fermi wave-number; 3 (...) < (2/]27]%) [ @3k(...). With s & k, we
can identify 3 with —k: we have both €%, = € and f_k(r) = fi(r). With
reference to our above considerations, the latter equality is in general only
satisfled up to a phase factor: at different k-points, the wavefunctions can be
solved under different gauge conditions. By considering the momentum p = hk
as a dynamical variable, we observe that —k <> 5 indeed corresponds to the
“time-reversed” state associated with k < s.

4.5. Analytic continuation of G(¢), G(z)

We now define the following function??

fo(r)fe(x')
G(r,r';z) := hz oy (27)
This function has the property
lli!(} G(e +in) = G(e), whene2 p. (28)
7

Hence é(z) in Eq. (27) is the analytic continuation of G(€), as represented in
Eq. (11), into the physical RS of the complex z-plane (Subsecs. 2.2 and 2.4).
One cau in all calculations involving G, replace this by G provided that on
taking the limit Im(z) — 0, Re(z — p) x Im(z) > 0 is satisfled. For instance,
in transforming G(g) to the time domain, the integral along the e-axis of G(e)
can be replaced by one along a contour C in the complex z-plane of é(z), on
the condition that on each point along C, Re(z — p) x Im(z) > 0 is obeyed (see
Fig. 4); since singularities of G(z) are all along the real axis (see Eq. (27) —
Luttinger 1961), it is not necessary that along C, Im(z) — 0.
From Eqs. (27) and (25) it follows that (see Luttinger 1961)

é(r,r’;z*) = é*(r, r'’;z), (29)

i.e. é(z) possesses reflection symmetry with respect to the real energy axis.
In the theory of functions of complex variables, functions which are analytic

22a"(z) = I‘izs fsf}/(z — £3); see text following Eq. (16) above.
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Y

Fig. 4. The Contour of integration on the physical Riemann sheet of the complex z-plane.
When the imaginary parts of the points on this contour are made to approach zero, a function
such as f(z) on C approaches the physical function f(c). Recall that f(e) = lim, o f (a:i:m),

for ¢ > p and ¢ < u. _The shaded sections of the real axis signify branch cuts of f (z)
Examples for f(z) are G(z) and ¥(z).

everywhere on the complex plane and are real-valued on some finite interval of
the real axis, possess a similar reflection property, Schwarz’s reflection property
(Titchmarsh 1939, p. 155, Spiegel 1974, p. 266). In the light of this, the
reflection property of G(z) can be understood by the observation that G(z) is
analytic everywhere on the complex z-plane, excluding some points or intervals
on the real axis, and is real-valued over the finite, albeit possibly infinitesimally
small (in the thermodynamic limit), interval (uy, tin41) — see Subsec. 4.2.
We define the physical spectral function (whence the subscript p) as follows

7. . _
Ap(r,t';e) -:zzzm hm{G(r,r e+in) — G(r,r';e zn)}

= Y AN -2), ez (30)

This deviates from the commonly-used definition where the upper signs are
taken, irrespective of the value of ¢; our definition takes account of the change
in sign attached to ¢n in the Lehmann representation for G(¢) as ¢ is increased
from below u to above pu. The “physical” spectral function satisfies the follow-
ing zeroth-order sum-rule:

/-Hm deAp(r,t’;€) = B{§(r — ') - p(r,1)}. (31)

In the equivalent sum-rule for the standard spectral function, one only encoun-
ters id(r — r’) on the RHS.
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4.6. Large-|e| Behaviour of G(g)

From the Lehmann representation for G(¢) it directly follows that

Gm o0
G(e) ~ . LI 6;22

, for [e| = o0, (32)

where (see Egs. (15), (17) and (18))

Goo, (1, ') := Ké(r — 1),

Goon(1,¥) = K'Y eu fu (03 () = hE<(e,¥) + E>(r,r). &)
It can easily be shown that
—1 [7*° ~
Goo, = —/ deeG"(e +1in), nlo0. (34)
T -0

Here G"'(2) := {G(z) — G'(2)}/(2i). Thus Goo, is equal to the first energy
moment of G”'( + in) which for £ <  is equal to —G”(¢) and for € > y equal
to G"(¢).

Introducing Eqgs. (20) and (21) into Eq. (33) and some algebra yields

Goo, (r, 1) = h{ [Zme V2 4 u(r) + vy (r; [n])] §(r — ') + w(r,x’)

~ %vc(r ~r')p(r, r’)} : (35)

The last term in Eq. (35) is nothing but the non-local exchange (or Fock)
potential which occurs in the Hartree-Fock equation. It must be noted, how-
ever, that the p here is the exact p and not that which is calculated within
the Hartree—Fock framework (see Subsec. 9.7). Since vg(r, [n]) and v (r — r')
both vanish for the vanishing strength of the electron-electron interaction, from
Eq. (35) one directly infers that for the non-interacting counterpart of Go,,
namely Gy.0,, it must hold

32

, h
Go;ooz(l‘,l') = ﬁ{l:zm

v? + v(r)] 5(r — r') + w(r, r’)} . (36)

€
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It is then interesting to realise that

1 '
ﬁ{"G9§w2(r9 r,) + sz(rsr )}

— 1 . ! 1 ! /

= zva(r; [n))d(r — 1) - =ve(r — £)p(r, r')

=D (v v ) =28 (r, 1) + 8 (1, 1), (37
where L#F stands for the SE operator within the Hartree-Fock scheme (see

Subsecs. 5.1, 6.3 and 9.6), with £¥(r,r') := A~ vy (r; [n])d(r —r') the Hartree
SE and Z¥(r,r') := (—2h)"lv,(r — r')p(r,r') the Fock SE. As we have men-
tioned above, p here is the exact one-particle reduced density matrix.

4.7. G(z) is invertible

In view of our interest concerning analytic properties of the SE operator in the
complex energy plane (Subsec. 5.1), here we inspect whether G(z) can have any
zero(s) in the complex energy plane (since G(2) is an operator, “zero(s)” here
means “zero eigenvalue(s)”) — see Luttinger (1961). For z = &’ + ie”, with &’
and £” (¢ # 0) both real-valued, G(z) can be written as G'(¢/, ") +iG" (¢', £”).
This is effected through application of 1/[z —&,] = (¢/ —&,)/[(€/ —€5)? +€"?] -
ie” [[(¢' —€5)2 +€"? in Eq. (27). It follows that G"(&’, ") cannot have any zero
(i.e. zero eigenvalue) for £’ # 0. This is demonstrated as follows: Since (see
Footnote 22) with a, 1= —&"/[{e —&,)? +&"?], we have G" = Ky, a,f,f}, for
an arbitrary one-particle state vector |3), (B1G"(|8) = R)_, o, [{B] fs1* holds.
Following the fact that {f,(r)} is a complete set (though not orthogonal — see
Eq. (15) and text following Eq. (16) above), {{8|f;|? > 0 for some s, so that
as # 0 for all s implies that (8|G”|3) # 0. This completes the demonstration
that no eigenvalue of G” can be vanishing for £” # 0, for if this were not the
case, then by choosing |38) to be the eigenvector corresponding to the vanishing
eigenvalue, the latter inequality would be violated.

Now since G"(¢’,¢") is Hermitian, it has real-valued eigenvalues and our
above consideration implies that G”{¢’,¢") is negative (positive) definite for
g” > 0 (¢" < 0). Further, since G'(¢/,¢") is also Hermitian, it has similarly real
eigenvalues which, however, can be of any sign. Now, owing to the imaginary
unit in § = G’ + iG", the expectation value of G(¢',&") = G(z), for " #
0, with respect to any single-particle state (like the above |3)) has a non-
vanishing imaginary part, so that the single-particle GF cannot possess zero
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eigenvalues on the physical RS of the complex z-plane, that is G (z) is invertible
for Im(2) # 0.

4.8. Conncction between analytic continuation and choice
of representation

It 1s in place that we pause for a while and consider some specific aspect related
to the analytic properties of G (2), Gh (2) and GP (z). Above we have mentioned
that the latter two functions can be obtained through a direct substitution of z
for £ in their defining expressions in Eq. (10); it is required, however, that in the
case of G*(z), Im(z) < 0 and in the case of GP(z), Im(z) > 0. A substitution of
this kind in the defining expression for G(¢) in Eq. (9) for any eomplex z gives
rise to a non-existent (i.e. divergent) integral; in the cases of G"(z) and G?(z)
we encounter the same difficulty for Im(z) > 0 and Im(2) < 0, respectively. Yet
in spite of these restrictions, it is readily verified that G(z) in Eq. (27) is nothing
but G(z), that is G(2) is obtained by substituting z for &, which is real-valued, in
the Lehmann representation for G(¢). Similarly, G*(z) and GP(z) are obtained
by direct substitution of z for ¢ in their respective expressions determined from
the Lehmann representation (see text following Eq. (13) above). In particular,
from the expressions for G(z), G*(z) and GP(z) as derived from the Lehmann
representation for G(e), it can readily be deduced that these functions are
bounded over the entire complex z-plane corresponding to Im(z) # 0. A most
natural question would be: why in obtaining the analytic continuation for, say,
G(e) a direct substitution of z for £ in one representation for G(g) (namely, the
Fourier-integral representation) is not valid, while in a different representation
(namely, the Lehmann representation) such substitution is legitimate? Are not
different representations of a function supposed to be equivalent?

The answer to thc above questions lies in the fact that while exp(izt/h)
is bounded for real values of z (we have |exp(izt/h)| = 1), it is unbounded
when: (i) t € (—o00,00) and Im(z) # 0; (i1) t € (—00,0) and Im(z) > 0; (iii)
t € (0,00) and Im(2) < 0. For the Fourier integral (integral in the sense of
a Riemann sum) to exist, it is necessary that when Im(z) # 0, the function
with which exp(izt/h) is multiplied turns thc integrand absolutely integrable.
Since magnitude of G(rt, r'0) does not decrease cxponentially, for the existence
of the Fourier integrals, in the light of (i)—(iii), we are to impose restrictions
upon Im(z). That despite this, substitution of z (with Im(z) # 0) for € in the
Lehmann representation for G(e) yields a bounded result, is to do with the
fact that even though for an inappropriately chosen z (i.e., chosen in disregard
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to (i)-(iii)), the integrand in the Fourier integral is unbounded, the associated
Riemann sum is nevertheless conditionally convergent, or it is summable. In
Subsec. 2.3 we have considered summation of a manifestly divergent series
by means of the Borel transformation. There we have observed the direct
association between the divergence of a series and the singularity in the analytic
function associated with it. In the present case, the real values of £ at which
G(z — €) is unbounded, are those for which the Riemann sums are truly
divergent, i.e. not summable.

An example should clarify the above observations. Consider g(z) := (i/h) -
[y dtexp(—ilz — olt/R), where we assume £g to be real. For Im(z) < 0,
the integrand of g(z) is absolutely integrable and one trivially obtains g(z) =
1/(z — €p). It is seen that g(z) is analytic everywhere (even on the half-plane
Im(z) 2 0) except at z = g¢. Let us now express the t-integral as a Riemann
sum: §(z) = limasgo (iA8/R) 30 o [h(2)]™ where h(z):= exp(—i[z — 0] At/h).
The geometric series involved here is uniformly convergent provided |h(z)] < 1;
in this case, using some elementary algebra one readily obtains g(z) = 1/(z —
£g), which is exactly the result presented above. On the other hand, since
|h(2)| > 1 for Im(z) > 0, we observe that Im(z) > 0 indeed renders the
above Riemann sum divergent; as mentioned above, this sum can be evaluated
through application of, e.g., the Borel summation technique; not surprisingly 23
one again obtains §(2) = 1/(z — &p).

We conclude that direct substitution of z for € in the Fourier-integral
representation of a function, such as G(¢), requires an additional step of re-
summation of a divergent (asymptotic) series (i.e. a Riemann sum).?* Branch
points of, say, 5(;:) are those z points around which G (z) does not allow for a
uniform asymptotic Riemann sum (Stokes’ phenomenon — see Subsec. 2.3).%°

23For the reason that g(z) as obtained for the case Im(z) < 0 is a regular function of z
so that through the process of analytic continuation, one would immediately deduce that
9(z) = 1/(z — eo) for all z.

24The set {{h(z))*|n = 0,1...} in our example is indeed an asymptotic sequence for Im{z) <
G
?5The following is worth mentioning (Whittaker and Watson 1927, pp. 98 and 99): There
are cases where two infinite series represent the same analytic function but are suited for two
different, i.e. non-overlapping, regions of the 2-plane. There are also cases where one infinite
series represents two entirely different analytic functions in two different regions of the z
plane. Consider Zf:o 2" and Ef:o(" 1)*+1(z — 2)" both of which represent 1/(1 — 2).
On the other hand, {z + 1/z)/2 + 2:‘;1(2: - 1/2)(1/[t + z™] - 1/[1 + z™}]) represents z
when |2| < 1 and 1/z when |2| > 1.
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5. The (Proper) Self-Energy X(e) and its Analytic
Continuation X(z)

The self-energy operator plays the role of a “scattering potential” through
whose action the behaviour of the single-particle Green function of a system
of “non-interacting” electrons is modified into that of the fully interacting
system. In this Section we deal with this operator and a number of its salient
properties.

5.1. Analyticity of f)(z) and some consequcnccs

In Subsec. 4.7 we arrived at the conclusion that for Im(z) # 0, G(z) is in-
vertible, i.e. G™'(z) is boundcd. The same holds for Go(z), i.e. for Im(z) # 0,
Gy '(z) is bounded. Thus the Dyson equation,

G(2) = Go(2) + Go(2)E(2)G(2) , (38)
can be written in the alternative form
S(z) = G5(2) - G (2). (39)

From Eq. (39) it follows that %(z) is bounded for Im(z) # 0. Through
differentiating both sides of Eq. (38) with respect to z (recall that 5(z) and
éo(z) are analytic everywhere, with the possible exception of the real energy
axis, and thus infinitely many times differentiable at any complez z), we observe
that for 8%(z)/8z to be unbounded at some complez z, it is necessary that
G'(z) should vanish at that z. Since G (z) does not vanish for any complex
z (Subsec. 4.7), it follows that 8%(2)/0z is bounded for all complex 2. By
differentiating both sides of Eq. (38) an arbitrary number of times, along the
above line of reasoning we arrive at the conclusion that nowherc on the physical
RS, with the possible exception of the real azis, ¥(2z) can be singular.

Further, owing to the relations in Eqgs. (39), (25) and (29), which equally
hold for Gy(e) and éo(z), we have (see DuBois 1959a, Appendix B; Luttinger
1961)

S(r,v'se) = (v, rie);  T(r,v';2*) = O (r,v';z), Im(z) #£0. (40)
Here the “physical” self-energy ¥(¢) is defined through

B(e) = lim Y(e +1in), fore2 p. (41)
n
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The analyticity of ?)(z) in the complex z-plane implies a pair of Kramers-
Kronig-type relations (or Hilbert transforms — see Morse and Feshbach 1953,
pp. 370-373 and 944) between the “real” and “imaginary” parts of (2). In or-
der to obtain these relations, it is required that we first establish the behaviour
of £(z) for |z| — oo (Farid 1999a). To this end let f(2) ~ fo+f1/2+fa/ 22+
for |z| = co. Then provided fo # 0, it holds (Copson 1965, pp. 8 and 9).
YF(z) ~ Ufo+ Fafz + Fof 22 + -+, for |2| = oo, whete Fy = ~fi/f2,
f2 =(fZ ~fof2)/ 3, etc. Through these results, making use of (c f Eq. (32))
G(z) ~ hl/z + - Goop/2* + -+ and Go(z) ~ Bl/z + Goo0, /2% + -, from the
expression for Z(z) in Eq. (39) we obtain the following general result

£(2) ~ Boog + Zj’ Z:;“ +-+-, as|z|—o00. (42)

Explicit calculation reveals that
1
2000 = ’éﬁ'{“cﬂ;wa + Gwz} = EHF ' (43)

the last relation being that given in Eq. (37).

The result in Eq. (43} can also be derived through analysing the Feynman
diagrams for the SE operator. Briefiy, due to the conservation of energy, all
skeleton SE diagrams?® (contributing to £(¢)) beyond the first order in the bare
electron-electron interaction inevitably involve at least one GF whose energy
argument contains €. By “inevitably” we mean that it is not possible entirely
to displace ¢ from the argument(s) of the GF(s) — through transformation of
variables (or what is the same, reassigning energy variables in the diagrams) —
to arguments of the electron-electron interaction function, which is independent
of energy. This property holds true also for all those second and higher-order
non-skeleton diagrams that do not contribute to the Fock diagram (a first-order
diagram} in the process of partial summation of the non-skeleton diagrams,
leading to the skeleton SE diagrams. Since we have G{g} ~ Al/e (for the
case one employs non-skeleton SE diagrams, Go{e) ~ hi/e), for |g| — o0, the
integrands of these second- and higher-order SE contributions can be made as
small as desired and thus only LZH#F survives as the leading-order asymptotic
term in the expansion of X{¢) for large |e|.

26 Skeleton diagrams (Luttinger and Ward 1960, Nozitres 1964, p. 221) are those proper
SE diagrams that do not contain any SE sub-diagrams that can be removed from them by
“cutting” two GF lines. When in a perturbation expansion for the GF or the SE operator,
skeleton diagrams are used, the directed lines in these that ordinarily would represent an
unperturbed GF, Go, must represent the full GF, G.
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Fig. 5. The contours of integration employed for obtaining the Kramers-Kronig-type of
relations for the physical self-energy operator X(ec). The upper contonr is employed when
Im(z) > 0 (as in the Figure) and the lower contonr when Im(z) < 0. It should be realised
that when along A’B’ and AB Im(2’) is made to approach zero, only on sections A’y and
uB one has L(z') = Z(e').

From Egs. (42) and (43) it follows that

—~ ~ Y 5
— HF 001 00
Er(z) = E(Z) Y ~ > + z22 + .

. for|z] > oo,  (44)

Hence on integrating £,(2')/(z' — z) along the contours C and C’ in Fig. 5,
the contributions of, respectively, the semi-circles BDA and B’D’A’ to the
total integral will become vanishingly small when the radii of the semi-circles
are made infinitely large (and consequently AB — (—oc0,00) and A’B’ —
(—00,00)). Now depending on whether Im(z) > 0 or Im(z) < 0, we carry out
integration along C or C’, respectively, and obtain (below 7/ | 0)

M

+1 [ [ S.(¢ iy
1r(z:)——/ de’%z—), Im(z) 2 0. (45)

T 2m

In arriving at this expression we have made use of the Cauchy residue theorem
(Titchmarsh 1939, p. 102), relying on the fact that X,(2), similar to 5(2'), is,
with the possible exception of the real energy axis, analytic everywhere on the
physical RS. Through substituting z = ¢ & i, with | 0, in Eq. (45), making
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use of 1/(x — zg £ i) = P(1/{x — x¢]) F ind(x — zo) we obtain

ﬁr(gr + i‘ﬂ)

46
gh—¢ (46)

~ N ©
Lretin)= ixip[m de

Let

£(2) = () + B}, and F() = (50 - B} @)

be the “real” and “imaginary” parts of ¥,(2).27 The result in Eq. (46) can be
written as the following pair of the Kramers-Kronig-type expressions

= 1 [ 2+
$i(e +in) = :i:—P] ger L E i)
T Joo g —¢
(48)
o0 Ef ! +
Tiexim)=F=P [ d ’"(f )
oo e —e
This pair is easily verified correctly to conform with the exact relations
Thz") = Ei(2), (") =-El(z), (49)

which are direct consequences of £t(z) = £,(2*) — ¢.f. Eq. (40). We remark
that the expressions in Eq. (48) are not in terms of solely the physical SE. For
obtaining a pair of expressions entirely in terms of the latter, we make use of
Eq. (49). After some algebra, from Eq. (48) the desired Kramers-Kronig-type
of relations for the physical SE operator (see Eq. (41)} are shown to be

o0 oINSVt
S(e) = —Lp [ ger S8Rl — ENTTE)
T -0

gl —¢

1

(50)

o - Ff ot
Be) = 2P [ arEULZORE)
-0

g —¢

Finally, according to a theorem due to Luttinger and Ward (1960), the
following relations (one obtained from the other through integration by parts

27We have to emphasise that T,(z) is an operator so that ¥..(z) and £/ (2) may not be real-
valued in specific representations — in addition, upon a gauge transformation, a real-valued
representation of, say, £.(z), can easily be made complex-valued. This comment applies to
all other operators, like x’(2) and X”(z), that we encounter in the present work — note,
however, that contrary to G, x is gauge invariant.
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— the asymptotic behaviour of the functions involved lead to vanishing end-
point contributions) are satisfied

/ 1 2By P _ / M )BG(Z) 0. (51)

—i00 0z p—100

Although for the exact G(z) and £(z) these expressions amount to identities, in
approximate frameworks these can best be violated (see Subsec. 9.2). Therefore
Eq. (51) lends itself for use as a “self-consistency” condition in approximate
calculations.?® The expressions in Eq. (51) are closely related to the Friedel
sum-rule for interaeting electrons (Langer and Ambegaokar 1961).

5.2. A “local-dcnsity” approzimation for X(e)

Sham and Kohn (1966) have shown that at least for systems with almost
uniform electronic density (such as ideal metals), X(r,r’;€) has an interest-
ing short-range property. By writing X(r,r’;¢) = A~ lvg(r;[n])é(r — r') +
M(r,r'; e — v (ro; [n])), where ro := (r +1r’)/2, these authors have shown that
owing to one of the Ward identities (corresponding to the long wavelength
behaviour of the static density-density correlation function), dM (r, r';e —
vi (ro; [n]))/dn(xr""), taken at the uniform density n, is a relatively short-ranged
function of ro—r”, implying that the difference between M (r,r’; e—vu(ro; [n])),
pertaining to the inhomogeneous system (with almost constant density) and
My(r — r';e — vy (ro[n]);n), pertaining to the uniform-electron system,? is
mainly determined by the deviation from the average value of the charge den-
sity in the close vicinity of ro. This finding has been the basis for construction

of the following “local-density approximation” for the SE operator (Sham and
Kohn 1966)

BLPA(r €)= %’UH(I'; [n])d(r — r’) + Mp(r — v'; e — v (ro; [n]); n(ro)),
ro i= %(r-}-r'). (52)

281n this connection we should like to emphasise that the Dyson equation (see Eq. (38)),
in reality is also an identity, expressing a relationship amongst the ezaet G, Go and the
corresponding ezact . It becomes an equation, however, when either G or ¥ is approximated
(in the former case an equation for ¥ and in the latter an equation for G).

29Here the last argument n denotes the constant density of the system to which M,
corresponds.
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For some discussions concerning this approximation see (Hedin and Lundqvist
1969). This approximation has been applied by Wang and Pickett (1983) and
Pickett and Wang (1984) and more recently by Engel and Pickett (1996).

6. Quasi-Particles; Particle-Like Excitations

In this Section we present a framework within which the information contained
in the single-particle Green function concerning the single-particle excitation
energies of interacting systems is abstracted. We show that a one-electron-like
Schrédinger equation, the quasi-particle equation, should yield the energies
and the associated “wavefunctions” of the quasi-particles. Close inspection of
the analytic properties of the energy-dependent potential (i.e. the SE operator)
in this equation reveals, however, that without an analytic continuation of this
potential into a non-physical RS, this equation in general does not have any
solution for systems in the thermodynamic limit (Farid 1999a),

Consider the Dyson equation in Eq. (38) which can be solved for G(z) as
follows

G(z) = (1 - éﬁ(z)i(z))*’ Go(z) = Golz) + Go(2)E(2)Go(z) +---,  (53)

where the last series represents merely a formal solution, as it may not be
convergent. This series can be viewed as a perturbation series for G(z) in
terms of Gp(z), with %(z) acting as the perturbation. Analogous to the case
in which the convergence towards 1/(1 — 2z} =: F(2) of the simple geometric
series 1 + 2 + 2% + -+ - is hampered by the singularity {here, a simple pole) of
f)atz= 1, convergence of the series on the RHS of Eq. (53) is restricted by
the singular points of the exact GF (see Subsecs. 4.1 and 4.5). In Subsec. 4.1
we have seen that these singularities (“poles”) are the one-particle excitation
energies of the interacting N-particle system (i.e. the energies of the interacting
ground and excited N +1-particle states relative to the energy of the interacting
GS of the N-particle state). Hence the series on the RHS of Eq. (53) diverges
at these excitation energies. This happens when

det(I — Go(2)X(2)) =0, (54)

which should be compared with the condition 1/ f(z) = 0 (c.f. the first expres-
sion on the RHS of Eq. (53)). The GF Gy(z) satisfies

(2] — Hp)Go(z) = Al (55)
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Suppose that 2 does not coincide with a “pole” of ég(z), that is z is not equal
to a one-particle excitation energy of the non-interacting system described by
Hp, or, what is the same, det{2] — Hy) # 0. In this case we can write Eq. (54)
in the alternative and equivalent form det(Gg ' (2) — L(z)) = 0, or

det(z] — [Ho + h%(2)]) = 0. (56)

The possible solutions z = z, of this equation are eigenvalues of the (in general)
non-Hermitian “quasi-particle” Hamiltonian

Hop(2) := Ho + hE(2). (57)

The non-Hermiticity of Hg,(2) implies that its set of right eigenfunctions
{z/)s (z)} is not orthogonal. It can however be shown (Morse and Feshbach
1953, pp. 884—886) that when the sets of left and right eigenfunctions of ?{qg (z),
{¢s (2)} and {%s(2)}, respectively, have been arranged in such a way that ¢,(z)
and () correspond to the same eigenvalue E,(z), i.e.3

?{qp(z}l/’s (2) = Es (2 )if’s (2), (58)

$L()Hep(2) = Bo(2)8l(2) &= Hp(2)8s(2) = E(2)ds(2),  (59)

then for E,(z) # Ey(2), {¢s(2), %0 (2)) = 850 (here we have assumed nor-
malisation to unity). In the case of degeneracy, i.e. E, (z) = Eqo (z) for s # ¢,
the degenerate left and right eigenfunctions can be made orthogonal through
a Gram-Schmidt orthogonalisation procedure, however, it is possible that the
resulting left and right eigenvectors may not span the original space (Golden-
feld 1992, p. 255) — see further on as well as Appendix A. From Eq. (56) it
follows that for the eigenvalues (eigenfunctions) of Eq. (58) to coincide with
the QP “energies” (“wavefunctions”) it must hold

Ey(2) = z; (60)

with this, Eq. (56) turns into det(E,(z)I — Hep(z)) = 0. We thus refer to
Eq. (60) as the equation for the QP energies.

From the above considerations it follows that H,(z) can be expressed in
the following bi-orthonormal spectral representation

Hep(r,x';2) = Y Eo(2)¢s(r; 2)85(r'; 2). (61)

301t can be shown (Morse and Feshbach 1953, p. 885) that sets of left and right eigenvalues
are, up to ordering, identical.
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Because of the properties presented in Eq. (40), from {r|Zt )= 1Z(2)[r)*
it follows that

o3 2) = (13 2"), Ws(r;2) = Gs(r;2"), Eu(2") = E}(2). (62)

We have, moreover (c.f. Subsec. 4.4), that for every s there exists an § such
that E—-{z} ‘g ), Kramers’ degeneracy (Subsec. 4.4), and that ¥s(r; 2 z) =

"’Nﬁ& (r; 2) and ¢3(r; z) = &% 2/)8 (r; z). Thus the bi-orthonormal spectral rep-
resentatlon in Eq. (61) indeed preserves the symmetry property ’Hq,,(r r';z) =
’qu(r r; z). From the above results we also infer that ¢5(r; z) = e“’w/}s(r z¥)
and Gs(r; z) = e §,(r; 2*).

In view of our earlier remark concerning the fact that in the event of de-
generacy the left and right eigenvectors are not necessarily orthogonal, and in
view of the above-mentioned Kramers’ degeneracy of the QP states labelled by
s and 3, § # 8, the following remark is in place. In systems with some spatial
symmetry (such as translation symmetry, whether continuous or discrete), by
choosing the left and right eigenvectors to be simultaneously basis functions for
the unitary irreducible representations of the pertinent symmetry group, the
degenerate left and right eigenvectors will be automatically orthogonal when
they belong to different unitary irreducible representations (Cornwell 1984,
pp. 81-83). This is the case, for instance, for the non-interacting uniform-
electron system (see the closing paragraph in Subsec. 4.4) where the Kramers
degenerate states corresponding to ~k and k (recall that €%, = €Q) are au-
tomatically orthogonal, owing to the fact that for k # 0, ~k and k mark
two distinct unitary irreducible representations of the continuous translation
group.

Using the operator relation (AB)‘ = B~1A-! and the first term on
the RHS of Eq. (53), it follows that G’(z) = h(zI — Hep(2))~Y, so that by
completeness relation ), ¥s(2)¢l(2) = I [in the coordinate representation
3, Pa(r32)%(r'; 2) = 8(r — r')] and Eq. (61) we obtain the following bi-
orthonormal representation for G(z) — (Layzer 1963):

Glr,x';z)=h %(:;f)gﬁ((:; 2 (63)

This representation makes explicit that Eq. (60), i.e. the equation for the QP
energies, coincides with the equgtion for the “zeros” of the denominatgr in
Eq. (63), or that for “poles” of G(z). Note that because the functions 1,(z)
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and ¢,(z) are normalised for all values of z, i.e. ($5(2), Ys(2)) = 8.5, the
“poles” of ("?(z) cannot be due to the functions in the numerator in Eq. (63).

The regularity of f}(z) on the physical RS (see Subsec. 5.1) has some in-
teresting consequences. For instance, from Eq. (57) we observe that Hg(2)
is analytic in exactly the same region of the z-plane where f)(z) is analytic.
This, through Eq. (58), or Eq. (59), implies that E,(z) is analytic everywhere
on the physical RS, with the possible exception of the real axis (recall that
the left and right eigenstates of ’}?qp(z) are bounded through normalisation).
We point out that if Es (z) were unbounded at some complez z, say at z = 2y,
then form Eq. (63) it would follow that G(2) would be vanishing at z = 20,
which contradicts the finding in Subsec. 4.7.

For our further discussions we define

sy Lz - g o B
By(z) = 5{Es(2) + E{(2)},  BJ(2) = {Es(2) - E5(2)}. (64)
The ‘physical’ E,(¢) is obtained from

Ey(e) =limEy(c +in), e2p. (65)

Through comparing the representation in Eq. (63) with the Lehmann repre-
sentation in Eq. (11), we deduce the following conditions:3!

El(e)S0, for e2p. (66)

Violation of these inequalities signifies breakdown of the causality, or instability
of the GS due to its collapse into a lower-energy state.

From the second expression in Eq. (64) and the last expression in Eq. (62)
it is evident that for Im(z) — 0, E”(z) measures the amount of discontinuity
in E,(z) across its possible branch cuts along the real energy axis. It is obvious
that unless E(¢) = 0, Eq. (60) for the QP energies, i.e. E,(¢) = ¢, cannot
be satisfied. For systems in the thermodynamic limit, E¥(¢) is non-vanishing,
except for isolated regions of the real axis. Therefore, for these systems the
QP equation in general does not have real-valued solutions; such solutions can
only occur on the mentioned isolated intervals of the real energy axis. As
for the complex-valued solutions, these are excluded by the fact that G(z) is

31Despite the similarities between the Lehmann representation in Eq. (11) and the bi-
orthonormal representation in Eq. (63), the two are not identical; they are, however, both
exact.
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analytic for all z, with Im(z)jé 0 (see Sec. 5.1). Alternatively, owing to the
refiection property E,(z*) = E*(z) given in Eq. (62), a solution at z = zp, with
Im(zp) 5 0, would imply one at z = zg, which is in violation of causality. The
possible complex-valued solutions of Eq. (60} must therefore be sought on the
non-physical RSs (Subsec. 2.2). This requires analytic continuation of E,(z)
into these non-physical RSs. This can be achieved through a Taylor expansion
of E,(z) around z = zp with Re(zp) > p and Im(z) > 0 or Re(2p) < g and
Im(zp) < 0. Suppose Re(zp) > u and Im(2) > 0. Provided Re(zp) does not
coincide with the location of a singularity of E,(z) on the real energy axis,

this expansion yields E,(z), the analytic continuation of E,(z) from the first
quadrant of the physical RS into the fourth quadrant of a non-physical RS
directly beneath the physical RS. This continuation is valid within a circular
disk, centred around z = 29, whose radius is equal to the distance between zp

and the singularity of E,(z) on the real axis which is closest to z. If E, (z) =2
is satisfied within this disk, then evidently the imaginary part of the solution
{(or solutlons), say Zg (or Zs;'8), is (are) finite and negative. In view of the fact

that Es(zs) # zg {Or E (zsj) # z4; — note the number of tildes), the existence

of a z, (or z,’s) satisfying E, (2) = z, is not in contradiction with the stability
of the system as well as with causality.

Complex QP energies 24, corresponding to damped one-particle-like exci-
tations, signify the irreversibility of the process of evaluating the thermody-
namic limit. For systems classified as Landau Fermi liquids (see Subsec. 6.3)
one finds real-valued solutions for the QP equation, Eq. (60). However, these
solutions do not correspond to poles of @(z) but to non-isolated singularities
(Subsec. 2.1). As we shall discuss in Subsecs. 6.2 and 6.3, these singularities
can be considered as poles only in an asymptotic sense.

Finally, since the non-Hermiticity of the physical SE operator — in its
seeming similarity with the optical-model potential (Schiff 1968, pp. 129 and
130, Landau and Lifshitz 1977, pp. 613 and 614) — may suggest lack of energy
conservation in the system, we mention that the finite life-times of the QPs (or
what is the same, the finite imaginary parts of the QP energies), are not due to
lossy processes (such as inelastic scattering processes with impurity potentials).
Rather, it signifies the fact that elementary excitations of macroscopic systems
in general do not behave like stable particles over long time intervals: due to the
electron-electron interaction and abundance of energy levels in such systems
(see Sec. 1), any energetically sharply defined initial excitation in the system
will, in general, lose its energy to other allowed excitations in the system, in
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such a way that the total energy of the system retains its constant value in the
course of time. It should be noted that here the thcrmodynamic limit plays a
crucial role, since prior to taking this limit, one would be able in principle to
excite a single eigenstate of the system, which in the ideal case would remain
stationary for an indefinite duration of time.32

6.1. The quasi-particle approrimation

In Sec. 6 we observed that the possible solutions of E,(z) = z are the energies
of un-damped one-particle excitations of the interacting N-electron system,
i.e. the energies of undamped QPs. For systems in the thermodynamic limit
such solutions, if at all existent, describe only a negligible part of the structure
that one observes in, for instance, the photo-emission or inverse photo-emission
spectra. Here we will elaborate on issues that link theory with experiment.

Consider the spectral function as defined in Eq. (30) and calculated in terms
of the bi-orthonormal representation for the GF in Eq. (63) (see Eq. (65)),

Ap(e, ') = 37 ueic + sgnle — plin); (s € + sgale — ulin)

XIm{a——IiZ’s(s)}’ (nl0). (67)

In arriving at Eq. (67) we have made use of the expressions in and following
Eq. (62). It is the behaviour of this function along the (real) energy axis that
is to be compared with expcrimentally-measured one-particle spectra. Often,
however, the experimental data are not spatially fully resolved, so that for
comparison with these data, some part of the spatial information contained in
Ap(r,r';€) has to be integrated out. This is best done by first Fourier trans-
forming the spectral function into the wave-vector space (see Appendix A),
which is suitable from the experimental point of view, since far (on atomic
scale) outside the sample, momentum is a good quantum number (one may
think of the angle-resolved photo-emission experiments, whereby the disper-
sions of the QP-energy bands as functions of the wave-vector of the incident
particle can be measured); see Cohen and Chelikowsky (1988). Let us for the
moment neglect the entire spatial or wave-vector resolution through equat-
ing r’ in Ap(r,r’;e) with r and integrating r over the normalisation space of
321n practice, however, the coupling between the field of the electrons and the free electro-

magnetic field in vacuum, or, in solids, the field of phonons (both of which we have neglected
in our considerations), renders even these excitations non-stationary.
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{?E,(r; z)} and {@.(r; 2)}. Because of the bi-ortho-normality of {%,(z)} and
{ps(z)} (see text following Eq. (59)) one obtains

D) := — Zlm {E - ;s ) } (68)

which for “non-interacting” systems (i.e. those for which the SE operator
is energy independent and Hermitian) reduces to the well-known electronic
density of states (DOS) (or density of levels), concerning both “occupied”
(e < u) and “unoccupied” (¢ > u) states. This is easily seen by employing
Im{1/(z — zo £ in)} = Fwé(x — xq), for n L 0.

Equation (68) suggests that the peak structure observed in D{g) for certain
values of energy g, corresponds to those energies which satisfy the following
set of requirements (see Egs. (64) and (65)):

El(e) =¢,
OE.)(c)/0e = 0
O*E!()/0e* 20, forezp. (69)

These ¢'s may be termed the “experimental quasi-particle energies”, as at these
e’s the amplitude of the DOS is maximal. We point out that when a solution
of the first of the above three requirements satisfies E}/(¢) = 0, the remaining
two conditions must be relaxed since this solution coincides with the energy of
an un-damped QP in the system. Further, the second and third of the above
expressions are merely formal statements indicating that at the “experimental”
quasi-particle energies, |EY (¢)| is minimal. This observation is important from
the point of view of the fact that E} (¢) may not be differentiable. This is the
case for instance at the “band edges” and at the locations of the van Hove
singularities, which are branch points (Subsec. 2.1) of E,(z) along the real
energy axis (see Subsecs. 6.2 and 6.5).

In cases where Es(z) is free from branch points in the neighbourhood of an
“experimental” QP energy, say €%, through Taylor expanding E,(z) around
z = €%, one obtains the analytic continuation of E‘s(z) into a limited region of a
non-physical RS (see Subsecs. 2.3 and 2.4). Denoting this analytic continuation

by E,(z), one can subsequently seek to solve E,(z) = z. Because E,(z) has
been obtained through an analytic continuation around an “experimental”
QP energy, it is likely that the latter equation indeed has a solution close to



the real energy axis. Let this solution be denoted by z,. We indicate the
union of the “energy” function that on the non-physical RS coincides with
Es(z) and on the physical RS with E,(z) by &,(z) (this is the equivalent
of F(z) in Subsec. 2.2). Now let us Taylor expand &,(z) around z = z,.
Since &,(25) = z;, within a certain region around z = 2z, we have: &(z) =
25 + 0E5(2) /02| 1=z, (2 — 25) + O((2 — 24)?), so that for z on the physical RS in
the neighbourhood of z = €5 we can write

1 . _Gs
z”Es(Z) Z"'za

, for sufficiently small |z — z,], (70)

) ™

Note the occurrence of £,(z), and not of E,(z), in the definition for g,; as should

be clear, at z = z, it is &(z), or equivalently E,(z), that satisfies £(2) = z
and not E, (z). Only when z, is real-valued, that is when 2z, = £¢%, or in other
words, when E,(e,) = &, can one replace £,(z) by E,(z). Suppose now that g,
were real-valued. By multiplying the RHS of Eq. (70) by 1 = (2—2,)*/(2—2,)*,
it follows that for z = € £ i, the imaginary part of 1/(z — E,{(¢)) would be
approximately a Lorentzian (c.f. Eq. (68)), with Im(z,) being its width at half
maximum. Since k/[2Im(z;)] can be viewed as the life-time®? of the QP with
energy Re(z;), we observe that the width of a peak in D(¢), or indeed Ap(e),
can be associated to the life-time of the QP whose (real) energy coincides with
the location of the peak along the e-axis. For real values of g, holds: 0 < g, <1
if OF4(2)/02|;=ee= <0, and g5 > 1 if 0 < 8E,(2)/02z|cmes= < 1.3

Three remarks are in place. First, £5(2z) = z may have more than one solu-
tion inside the domain of definition of £,(2) (these solutions may be denoted
by 2., J = 1,2,...,n,). In the case n, > 1, the expression in Eq. (70) must
accordingly be modified. When of the possible n, (> 1) solutions, m, (< ns)

where

0Es(2)
o= 1= 2
g ( 0z

33The factor 2 in 75 := h/[2Im(zs)] originates from the fact that it is !Js(z,)lz {note the
power 2) that describes the probability density of the QP associated with 7’/;5 (zs)-

34For g, pertaining to a QP on the Fermi surface, i.e. Zy, holds 0 < Z;, < 1. The
property {Z; .} < 1 follows from the fact that by definition 0 < n{k) < 1 (see Eq. (83)) and
that according to a Migdal's theorem, to be discussed in Subsec. 6.6, Zy, = n(kp) — n(}c;)
(see Eq. (85)); Zyp > O reflects the property £/ (k;€) 2 0 for € 2 u. We emphasise that
Zyp = 0 does not imply absence of the Fermi surface; see text following Eq. (81) and
Footnote 40.
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coincide, the Taylor expansion of £;(z) around this multiple solution (from
which expansion, in the case of n, = 1, Eq. (70) has been obtained) must be
continued up to and including the m,th order. Second, the pole in the expres-
sion on the RHS of Eq. (70) can never lie on the physical RS, since, unless z, be
real-valued, z, can never satisfy E,(z) = z. Third, when z, is complex-valued,
the approximation in Eq. (70) breaks down for those points on the physical
RS that lie outside the radius of convergence of the Taylor expansion of £,(z)
around z = z,. The severity of the consequences of this failure, on the calcu-
lated low-energy properties,3® depends on how large the ratio Im(z,)/Re(z,)
is. The smaller this ratio, the less severe are the consequences.

When the entire peak structure in A,{e), or D(e), or indeed G{¢), is sub-
jected to the approximation in Eq. (70), then the resulting expression is referred
to as the “quasi-particle approximation” for A,(e), etc. Although possibly rea-
sonably accurate for certain regions of energy, this approximation is in general
poor. In particular, strict adherence to it gives rise to violation of very funda-
mental energy (“frequency”) sum-rules (see, e.g., Eq. (34) above).

6.2. Quasi-particle energies: Poles and non-isolated singularities

Above we have established that equation E,(z) = z has either no solution,
or if it has one {or some), this (these) must be real-valued. Now it may
happen that while E,(z) = z has a real-valued solution, this coincides with
a singular point3® of g{,(z). In such an event, one must realise that the QP
approximation described in Subsec 6.1 may break down, in which case the
approximation presented in Eq. (70) and, in particular, such quantity as g, in
Eq. (71) becomes meaningless. Let us illustrate this situation by means of a
simple example. Consider f(z) := (z - 1)/2 4+ 1 whose analytic continuation
into the complex z-plane is f(z) = (z—1)!/2+1. This functions has two branch
points, one at z = 1 and the other at the point of infinity (Subsec. 2.1}, i.e. at
1/z = 0. We cut the complex plane along (~o0,1], and of the two branches
choose the one for which holds f(z) = f(z) for z > 1; this is what defines

35For instance, application of the approximation in Eq. (70) to the low-energy peak struc-
tures in D{e) pertaining to a semiconductor or insulator leads to a non-vanishing density of
levels ingide the QP gap.

36Recall that (Subsec. 2.1) when, say, g(2) is analytic at z = 29, zo is interior to an open
region in which g{z} is regular. The same is valid when 2 is an isolated singularity of g(z):
there exists an open neighbourhood of 2o where zp is the only singularity of g(z). Branch
points of g(z), by definition, cannot be interior to any open region in which g(z} would be
analytic.
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f(z}; the other branch, according to the notational convection adopted in this

work, should be denoted by f(z) (see Subsec. 2.2}, Consider now the equation
F(z) = z, to be compared with the equation for the QP energies, Eq. (60).
The two solutions of this equation are z; = 1 and z3 = 2, which are both real-
valued. However, z; coincides with the branch point (Subsec. 2.1) of f(z) in the
finite part of the complex z-plane. We further observe that & f (2)/0z diverges

as z — z;. This complication may also occur while solving F,(2) = z (i.e. the
solution may lie on the boundary of the region of analyticity of g’s(z)}. For
this reason it is important to establish the radius of convergence of the series
through which E, (z) is calculated. As a matter of course, any solution outside
this radius is false.

The consequence of the above-discussed possibility is that not all singular

points of G(z) (or those of its associated functions, such as the spectral func-
tion) can be identified with energies of QPs (see in particular Footnote 51).

6.3. Quasi-particles in homogeneous systems

In the wave-vector represcntation (see Appendix A) for the non-interacting GF
holds

~ h
Go(k; 2) = —, (72)
z &g
where
0. ?}’2 k2 (73
T m, )

stands for the non-interacting-electron energy at k. From the Dyson equation,
Eq. (38), it thus follows that

h
2 — (€9 + hE(k; 2)}
Hence E;(z), now denoted by E’k(z), is defined as
Ex(z) =& + AS(k; ) . (75)

As we have demonstrated earlier (Subsec. 5.1), for |2| = 0o, E(k; z) ~ ZHF (k),
the Hartree-Fock SE.37 The exact form of this SE is unknown, but through

é(k; z) = (74)

37For translation-invariant systems, the contribution of the Hartree part of the self-energy
£H (k) (see Eq. (37)) to ¥ F (k) is infinite but is cancelled against equally infinite contribu-
tion due to interaction of electrons with the positively-charged uniform background. Hence,
here SHF (k) and £HF (k) are identical with XF (k) and ZF (k), respectively.
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approximating the GS wavefunction by a single Slater determinant, one obtains
the following form (Ashcroft and Mermin 1981, p. 334)

2
SHF(K) = -2 ke F(k/kr) (76)
where )
1 1-=z 14z
Fla)i= 5 +——In|z—|. (77)

This function decreases monotonically from 1 at z = 0, to 0 as & — o0, while
F(1) = 1/2. Above the subscript s indicates the underlying single-Slater-
determinant approximation. In order to draw attention to the possibility that
LHF (k) may substantially deviate from the exact ZH¥(k), we point out that
the pair-correlation function g(r) (see Subsec. 8.8) as calculated in terms of
a single Slater determinant of plane waves, non-negligibly departs from that
calculated using a correlated GS wavefunction. For instance g¢(r) (i.e., g(r)
within the single-Slater-determinant approximation scheme) approaches 1/2
as r — 0 (Glick and Ferrell 1959, Ueda 1961, March, Young and Sampanthar
1967, p. 12), whereas g(r — 0), depending on the value of electron density, can
(due to the eleetron-electron repulsion) be substantially smaller than 1/2 (Ueda
1961, Singwi, Tosi, Land and Sj6lander 1968, Singwi, Sjolander, Tosi and Land
1970). From the point of view of the many-body perturbation expansion, L7F
and £HF differ in that the former is evaluated in terms of G, while the latter
in terms of Gg.

Luttinger {1961) has shown that, as € — £ [this result had been suggested
earlier by Hugenholtz (1957, p. 544) and DuBois (1959b, p. 51)),38

Y(k;e) ~ Far(e —er)?, eZep, (with ap>0). (78)

38The result in Eq. (78) is, except for change of some symbols, exactly that presented in
the work by Luttinger (1961). For the following reason, this result is somewhat inconsistent
with our assertions: Whereas in the present work we distinguish between pu, uy (= ep)
and 41 (see Subsec. 4.2), with uny < g < gy 41, in Luttinger’s work, on account of the
thermodynamic limit, the quantities pn and g4 are identified with u. According to our
considerations, $(z) is real-valued and analytic in the open interval (un,py41), Whereas
according to Luttinger’s no such open interval exists. If we were consistent, then we had

written (in what follows 17 | 0} : ﬁ”{k;e) =T k;e)=0fore € (un,N+1)s fl”(lc;e +in) =

T (ki) ~ —axle — pn41)? for € 2 pnsrs B(kie —in) = B(k;e) ~ +ogle — pn)? for
e S UN.
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Employing this, the following asymptotic result, for small values of |¢—¢e |, can
be obtained from the first of the Kramers-Kronig-type relations in Eq. (50):

X' (k;e) ~ E(k;er) + Br(e —€r), (with B <0), (79)

where
S(k;er) = DHF (k) + ZC(k; er), (80)

with £€ the “correlation part” (as opposed to the “exchange part”, i.e, LHF) of
the SE operator. Perhaps partly due to Eqgs. (78) and (79), a large body of the
literature on the subject known to the present author invokes the suggestion
that f(z) were analytic for z in the vicinity of z = ¢p. This is not the case,
however. This can be seen in the following two alternative ways. First, the
very fact that 2z = £p is a branch point of §(z) implies that at 2 = €p we
must have to do with a non-isolated singularity (Subsecs. 2.1 and 2.2), from
which it moreover follows that neither a Taylor series expansion nor even a
Laurent series expansion can give a correct description of fl(z) around this
point (see Subsec. 2.3). Second, through explicit calculation of the next-to-
leading-order term (that is the term following the one presented in Eq. (79))
in the asymptotic expansion for £'(g), for |¢ — ep] = 0, one directly observes
that this term involves (€ — £)? In ¢ — £ p|.3® This logarithmic term underlines
our above statement.

Let us now consider some of the consequences of the asymptotic expressions
exposed above. Consider the equation for the QP energies on the real axis (see
Eqs. (60) and (75)). We have Ey(¢) = ¢, where, following Egs. (78) and (79)
for € > ep, Ex(e) ~ €Y +h{Z(k;er) + Bile — €F) F iak(e — er)?}, when
e 2 €p. It can readily be verified that this asymptotic equation has a (real-
valued) solution only if ¢ = €} + AX(k;er) = cp. The second of the latter
equalities, namely

e + hZ(kjep) =€, (81)

is the equation defining the Fermi surface (Galitskii aud Migdal 1958, Luttinger
1960, Egs. (6) and (94) herein).*° In analogy with the non-interacting theory,

39Notice the logarithm function in f dzz™/f{a + bx) = { ;::; (—~a/bYz»~1/(n ~ j) +
{—a/6)" In|a + bz|}/b, for n > 1 {Gradshteyn and Ryzhik 1980, p. 58).
40Note that the definition of the Fermi surface involves ¥, whereas that of Zi, (see Foot-

notes 34 and 51) a derivative of .. Evidently, therefore, one can have a Fermi surface even
when Z;, = 0.



Ground and Low-Lying Ezcited States of ... 157

in which sg plays the role of the energy of a “quasi-particle”, and for which
e9 < €%, with

h? 2
am. °F (82)
the free-electron Fermi energy, defines the interior of the Fermi sea, we define
the interior of the interacting Fermi sea as those regions of the momentum
space where the LHS of Eq. (81) is less than the RHS (Luttinger 1960).

The isotropy of the problem at hand implies that the interacting Fermi
surface, like that of the free-electron system, is spherical. However, there is a
difference that can fundamentally alter the topology of the interacting-electron
Fermi surface. Contrary to £ which is a monotonieally increasing function of k,
interaction effects can in principle render £3 + AX(k; £r) a non-monotonically-
increasing function of k& {see Subsec. 6.5, in particular Footnote 51). If so,
then the Fermi surface may consist of concentric spheres (see Footnote 6 in
Luttinger 1960), each two of which in general alternatively enclose regions
where £ + hE(k;er) < e and where £} + AZ(k;er) > eF (see Fig. 6). This
sequence of alternating Fermi surfaces will be broken if solutions k of Eq. (81),

ep =

b ER+ A E(k ;1)

k

Fig. 6. A sketch of eﬁ + KE(k; un) — recall that uy = ep and that uy < p < un4i1-
Sections of the k-axis corresponding to €} -+ hXi(k; un) < pn, defining the interior of the
Fermi sea, are indicated in bold. In the present case the Fermi sea consists of two concentric
spherical parts. In a uniform system where €} o k2, the segmentation of the spherical
Fermi sea of the non-interacting system (defined through eg < u;) is entirely due to the
interaction effects. According to a theorem by Luttinger (1960) (Luttinger and Ward 1960},
volume of the Fermi sea is not affected by interaction effects. We point out that contrary
to the statement by Luttinger, a discontinuity in the momentum distribution function is not
prerequisite to the existence of a Fermi surface, a fact that follows from Luttinger’s {1960)
own analysis; only it is necessary that (k; un) be real-valued for all k.
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to which we shall refer as zeros, are of even order (here we restrict ourselves
to the regular type of solutions), corresponding to a vanishing Fermi velocity
(see Footnote 51); zeros k of higher than the second order are excluded, since
such zeros will render G(k;£) non-integrable over the wave-vector space (see
Eq. (74)). Further, at the largest k for which Eq. (81) is satisfied, it must hold
e +hT(k;er)}/0k > 0. Tt is interesting to note that, whatever the arrange-
ment of the Fermi surface, the total volume of its interior is exactly equal to
the volume of the non-interacting Fermi sea (Luttinger 1960, Luttinger and
Ward 1960). Through neglecting £¢ in Eq. {(80) and approximating T#F (k)
by LHF (k) as presented in Eq. (76), the Fermi surface is seen to consist of a
single surface, i.e. it retains the topology of the non-interacting-electron Fermi
surface, whose radius is equal to kr. It can readily be shown that the energy
dispersion €3 +ALHF (k) gives rise to a divergent Fermi velocity for the Landau
QPs on the Fermi surface (Ashcroft and Mermin 1981, p. 337; see Footnote 51).

6.4. Fermi versus non-Fermui liquid; a Luttinger’s
theorem revisited

Now we should like to conunent on Luttinger’s result as presented in Eq. (78)
above (Farid 1999a). To this end, it is appropriate that we first briefly describe
the strategies and, most importantly, assumptions that have been instrumental
to obtaining this result. Before proceeding we mention that our following
considerations have direct bearing on three-dimensional homogeneous systems;
Luttinger, in the work that we are about to discuss (Luttinger 1961}, except
for a brief remark restricts his considerations to such systems. In this remark it
has been indicated how Eq. (78) fails to be valid in one-dimensional interacting
systems (now referred to as “Luttinger-liquids” — Haldane 1981).4!
Luttinger has obtained the result in Eq. (78) in the following manner: The
proper SE operator (for a uniform-electron system) has been expanded in terms
of skeleton diagrams (see Footnote 26). Describing the SE operator in terms of
skeleton diagrams, implies a representation for the proper SE operator which
implicitly (through the exact GF) depends upon the proper SE operator itself.
After pointing out that £(k;c) owes its energy dependence to diagrams of
second and higher order in the bare electron-electron interaction, Luttinger
evaluates L (k; ) for ¢ close to ep by considering in detail the contribution of a

41For in-depth discussions of one-dimensional systems see Sélyom {1979) and Voit (1994);
see also Subsec. 4.4 in Mahan (1981).
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Fig. 7. A second-order proper self-energy diagram in terms of the bare particle-particle inter-
action {the broken lines) employed by Luttinger (1961). The solid lines stand for either Gg
or GG, the single-particle Green functions pertaining to the non-interacting and interacting
system, respectively. The external and internal wave-vectors, k and kj, kz and k3, respec-
tively, are shown. Due to the conservation of momentum, one of the internal wave-vectors,
say k3, can be eliminated; k3 = k; + kg — k.

second-order skeleton SE diagram (we have reproduced this diagram in Fig. 7).
Of importance is that Luttinger proceeds by evaluating this contribution first
in terms not of G but of Gg. Up to a multiplicative constant, this contribution
turns out to be exactly that presented in Eq. (78). After this, under the as-
sumption of general validity of Eq. (78),%? Luttinger succeeds in demonstrating
that the considered second-order SE skeleton diagram in terms of G(g) yields
the same quadratic behaviour for £”(k;¢). From this, Luttinger concludes
that the leading-order contribution to £”(k;¢), for € approaching ez, does not
depend on whether the skeleton SE diagrams are determined in terms of G or
Gy. This simplifying result enables Luttinger to show that to all orders in the
perturbation expansion, Eq. (78) is valid.4®

Two general comments are in place. First, as is obvious from the above
summary, Luttinger’s result (Eq. (78)) has been obtained within the framework
of the many-body PT. It has been pointed out (text preceeding Eq. (52) in
the paper by Luttinger (1961); see also, e.g., the work by Mattuck (1976),
p. 207) that Eq. (78) is therefore valid so long as the underlying many-body
PT is valid. In other words, Eq. (78) may not be a priori universal since the
many-body PT may break down.

42Roughly speaking, this assumption provides justification for replacing a Lorentzian by a
Dirac d-function (see Egs. {68) and (69) in Luttinger 1961)}.

43This conclusion is arrived at by explicitly demonstrating that any skeleton SE diagram
(in terms of Gg) of the 2nd and higher order in the bare electron-electron interaction makes
a contribution to £"(k;¢) which is proportional to (¢ — ¢)*™ where m > 1.
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The problem of the break-down of the zero-temperature (T' = 0) many-
body PT, in particular in homogeneous systems, has been addressed by Kohn
and Luttinger (1960) and subsequently by Luttinger and Ward (1960}, follow-
ing the observation that in general the GS total energy as obtained from the
T — 0 limit of the perturbation expansion for the grand potential (Bloch and
De Dominicis 1958) involves non-vanishing contributions that are identically
vanishing within the framework of the zero-temperature many-body PT for
the GS total energy (Goldstone 1957).4* Kohn and Luttinger have shown that
up to the second order of the PT, the two many-body PTs are identical for
homogeneous systems {with spherical Fermi surfaces) of fermions of spin less
than or equal to 1/2 (see Footnote 10 in the work by Luttinger and Ward
(1960)). This result has subsequently been shown to be valid to all orders
of the PT by Luttinger and Ward (1960). Since in the present work we are
dealing with either spin-less Fermions or spin-compensated systems of spin-1/2
particles, we shall therefore not encounter a break-down of the perturbation
expansion.*> We point out that the unusual (i.e. non-Fermi-liquid-like) be-
haviour of the high-T, compounds in their normal states has been associated
with the low-lying excitations of these compounds forming a Luttinger liquid
{Anderson 1990, 1991, 1992, 1993) — as opposed to a Fermi liquid —, and
this in turn has been ascribed to the break-down of the many-body PT as
applied (Engelbrecht and Randeria 1990, 1991) to these systems. We shall not
explicitly touch upon this problem here.48

Second, the expansion concerning L”(k;e), for € — ep, of which the
leading-order term we have presented in Eq. (78), cannot be a Taylor expan-
sion with some non-vanishing radius of convergence, since e is a (non-isolated)
singular point (Subsec. 2.1) of i(k; z). Rather it is an asymptotic expansion
(see Subsec. 2.3). The logarithmic corrections (Noziéres 1964, p. 93) to the
results in Eqs. (78) and (79) — see text following Eq. (80) above — make the
validity of this statement evident.

Now we present a number of remarks on the technical aspects of Luttinger’s
work. First, the second-order diagram chosen by Luttinger (reproduced in

447he diagrams corresponding to these non-vanishing contributions are referred to as
“anomalous” diagrams. These have vanishing contributions for finite systems, however.
45Except that for sufficiently low electron densities, where the charge density of the non-
interacting GS is uniform in contrast to that of the interacting system which is a Wigner
crystal. In this regime of densities, the PT based upon a translation-invariant state naturally
breaks down.

46Nonetheless, some elements of our present analyses are relevant to the on-going discussions
on this subject.
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Fig. 7) is in fact divergent for such long-range interaction functions as the
Coulomb one. This is because both of the interaction lines in this diagram
transfer the same amount of wave-vector, k — ki. Since in three dimensions
ve(k) < k™2, the integral over k; diverges for vanishingly small [k — ki |; by
choosing the origin at k, in the spherical-polar coordinate system (k;, ¢, §) we
have d*k; = dkidpdf ki sin(f), from which it is seen that in principle only
poles of at most second order can be integrated over. Although the divergence
of the second-order diagram adopted by Luttinger cancels by the contribu-
tions of a set of equally singular higher-order, random-phase approximation
(RPA), diagrams (see, e.g., Pines and Noziéres 1966, pp. 300-304, Mattuck
1976, pp. 185-192), it may be rightly questioned whether properties valid for
the individual terms (e.g. o (¢ — £r)?) in such a highly singular infinite series
necessarily survive the infinite summation. In this connection we mention that
for series that are convergent, but not absolutely convergent, the sum depends
on the order of summation {Whittaker and Watson 1927, pp. 18 and 25). Fur-
ther, for series which are not uniformly convergent, the analytic properties of
the sum may not coincide with any of those of the individual terms in the series
{(Whittaker and Watson 1927, pp. 91 and 92, Titchmarsh 1939, pp. 95-98). As
for the problem under consideration, since a series whose terms are not finite
cannot be absolutely or uniformly convergent (leaving aside that any finite sum
of such a series is devoid of meaning), it is by no means clear whether the result
in Eq. (78) can be of general validity for, say, the Coulomb systems.4”

The divergent SE terms to which we have referred above, are those which
involve at least two bare Coulomb interaction lines which carry the same wave-
vector. Those diagrams that are attached through {wo bare interaction lines to
the proper SE diagrams are by definition polarisation diagrams (Hubbard 1957,
Fetter and Walecka 1971, p. 110). Since by conservation of wave-vector these
two interaction lines must carry the same amount of wave-vector, it follows
that all proper SE diagrams that contain polarisation insertions are therefore
divergent (see Mattuck 1976, p. 188).

471t has been shown (Fukuyama, Narikiyo and Hasegawa, 1991; Fukuyama, Hasegawa and
Narikiyo, 1991) that for the two-dimensional Hubbard model, within the f-matrix approxi—
mation gwhose vahdxty, in principle, is restricted to the low-density limit), &"{kp;c +in) ~'

(e—er)¥inle ~ep|, as € = ep, with | 0, which still signifies a Fermi-liquid behaviour (see
Footnote 4). This logarithmic modification with respect to (¢ — ¢ )2, which has been known
from the earlier works by Hodges, Smith and Wilkins (1971) and Bloom (1975), signifies
the fact that even for short-range interactions it is not a safe procedure to draw conclusions
with regard to L/ (k;¢) from the behaviour of the individual terms in a perturbation series
expansion of L(k;¢); for this to be a safe procedure, it is required that the uniformity of
convergence of the latter series be ascertained (see Titchmarsh {1939), p. 95).
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If we now analyse the proper SE diagrams in terms of the dynamic screened
interaction function W (such analysis must then discard all proper SE diagrams
that involve polarisation insertions — otherwise certain processes are multiply
counted),*® we readily observe that even in the lowest order of the perturbation
expansion (see Subsec. 9), the behaviour of ¥£”(k;¢), in particular for € = ep,
crucially depends on the charge-neutral excitation spectrum (as distinct from
the single-particle, i.e. charged, excitation spectrum, which is contained in G)
of the interacting system. Determination of this excitation spectrum, which is
contained in the dynamic density-density correlation function x(g) (see Sec. 8
and in particular the closing paragraph of Subsec. 9.4), is as intractable a task
as that of the single-particle excitation spectrum.*®

6.5. Breakdown of the many-body perturbation theory?

In addition to the above, there is a technical aspect associated with the evalua-
tion of X7 (k; £} corresponding to the second-order diagram dealt with explicitly
by Luttinger (see Fig. 7) that we find worth mentioning and commenting on.
Conservation of wave-vector (or momentum) implies that of the three internal
wave-vectors Kj, ko and ks, one is fully fixed by the other two; we have namely
ks = k; + ka2 — k. Mathematically, this restriction follows from the fact that
for the matrix element of the Coulomb potential (see Eq. (57) in the work by
Luttinger (1961)) (k, ka|vc|ki, ko) = ve(k—k1)0k -k, ko ~ks holds. This implies
that of the three 3-wave-vector integrals the one over, e.g., k3 can be elimi-
nated. If one proceeds in this way, then the subsequent algebra becomes quite

481n uniform systems (more generally, in all systems without a gap in their single-particle
excitation spectrum — i.e. in systems with a Fermi surface) the static screened interaction
function is shorter-ranged than the bare Coulomb interaction. Within the approximate
Thomas-Fermi theory of screening, the static screened interaction is exponentially short-
ranged (Fetter and Walecka 1971, pp. 175-178; Ashcroft and Mermin 1981, pp. 340-342),
W{lir - r'}};0) x exp(~krrlir — r’||)/||r ~ r||, where krr stands for the Thomas-Fermi
wavenumber; for metallic densities k7 117. ranges between 7.5 and 13.0 A. This renders W {k;0)
finite for £ — 0. More accurate calculation, within the random-phase approximation (RPA),
yields however a power-law decay for large ||r — /|| : W{|jr —r’||; 0) ~" cos(2kFr||r —t'||)/jir —
r'I|® (Fetter and Walecka 1971, pp. 178 and 179; Ashcroft and Mermin 1981, p. 343), to be
compared with ve(r—r’) o 1/|lr—r’||. This is sufficient to rendering W (k; 0) finite for k — 0;
recall that W (k; 0) = ¢~ 1(k; 0)ve(k), where €(k; ) stands for the dynamic dielectric response
function (Subsec. 7.5), and that within the RPA (see Eq. (5.65) in Pines and Noziefes (1966)),
€(k;0) ~ k% /k%, as k — 0; with ve(k) ox 1/k2, it is readily seen that indeed W(k;0) is
finite for &k — 0.

49Whereas X" (¢) is a measure for the density of the excited interacting N = 1-states, x"'(¢)
— see Eq. (112) — is a measure for the density of the excited interacting N-particle states.
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tedious. Luttinger, in evaluating £”(k;¢) corresponding to the diagram in
Fig. 7 in terms of G, proceeds by transforming the wave-vector integrals over
ki, k2 and k3 to those over the single-particle energies of the non-interacting
problem & , €2 and &) .5° From Eq. (73) and the above expression for ks
it is readily seen that ¢f, = €}, + &}, +eb + (B /me){k; k2 —k - k; — k-
ko}. From this it is clear that in spatial dimensions higher than one, the
orientational freedom of k; and ky with respect to each other as well as k
permits independent variation of £ , alongside independent variations of s?ﬂ
and 822 over non-vanishing intervals, in spite of the fact that kg is completely

fixed by ky and ky. It is due to this possibility of independent variations in

52 ’s over non-vanishing intervals that for systems extending over more than

one spatial dimension, Eq. (78) can hold — here, as far as contribution of the
diagram in Fig. 7 in terms of Gy is concerned.

Let us now in evaluating the contribution of the diagram in Fig. 7 in terms
of G follow Luttinger in all respects. The QP energies being ¢4, following
Luttinger, we will have to transform the integrals over wave-vectors ki, ko
and kg by those over &, , &k, and ,,>! to be compared with those over sgj,

501n the spherical polar coordinate system (k,,8) we have d®k = k?sin(f)dkdgdd. With
€9 as given in Eq. (73), it follows that d®%k = 1(2me/Hi2)*/2 /€2 sin(B)deldpdd. Thus
&k o< dso

51Followmg Egs. (60) and (75), & is to satisfy ex = & + AZ{k;ex). As discussed in Sec. 6,
for such ex to exist it is necessary that py < g < HN+1 In the present case only £, 's close
to un = ep play a role. Therefore, leaving aside problems with regard to the differentiability
of the functions involved, one can easily solve £; from the above equation to linear order in
{k — kr) — such solution is of nature asymptotic. With ex = g5 + O /Ok|g=pp(k ~ kF) +
o ((k -~ k:;.*)z) some simple algebra yields 8sk/6k§k=kp = Znp 0{ed + AE(k;ep)}/Oklk=k

where Zy: (1 - ﬁﬂE{kp,s)/as}g—gF) — gee Subsec. 6.6. In view of our discussions
and remarks in Subsecs. 6.1 and 6.2, it is possible that Zk;:- = grp (see Eq. (71)) may
be vanishing, in which case one observes that to linear order in (k — kp), ex is a constant
(unless 8Z(k;ep}/8k ~ oo for k — kp — see however further on) Thxs behaviour of
&x is fundamentally different from that of ¢, for which holds & = &) st (hPkp/me)

(k— kp)}+ (h?/[2m.]}(k — kr)2. For the effective mass m? of the quasi-particle with energy
ex at k = kr we have m} := h2kp/(Ock/Ok|k=kp), so that a vanishing ey /Ok|r=kp
would imply a diverging effective mass. However, one must be aware of the fact that this
divergence merely signals the breakdown of the notion of quasi-particles on the Fermi surface
{see Subsec. 6.2). Since for the Fermi velocity of the quasi-particle with energy ¢; at k = kp
we have vp = R 18ex /Ok|p=k, = Pkp/m}, the above expansion for &; can alternatively

be written as ¢, = ep + Hvp(k — kr) + O ((ic - kp)z). It is the linearised version of

this expression that is invariably used for describing the behaviour of G(k;¢) close to the
Fermi surface (see, e.g., Migdal 1957, Noziéres 1964, p. 93). Now let both 8X(kp;¢)/0¢ and
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with 7 = 1,2,3. Now unless we make an explicit assumption concerning the
dependence of £, upon k, such as for instance g = A%k%/[2m?], with m} the
renormalised mass of the QPs (see Footnote 51), it is not possible to ascertain
whether £;,, with k3 = k; + ka — k, can arbitrarily — i.e. independent of
variations in g, and &g, -—, be varied over some finite interval (i.e. similar
to what is the case for €} ). If in a certain circumstance this is not the case,
or range of variation in &g, is infinitesimally smaller than ranges of variation
in e, and &, (taking into account the requirement of the conservation of
energy), for € | e we may then have £”(¢) ~' (¢ — ep)'t” where v € [0,1).
We observe that Luttinger’s derivation of Eq. (78) in a way implicitly excludes
“non-Fermi-liquid” behaviour.5? In other words, barring all possible problems
associated with the derivation of Eq. (78) from the proper SE diagrams in
terms of the bare Coulomb interaction (which we have discussed above), it is
not incorrect to state that the result in Eq. (78) constitutes a possible self-
consistent result, but by no means the only result that can be derived within
the framework of the many-body PT. This implies that observation of non-
Fermi-liquid behaviour in the low-energy (or low-temperature) properties of a
homogeneous interacting system does not necessarily entail the breakdown of
the many-body PT.

O%(k; e p)/0k be unbounded for ¢ = ex and k = kp, respectively. Although formally the
above expression for dey /Ok|y=k may be used to obtain v = ~h~1 8%(k;ep)/Oklkarp/
O%i(kr;€)/0¢le=ep (which may or may not be finite), it should be evident that in doing so
one is neglecting the possibility that for, e.g., k | kg it may be the case that, for instance,
Llk;ep) ~ S(kp;er)+alk—kp)?, with o € (0,1) (recall that a function’s asymptotic series
may not be uniform — see Subsec. 2.3); one is equally neglecting the possibility that for e |
£r it may happen that, for instance, X{kr;e) ~ E(kpier)+8 (e—ep)+y(e—cr)in{e—cF).
In such cases, vp is clearly an altogether unsubstantial quantity and cannot be defined: In
order to define v, it is necessary that for k — kg one can write gy, = ep+hvp(k—kg)+R(k),
where R(k) = ok — kg); although R(k) may be a singular function of k at k = kp, the
property R{k) = o{k — kp) ensures existence of a finite first derivative of ¢, at k = kp. At
least one of the above typical asymptotic expressions for L{k;ep) and X{kp;e) is sufficient
to cause that no such R(k) exists and therefore render e, = ep + Bup(k — kp) + R(k)
devoid of any meaning. In the proof of Luttinger's theorem no account has been taken of
the above possibilities, which cannot be a priort ruled out. Finally, it is important to point
out that Galitskii's (1958) results, for the real and imaginary parts of ¢, close to k = kp,
obtained through solving the Galitskii integral equations, yielding a linear behaviour for the
former and a quadratic one for the latter (linear and quadratic in (k — ky)), are explicitly
determined for short-range fermion-fermion interactions (see Farid 1999a).

52Using the Kramers-Kronig relation in Eq. (48), it can be shown that £”(¢) ~' |¢ — ep|°,
as £ — £, implies the following for L'(¢) — E(ep): (1) ~ (¢ —er) when 1 < o < 2; (2)
~! (e — ep)Inle — er| when o = 1 (“marginal Fermi-liquid” behaviour); (3) ~' (& — ep)°
when 0 < o < 1.
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6.6. Momentum-distribution function; a Migdal’s
theorem revisited

In view of the above discussions it is instructive that we consider a well-known
result due to Migdal (1957); this result has also been obtained, through a
somewhat alternative approach, by Luttinger (1960).

Migdal (1957) first establishes that the momentum-distribution function
n{k) (to be precise, here “wave-number distribution function”) in the GS of a
uniform electron system,

n(k) = (¥ n,0[@}ak|¥N,0) , (83)

is directly related to the hole part of the GF, G (see Eq. (10)) in the momen-
tum representation. From this, upon deformation of the contour of the energy
integration along the real axis into the complex energy plane, Migdal obtains®3

n(k) = / 2 G(ki2), (84)

where C denotes the contour as depicted in Fig. 8. Now Migdal states that
for k infinitesimally less than kp, denoted by kg, é(k; z) has a pole, with
an infinitesimal imaginary part (due to L”(k; ) — see Eq. (78)), enclosed by
contour C in Fig. 8, and that through increasing k to ki (k} > kr), the imag-
inary part of the mentioned pole changes sign, upon which the pertinent pole
leaves the interior of C.5* Aside from this singular part (the singularity being,
according to Migdal, a simple pole), the GF has also a regular or incoherent
part which does not contribute to n{kz) ~n(k}) — because of it being regular.
Thus it follows that (see Egs. (79))

n(kz} — n(kL) = Zip := (1 — BBir) Y, (85)

53The notation here is ours — Migdal does not employ G(k; z). Further, the convention
adopted by Migdal for G differs from ours by a minus sign.

545¢rict application of the notation of the present work would demand that we denoted kg
by kF, the latter via Eq. (81) corresponding to ep = uny. Thus we would only seed t.o
define &t F corresponding to s}‘. BN+1. As we have mentioned earlier {see Subsec. 4.2 and
Footnote 38}, in our case u is interior to an open, albeit infinitesimal, interval on the s-axis

where both G(k; z) and L(k; z) are analytic.
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Fig. 8. Contour of integration employed in the proof of the Migdal theorem concerning the
discontinuity of the wavevector (or momentum) distribution function n(k) at & = kg and
its relation to the quasi-particle weight on the Fermi surface, Z; ..

where Zy,. = gi,, as defined in Eq. (71). This result is correct in as far as
Eq. (78), and therefore Eq. (79), is correct (see Subsec. 6.5).5

We now restate the arguments put forward by Migdal in the mathematical
language of the present work (see Footnote 54). The singularity of é(k}?; z) at
z = ep(= pn) and of G(k}; 2) at 2 = €5(= pv+1) [see following paragraph) are
not isolated so that neither z = er nor z = €}; can be a pole; they are branch
points (see Subsec. 2.1) of G(kp; z) and G(k}; 2), respectively. What renders
Migdal’s result nevertheless correct is the specific form of the asymptotic result
in Eq. (78), so that as far as the integral over C is concerned, the singularity
of é(kp;z) at z = ep (see Eqgs. (74) and (81)) can be thought of as being a
pole circumscribed by C. The situation would be the same if instead of the
result in Eq. (78), we would for instance have " (k; €) ~ Fagle —ep|*t? with
v >0, for € 2 e (see Footnote 38). For vy =0 and —1 < v < 0, n{kz) would
admit a vanishing contribution from the singularity of 5’(kp;z) at z = ep
(see Footnote 52); this case corresponds to marginal Fermi-liquid and one-
dimensional interacting systems, known as “Luttinger liquids” (Footnote 5
in the work by Luttinger (1961), Luttinger (1963), Mattis and Lieb (1965),
Haldane (1981), Voit (1994) — see Subsec. 6.2 and Footnote 51), respectiviely.

55For Zy » Calculated for electrons interacting via the Coulomb potential see Hedin (1965),
Rice (1965) and Hedin and Lundqvist (1969) and for n{ky) — n(k;) calculated for fermions
interacting via a repulsive hard-core potential see Galitskii (1958) and Belyakov (1961). For
n(k) calculated within the RPA see Daniel and Vosko (1960) and for an accurate model for
this function see Farid, Heine, Engel and Robertson (1993).
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Further, according to Eq. (78), £”(k;¢) is vanishing for ¢ = er and € =
€} (see Footnote 38), so that contrary to the statement by Migdal (see text
following Eq. (84)), the imaginary part of the “pole” of G(k;z) at 2 = e
cannot change sign upon changing k from kr(= kz) to kj. Using our strict
conventions (see in particular Footnotes 38 and 54 — see also Sec. 6), G(k; z) is
everywhere analytic with the exception of some points and intervals of the real
energy axis. Thus even without reliance on the asymptotic result in Eq. (78}, it
is evident that whatever the nature of the singularity of é(fc; z) that contributes
to Eq. (85), it can be nowhere but on the real energy axis. This singularity
is the solution of Eq. (81) (see Eq. {74)). One observes that rather than the
imaginary part of the singular point of G(k; z) changing sign for & displaced
from kr to k}, Eq. (81), which is satisfied for k = kr, ceases to be satisfied for
k =k} and therefore Gk er) i 1s bounded, the equation fulfilled by k = Ic:p is
ak~+~ﬁ2(k et) = et. Evidently, £ = iy, which is the point where G‘(k z)
is unbounded, is located in the exterior of the region enclosed by the contour C
in Fig. 8 (see also Figs. 3 and 4) and therefore has no contribution to n(k}).

The conclusion that may be drawn from the above considerations is that
through a careful process of analytic continuation, and making clear distinction
between various branches of many-valued functions (classified as “physical”
and “non-physical”}, there arises no need for invoking such ad hoc assumption
as “change in sign of £”(k;e)” upon changing k from kp to kf (see Farid
1999a).

6.7. Some comments concerning solutions of the
quast-particle equation

In Subsec. 6.1 we considered solution of the QP equation £,(z) = z; under
the assumption that this equation possesses only one solution (which in gen-
eral is located on the non-physical RS), we have denoted this by z;. As we
have further mentioned, unless z, be real-valued, it cannot be considered as
corresponding to some stationary one-particle eigenstate of the fully inter-
acting Hamiltonian H; for a complex z,, the corresponding QP describes a
superposition of a macroscopically large number of degenerate and almost de-
generate stationary eigenstates of H, so that it cannot be asserted that “the
state” corresponding to z, would have evolved, in the course of the adiabatic
switching-on of the perturbation H — Hy, from a smgle eigenstate of the non-
interacting Hamiltonian Hy corresponding to energy €2 (notice the subscript
s, which we have chosen to be the same subscript as in z,). We recall the
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popular statement, that the Landau theory of Fermi liquids relies upon the
implicit assumption that eigenstates of H stand in a one-to-one correspon-
dence with those of Hy (Landau 1957a). This assumption is justified (in an
asymptotic sense) a posteriori by Eq. (78) for the low-energy excitations of
the many-electron system; this clarifies the reason for the applicability of the
Landau theory (if it is applicable at all) to describing properties corresponding
to low-laying excited states of interacting systems.

Another point of some relevance is the following. Suppose that by some
means &£ (z) = z has been solved and that the solution 2, happens to be close
to £9, in particular that |Im(2,)| < |Re(zs)|. In such an event, one might wish
to obtain the “physical” counterpart of z,, i.e. £, {this is not necessarily the
same energy that features in the Lehmann representation for G(¢) in Eq. (11)),
through iteratively (DuBois 1959a, pp. 208-210) solving the first equation in
Eq. (69), adopting a finite-order Taylor expansion for E,(¢) := E,(e + sgnle —
plin) (see Eq. (65)) around £ = el withi =0,1,..., where e = ). Here
the requirement for “iteration” arises from the non-linearity of E,(¢) [around
89)], leading to the general property that efith # sﬁ,‘) for i > 1. Let us for
simplicity make use of a first-order Taylor expansion. The linear equation thus
obtained has the following solution

Sli+1) €% + Re(E,(e!")) — Re(E! (eii)))sii)
“’ 1~ Re(E(e"))

~ €0+ Re(Ba(el")) + Re(B,(¢))Re(EL(c)),  (86)

where El(¢) := 8E,(c)/8¢. In what follows we assume €2 to be very close to
Es so that 5f+1 with ¢ = 0 is to a high degree of accuracy equal the desired
real-valued solution,%®

For uniform systems of electrons, E,(z) © ed + hS(k; z) (see Eq. (75))
so that El(z) & hOZ(k;z)/dz. For these systems, DuBois (1959a, pp. 208-
210; see also DuBoisﬁ_&lQSQb, pp. 66 and 67)) has shown that derivatives like
LM (k; 2)/0z = BEkm)(z)/Bz in the above expression, with i(m)(k; z) de-
noting the total contribution of thie mth-order SE diagrams (including both
skeleton and non-skeleton diagrams) in the perturbation expansion for f)(k, z)
in terms of the dynamically-screened electron-electron interaction, gives rise to

56That this procedure can produce real-valued solutions, is not at variance with our earlier

statement that E;(z) = z in general has no solution. This is because taking the real part
of a complex function is not an analytic process.
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N

(a) (b)

Fig. 9. Two self-energy (SE) diagrams in terms of the single-particle Green function Gp
of some “non-interacting” Hamiltonian (solid directed line) and the dynamic screened in-
teraction function W (wavy line). Diagram (b) is not skeleton but contributes to the SE
operator due to use of Gg. The derivative with respect to the external energy parameter ¢
of diagram (a) gives rige to a contribution that partly cancels contribution of diagram (b) to
L(e). When Z(¢) is approximated by a finite-order perturbation series, 8X{g)/0¢ involves
incompletely-compensated contributijons.

contributions that cancel some terms in f](k; z) originating from £(m+1)(z).57
Thus for ¢ = 0, there is a (partial) cancellation between Re(F,(¢?)) and
Re(E,(c2))Re(E! (<)) in the second expression on the RHS of Eq. (86). As
an example, the derivative with respect to € of diagram (a) in Fig. 9 gives rise
to a contribution that counters some contribution due to diagram (b) in the
same Figure.

Two conclusions may be drawn from the above considerations:5®

First, when ¥$(¢) has been obtained through a finite-order perturbation
expansion in terms of some Gy, derivatives of X(g) involve contributions that
in the exact theory do not contribute, due to the above-mentioned cancella~
tion. Since such cancellation is not complete when a finite-order perturbation
expansion for () has been employed, it is consequently appropriate to use
s ~ €% + Re(E,(e2)) and neglect the term involving Re(E!(9)) on the RHS
of Eq. (86) — (Rice 1965, second paragraph on p. 111). For a specific example
of such cancellation, concerning low-temperature heat capacity of a degenerate
uuiform-electron system, see DuBois (1959b, pp. 66 and 67).

5714 can be directly verified that 6(3!00(:4)18’ ¥/ 0z = mﬁ(slGo(z)Gg(z)ls’ }. We have, more-
over, E,(z) = o{s|Hols)o+o(s| E(z)&s}o Here {|s)} denotes any (complete) set of one-electron
statea, and {|s)o} that of normalised eigenstates of Hg.

58Lack of space prevents us from doing due justice to the subject matter, so that here we
essentially quote other authors.
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Second, in a perturbative calculation of the GF, the SE diagrams and the
vertex-function diagrams (see Subsec. 7.5) should be concomitant or “corre-
sponding”; this on account of certain cancellation property (Mahan 1994).5°
Self-energy diagrams have two external points and the vertex-function dia-
grams three (see Subsec. 7.5). Concomitant SE and vertex diagrams give rise
to contributions in, say, the polarisation function that largely cancel (Ma-
han 1994). The criteria put forward by Baym and Kadanoff (1961) and Baym
(1962) on the one hand, and the Ward (1950) identities (Noziéres and Luttinger
1962, Nozieres 1964, Mahan 1992) on the other, provide means by which to
select out sets of vertex-function diagrams that are concomitaut with a given
set of SE diagrams.

7. Determination of The Single-Particle Green Function

In this Section we review several methods for calculating the GF of an inter-
acting system. We give our main attention to the many-body perturbation
theory.

7.1. Exact approach

The single-particle Green function G(rt,r’t’) can in principle be determined
from its defining equation, Eq. (8). This implies, amongst others, knowledge of
the GS wavefunction, so that this approach becomes impracticable for systems
with even a moderate number of electrons. For completeness, for describing
the time-dependence of the field operators in the Heisenberg picture, here use
should be made of the Trotter formula (Negele and Orland 1988, p. 337).99 In
doing so, since G(rt,r't’) is a function of ¢t — ¢, the time argument of one of
the field operators can be held fixed.

7.2. Eguation-of-motion approach and truncation of hierarchy

The equation-of-motion (EOM) for G directly follows from the EOM for the
annihilation field operator (or its Hermitian conjugate, the creation field

59We draw attention of the reader to misprints in (Mahan 1994). For instance, on pp. 346
and 347 of this work, the Hubbard G(k) within the LDA is mentioned to be equal to — Kz
while in reality this G(k) is equal to —Kyc/vc(k). Further, we should like to mention that
the screened interaction Ws suggested in (Mahan 1994} is incorrect on physical grounds —
see (Farid 1997a).

80For a realisation of this approach (in combination with a Monte-Carlo technique for inte-
gration) for applications to systems involving coupled boson-fermion fields see Blankenbecler,
Scalapino, and Sugar (1981).
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operator) in the Heisenberg picture, namely (Fetter and Walecka 1971, p. 59),

iﬁ—-————&?j\ﬁ (rt)

5 = (), H], (87)

where |, |- stands for the commutation operation. Because of the two-body
(Coulomb) interaction, involving four field operators (see Eq. {5)}, the EOM
for G is not closed but hierarchical: it involves the two-particle GF (see, e.g.,
the work by Kadanoff and Baym (1962), Ch. 3). For the same reason, the EOM
for the n-particle GF involves the (n+ 1)-particle GF, Thus in practice solving
the EOM for G is only feasible if at certain level the hierarchy is broken, which
amounts to suppression of an infinite class of interaction processes (these of
course may not be significant processes for the physical properties of interest).
It is important to point out that truncation of the hierarchy of the GFs in an
arbitrary fashion may lead to violation of the gauge invariance and of all or
some of the conservation laws. Baym and Kadanoff (1961) and Baym (1962)
have analysed this subject in considerable detail.

The EOM for the GF even at the crudest level of truncation of the hierarchy
of the GFs is non-linear, implying a multiplicity of solutions. A major difficulty
in dealing with such non-linear EOM is that of singling out the correct solution
from amongst these. We shall return to this subject in Subsubsec. 7.4.1.

7.3. Conserving approzimations

Baym and Kadanoff (1961), amongst other things, present sufficient condi-
tions to be met by the approximate two-particle GF in order for the truncated
hierarchy of the GFs (see Subsec. 7.2) to constitute a gauge invariant and con-
serving formalism (conditions (A) and (B) in the paper by Baym and Kadanoff
(1961), p. 290). We shall not touch upon the details of these criteria here, but
only mention that according to Baym (1962), these are satisfied when the SE
operator is the functional derivative with respect to G of a constant functional
®, i.e. when X(rt,r't') = §8/6G(r't/, rt) — this is, therefore, a statement of a
sufficient condition for an approximate framework to be gauge invariant and
conserving. A scheme based upon some chosen functional ® is referred to as
a “@-drivable conserving approximation”.6! For applications of this approxi-
mation see, e.g., works by Bickers, Scalapino and White (1989), Bickers and

611n general a ®-derivable approximation is not invariant under the so-called ezchange or
crossing symmetry. For definition and details see the work by Bickers and White (1991).
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Scalapino (1989), Bickers and White (1991), Serene and Hess (1991), Dahm
and Tewordt (1995a,b), Micnas, et al. (1995) and Dahm, Manske and Tewordt
(1997).

7.4. Many-body perturbation theory, and its breakdoun

The GF can in principle be determined through application of the many-body
PT (for technical aspects see, e.g., Fetter and Walecka 1971, Negele and Orland
1988). Elsewhere (Farid 1997a, 1999b) we have in some detail discussed the
problems from which the many-body PT can suffer. Therefore here we shall
be brief and mention that a perturbation expansion can fail because (i) the
perturbation series may diverge as a whole; (i) some of the terms contributing
to the perturbation series may be divergent; (iii) after having summed all
terms of the series — barring possible difficulties due to problems (i) and
(ii) —, the outcome may be unrelated to the sought-after single-particle GF
(“bogus convergence”).

7.4.1. In defence of the many-body perturbation theory

Problem (i) can be understood by analogy with the following simple example.
Consider Sp(z) := 1+ + .-+ z2". For n — oo this series is absolutely
convergent only when |z| < 1 (it is, however, conditionally convergent for
z < 1, in the sense of being Borel summable (Whittaker and Watson 1927, pp.
154 and 155, Lauwerier 1977, pp. 45-50, Negele and Orland 1988, pp. 373~
376)),%% and it diverges otherwise, Thus although S,(z) for n — oo is formally
a series expansion for (1 — x)~1, it has no validity when z lies outside some
specified domain. In the same way, a many-body perturbation expansion for G

in terms of some “reasonable” non-interacting Green function Gy can become

invalid when interaction, or perturbation, becomes too “strong”.83

82For other summation techniques (like Cesdro’s and that by Riesz) see (Whittaker and
Watson 1927, pp. 154-156).

83There is a subtlety involved here. Contrary to an ordinary series, a many-body pertur-
bation series involves products of matrix elements of the “perturbation” with respect to
the initial, intermediate and final many-electron states. Hence the “strength” of the per-
turbation is not solely determined by the “perturbation” itself — in the second example in
Subsubsgec. 7.4.3 we shall see that, for a particular model, irrespective of the magnitude of
the coupling constant X of perturbation, but as long as A > 0, the Rayleigh-Schrédinger
perturbation series yields the ezact GS total energy. In some cases (such as that concerning
a uniform system of electrons), the perturbation Hamiltonian may involve a multiplicative
dimensionless parameter through which the “strength” of the perturbation can be regulated.
However, the perturbation series in powers of such parameter may not be convergent, but
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Problem (ii) arises quite generally. However, for the so-called re-normal-
isable field theories (Collins 1984}, divergent terms can be made harmless
through partial summation of specified classes of perturbation terms. In other
words, divergent terms in such field theories have always counter-terms. For
the theory adopted here, as described by Hin Eqgs. (2)-(5), the possible singu-
lar terms in the perturbation expansion for GG arise from certain polarisation
terms {diagrammatically represented by the so-called “loop” diagrams — see
Subsecs. 6.4 and 8.4): due to the long range of the bare Coulomb interaction, in
the momentum space this interaction is singular in the long-wavelength limit,
so that the mentioned terms may involve divergent momentum integrals cor-
responding to “zero”-momentum-transfer polarisation processes (“infra-red”
divergence). Now we can distinguish between two types of systems: those that
do not have gap in the low-energy part of their single-particle excitation spec-
trum (such as metals) and those that do have a gap in this spectrum (such as
semiconductors and insulators). In the former systems, where one encounters
divergent momentum integrals, the partial summation over the polarisation
diagrams results in a screened electron-electron interaction function which is
shorter-ranged than the bare Coulomb interaction (see Footnote 48) and, in
addition, is energy dependent. This screened interaction renders divergent mo-
mentum integrals convergent. Therefore through a partial summation over the
polarisation diagrams — which amounts to expressing the perturbation series
in terms of the dynamic screened interaction function, as opposed to the static
bare Coulomb interaction function —, the theory is renormalised. In the latter
case, existence of a fundamental gap in the single-particle excitation spectrum
renders contributions of all polarisation diagrams finite.5* We emphasise that

asymptotic and divergent (Subsec. 2.3}, no matter how small the parameter — see Subgub-
sec. 7.4.2. A divergence of this type may be circumvented by performing the perturbation
expansion in terms of a “non-interacting” Hamiltonian that implicitly depends upon the
interaction, so that the resulting perturbation series is not merely a power series in the
perturbation parameter. See Footnote 69,

64This can be understood by recalling the fact that in applying perturbation theory to a
manifold of degenerate states, it is required first to construct a suitable linear combination
of these states, for otherwise a perturbation, no matter how weak, gives rigse to divergent
contributions. For states corresponding to non-degenerate energy levels, no similar measure
need be taken. In elementary quantum mechanics these subjects are dealt with under the
headings of “degenerate perturbation theory” and “perturbation theory”, respectively. In
the present case, systems with a Fermi surface (whose “occupied” energy levels are infinitesi~
mally below u [i.e. at uy and lower] and “un-occupied” energy levels infinitegimally above
[i.e. at ux4+1 and higher]) present us with a situation comparable with one where “degenerate
perturbation theory” needs to be applied (“perturbation” here being the electron-electron
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“renormaliseability” and “convergence” of a perturbation expansion are two
entirely distinct issues: A re-normalisable series is not necessarily convergent.
We can therefore conclude that in our case problem (ii) is not a fundamental
problem.

Problem (iii} is a most serious one in that it does not show up in the form
of a divergence, and can therefore go undetected. The possibility of failure
of the PT on this ground has been known since long (Kohn and Luttinger
1960, Luttinger and Ward 1960). Problem (iii} has its origin in the following.
The many-body PT, in particular that for the smgle—partlcle Green function,
with Hy the ¢ ‘non-interacting” Hamiltonian and Hy := H — Hy the “perturba-
tion” Hamiltonian, is based on the assumption that the GS of the interacting
Hamiltonian H (which we denote by |¥ y o)) is adiabatically connected with the
GS of the non-interacting Hamiltonian Hy, |®x o). By this it is meant that
through an adiabatic transformation of Hp into H , by means of increasing 7
in Hy + exp(—n|7|/R)(H — Hy) =: fI,,('r), with 7 | 0 (from there “adiabatic”},
from —oo to 0, |®n,0) adiabatically converts into |¥ y o) and, moreover, through
further increasing 7 from 0 to +o00, |¥y,0) goes over into a state which up to
a trivial phase factor is identical with |®y o). This assumption has its origin
in a theorem due to Gell-Mann and Low (1951) which asserts that the process
of “adiabatic switching-on” connects |®x o) with some eigenstate of H (see
Fetter and Walecka 1971, pp. 61-64, Farid 1997a, 1999b). In other words, the
validity of the many-body PT relies upon the assumption that in changing
7 from —oo to 0, the GS of H,(r) either remains non-degenerate — as any
level crossing at some intermediate 7 € (—00,0) may lead to disconnection of
|¥ n,0) from |® o) —, or in the event that there is some level-crossing at, say,
at 7 = 71, there is a subsequent level-crossing at 7 = 7 (with 71 < 72 < 0)
which restores the adiabatic connection between |®y o) and |¥ o).

A direct consequence of the adiabatic disconnection of |¥ o) from |®y o)
can be easily appreciated by realising that the single-particle GF is the expec-
tation value of —iT{iy (rt)g?;\}; (r't'}} with respect to the ground state of H
in the Heisenberg picture (see Eq. (8) above), so that G, calculated pertur-
batively, is accordingly the expectation value with respect to whatever many-
body state (as indicated, not necessarily the GS) that has been evolved from

Coulomb interaction). The mentioned partial summation over the polarisation diagrams dif-
fers, however, from application of the “degenerate perturbation theory” in that it amounts
to a redefinition of the “perturbation” (“bare interaction” — “screened interaction”) at the
expense of eliminating the polarisation processes.
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[®n,0) through the process of “adiabatic switching-on” of f — Hy. In this way,
despite the possible convergence of the many-body perturbation series for G,
the calculated function is unrelated to the actual G for which the perturbation
series has been set up (see the second example in Subsubsec. 7.4.3).

In a way the above problem is related to that which arises in solving the
non-linear EOM for G to which we have referred in Sec. 7.2. The connec-
tion is readily seen as follows: As mentioned above, the EOM for G(rt,r't')
is obtained from that for {f;(rt). Here one multiplies both sides of the latter
equation (Eq. (87)) by P (et ) and subsequently applies the time-ordering op-
erator to the resulting equation. After soine algebraic manipulations, one takes
the expectation values of both sides of the thus-obtained operator-valued equa-
tion with respect to |¥n o), upon which the sought-after EOM for G(r¢, r't’)
is obtained. Obviously, the only aspect in this equation that hints at it be-
ing the EOM for the single-particle GF is the mere appearance of the symbol
“G(rt,r't")” in it! Had we bracketed the mentioned operator-valued EOM for
—iT {z/;(rt)t,b? (r' t')} between any normalised N-electron eigenstate of the num-
ber operator N say, | Xn) (or, more generally, had we bracketed the mentioned
operator-valued equation between (Yy| and | X N) with (Yn|Xn) # 0), we had
obtained a similar-looking EOM for —i(Xn|T{9(rt)d! ('t} } XN}/ (X x| XN)
which is distinct from G(rt,r't'), unless | Xn) = |¥y0). This implies that each
of the multiplicity of solutions of the EOM for G may in fact correspond to one
such amplitude. Assuming [Xy) to be, in addition, a simultaneous eigenstate®s
of H, we immediately observe how the possibility of adiabatic disconnection
of the GS of Hy from that of H, leading to the breakdown of the many-body
PT for G, on the one hand and the multiplicity of the solutions of the EOM
for G on the other, are closely related.

Problems (i) and (iii) can in principle be overcome through a suitable
choice for the non-interacting Hamiltonian: one whose GS is “adiabatically
connected” with the GS of H. In (Farid 1997a, 1999b) it has been shown that
provided some specific condition(s} be satisfied (see further on), one such non-
interacting Hamiltonian can even be explicitly calculated. Briefly, within the
framework of the DFT appropriate to a specific system, one has to do with a
well-specified set of GS properties that uniguely determine the many-body GS.
For instance, for a system of spin-less fermions with non-degenerate GS, the
GS is a unigue functional of the GS charge density n(r) (Hohenberg and Kohn

65The adiabatic evolution of the GS of Ho always results in an eigenstate of H — see
(Gell-Mann and Low 1951, Fetter and Walecka 1971, pp. 61 and 64, Farid 1997a).
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1964). Now provided this n be pure-state non-interacting v-representable (see
Footnote 7), it is, by definition, also the density of the non-degenerate GS of a
non-interacting Hamiltonian, referred to as the Kohn-Sham (KS) Hamiltonian
— named after Kohn and Sham (1965) who have originally put forward this
Hamiltonian for systems of spin-compensated electrons with non-degenerate
GSs. In (Farid 1997a,b) it has been shown that for any specific system whose
relevant densities (such as the total electronic density, the spin-polarisation
density, the total paramagnetic current density, etc.) are pure-state non-
interacting v-representable, the many-body PT in terms of the pertinent KS
Hamiltonian is unrestrictedly valid.%¢ We can therefore conclude that problem
(iii), within the just-mentioned limitation with regard to the pure-state non-
interacting v-representability of the relevant densities, is not unsurmountable.
It should be realised that since GSs of KS Hamiltonians yield the exact rele-
vant (in the above-indicated sense) GS densities pertaining to the associated
interacting systems, and since GSs of these systems are unique functionals of
the mentioned densities (Hohenberg and Kohn 1964), it follows that KS Hamil-
tonians are appropriate for use, as “non-interacting” Hamiltonians, in the per-
turbation expansions concerning all (dynamic) GS correlation functions, and
not exclusively for use in the perturbation expansion of the single-particle GF.
In Sec. 8 we shall explicitly demonstrate the superiority of the perturbation
expansion of the dynamic density-density correlation function in terms of the
non-interacting GF pertaining to the KS Hamiltonian.” Computational re-
sults in (Farid 1997a,b), concerning some GS properties pertaining to spin-less
fermions in a gnasi one-dimensional system and electrons with spin confined
to a two-dimensional plane and exposed to an external magnetic field, demon-
strate the extreme reliability as well as practicability of a many-body PT in
terms of the relevant KS Hamiltonian. Description of the mentioned systems
is known to be beyond the reach of a straight-forward many-body PT.

661n (Negele and Orland 1988, p. 167) we read: “The ultimate conclusion, then, is that there
is nothing fundamentally wrong with the zero-temperature [perturbation] theory. Rather,
to do sensible physics, one must pick an intelligent choice for Hp such that |®o) has the
right symmetries and corresponds to the correct physical phase of the system, and such that
V = v ~U [i.e., the perturbation] is sufficiently small to obtain reasonable convergence.” In
(Farid 1997a,b) it has been shown that the KS Hamiltonian qualifies as one such “intelligent
choice for Hy."

67The permutation invariance of the square of a many-electron wavefunction implies that
when the charge density pertaining to an eigenstate is converged, the wavefunction corre-
sponding to it is also converged over the entire configuration space.
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7.4.2. Dyson’s argument

Here we draw attention to an argument pnt forward by Dyson (1952)% to
the effect that in general perturbation series (in powers of the coupling con-
stant of interaction) should be divergent asymptotic series (for definition see
Subsec. 2.3). Although this may be the case in some circumstances, Simon
(1970) has demonstrated the incorrectness of Dyson’s argnment in its gener-
ality. Aside from this, the following two observations have to be taken into
account: (i} Divergent asymptotic series can be summed (by various sum-
mation techniques — see Subsec. 2.3}, yielding functions that are analytic in
specific sectors of the complex plane of the pertinent expansion parameter
(here, a coupling-constant parameter}; the divergence of these series is then
seen to correspond to singularities of these analytic functions;®® (ii) In prac-
tice, perturbation expansions are almost never carried out around the GS of
the truly non-interacting Hamiltonian (take for instance the expansion around
the GS of the KS Hamiltonian [whose use within the context of the many-
body PT we have advocated in Subsubsec. 7.4.1], which takes account of the
electron-electron interaction to infinite order). That is, in practice many-body
perturbation series are almost never in powers of the coupling constant of the
bare electron-electron interaction.

7.4.3. Simon’s argument; two counter ezamples

According to Simon (1970), Dyson’s (1952) arguments are based on two “folk
theorems”: (i) that analytic continuation of an cigenvalue in the complex plane

68We have to emphasise, however, that Dyson (1952) has qualified his argument as follows:
“The argument here presented is lacking in mathematical rigour and in physical precision.
1t is intended only to be suggestive, to serve as basis for fnrther discussions.” Nonetheless,
this “argument” is frequently used in disregard to its apparent limitations.

69Consider the energy per electron, in Rydberg, of a uniform system of interacting electrons
{Gell-Mann and Brueckner 1957, Pines and Noziéres 1966, p. 304): Eno/N = 2.21/72 -
0.916/F5 + 0.062 In{F,) — 0.096 + aFs + bFs In(F¢) + 72 + .-, where 75 = Ts/ao, with
rs := (9n/4)*/3/kr, the Wigner-Seitz radius, and ao := h?/[m.e?] the Bohr radius (one
thus observes that indeed 7, x €2, the electron-charge squared, i.e. the coupling constant of
the electron-electron interaction). The first two terms in this expression are the uncorrelated
kinetic and exchange energy, respectively, and the remaining terms account for the correlation
energy. Were it not because of the terms involving In(¥,) {(which has a branch point at 7, =
0), the energy density of electrons had a second-order pole at ¥, = 0 on the complex ¥;-plane.
Because of the terms involving In(7,), one observes that Enx o0/N cannot be described in terms
of a Laurent series in ¥s. Nevertheless, the above expression for Exo/N has been obtained
from a perturbation series, involving infinite number of divergent terms. Compare with
the asymptotic and divergent series in Subsec. 2.3, corresponding to the analytic function
2z~ exp(1/2)I(0, 1/z).
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of the coupling constant of a theory (assuming a scalar coupling constant)
should necessarily be an eigenvalue; (ii) that when a perturbation series con-
verges, it does converge to the physically meaningful limit. Both of these
assertions are in their generality false (Simon 1970). We point out that in-
correctness of (ii), at least in general and in so far as the GF is concerned,
should be manifest from our arguments presented in Subsubsec. 7.4.1 (under
“Prablem (iii)").

As for assertion (i), consider the following one-particle Hamiltonian corre-
sponding to a one-dimensional systems {expressed in the Hartree atomic units):

Hi=--—+I*, -o00<z<00. (88)

It is shown (Simon 1970) that for XA > 0, eigenvalues of this Hamiltonian are
Ea(A) 1= ¢y A3, with ¢, independent of \. Since gn(z) = ¢,2!/3 has third-
order branch points (Subsec. 2.1) at z = 0 and 1/z = 0, analytic continuation
of gn(z) along a closed contour encompassing the origin, starting and returning
to z = Ag(> 0) yields a complex-valued &,()g) (according to the conventions
that we have adopted in the present work, this function should be denoted

by gn()\o)), unless the contour has been traversed a multiple of three times.
Clearly, a complex-valued g'n()\ﬂ) cannot be an eigenvalue of a self-adjoint
operator.

As for assertion (ii), consider the following hydrogen-like problem in three
dimensions (expressed in the Hartree atomic units):

1
’H::—ﬁvg—%‘ r>0, (89)

where A\, when positive integer, plays the role of the atomic number Z. The
eigenvalues of this problem for bound states, i.e. those corresponding to A > 0,
form the well-known Balmer series: £,(\) = ¢, A2, with ¢,:=—1/[2n?]. Accord-
ing to the latter expression, £,(A) is negative for all real values of A, implying
bound states even for A < 0, which is evidently erroneous. This false result
belongs to the same class as the one that we have considered under (i) above.
Now since £,(\) is a finite-order polynomial (explicitly, a second-order one)
and therefore an analytic function of A, the Rayleigh-Schrédinger perturbation
expansion (March, Young and Sampanthar 1967, pp. 72-74) for, say, the GS
energy (i.e. £,=1(\)) — with the second term on the RHS of Eq. (89) playing
the role of the “perturbation” — yields —\?/2 = £;()), irrespective of whether
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A > 0 or A <0 and irrespective of the magnitude of A; the coefficients of A™,
for m = 0,1 and m > 2, are all identically vanishing, establishing an infinite
number of exact sum-rules. Since H in Eq. (89) has no bound states for A <0,
it immediately follows that for A < 0 the perturbation series converges to a
physically incorrect value (“bogus” convergence).

From the above example we can draw one important conclusion in sup-
port of our statement that PTs in terms of the appropriate KS Hamiltonians
are unconditionally valid, provided the pertinent densities be pure-state non-
interacting v-representable (see Subsec. 7.4.1). The GS density for one electron,
na(r), corresponding to H in Eq. (89) is the square of the amplitude of the
GS wavefunction. For A > 0 we have nx(r) := ¥3,(r) = A3 exp(—2Ar) /7. We
immediately observe that whereas £1(\} = —A?/2 suggests a GS for ) < 0,
incorporation of the knowledge with regard to ny(r) in the application of the
PT immediately informs us of the incorrectness of this inference, for the sim-
ple reason that the above ny(r) becomes trivial for A = 0 and unbounded for
A < 0. It follows that incorporation of information with regard to ny(r) indeed
prevents the above “bogus” convergence in the events A < 0.

7.5. Set of self-sufficient equations

An elegant method for obtaining the single-particle GF without explicit refer-
ence to the many-body PT is based on the variation of a local time-dependent
source term in the Hamiltonian that directly couples to the density of the
particles (Schwinger 1951a, b, ¢, Anderson 1954, Matsubara 1955, Martin and
Schwinger 1959, Kato, Kobayashi and Namiki 1960, Hedin 1965). Such a local
source term, ¢(7), with § the short for r;t;, is sufficient for the purpose of cal-
culating the GF. This source term is an auxiliary function and is set equal to
zero after the desired equations have been derived. Hedin (1965}, through em-
ploying this approach has obtained the following set of four coupled equations,
known as the Hedin equations:
~2i

P(L2) = 5 [ 3O 36H, 1906 42), (50)

£(1,2) = % d(3)d(4)G(L, 3)W (4, 1*)1(3,2; 4), 91

W(1,2) = ve(1,2) + / d3)d(4)v.(1t,3)PE,OW(4,2),  (92)
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§(1,2)
5G(4,5)

x G(4,6)G(7,5)I'(6,7;3) . (93)

I'(1,2;3) = 8(1,2)8(1,3) + / d(4)d(5)d(7)

Here t* | t, vc(1,2) = vc(r1 — r2)é(ty — t2) and 8(1,2) := §(r, — r2)d(t1 —
t2). The functions P, W and I' are the polarisation function, the dynamic
screened interaction function and the vertex function, respectively. The pre-
factor of 2 on the RHS of Eq. (90) is due to a trace over an internal spin degree
of freedom of electrons (for spin-s particles, the pre-factor would be 2s + 1).
These expressions are made complete through the Dyson equation in Eq. (38).
The equation for W, first derived by Hubbard (1957) through application of
the many-body perturbation theory, can equally be expressed in terms of the
inverse of the dielectric function, e}, as follows

W(1,2) = / d(3)e (1, 3)0e(3, 2) (94)
where
1,2 =602+ [ du0*,3x(3,2), (95)

with y denoting the dynamic density-density correlation function,

—2i6G(rt, rtt; [])
e

—21
“h

x(rt, r't’) :=

=0
—— (U N, 0| T{Pu (ct)Pu (r't) H ¥ N o) . (96)

The pre-factors 2 on the RHS of Eq. (96) are due to a trace over the two spin
states of an electron. In Eq. (96) [¢] indicates that G is a functional of the
external source term. In Eq. (96), px(rt) stands for the charge-fiuctuation
operator (with respect to the GS charge density n(r)) in the Heisenberg rep-
resentation (see Eqgs. (119) and (120) below)

e (xt) = Bly(xt) D (e1) — (). (97)

Above, as in the defining expression for the GF in Eq. (8), ’T stands for the
fermion time-ordering operator, although contrary to w’r and 1/1, p is a bosonic
operator as it involves a product of an even number of fermionic field operators.
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Fig. 10. (a) Diagrammatic representation of the polarisation function P(1,2) and (b) of
the self-energy operator £(1,2) excluding the Hartree part £#(1,2). A solid line directed
from j to i stands for G(i,j) and a wavy line between j and i for W(i,j) — owing to
WA(r',r;e) = W(r,r';) and W{r,r';—¢) = W(r,r’;¢), direction of this line is immaterial.
In (c) the diagrammatic representation of the integral equation for W(1,2) is given. The
broken line between j and i represents vc(i, j) = ve(r; — r;)8(¢: — t;) — direction of this line
is also immaterial. The triangle in (a) whose coroners are numbered 3, 4 and 2 stands for
the vertex function I'(3,4;2) — the first (second) argument can only be attached to a GF
line which is directed from (towards) it, whereas the last argument (corresponding to the
marked corner of the triangle) can only be attached to an interaction line. Note the different
ways in which I' enters in the diagrams for P and I,

We note in passing that the dielectric function €, whose inverse is presented in
Eq. (95), is one of a group of three functions that often are designated by the
same name, namely “dielectric function” (Kleinman 1968). The function in
Eq. (95) is more completely designated as the “electron-test-charge dielectric
function” whose characteristic feature is that in it y is pre-multiplied by the
bare electron-electron interaction function v,.

In Fig. 10 we present the diagrammatic representations for P(1,2), X(1,2)
(excluding the Hartree part, £') and W(1,2) in Egs. (90), (91) and (92).
The diagrammatic representation of the perturbation expansion for I'(1,2;3)
in terms of G and W is presented in Fig. 11.

In closing this Section, we point out that a self-consistent solution G of
Egs. (90)-(93), supplemented by the Dyson equation, will suffer from the same
type of problem that we have indicated in Subsec. 7.2 (see also the second
half of Subsec. 7.4.1): the solution not being unique (due to the apparent
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Fig. 11. Diagrammatic representation of the perturbation series expansion for I'(1,2;3) in
terms of the single-particle Green function G (solid line) and the dynamic screened electron-
electron interaction W (wavy line). Diagrams up to and including the second-order in W
are shown. The solid dot directly following the equal sign stands for &(1, 2)4(1,3) where
8(3,j) = 8(r; — r;)8(ti — t;). Incorporation of only this contribution in the expression for P
gives rise to the Random-Phase Approximation (RPA) for the polarisation function, and in
the expression for X, to the dynamically-screened exchange, or GW, approximation for the
self-energy operator.

non-linearity of the equations), one can obtain such solutious that are entirely
unrelated to the actual G. To dispose of this problem, it is necessary that some
subsidiary conditions (i.e., the “inequality constraints” defined in Subsec. 9.8)
be imposed on the solution (such as the GS total energy corresponding to G
— see Eq. (214) below —, be minimal).

7.6. Two functional forms for thc self-energy operator,
»{% and {1}

Traditionally, the SE operator £ that, for instance, features in the Dyson
equation G = Gp + GoXG is defined under the assumption that the non-
interacting Hamiltonian Hop, whose GF is Gy, does not in any way depend
upon the electron-electron interaction v., that is Hp is both explicitly and
implicitly independent of v.. Although such Hy is in almost all cases of any
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interest a very poor starting point from the perspective of the PT, nevertheless
it frees ¥ from the ills of multiple definition in different texts. Thus, e.g., the
electrostatic Hartree potential vy is always accounted as being part of AX.
Now if, for instance, Gg corresponds to a “non-interacting” Hamiltonian that
incorporates the Hartree potential vy, the appropriate Dyson equation should
be denoted by G = Gg + GoX1G, where Ty stands for & — A~ vy, More
generally, if H, besides vy takes into account some other potentials, a local
one vy, (such as the exchange-correlation potential v,. that features in the
“non-interacting” KS Hamiltonian — see Eq. (135) below) and a non-local one
vnL (such as the Fock part of the SE — see Eq. (37) above and Eq. (212)
below), one has

1
Y=Y - —h'(’i}}{""v)g ‘§"'UNL). (98)

It is evident that AX; is nothing but the deviation of AX from the effective
potential in Hy that in some average way represents the electron-electron in-
teraction. Since A~ vy exzplicitly occurs in the perturbation expansion for ¥,
(£ — A~lvy) is independent of vy; we shall express this fact by enclosing
¥ — A~ vy by a pair of parentheses. Further, since vz and vy are supposed
to be potentials contributing to Hg, it is necessary that vz + vyt be Hermitian.

Let us for a moment leave aside problems related to the general invalidity of
the many-body perturbation for an arbitrary choice for the “non-interacting”
Hamiltonian (see Subsubsec. 7.4.1). From the structure of the perturbation
series for ¥, as represented by the pertinent Feynman diagrams, it can read-
ily be observed that ¥, and thus also X1, is a functional of Gg; we denote
this functional by {0} [Go]. On the other hand, by restricting the set of per-
turbation diagrams for the SE operator to that of the skeleton diagrams (see
Footnote 26), the SE is seen to be a functional of G, which we therefore denote
by L{1}G] (see Fig. 10(b) in conjunction with Fig. 11). Evideutly £{%}[F]
# L{1}[F] for any function (or operator) F that functionally is equivalent with
Gy or G (i.e., in the rt-representation, F is a function of two spatial variables
r and v’ and one time variable t — ¢'). These remarks apply to G, and, in the
cases where Hy is explicitly or implicitly dependent upon v,, also to Gg. From
this we draw two important conclusions: First, all functionals in Eqs. (90) —
(93) are, in our just-introduced notation, those with superscript {1}. Second,
the 3i; that we have introduced in Eq. (98), stands for either
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1
(B8 — B og)[G] - 2 (vr +vne) = iG] or

- 1
(B — n™'og)[Go] - 2 (v +vnL) =: ={%16,). (99)
The distinction between 2%0) [F}and 2?} [F] arises from the second and higher-
order SE terms in the PT (see Sec. 9). By assuming vy = vy, wWith vz the

ezact exchange-correlation potential as defined within the framework of the
DFT (see Eq. {132)), and vnyg = 0, we have vy (G} = vy[Gol.

8. The Density-Density Correlation Function x and the
Polarisation Function P

For the time-Fourier transform of x in Eq. (96), along the same lines as for the
GF, one obtains the following Lehmann-type representation

x(r,r’;s):zzgs(r)g’é(r’){ ! ! } (100)

8“‘83'*“@.7]."5“?‘63""&.1]

where (owing to (‘I’N,ol‘I‘N,s) = d5,0)

) {0, when s = 0, (o)
T L n ol B[ Tns),  when s #0,

and
€s:=ENgs—Enpg > 0; (102)

the non-degeneracy of the GS implies that e, > 0 for all s # 0. Thus we observe
that the “poles” of the dynamical density-density correlation function are the
energies of the N-electron excited states, as measured with respect to the N-
electron GS energy (“neutral” excitations). We recall that for the “poles” of
the GF we have, depending on whether €, < p or g, > u, €, = uy — 4, with
& = En_1s — En—1,0, and €5 = piny1 + &, With , = Eny1s — ENy1,
respectively (see Subsec. 4.2). It is interesting to compare these two Z,’s with
e, in Eq. (102). From Eq. (100) it is obvious that x(¢) can be written as
x() = X(e) + X(—¢), with X(r,r';¢) = 25, 2x(0)e3(r')/ (€ — s + in), from
which it follows that x{—¢) = x(e).

Since the Hamiltonian of the system under consideration is time indepen-
dent (after having set the possible ¢(rt) in Subsec. 7.5 equal to zero), the
two-point functions that occur in Eqgs. (90)-(95) are functions of difference of
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their time arguments. Thus in the energy domain these functions depend only
on one energy parameter. In this way Eq. (92) is directly transformed into
W(e) = v, + v.P(e)W{e). Similarly Egs. (94) and (95) are transformed into
W(e) = e~ (e)v, and e~ (e) = I+v.x(¢), respectively. From these expressions,
by formal algebraic manipulations, one obtains

x(g) = Ple)(I = vcP(e)) ™ = (P e) —we) ™, (103)
or equivalently,
P(e) = (I + x(e)ve) " 'x(e) = (x ' (e) + o)™ (104)

From this result and x(—¢) = x{(¢) it follows that P(-¢) = P(¢).

8.1. Symmeiries of x and P

From the many-body perturbation expansion for P(r,r';¢) in terms of either
Go or G (in the latter case only the skeleton self-energy diagrams [see Foot-
note 26 are to be taken into account — see Fig. 10(a} and Fig. 11), and the
symmetry property for these as presented in Eq. (25), it can be shown that (in
absence of spin-polarisation and magnetic field [in the Coulomb gauge] — see
Footnote 14 and Subsec. 4.4)

P(r,t';e) = P(r',r;e). (105)
From this and Eq. (103) it follows that
x(r,r’; ) = x(x',r;€). (106)

There is one elegant way of demonstrating that under the above-mentioned
conditions, the relation in Eq. (106) is indeed satisfied in the static limit (i.e. for
€ = 0). This method is based on some elements of the DFT (Hohenberg and

70We have to emphasise one important aspect involved here. The Fourier transform F(e)
of f{t) when back transformed, yields f{t), excluding a set of measure zero: at point to,
where f(t) has a finite discontinuity, the back transformation yieids { f(tg' Y+t )Y —
recall that for f{¢) to have a Fourier transform, it is required that f(t) possesses at most
a finite number of finite discontinuities. This problem can be circumvented by prescribing
a specific form for the contour of the energy integration in the complex energy plane for

obtaining f(t) from F(e) (better, from F(z)}), which of course requires analytic continuation
of F into the z-plane {Subsec. 2.2). See, e.g., Fig. 4. This is important, since most of
the correlation functions that we encounter in the many-body theory involve time-ordering
operation, impiying discontinuity in the t-domain. This explains the origin of Egs. (28), (41)
and (111).



188 FElectron Correlation in the Solid State

Kohn 1964). Since in the present work we frequently encounter the DE'T, it
is useful to present this alternative demonstration. To this end we assume
w(r,r’) = 0, which is prerequisite’ for having a DFT in terms of the GS
electronic density n(r). Owing to the one-to-one relationship between the GS
density n(r) and the local external potential v(r), the usual expression for the
GS total energy functional within the DFT (Hohenberg and Kohn 1964),

Eyln] = / &ro(r)n(r) + Fln], (107)

with F{n] a universal functional of the density (i.e., F[n] does not explicitly
depend on the external potential v), can be viewed as a Legendre transform
(Lieb 1983) between n(r) and v(r). Let therefore E[v] denote E,[n] when the
GS total energy is viewed as a functional of v. From Eq. {107) we have

_ 5]
n(r) = 5o(s) (108)
Now since x(r,r’;e = 0} := dn(r)/dv(r’}, from Eq. (108) we obtain
6?E[v]
foe — O = )

Since for a twice-differentiable functional the order of carrying out the (func-
tional) differentiation is immaterial, Eq. (109) demonstrates the symmetry
relation in Eq. (106) concerning € = 0. For £ # 0, one can similarly proceed
by making use of a Legendre transform that is analogous to that in Eq. (107)
within the framework of the time-dependent DFT. We shall encounter this
theory in Subsubsec. 8.6.2.

8.2. Amnalytic continuation of x(e), x(z); analyticity
and its consequences
Let us define”

x(r,r';2) = 42 ‘Q‘(r Q“‘{;‘f) . (110)

€3

It is easily verified that x(e) on the RHS of
ﬁg}x x(e £in) =x(e}, whene 20 (111)
n

710nly a local external potential can be in a one-to-one correspondence with n{r).
728imilar to ¢, in Subsec. 4.4, here for every s there exists an § for which holds ey = e, —
Kramers’ degeneracy (see specifically Footnote 21).
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coincides with x(¢) in Eq. (100). Thus X(z) is the analytic continuation of
x(€) into the the physical RS of the complex z-plane (see Subsec. 2.2). From
Eq. (110) it is obvious that X(—2z) = X(z), i.e. similar to x(g), X(2) is an even
function of its argument.

Since x(z) is analytic everywhere on the complex z-plane, with the possible
exception of the real axis, and since, following Eq. (110), ¥(z) decreases like
1/22 for |z] — oo, there exists an identical expression for ¥(z) as for %.(z)
that we have presented in Eq. (45). Let therefore (see Footnote 27)

() =X+ T @}, ¥ =ik -F@) 1)

be the “real” and “imaginary” parts of x{z). The counterpart of Eq. (45) for
X(z) can be written as the following pair of Kramers-Kronig-type of expressions

(c.f. Eq. (48))

e o] ok X
%’(Si 27}) = i.l.‘P/ (ig"w ,
T J-eo

g —¢
X'(etin) = F= ‘Pf &e’w (113)

This pair is verified correctly to satisfy

X () =X(2), X'(z")=-X"(2); (114)

these expressions are direct consequences of X1(z) = ¥(z*) — this relation
follows from Egs. (106) and (110). The expressions in Eq. (113) are not ex-
clusively in terms of the physical density-density correlation function. For
obtaining a pair of expressions entirely in terms of the latter, we make use of
Eq. (114). After some algebra, from Eq. (113) the desired Kramers-Kronig-
type of expressions for the physical x {see Eq. (100)) are shown to be

X (E) "“"'P/ de’ Sgn(*“f?')xﬂ(e') ’

' —¢

XH(E) - %_-'P N d&" Sgn(g ?}; (E’) (115)

These expressions are, except for a g whose place has been taken by zero,
formally identical to those in Eq. (50).
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8.3. Large-le| limits
From Eq. (100) it directly follows that

x(r,156) = 5 Y esn(®)ai () + O ™)

= :—2263 {os(r)0s(x') + 0s(r)e;(x)} + O(e™), for |e| & o0

(116)

In the second expression we have made the symmetry property in Eq. (106)
explicit. The even powers of 1/ in this expression reflect the fact that x(e)
is an even function of £ {see Eq. (100)). From Eq. (116) one readily observes
that for sufficiently large [¢], x{€) is positive semi-definite. On the other hand
it can readily be verified from Eq. (100) that for sufficiently small |e], x(¢) is
negative semi-definite {were it not because of g,—o{r) = 0, or e,=¢ = 0, x{e) In
the latter two cases were, respectively, positive definite and negative definite).
Thus in changing |¢| from 0 to oo, except for a zero eigenvalue, all eigenvalues
of x(€) shift from below to above zero. This implies that for |¢| above certain
value, for which x(¢) is no longer negative semi-definite, the system does not
behave quasi-statically (see Subsucsec 8.6.2).
From Eq. (104) we deduce

P(r,v’;e) = x(r,v";e) + O(s™?), for |g| = 0. (117)
From the second expression in Eq. (116), making use of Eq. (101) and the
fact that En ¢[¥yN ) = H|¥N,s), we readily arrive at

1liim e2x(r,1';€) = Yoo (Ts 1) = —2{¥ o] Hg’, ﬁ(r)] ,ﬁ(r’)} o),
&0 - _

(118)
where we have, in addition, made use of the completeness relation for the
eigenstates of H. In Eq. (118) we have introduced the number-density operator

fi(r) == 97 (x)P(x). (119)

On the other hand, the total electronic density in the GS is defined according
to
n(r) = 2(¥no

a(r)|¥no), (120)
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where the factor 2 on the RHS accounts for the trace over the spin states of
an electron. Note that since #{r) and 7(r’) commute, the RHS of Eq. (118)
is indeed symmetric with respect to transposition of r and r’. Through some
straightforward algebra, making use of the anti-commutation relations for the
field operators, one obtains™

(2,313 = 29 - [ vite ).
(0, A, ) =1,
(G @], AN = 8 =) [ @rule, e B Be) + PP}
— w(r, v )}{$' (D)D) + P ()0},
(V,3()]-, A()]- = 0. (121)

Thus Eq. (118) can be written as

—F2 v
lim e%x(r,r';€) =: Xoop (£, 1) = %V - [n(x)Vé(r - ¢')] — 28(r — ¥')
e

{e}~+o0
x f d*r"w(r,x")p(x", r) + 2w(r,r')p(r,x'),  (122)

where the reduced single-particle density matrix p(r,r’) has already been de-
fined in Eq. (16). In arriving at the above result we have explicitly made use
of the symmetry relation in Eq. {(26).

From Eq. (117) it follows that

lim e2{x(e) — P(e)} =0 <= Xoo; = Py, (123)
le}—ro0

so that the RHSs of Egs. (118) and (122) also apply to Peo,(r,r’).

73As a hint, we mention that the double commutation expressions in Eq. (121), in particular

the first one [which, because of the V2 in i may be experienced as un-inviting], are easiest
obtained through employing the representations of the creation and annihilation field opera~

tors in terms on a complete set of one-particle wavefunctions, namely: {é:* (r) = Z', Wr (r)’éf
and Y(r) = Z N (r)& , where the operators 32, ¢; satisfy the fermionic anti-commutation
relations [}, ¢j]+ = 6i,5, @,E}}.;. =0 and [¢;,¢jl+ = 0.
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8.4. Perturbation expansion for the polarisation function
P; P% and P}

Through application of the many-body perturbation theory (or through a
systematic formal solution of Eqs. (90)—(93)) one observes that P can be writ-
ten as P = Py + Py, where Py does not ezplicitly depend on the electron-
electron interaction function v.. Here Py and P, are functionals of G, the ez-
act GF. Employing the notation introduced in Subsec. 7.6, we can thus write
PG = PIYG) + P G) where Py(1,2;(G]) = (—2i/R)G(1,2)G(2,1).
Through further expanding G in terms of Gy, the GF pertaining to some
appropriate non-interacting Hamiltonian, one can write P as a functional of
Go, PG, = Péo}{Gg} + Pfa}iGg}. We have Péo}[}*‘] = P{fl}{F}, so that
superscripts {0} and {1} attached to Py may be suppressed.

The Feynman diagram representing Py has the shape of a loop or “bubble”
(see Fig. 12(a))}, so that P, is sometimes referred to as the “bubble approxi-
mation” for P; it is also referred to as the random-phase approximation, RPA,
for P (Pines and Bohm 1952, Bohm and Pines 1953, Pines and Noziéres 1966,
pp. 279-341). Traditionally, the RPA refers to P3[Gg| with Go the GF of
the self-consistent one-electron Hartree Hamiltonian. For the uniform-electron
system, the Hartree potential (which is divergent) exactly cancels the {equally
divergent) potential corresponding to the interaction of electrons with the

i 1

2 2

(a) (b)

Fig. 12. (a) Diagrammatic representation of the Random-Phase approximation (RPA) for
the polarisation function P, and (b) of the dynamically-screened exchange, or GW, approx-
imation for the self-energy operator. The directed solid line from j to i stands for the single-
particle Green function G(4, j) and the wavy line for W (whence the “GW" approximation).
If the solid line is taken to represent Gp, the single-particle Green function pertaining to
some “non-interacting” Hamiltonian, then diagram (a) represents the exact density-density
correlation function xo of the corresponding “non-interacting” system. In the main text,
by xo we dencte the density-density response function pertaining toc the “non-interacting”
Kohn-Sham Hamiltonian,
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positively-charged background. Consequeutly, for the uniform-electron system,
Gg within the self-consistent Hartree approximation is {up to a global gauge
transformation) identical with that of the non-interacting electrons. Therefore,
for this system the RPA for P coincides with the Lindhard (1954) polarisa-
tion function (Ashcroft and Mermin 1981, pp. 343 and 344). In the following
Sections we shall denote Py[Go| by xo when Gg coincides with the GF of the
‘non-interacting’ KS Hamiltonian (see Eq. (135) below). For a system with a
uniform GS charge density, the effective potential in the associated KS Hamil-
tonian is a constant, so that (up to a trivial phase factor) Gkg is identical
with the G pertaining to the uniform system of non-interacting electrons.
Therefore the xo pertaining to a uniform KS system is also identical with the
Lindhard polarisation function.

8.5. Random-Phase Approzimation, RPA, and large |e|

For the time being we shall specifically deal with Pp[G]. From Py(1,2) =
(—2i/h)G(1,27)G(2,1) for Py(r,r’;€) we have:
=2 [ de 1t ' ' in' e’ /h ’
Py(r,r;e) = -—-—-/ —G(r,r'; G r;e —)eME M (i L0), (124)
h J_x 27h

where the exponential fnnction (which is due to 2% in G(1,2%)), can be set
to unity. This is because “+” in 2% is the remnant of an ad hoc measure
taken for avoiding the time-ordering ambiguities that arise in consequence of
the instantaneous nature of the bare two-particle (Coulomb) interaction. Here
changing 2% into 2 does not lead to any ambiguity. This is closely related
to the fact that G(¢')G(e’ — €) ~ h2I/e' for |¢'| — o0, so that Po(rt, r't!),
which is a function of 7 := ¢t — ¥/, is continuous at 7 = 0 (see Appendix B).
Employing the Lehmann representation for G(¢) in Eq. (11) and making use of
the Cauchy residue theorem (Titchmarsh 1939, p. 102) it can readily be shown
that similar to x{e),

Py(r,v';e) = Py(r,v';e) + Polr,r’; —¢), (125)

where

> < * 7.7 A *’
Polr,r';e) =233 2 ’(? .’; f )f’aﬁrj = B @i, a2

Here we have introduced the short-hand notations 3.7 (...) and 355(...) for
Y, 0(es — p)(...) and X, 8{p — €y )(.. ), respectively.
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Let us now investigate the asymptotic behaviour of Py(e) for ] — oo.
Through some simple algebra (in particular by making explicite use of the
symmetry relation P(r,r’;€) = P(r’',r;e) — Eq. (105)), it follows that

> <
lim e?Po(r,r';e) =4 Y (s — o) fo(O)fs () f () f2(E).  (127)

{e|—roo

Using the definitions for the Lehmann amplitudes and energies (Eqgs. (12) and
(13)) we readily obtain (see Eqgs. (118), (123) above and Eq. (152) below)”

!élignoo 82})0 (r: I"; 5) = Ppjoo, (rr l’,)

= ——2(‘1’;\7501[{}?,&(1’)]_,?1(1")]~!‘I’N,0) + R(r,1')
= Poo, (v, ) + R(r, ') = Xoo, {r. ¥') + R(x, '), (128)
where’?

R(r,r") = v.(xr — )p(r,r")

- {4/d3r"va(r -r) [22 gs(r)gz(r”):l }5(1‘ -y, (129)

The explicit dependence of R(r,r') on v,, as exposed by the RHS of Eq. (129),
is due to our evaluation of Py in terms of the exact GF. This implies that the
pertinent expression for Po,00, [Go] functionally differs from that in Eq. (128) by
the abseuce of a corresponding R in it, even for cases where G would implicitly
depend on v, (such as is the case for, e.g., the Gy pertaining to the Hartree
one-particle Hamiltonian which depends implicitly on v, via the Hartree po-
tential). As a consequence of this and in view of Eqgs. (122)"¢ and (128), we

741 am indebted to Professor Lars Hedin for pointing out an omission in the original version
of this expression.

75In arriving at Eq. (128) we have made use of [dr"v.(r — v W N o8 ()8 (2"

(¥ N0} = [ v (e—t" WU N o[r(0)a(r") | ¥ 0) = Fn(r)ve (r; [n])+ [ @ ve(r—
r')[2 ) es(r)es (r”)]. We have multiplied the RHS of this expression by 2 in order to ac-
count for the internal spin degree of freedom. Further, the second expression follows from
the first after application of the process of normal ordering.

"8Note the important fact that the RHS of Eq. (122) has no explicit dependence on the
electron-electron interaction function v..
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arrive at a most remarkable result, namely that provided Gy yields the exact
ground-state n(r) and p(r,r’) [see further on], Po,c0,{Go] exactly reproduces
the leading-order asymptotic term of x(g) for |e|] — oo; from Eq. (123) it
follows that in such an event, Py..0,{Go] also exactly reproduces the leading-
order asymptotic term of P(g) for |¢] = co. For cases where w(r,r’') = 0, a
Gy that yields the exact n(r) will suffice. Such a Gp is by deflnition the GF
of the non-interacting KS system, i.e. Gks,”’ that features within the context
of the ground-state DFT (Hohenberg and Kohn 1964, Kohn and Sham 1965)
— Subsecs. 8.1 and 8.6. For construction of a Gy that would yield the exact
p(r, '), one would have to resort to the DFT for non-local external potentials,
first introduced by Gilbert (1975); in Subsec. 9.7 we shall briefly encounter this
formalism. Within the framework of the latter DFT, it is however necessary
to deal with an ensemble of eigenstates of the pertinent “non-interacting” KS
Hamiltonian.”®

The above considerations lead us to a further important result, namely
that when calculation of P(e) is restricted to the zeroth-order term Pp(e), it is
preferable, at least when w(r, r') = 0, to evaluate Py(¢) in terms of Gy g rather
than G (assuming that G were known): When w(r,r') = 0, P00, |Gk 5] = Poos
but Po,co, (Gl Z Poo,- We recall that xo:=Ps[Gks], so that, following Eq. (123)
above, we equivalently have: Xo0.00, = Xoog, that is, for large |¢|, the leading-
order asymptotic contribution of the density-density response function of the
“non-interacting” KS system is identical with that of the interacting system
(Farid 1999b).

8.6. On aspects of the density-functional theory

In view of the importance of Gk, the GF of the KS Hamiltonian (see partic-
ularly Subsec. 8.5), below we briefly present two DFTs. In both cases we have
to make the assumption that w(r,r’) = 0. In Subsec. 9.7 we touch upon the
DFT appropriate to the cases where w(r,r') £ 0.

77Recall our convention in Subsec. 8.4, that for Gg coinciding with Gk g, we denote Pp{Gg]
by xo- See Subsec. 8.6.1.

78We have to point out that in this context “KS Hamiltonian” is not an appropriate desig-
nation. This is owing to the fact that within Gilbert’s framework, the pertinent Schrédinger
equation for the *natural orbitals” directly follows from the Euler-Lagrange equation for the
total-energy functional, without reliance on the intermediate step of introducing Ts{n}, the
kinetic-energy functional pertaining to the KS system of ficticious non-interacting particles;
in Gilbert’s formalism one encounters the kinetic energy of the inieracting system, which is
an explicit functional of p.
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8.6.1. The ground-state DFT

The ground-statc DFT yields the exact x(¢ = 0) via a second-order functional
derivative of the GS total energy viewed as a functional of the local external
potential v (see Eq. (109) above). Using the fact that the static density-density
correlation function of the KS system, Xxo, is defined through

dn(r)
= ——— 30
X)) 10
in contrast to the static x which is defined by
on(r)
"N
X(l‘.‘,l’.‘ ) T 5?1(1") (131)

(in the static limit, the variation of the actual static external potential v is
equivalent with that of thie auxiliary potential ¢ as introduced in Subsec. 7.5),
where (Kohn and Sham 1965)

vert (15 [n]) == v(r) + va (r; [n]) + voc(r; [n]) - (132)

Here vy(r; [n]) is the Hartree potential defined in Eq. (24) and v,.(r; [n]) :=
6E.c[n]/én(r) stands for the exchange-correlation potential, with E..[n] the
exchange-correlation energy functional (see Subsec. 9.7). By the chain rule of
functional differentiation it is easily shown that the following Dyson-type equa-
tion holds for the static x and xo:

X = X0 + xoCx - (133)
Here the two-point function C is defined as follows

dvze(r; [n])
n(r’)

(134)

C(r,v';[n]) == v.(r — ¢') + K.{x,v’;[n]), with K, (r,x';[n]) :=

Owing to the fact that v, (r; [n]) := 6 Ex.[n]/én(r), we have C(r,r') = C(r/,r).

From Eq. (130) and the fact that n(r) = —2iG(rt,rt*) = —2iGggs(rt,rt™),
it immediately follows that indeed xo(r,r') = Po(r,r';e = 0;[Gks]) — see
Eq. (135) below. As a consequence, the static xo is easily generalised to the
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dynamic xp: This function, yo{(r,r’;€), is obtained from Egs. (125), (126) by
means of replacing f,(r) by ¥;(r) and ¢, by &;, where ¢;(r) and £; are the one-
particle eigenfunctions and eigenvalues of the self-consistent KS Hamiltonian:

—h? 9 ‘
{2'"13 V4 4 ’Ueﬁ‘(l‘, ['n])] 'tpg(r) - Sé'll’q‘,(l') ,

n(r) =23 8(n = i)} (). (135)

Here  is determined by the requirement ). 6{u — &;) = N. By retaining C in
Eq. (133) as defined in Eq. (134), but replacing the static x¢ by the dynamic
xo{¢) we have the following approximate x{(¢):

x(0) = xga(€) := (I —x0(e)C) " x0(e) = x0(e)(I — Cxo(e))™t, (136)

which yields the exact x(0) as |e] — 0 (“gs” denotes “ground state”). More-
over, owing to Eq. (128) and the above-discussed property (Subsec. 8.5 — see
text following Eq. (129)) concerning Py(e) as evaluated in terms of G s (which
coincides with xo(z)), we observe that xgs(€) yields also the leading-order term
pertaining to x(g) as |e| — oo. It follows that the DFT is not only an exact
theory concerning le| — 0, but, as far as the charge response of the system is
concerned, also one concerning 1/le} — 0. It is interesting to note that since
x(g) and xo(g) are even functions of &, the deviation of Xg{¢) from the exact
x{€) concerns terms of order ¢* and 1/¢* for small and large values of ||,
respectively.

The above observations are in support of our statement in Subsubsec. 7.4.1
that many-body PTs based on the pertinent KS “unperturbed” Hamiltonians
are unconditionally valid (assuming of course that certain GS densities, such
as n(r), are pure-state non-interacting v-representable).

From Fig. 10(a} and Fig. 11 it is obvious that the difference between P
and Py (i.e. Pr — see Subsec. 8.4) originates from the difference between the
vertex function I'(1, 2; 3) and 6(1,2)38(1, 3). The first attempt to incorporating
this difference is due to Hubbard (1958). It turns out that the approximate
approach introduced by Hubbard {1958) can be put on a firm theoretical basis
within the framework of the (ground-state) DFT: In the static limit, Hubbard’s
local-field function, the so-called G-function, can be shown to be related to K,
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(see Eq. (134)) as follows:™®
ch = MQ}CG . (13?)

We shall consider the G-function in Subsubsec. 8.6.3.

8.6.2. The time-dependent DFT

In Subsubsec. 8.6.1 we have shown that xgs(¢) in principle only in two (asymp-
totic) limits yields the correct x(¢): |e| — 0 and |e| — oco. That the static limit
is reproduced correctly is natural, since y{¢ = @) is a GS property. Within
the framework of the time-dependent DFT (Runge and Gross 1984), K. and
therefore C, in Eq. (134}, become time-dependent operators and one naturally
has an extension of xg(¢) in Eq. (136), formally effected through replacing C
by C{e), which we denote by xi4(€); here “td” stands for “time dependent”.
We have

xed(€) := (I = x0(€)C(e)) " x0(€) = xo(eWI - Cle)x0(e)) ™" - (138)

Barring fundamental problems (see further on) (Gross and Kohn 1985, Gross
1990) xwa(e) = x(€) holds. We point out that the time-dependent DFT is
valid for only a restricted set of time-dependent external potentials, so that
the equality of the two response functions is not absolute but only relative
with respect to this set of time-dependent external potentials; this restriction
is associated with the possibility of the non-interacting non-u-representability
[see Footnote 7] of the time-dependent electron density of an interacting system
— for details see, e.g., work by Gross (1990). Stated differently, whether
xta(€) = x(€) or not, crucially depends on whether xg'(¢) — x~!(g) =: C(e)
exists or not (Mearns and Kohn 1987). In the static case, addressed by the
GS DFT, one is confronted with the same problem, however here singularity of
x{e = 0) stands on a par with the instability of the GS of the system, which can
be ruled out by the assumption of non-degeneracy of this state.’® According
to Mearns and Kohn (1987) (see also Gross, Mearns and Oliveira (1988) and

79Hubbard’s original G-function has the simple form Gy (k) = k2/(2[k? + k%]). Hubbard's
modified G-function (as reported in Kleinman (1967)) has the form: Gﬁ"d{k) = k2/(2[k* +
k% + k2]), where ks denotes the inverse of some screening length. For k& — 00, both of these
fnnctions approach 1/2.

80Fgr closed systems, both x{z = 0) and xo{e = 0) have a zero eigenvalue, corresponding to a
spatially constant eigenfunction. This follows from the observation that a constant potential
cannot change the total number of electrons in these systems. Thus by excluding this
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Ng and Singwi (1987)), C(z) exists only for || < &min, Where £;, denotes the
lowest neutral-excitation energy of the system. Thus in general x34(c) # x(¢).

8.6.3. The local-field function G

In the past, many attempts have been devoted to evaluating G(k) and G(k;¢)
— which is associated with C(¢g) in Subsubsec. 8.6.2 —, the static and dynamic
local-field-correction functions, respectively, pertaining to the uniform-electron
system. For a review see the work by Farid, Heine, Engel and Robertson
(1993). Concerning the behaviour of G(k;0) = G(k), for small values of k
all the available models correctly®! yield G(k;0) « k%. This is in particular
the case within the framework of the LDA, where K, is a negative constant,
i.e. independent of k, so that from Eq. (137) it follows that Grpa(k) « k? for
all values of k. This behaviour, that Gz p4(k) > 1 for large values of k (i.e., for
k > kg), had for long been considered as “completely wrong” (Taylor 1978).
This judgement has its origin in two expressions — relating the behaviour
of G(k) at large k with that of the electronic pair-correlation function for the
interacting system, g(p), at small distance ¢ := |[r—r’| (see Subsec. 8.8) — due
to Shaw (1970) and Niklasson (1974). The Shaw relation reads Gk — o0) =
1 - g(o — 0), and that by Niklasson G(k — o0} = 2[1 ~ g(o — 0}|/3. Both of
these imply that, since g{o) € (0,1}, 0 < G(k — o0) < 1. Holas (1987, 1991)
has shown that these two relations are consequences of partial incorporation of
correlation effects in the expressions for xo as employed by Shaw and Niklasson
— in other words, while often not fully realised (as evidenced by a wealth of
incorrect results in the literature), the G-function in different works describe
different correlation effects.5? Thus Holas has shown that G(k — 00;0) ~ vk?,
with v some constant, is not unphysical. This behaviour has found support in
studies concerning stability of the Wigner electron lattice against transverse
acoustic {TA) phonon modes (Tozzini and Tosi 1993). For an accurate model

one-dimensional constant subspace from the representation space for x(¢ = 0} and xo(e = 0),
it is seen that C is well-defined, as in this reduced space both x{¢ = 0) and xo(e = 0) are
negative definite and thus invertible. See, e.g., works by Car, Tosatti, Baroni and Leelaprute
(1981) and Mearns and Kohn (1987).

810therwise the compressibility sum-rule (Pines and Noziéres 1966, p. 209), which involves
x(k — 0;& = 0), and thus G(k — 0;¢ = 0) — see Eqgs. (133}, (134) and (137) —, would be
violated.

82 A consequence of not making distinction between P{%}[Go] and P{!}[G] — see Subsec. 8.4.
We point out that in view of Eqgs. (133}, (134), {137) and our closing remark in Subsec, 8.4,
the G(k;0)-functiou that we encounter in the present work is ezactly the G(k;0)-function
that has been considered by Holas.



198 Electron Corrclation in the Solid State

for G(k;0) see the work by Farid, Heine, Engel and Robertson (1993), and for
a recent “diffusion quantum Monte Carlo”-based calculation of G(k;0) see the
paper by Moroni, Ceperley and Senatore (1995). A key element in the work
by Holas is his use of xt4(€) (see Eq. (138)), rather than () (see Eq. (136)),
in enforcing the energy (frequency) sum-rules concerning the imaginary part
of x(¢). Hence, considerations by Holas are (implicitly) deeply rooted in the
time-dependent DFT and consequently the validity of the treatment by Holas
should crucially depend on that of the latter theory for arbitrary values of € (see
Subsubsec. 8.6.2). For typical forms of G(k;e), within various approximation
schemes, see the works by Holas, Aravind and Singwi (1979), Devreese, Brosens
and Lemmens (1980), Brosens, Devreese and Lemmens (1980) and Brosens and
Devreese (1988).

8.7. Quasi particles; collective charge excitations (Plasmons)

Let us now consider x(z) in a similar fashion as we did G(z) in Subsec. 6. We
first re-write Eq. (103) as

X(z) = —v; V2 = [P P(z)uy/ 371 T2 (139)

Here, as in other parts of this work, a (fractional) power of an operator rep-
resents an operator that is obtained from the spectral representation of the
original operator through raising the eigenvalues (i.e. the spectral weights) to
the pertinent power. Let, for instance, A be a symmetric operator, with {\;}
and {u;} the corresponding eigenvalues and eigenvectors, normalised accord-
ing to u:.' ‘u; = 6;;. We have 4 = 3, Augu!, so that A% = S A%uu).
The summation over i is symbolic, in that ¢ may be a continuous, or a par-
tially continuous, variable and therefore ). is to be understood as implying
also integration. Further, it may occur that in a certain representation, A%
is not an ordinary function but a distribution (e.g. involving the §-function
and its derivatives). For this, consider the Fourier representation for v, in the
coordinate representation:

/ d’k /€0 icr ik’
1)c(r—x')_/(27r)3 TK]? e e , (140)

where [ d®k/{2m)3 is to be compared with 3", (€% /eo)/|Ik{|? with X; and exp(ik-
r) with u;.33 It is obvious that by viewing the RHS of Eq. (140) as an ordinary

83In fact, (rlux = exp(ik - r), the usual 2-1/2 (see Appendix A) is missing because the
Fourier-integral representation does mot involve the box normalisation condition.
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function, as opposed to a distribution, for instance v, 172 would be meaningless;
already (r|(v.)°|r’) = (r|I|r') = d(r — r'), which is a distribution.
The geometric series expansion of ¥(2) in Eq. (139) in “powers” of é“l(z),
with
Q(z) = [/ P(2)0}/?] (141)

diverges when
det(f ~Q 1(2)) =0. (142)

This egnation is similar to that in Eq. (54). As we shall see, solutions of this
equation, or the equation obtained from it through the process of analytic con-
tinuation of é“{z) into a no-physical RS, are of physical significance — they
correspond to excitations of the charge density in the N-electron system, i.e. to
charge-neutral excitations. This is explicit in the Lehmann-type representation
for x{(¢) in Eq. (100).

Solutions of Eq. (142) are related to eigenvalues of the following eigenprob-
lem in a way that will become clear shortly:

Q(2)€.(2) = Dy(2)&:(2), (143)
G(2)Q() = Dy(2)Cl(2) <= Q1(2)Ci(2) = Di(2)Go(2).  (144)

Here g,(z) and E,(z) are, respectively, the right and left eigenfunctions of
Q(z) corresponding to eigenvalue D,(2) (we assume that these eigenfunc-
tions have been appropriately ordered — see Footnote 30). In cases where
D, (2) # D, (2), these eigenfunctions are bi-orthogonal and can be normalised,
ie. ({s(z),az(z)) = §, 4. In cases of degeneracy, a Gram-Schmidt orthogo-
nalisation procedure can be applied to achieve that the latter property holds
for all £,(2) and (v (2z). For some relevant further details see text following
Eq. (59) above, _

_ Since for a general z, Q(z) is non-Hermitian (it holds however that
Q(r,r';2) = Q(r',r;2)), the two sets of left and right eigenfunctions of Q(2)
do not coincide, nor are the eigenfunctions within each of the two sets orthogo-
nal. The spectral representation of @(z) should therefore be a bi-orthonormal
representation (Morse and Feshbach 1953, pp. 884-886, Farid, Engel, Daling
and van Haeringen 1991) as follows

Qr,r';2) = Y Dy(2)&(r; )85 (5 2) - (145)
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By completeness, i.e. D, £,(2)¢1(2) = I, we can write (see Eq. (139))

Y,z =2 3 & )C(() 2, (146)

- D
where _ _ N
£,(2) = v128,(2), C,(2) = (v71/?)1(s(2) (147)
and
1
Ds =2 148
() = ( B.(z )) (148)

From the above representation we observe that the singular points of Xx(2)
coincide with solutions of the following equivalent equations

—~

Dy(2) =0 <> D,(z)=1. (149)

In view of Eq. (145) and the completeness relation, >, &(2)C1(z) = 1, it is
obvious that the solutions of the second of the above equations indeed satisfy
Eq. (142). We note that, similar to the case that we have considered in Sec. 6,
here there are some symmetry relations, and properties associated with these,
that can be readily verified: We have ﬁ(r,r' 1 2) = 13(r’ ,r;2) and 13(2*) =
Isf(z) — see Eqgs. (105) and (110) —, from which, making use of (r|P? ()" =
(r'| P(2)|r}*, it follows that

Colr;2) = &(r;2%); & (r;2) = Go(r; 2*);  Ds(2*) = D(z), Im(z) #0.
(150)

Also, on account of the time-reversal symmetry (see Subsec. 4.4), for every s
there exists an 3 for which Ds(z) = D4(z), &(r; z) = €0 (r; z) and G(r; z) =
eifsg* (r; z) hold, with 85 some real constant, independent of r. From these re-
sults it follows directly that 53(1‘ z) = e ¢, (r; 2*) and (5 (r;z) = i (, (r z*).
Concerning the reqnirement of ezplicit orthogonalisation of {s(z) and C,, (2)
when D,(z) = Dy /(z) for s # &, such as is the case when s' = 3 (see above),
we mention that this orthogonallty is automatically taken care of if the sets
{&}, {C,} are chosen to be simultaneously bases of the unitary irreducible
representations of the underlying symmetry gronp of the Hamiltonian of the
system: when the degenerate right and left eigenfunctions &;(z) and {y(2)
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belong to different unitary irreducible representation of the mentioned group,
the two functions are orthogonal (Cornwell 1984, pp. 81-83).

Some remark concerning the asymptotic behaviour of the above quantities
for |2| = oo is in place. From Egs. (117) and (118) it follows that P(z) dimin-
ishes like 1/22 for large |z|. Normalisation of the eigenfunctions implies that
for the Eqs. (143), (144) to be valid in this asymptotic regime, it is necessary
that Dy(z) ~' 1/2° for |z| - co. From Eq. (148) we deduce that therefore

D,(z) ~' z%. Substituting this result in the representation in Eq. (146) we ob-
tain, consistently (since the functions in the numerator are normalised), that
indeed X(z) approaches zero like 1/22 (see Eqs. (110) and (118)).

When D,(z;) = 0, we have in addition D,(~z;) = 0. This follows from the
equivalence between solutions of Egs. (142) and (149), and the fact that P(2),
and therefore é(z), is an even function of z. Thus near each z;, D,(z) ~'
2% — 2%, in conformity with the Lehmann-type representation in Eq. (110).

Concerning the physical significance of the solutions of Eq. (142) (or of
Eq. (143)), {2}, and the corresponding eigenfunctions £,(z), we mention
that according to Eq. (96), x(rt,t’t’) describes, to linear order, the change
in the density of the electrons at the space-time point rt in response to a
change in the local external potential at the space-time point r't’. Equivalently,
we have 1(z) = X(2)0p(z). The closer the “energy” z to energies at which
x(z) is singular, the smaller the amplitude of the required external potential
needs to be in order to bring about oscillations of a given amplitude in the
electronic distribution of the system, so much so that at the singularity z;,
the charge density undergoes self-sustained oscillations, without the agency of
an external potential. Self-sustained charge oscillations in an electronic system
are termed plasmons. Thus solutions of Eq. (142) are plasmon energies. Tradi-
tionally, the solutions of det{e(e)] = 0 are considered to signify these energies.
Since according to Eq. (95), €7 (z) = I + v.X(2), and since v, is positive defi-
nite, it follows that dete™'(2)] = 1/ det[€(2)] = det[ + ve/?%(2)v2"?), so that
indeed det[€(2)] = 0 <=> 1/det[¥(z)] =0 <= D4(z) = 0 for some s.

From én(z) = Xx(2)dp(z) it follows that at the possible plasmon energies
{27} we must have ¥~ 1(zP)67(2") = 0, that is, in the case of non-degeneracy
87(2P'} is a multiple of the right eigenvector of ¥(z) — note that the left and
right eigenvectors of an operator and of its inverse are identical —; in the case
of degeneracy, Jn(sf‘) is a linear superposition of the degenerate right eigen-
states. It should be mentioned that such analysis as the above, aimed at the
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determination of the resonant energies of a system, is based on a liuear-response
theory and therefore cannot determine the amplitudes 6ﬁ(zfl) of the charge
excitations. However, for the linear-response theory to be applicable, these
amplitudes must be small — for otherwise non-linear effects (i.e. mode-mode
coupling effects) cannot be neglected. In reality it is owing to these effects that
amplitudes of the excitation modes are bounded.

It is interesting to enquire as to the origin of the apparent privileged role
that the right eigenfunction, as opposed to the left eigenfunctions, of ¥ play
in the context of plasmon excitations; the same may be enquired with regard
to the right eigenfunctions of ’ﬁqp(z), which play the role of the QP “wavefunc-
tions” — see Eq. (58). The origin of this bias lies in the fact that Eq. (149)
has either real-valued solutions or it has no solution. This condition is iden-
tical with that which we have encountered in our discussions concerning QPs
and their corresponding energies in Sec. 6. Here, owing to the reflection prop-
erty D,(z*) = D? (2), D, (z;) = 1 for some complez-valued z; implies that also
D,(z}) = 1. That is, the possible complex-valued solutions of Dy(z) = 1, if
any, must occur in complex-conjugate pairs. This is in violation of the causal-
ity principle — recall that x(rt, r't’) is defined as the GS expectation value of a
time-ordered product of the density-fluctuation operators. Therefore, the ener-
gies of the damped plasmon excitations, if any, must lie on a non-physical RS of

the z-plane; with D s(2) an analytic continuation of D,(z) into a non-physical

sheet (see Subsec. 2.2), the complex-valued solutions satisfy 53(2) = 1. For the
real energy ; to be a solution of D, (z) = 1, it is necessary that ImD, (g) = 0.
For such an €;, x(e; £ in) = x(e;) (see Eq. (111)) is Hermitian, so that the
sets of left and right eigenfunctions of x(z) coincide and therefore there is no
bias. Let us now disregard the fact that 53(2) = 1 eannot have complex-
valued solutions, and thus assume that z; and z} were two complex conjugate
solutions of this equation. Becanse of the properties in Eq. (150), it follows
that the right eigenfuuction of X(z) at zi, i.e. £,(2;) — see Eqgs. (143) and
(147) —, is identical with the left eigenfunction of X(2) at 2}, i.e. {,(2}) — see
Eqgs. (144) and (147). Thus even in this hypothetical case, corresponding to
complex-valued solutions for D, (z) = 1, there is no privileged position taken
by the right eigenfunctions of x(z).

In closing this section, we mention that the technique of analytic continu-
ation of X(z) into a non-physical RS (Farid, Engel, Daling and van Haeringen
1991) has been employed for obtaining the complex plasmon energies in real
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semiconducting materials (Daling, van Haeringen and Farid 1991, 1992). The
analytically continued response functions evaluated on the real energy axis
yield very reliable results, including those that can be experimentally probed,
such as the electron loss function or the dynamical electron structure fac-
tor. This approach has been successfully employed for obtaining dynamical
response functions of semiconductors (Daling, van Haeringen and Farid 1991,
1992), metals {(Maddocks, Godby and Needs 1994a, 1994b) and cuprate super-
conductors (Dadachanji, Godby, Needs and Littlewood 1995).

8.8. Pair-correlation functions

From Eqs (110), (111) and (112} — or from Eq. (100}, through applying 1/{(z—
zox1m) = P (1/(z — xo)) F ind(x — zo), with n | 0 — it follows that for x"(¢)
in x'(€) +ix" () = x(¢)

xX'(r,r';e) = —27:2 0s(r) ot (v ){8(e — €,) + 8{e + €,)} (151)

holds. Since e, > 0 for all s # 0 (see Eq. (102)), from Eq. (151) the following
expressions are readily obtained

:;} fow dex"(r,v';e) = 22;93 (r)oi(r')
= 2% oA n0) ~ ZnleIn(s’);  (152)

-2 o *
2 /0 deeX'(5,1) = 4 3 eats(x)el ()

= lim e?x(r,r';€) = Xoo, (¥, 7). (183)
jel—ro0
The LHSs of Egs. (152) and (153) are the zeroth and first energy (“frequency”)
moments of x”(¢), respectively. In fact through combining Eqgs. (153) and
(122), one arrives at the well-known f-sum rule (Noziéres 1964, Johnson 1974,
Schiilke 1983, Taut 1985a,b, Engel and Farid 1993) for the density-density
correlation function.
One interesting aspect of the result in Eq. (152) is the following. The static
pair-correlation function is defined as follows

o) = =gy MR Ere) ~ @S ~x)} . (150
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Making use of Eq. (101) one obtains

N T {2 3 ex()ei(x) + () - nw)it - r')}

g(r,r') =

1 -1 [ " . 1 ' -
(155)

Thus the zeroth energy moment of x”(r, r’; €) is closely related to the electronic
pair-correlation function g(r,r’).

For systems in the thermodynamic limit (below signified by means of “&"),
the quantity of interest is g(r,r') := Q?%g(r,r’), for which

g(r,r’) {2(‘I'~ ol(r)7(r")|¥ N 0) — n(r)(r — r')} (156)

holds, where @ := N/Q (= C — see Subsec. 2.4) is the average density of
electrons, or concentration. We shall have occasion to use

N(N

2 ng(r)gs(r ) = ——1—) g(r,r’) — —n(r)n(r )+ n(r)é(r — '), (157)

which follows from Eqs. (152) and (154).

For systems without off-diagonal long-range order, ODLRO (Reichl 1980,
pp. 202-205), i.e. those involving no superconductivity or superfluidity, one
ha884

lim (¥yo[n(r)n(x')|Tno) = —;-n(r)n(r’), (158)

lr—r/|| 200
so that the correlation function

=2

2 ) g(r,r') (159)

)= )

pertaining to such systems has the property that g(r,r’) - 1 when ||r—r'|| -
0o. In the literature there are at least two different pair-correlation functions
in use. One of these is the van Hove (1954a,b) pair-correlation function g,y

84Here we have summed over the internal spin degree of freedom, without which the 1/2 on
the RHS would have been 1/4.



Ground and Low-Lying Excited States of ... 205

which can be shown to coincide with g in Eq, (154):

2

9ot (5,7) i= T (Ul @) (P 0) = 9(r,x). - (160)

Concerning the second, within the framework of the DFT one encounters a
pair-correlation function whose “coupling-constant integration” (the coupling
constant being €2, the electron-charge squared) yields the exchange-correlation
energy functional (Langreth and Perdew 1975, Gunnarsson and Lundgvist
1976, Harris 1984).8% This pair-correlation function coincides with §(r,r’) given
in Eq. (159).

8.9. The continued-fraction expansion and its physical significance

As a typical example of functions with “branch-cut discontinuity”, we take
X(z). From the Lehmann-type representation in Eq. (100), one immediately
obtains the following spectral representation (see Egs. (111) and (112) for x”)

x{g) = -1 /-+oo de’ ! - ! X' (€ (161)
T Jo e—¢'+in e+¢e —in '

Suppose that for ¢ > 0, x"(¢) differs from zero only in the finite interval
[emin, Emax] With £min, Emax > 0, so that the ¢’-integral in Eq. {161) can be
written as one over this finite interval. Suppose further that €9 € [Emin, Emax)
and let ¢ be chosen such that for & € [enin, Emax), [(€' — €0)/(€ £ &0)| < 1.
When these conditions are fulfilled, one has the following exact result

1 -y
x(e) = T 2: { (e — Ec)m-{»l (€ + g9)™+1 }

o (T gl RPN R
xg(l)( o) / de'e™ () (162)

Emin

85The system to which this pair-correlation function pertains is one in which a coupling-
constant-dependent external local potential ensures that for all values of the coupling
constant between zero and the physical value of €2, the GS charge density is identical to
that of the fully-interacting system.
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which signifies the importance of the energy moments®® of the branch-cut dis-
continuity of x(z).37 From Eq. (162) it can directly be seen that in the limit of
le| > €q, only the odd central energy moments of x"(€) contribute to x(¢). The
most prominent (from the point of view of the asymptotic behaviour of x(¢)
for || — o00) central energy moment of x”(¢) is thus the first-order moment.
Correctness of the zeroth- and first-order moments of x”’(¢) guarantee correct-
ness of this first-order central energy moment. The first-order moment of in
particular x"(¢) is designated as the f-sum, and a relationship between this
f-sum and some GS properties is thus referred to as the “f-sum rule” (Noziéres
1964, pp. 45-50, Johnson 1974, Schiilke 1983, Taut 1985a,b; see text following
Eq. (153) above). The so-called plasmon-pole models for the density-density
correlation function, or the dielectric response function (Hybertsen and Louie
1985, 1986, 1988, von der Linden and Horsch 1988, Engel and Farid 1993), are
simplified expressions for x”(¢) (or some associated function, such as e=1"(¢)
— see Subsec. 7.5) which in principlc guarantee satisfaction of the f-sum rule.
In Subsec. 8.10 we shall discuss one of the most reliable of the plasmon-pole
models concerning x(¢) (Engel and Farid 1993).

Having explicitly considered the relevance of the energy moments of x"(¢),
we now examine the significance of the encrgy moments for a more general
operator and within a somewhat broader context. To this end, let f(2) be
analytic everywhere on the complex z-plane, except along the real interval
[Emimemax]- With

o(e) i= 5 AFle+im) - fle i}, (163

to be compared with x”(¢), nsing the Cauchy theorem (Titchmarsh 1939,
p. 102) one can show that

g -z

f(z) = % / e 9E) (164)

min

86 According to Kubo and Tomita (1954), “the moment method” is introduced by Broer
(1943), Van Vleck (1948) and Pryce and Stevens (1951), and “is the most common and basic
method used so far for the discussions of the line shapes of magnetic resonance absorption.”
For specific applications see works by Kubo and Tomita (1954), Harris and Lange (1967),
Haydock (1980, pp. 289 and 290) and Nolting and Ole$ (1987).

87The second sum on the RHS of Eq. (162) is in fact nothing but the mth central moment
of x"(g) -— central with respect to 9. We note that moments expansion in terms of central
moments has superior convergence property as compared to that in terms of usual moments,
which are the “central moments” with respect to g9 = 0; the usual moments in general
rapidly grow with the increasing order of moments.
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Now provided g{(¢) does not change sign for € € (€min,Emax), f(z) can be
represented in terms of a continued fraction (Ince 1926, pp. 178~185) of infinite
order {Cheney 1966, p. 186).88 It can be shown that truncating this expansion
at a finite order M, yields a function fa (2) which can be represented in the
following form (Cheney 1966, p. 186)

M

fM(z)*:?;Z Ym (165)

el Z— Em

where {wy,|m = 1,2,..., M} is the set of some well-specified coefficients, and
{em|m = 1,2,..., M} that of zeros of a polynomial of order M, obtained from
a recurrence relation (which generates orthogonal polynomials) whose coeffi-
cients are functionals of g(¢) (Szego 1967, Hochstrasser, U.-W., in Abramowitz
and Stegun 1972, Ch. 22). We point out that £min < €m < Emax for all values
of m. Now we define

ou(e) = - Fale +in) = Faale — i} (166)

From Egq. (163) the parallel between gas(¢) and g(e) is apparent. Two interest-
ing properties of f M(z) are that: (i) for Im(2) # 0, fa(2) converges to f f(z) for
increasing M and (ii) for a polynomial h{e) of degree not larger than 2M -1,
the following is exact:

f " g g(eh(e') = Z Wnh(Em)

Emin

= [ o de’ g (e Yh(e"). (167)

min

The first of these relations is a Gaussian quadrature rule (Stoer and Bulirsch
1980) for the general weight function g(€).%® From Eq. (167) we observe that as

88The restriction on g(¢) in having a definite sign (positive or negative), is imposed for
avoiding semi-definite “norms” which in the process of evaluating the coefficients of the
continued-fraction expansion may give rise to zero denominators. For treatment of cases
where g{e) changes sign, we refer the reader to the paper by Engel and Farid (1992).

890rthogonal polynomials are “orthogonal” over some well-specified interval and with re-
spect to some well-specified weight function. For instance, the Chebyshev polynomials
Tm(z), m =0,1,..., are defined over [—1, 1] and are mutually orthogonal with respect to the

weight function (1 — 22%)~1/2, f_:} dz(l — 22)~" V2T (2) Tn(z) = dm,n. See Hochstrasser,
U.W,, in (Abramowitz and Stegun 1972, Ch. 22).
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far as integrals of polynomials of degree not higher than 2M — 1 are concerned,
the weight function gasr is equivalent to g. In other words, the first 2M — 1
energy (i.e. ) moments of gar(g) and g{(e) are identical. Returning to x"(¢),
as far as the energy moments of this function up to some finite order are
concerned, x”(z) can be represented in terms of a discrete sum over a finite
number of é-functions along the real energy axis (c.f. Eq. (165) in conjunction
with Eq. (166), taking 2z = ¢ + in with 5 | 0); under the conditions for which
Eq. (162) is valid, such a representation for x”(g) can yield very accurate
x(€), even for a small M. Although in this way the behaviour of x”(¢) aloug
the real e-axis may not be correctly represented (recall that for systems in
the thermodynamic limit, there are branch-cut discontinuities along the real
energy axis}), nonetheless the energy moments of x”(¢) up to some finite order
are exactly reproduced. We shall not enter into details here, but mention
that through introduction of a so-called terminating function (Nex 1985), or
through displacement of the branch cuts form the real axis into the complex
plane (Engel, Farid, Nex and March 1991),% it is possible to construct a x(&)
that has the correct behaviour on the real axis. These techniques have been
successfully applied in obtaining the plasmon energy bands of inhomogeneous
systems (Engel, Farid, Nex and March 1991, Engel and Farid 1992); for a
review see the paper by Farid, Engel, Daling and van Haeringen (1994).

8.10. A plasmon-pole approzimation

Consider the following function of z (Engel and Farid 1993)

Xon(2) = (£2xo0y + x7HOY ™, (168)

for X0, see Eqgs. (118), (122), (123) and (128) — see also Subsec. 8.5. Clearly,
Xpp(2) has the property that at two limits z — 0 and |z| — oo yields the
results corresponding to the exact x. In particular because of the latter, xpp(e)
satisfies the f-fum rule (see Eq. (153) and Subsec. 8.9). Certain approximate
expressions that yield the “exact” static x in the static limit and moreover
satisfy the f-sum rule are referred to as “plasmon-pole” (pp) models for x. In
the course of years a number of such models have been proposed and applied.
The above model has a number of advantages that are not shared by other
models. For details we refer the reader to the original work.

90Branch cuts, contrary to branch points, can be displaced. In other words, the precise
location of branch cuts of an analytic function is a matter of convention.
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It is important to point out that for systems in which w(r,r’) = 0, xo{€), or
Py(e; [Gks]), has the property (see Subsec. 8.5) Xgi00, = Xoo,, SO that Xpp(2)
in Eq. (168) is manifestly fully determined in terms of the ingredients of the
GS DFT (for x(0) see Egs. (133) and (134) above).

The plasmon-pole model in Eq. {(168) can be expressed in terms of the
eigenfunctions and eigenvalues of the following generalised eigenvalue problem
(Engel and Farid 1993)

1
X(O)6: = =3 Xeoa (169)
subject to the normalisation condition
T xo02Gi = 815 - (170)
It can easily be verified that X(z) has the following spectral representation
t
~ §i€i
X?P(z) = 4Zei 22 ezg ’ (1?1)
[

which has the form of the exact Lehmann-type representation in Eq. (110). In

Eq. (171), .
G = ée—:fg,‘(ooz(i . (172)

Since both x(0) and —x., are negative semi-definite (see text following
Eq. (1186)), e; is indeed non-negative (similar to e, in Eq. (102) above), so
that the square root in Eq. (172) is real-valued. The dynamical part of the
screened-interaction function associated with Xpp(2), i.e. Wyp(2) is easily ob-
tained (see Eq. (175) below). Using the fact that x(¢) = limgyo X(e £ in) —
Eq. (111) —, depending on whether ¢ > 0 or £ < 0, from Eq. (171) we readily
obtain

Xpp(r,x';€) = 2 Zci(rk;-“ (x) { ! ! } . (173)

E—-e;+£77m&:+e,-—in

The similarity between this expression and the Lehmann-type representation in
Eq. (100) is apparent. Plausibility arguments, supported by numerical as well
as experimental results (Engel and Farid 1993), suggest that {e;} < {ee(k)},
with k € 1BZ, to a high degree of accuracy should coincide with positions of
peaks in the energy-loss spectra for (periodic) crystals, i.e. with the plasmon
band energies.
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9. The GW Approximation for The Self-Energy

A physically appealing approximation for ¥ that can be derived both from
the coupled set of equations in Egs. (90)—(93) and from the perturbation ex-
pansion for ¥ in terms of the dynamic screened interaction function W, is the
dynamically screened exchange SE, also referred to as the GW self-energy (see
Fig. 12(b)). What is meant by the GW self-energy operator, Z¢%, concerns
the first-order contribution to (¥ —A~!vy) in a perturbation expansion in terms
W — see Subsec. 7.6. The first-order SE diagrams are all skeleton so that at
the level of the first-order perturbation expansion, L{°}[F] and L{}}[F] are
identical (see Subsec. 7.6). Thus Z¢W|[F] does not need to be further specified
by means of superscripts {0} and {1}. Therefore, the only ambiguity in the
calculation of 6% |[F)] arises from the freedom in the choice for F. In this Sec-
tion we choose F' to coincide with the exact G, so that many of the expressions
that we present below involve the Lehmann amplitudes and energies, f,(r) and
€s, defined in Eqs. (12) and (13), respectively, in terms of which G is repre-
sented in Eq. (11). Where appropriate, we shall indicate how the pertinent
expressions corresponding to ¢V [G] are modified in consequence of replacing
G in Y [G] by some Gy. Thus the choice F = G enables us to enquire into
the aspects of a Gy for which Z¢W [Gy] as closely as possible reproduces cer-
tain results that are specific to S¢"[G] (see Subsecs. 9.6 and 9.7). We should
like to emphasise that S¢%W being an approzimation to (¥ — h~vgy), there is
no a priori reason to believe that results obtained from ¢% [G] should nec-
essarily be in a better quantitative agreement with the experimental results
than those obtained from Z¢W [Gy] for some Gy (say the one pertaining to the
KS Hamiltonian within the LDA for thc exchange-correlation potential) — see
Subsec. 9.12.

9.1. Some historical background

The GW scheme was first put forward by Hedin (1965) as the leading-order
term in a series expansion for the SE operator iu terms of the dynamically-
screened interaction function W (Hubbard 1957) (see the works by DuBois
(1959a), (1959b)); this expansion was derived as a means for a systematic
decomposition of the coupled set of equations (Hedin 1965) which we have
presented in Subsec. 7.5 (Eqs. (90)—(93)). Hedin’s approaeh is based on the
Schwinger variational principle (Sehwinger 1951a,b,e; see Martin and Schwin-
ger 1959) whieh in turn is a differential form of the Feynman (1948) principle
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— what has now become Feynman’s path-integral formalism (Feynman and
Hibbs 1965, Negele and Orland 1988); for a comprehensive review of Feyn-
man’s principle and Schwinger’s dynamical principle in their historical setting
see Yourgrau and Mandelstam (1968, Ch. 12). Hedin’s work, however, is con-
structed within the canonical (i.e. Hamiltonian) formulation of quantum me-
chanics and thus differs from the path-integral description which is based on
the Lagrangian formalism. An “on-the-mass-shell” approximation to the GW A
(ZCW (k; €) — BCW(k; %)) is due to Quinn and Ferrell (1958). Pratt (1960)
in his search for generalising the Hartree-Fock theory, has arrived at an eigen-
value problem which involves the screened exchange, i.e. GW, SE operator.
Starting from an expression for the correlation energy due to Hubbard (1958),
Phillips (1961) has also arrived at the screened-exchange, GW, approximation.

9.2. Details of the GW approzimation exposed (Part I)

For £CW in terms of the ezact G and W (see Sec. 9) we have

W (vt 1't!) = %G(rt, YW (rtt,r't),

Cw oY z  de’ . t N ,—ie'n/h
5% (r,xie) = G(r,v’;e — eNW(r,r'; e , (nl0).
h J_o 27h

(174)

The + sign in the argument of W in the first expression, and thus the exponen-
tial function on the RHS of the second expression, has its root in the discontinu-
ity of the GF at ¢’ = ¢ (see Eq. (8); see also Appendix B) and the instantaneous
part of W(rt,v't’) (or the energy independent part of W{r,r’;¢)) that would
otherwise render the above expressions ambiguous. We have W(rt,v't) =
ve(r — v )8(¢ — t/) + W(rt, r't/), and thus

W(r,v';e) = ve(r - v') + W(r,1'; ). (175)
Making use of Egs. (94), {(95) and (100) we have®!

1 B 1
E—€s+1n E£+e;—1in

W(r,r’;s):Zws(r)wz(r’){ }, 740, (176)

91For |¢| — oo, W(e) diminishes like 1/¢2.
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where
ws(r) = 21/2/d3r'vc(r —r)es(r'); (177)

thus w,(r) is the electrostatic potential due to the deviation of the charge
distribution in an N-electron excited state with respect to that in the N-
electron GS. With this expression and the Lehmann representation for G(g)
in Eq. (11), using Cauchy’s residue theorem (Titchmarsh 1939, p. 102} the
¢'-integral in Eq. (174) is easily evaluated, leading to

26V (r,r';e) = B (r,r') + ZW(r,1r';€), (178)

where

2O (1, ') 1= vl — 1) Y0 0(u — € fo(0)f3 ()

1 N
velr = P)p(r, ),

2T (e,1'36) = 2 3 o) 12 (6w (e ()

8,8’

y { Oea—p) . 8(u—c) } . (179)

E—Eg—€y+1i) £—€5+ ey —1n

The static contribution £6? is exactly the Fock exchange self-energy XF (see
Subsecs. 4.6, 5.1 and 6.3 where we have ¥ (r,r') = h~lvg(r; [n])d(r — r') +
2F(r,r')). Since e, > 0 for all s', the first (second) term inside the braces on
the RHS of Eq. (179) is finite, i.e. non-singular, for € < p(e > u) — notice
that the §-function restricts the range of ¢,-values contributing to each term.
Let now €, (e.) correspoud to the largest (smallest) €, below (above) u (for our
earlier reference to ¢, aud ¢, see Subsec. 4.2). Let in addition

€min = min{esf}ls,;ﬁo, (180)

where we have excluded the trivial e,—q.%% It follows that the singularity —
i.e. “braneh point” for systems in the thermodynamic limit (see Subsecs. 2.1
and 2.2) — of £ (¢) closest to p from below is located at

€« = Ey — €nin (181)

92From Eq. (101) we observe that ps—o(r) = 0 — for systems with non-degenerate GS,
€min > 0.



Ground and Low-Lying Ezcited States of ... 213

and the one from above g at
€ 1= €¢ + Emin - (182)

Compare £< and &~ with gy and x4y in Subsec. 4.2, respectively. It can
explicitly be shown that for ¢ € (e<,&5), B¢W () is Hermitian. In case W
has been evaluated within the RPA, making use of the same GF as has been
employed in the calculation of E6W (which may be a Gy), it holds (see Eq. (14)
above and the text following it): emin = (€¢ — €,). In such a case we have

Es —E<« = (E¢ — €y} + 2€min = (6. — &4) . {183)

Hence, within the GW A, making use of a Gy and the corresponding W#F4
(by which we mean the W obtained through approximating P by Py[Go] in
W = v, + v, PW — see Eq. (92) and Subsec. 8.4), the possible QPs whose
energies may turn out to lie inside the interval (e, €5 ) possess infinite lifetimes.
In view of the above (see in particular the text directly following Eq. (179)) it
follows that

f]GW—(r,r’;z) = %z fo(r) (" Yws (r)w) (')

8,8’

. { Oes—p) | Olu—s) } (184)

2—53-—631 Z“—Es'i'es*

is the analytic continuation of EGW(S) into the complex 2-plane: we have
indeed

5V (e) = lim SV (e +in) fore 2 p; (185)
7

when € € (€«,£5 ), 1 can be put identically to zero. It can explicitly be shown
that similar to the exact £(z), ZEW () satisfies the relation (c.f. Eq. (40))

FEW (%) = £CW' (2, (186)

By explicit calculation, the relations in Eq. (51) can be shown to be satisfied
by £CW(z) provided that for the G(z) in Eq. (51) use is made of the expression

in Eq. (27), i.e. of the same expression that we have employed in determining
LEW(e) in Eq. (174) and thus Z6W (2) in Eq. (184).
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Through rearranging the terms in the above expressions, £“¥ can be writ-
ten in the alternative form

2% (e) = Ssx(e) + Zcnle), (187)

where

Dsx(e,13€) i= = 37 0(k — e){uelr —¥) + Wr, e — )M, @A),

ECH(I', I";E) - %Z fs(r)f.:(r,)ws' (r)w;' (r’) .

188
E—€Es— €y +1iN (188)

8,8’

Here g x denotes the so-called “screened-exchange” and L¢p the “Coulomb-
hole” part of Y% the former is clearly a generalisation of the Fock exchange
SE in which the v, is corrected for by the dynamic screening function W
(see €% in Eq. (179)) and the latter represents the influence of the Coulomb
repulsion in creating or shaping the region around each electron that is deficient
of other electrons (this region corresponds thus to a “hole”) — recall that
within the (unscreened) Hartree-Fock scheme, there is no Coulomb repulsion
between electrons of opposite spin. It is sometimes mentioned that Xgx is
the contribution of the residues of the integrand on the RHS of Eq. (174) at
the poles of G(¢ — €') (which as can be observed from the first expression in
Eq. (188) is indeed the case), and that, by analogy, Lo g were the contribution
of the residues of the same integrand at the poles of W(g’). The latter assertion
is incorrect. The reason for this lies in the ambiguity associated with the
equality of the magnitude of the imaginary parts of the poles in the Lehmann
(-type) representations for G(¢) and W (g) (in both representations this is equal
to n); with equal imaginary parts, the functions G(e — ey +in) and W(e —g, —
in), which are encountered upon a straightforward application of the residue
theorem, are indefinite. This ambiguity is removed by taking the imaginary
part associated with the poles in the Lehmann (-type) representations for G(¢)
and W(e) to be in and in’, respectively. The expressions in Eq. (188) follow
from the assumption that 5’ > 5 (following the derivation, ' is set equal to
7). One obtains an equally correct result by assuming 17’;< 71, but by doing so

the resulting Lsx will not involve the physical W, but W(e — €, — in) which
for € — £, > 0 coincides with the limit of W(z) where 2 approaches the real
energy axis from the side for which W(z) — w' (e — £5). Assumption ' > 7,
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on the other hand, leads to the “physical” W (e — €,) for all (€ — &,); it leads
to the “unphysical” G(s — ey + in') for € — €4 < ps, however.

9.3. Some sum-rules concerning W

Consider

FEWn () = gg{i@’w“(z) _FOWH()y. (189)

From the analyses following Eq. (179) — that fore < p, (e —p)d{e—~g5s~e5') =

0, and for € > p, 8{(p — £,)8(s — €5 + e5) = 0 —, the following sum rules are
readily obtained (we make use of Egs. (185) and (186))

# .
1 / deXCW" (1’ g) = j—p(r, YW (r, '), (190)
T oo 2h

-1 +o0

- deLW (1, v g) = % (6(r ~r') — %p(r, r')) Wi(r, 1), (191)
"

" -
lf deeZCW" (x,r';6) = ! {Eq(x‘,r’)wl(r, r) — }-p(r, rYWs(r, r')} ,
T oo h 2

(192)

b J

—1 ftoe —
—;;"\/ dEEEGW”(!‘,l"; E) =
u

{E:'.‘> {r,r" YW, (r,1')

+ (8 -1 - Jo(e, 1)) Wt r')} . (193)

where®
Wir,v') =3 we (r)ws (x'), (194)
Wa(r,v') = Ze,rw,f (rywi (r). (195)

For E¢(r,r’) and E5(r,r') see Egs. (17) and (18).

93Note that Wa(r, ') = FWee, (r, 1) 1= 4 limye)yoq e2W (T, r';2).
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Making use of Eqgs. (177) and (152) we obtain

Z wy (r)wd (r') = [d3r1 d>ry ve(r — r1)

—1 e " ?
X — dex”(ry,ra;€)| velra — r'), (196)
i}

where the term inside the square brackets is closely related to the pair-
correlation function g(ri,rz) and the GS electronic density (see Eqs. (152)
and (157); see also Eq. (154)). We have further

1
Z egws (D)l (r') = 5 [d3T1dST2 ve(r — 1)

_ o0
X [—-;-/ dee x"(r1,rg;£)] ve(rg — ). (197)
0

The term within the square brackets is Xoo,(r1,r2) as defined in Eqs. (118),
(122) and (153). This is interesting in view of the fact that (i) when the external
potential is local (i.e. w = 0), the x¢ corresponding to the “non-interacting”
KS system with the exact but local v, has the property that xp,00, = Xooz —
see Subsecs. 8.5 and 8.10; (ii} for cases where w # 0, it is in principle possible
to construct a “non-interacting” KS Hamiltonian whose ensemble x¢ yields the
exact p(r,r'); the vy, corresponding to this Hamiltonian is explicitly non-local
— in Subsec. 9.7 we shall briefly touch upon the pertinent formalism.

9.4. Details of the GW approzimation exposed (Part II)

In caleulations of £¢% in terms of some Gy, one can with advantage exploit the
fact that the spectral representation of Gg is fully determined in terms of the
eigenvalues and eigenfunctions of a “non-interacting” Hamiltonian, Hyp, which
is both independent of € and Hermitian. This does not apply to w [Go); even
within the RPA, the polarisation function is both ¢ dependent and, in general,
non-Hermitian.?* A further practical difficulty concerning evaluation of W is
associated with the required inversion of €(¢) in Eq. (94). Hence, unless one
relies upon some plasmon-pole-type of approximation for W (see Subsecs. 8.9

94 Here W' [Go] is defined in analogy with P(®)[Go] in Subsec. 8.4; see also Subsec. 7.6.
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and 8.10), practical considerations imply the necessity that £¢% be expressed
in an alternative form, one that does not involve the spectral representation of
W(e) (as in Eq. (188)) and avoids integration of W(e') along the real ¢'-axis
(as in Eq. (174)); in the thermodynamic limit, for real ¢’ calculation of W(¢')
requires evaluation of integrals that involve singular integrands, accurate de-
termination of which is extremely time-consuming; moreover, along the ¢’-axis,
W (¢') has fine and sharp structures, necessitating evaluation of this function
over a fine mesh of ¢/-points which is also computationally a demanding task.
For these reasons, as we shall clarify below, the following alternative expression
for Loy is superior to, e.g., that in Eq. (188):

Zon(r,r'e) = 3 3 AA ()

— “+ico ; ';%;"" 1,
X {9(5 ”Es)W(r, l";&' -~ 53) — de (r,r 1 & )} '

3 7
—ico 2T E—E — &,

(198)

This expression is obtained from that for W in Eq. (174) through deforma-
tion of the contour of the £/-integration, corresponding to W in Eq. (179),
from along the real £'-axis to one along the imaginary &’-axis (Quinn and Fer-
rell 1958, Godby, Schliiter and Sham 1986, 1988, Farid, Daling, Lenstra and
van Haeringen 1988). In doing so, appropriate account has been taken of the
“poles” of both G(z) and W(z) — see work by Farid, Daling, Lenstra and
van Haeringen (1988) for details. For £ = £, the integrand of the integral on
the RHS of Eq. (198) has a singularity at ¢’ = 0. It can be shown that this
singularity can be made harmless by considering the ¢’-integral as a Cauchy
principal-value integral,®® and simultaneously defining 8(0) = 1/2.
Consider the integral

+ioo de' :I;—r(g;} —
et =T
[,z-m 27tz — €' (2), (199)

95The principal-value integral according to Cauchy is defined by the requirement that sin-
gular point(s) of the pertinent integrand be positioned in the middile of the infinitesimal
interval(s) over which integration is excluded.



218 Electron Correlation in the Solid State

which occurs on the RHS of Eq. (198), with z = ¢ — &,. It can be shown

that Y(z) is analytic everywhere on the complex z-plane where W(z) is ana-
lytic (Titchmarsh 1939, p. 99),% except that it has a continuous branch cut
along the imaginary axis. Moreover, from the Plemelj relations (Davies 1985,
pp. 313-321 and 340, Noble 1958, pp. 141-147) it follows that we have (below
sf = g4 + 77, with 1} 0)

T(et — s +1y) — Y(e7 —es +iy) = %(zy) , Y real. (200)

Thus on changing & from below €, to above ¢;, the two terms inside the braces
on the RHS of Eq. (198) exactly cancel each other’s discontinuity. Using the
uniqueness of analytic continuation {Titchmarsh 1939, pp. 139 and 140), it
follows that Ty (z) is analytic across the lines Re(z) = &,, for all 5. This is
in accordance with Eq. (188) where we have only to do with +in and not with
a combination of both +in and —i7.

From all the expressions for Z¢W () given above, it can explicitly be shown
that 2CW"(e = u) = 0 (c.f Eq. (78)) where £¢W"(¢) is defined in Eq. (189);
from ¥sx and gy as given in Eqgs. (188) and (198), respectively, it can
directly be observed that for &€ = u the terms involving W{r,r';€ — £,) ezactly
cancel. For ¢ deviating from p, W (r,r’; £ —¢,) is seen to contribute to LW (¢)
for that set of €,’s for which [#(u—¢g,) — (e —¢€,)] is non-vanishing; this defines
a window of “relevant” e, values in the interval [u, €], for the case p < e, and
[, 1], for the case € < y. Thus as far as the contribution of W(r,1'; ~ €;) to
LEW(e) is concerned, it is only necessary to know W(e’) for &' € [0, |u — €]
(recall that W(—¢') = W(e')). Therefore, the expression in Eq. (198) indeed
amounts to a substantial computational simplification in particular in cases
where one needs to know W (¢) for a small range of ¢ values close to -

Finally, as can be directly seen from the explicit expression for EGW(S),
determination of the asymptotic behaviour of L6W"(¢) for ¢ — p is far from
trivial, since this requires an a priori knowledge of not only {e,} but also {e,}
close to p (see our remarks in Subsec. 6.4).

965t rictly, for this to be true two conditions have to be satisfied: (i) The Hélder condition
(Davies 1985, pp. 313-321 and 340, Noble 1958, pp. 11-13), |[W(e') - W{(c”)} < Ale’ -
e”|* with A > 0, a > 0; (ii) The asymptotic relation W{e’) ~' ¢'~# for |¢/] — o0, with

B > 0. Analyticity of W{e’) along the imaginary axis implies that the Holder condition is
automatically satisfied. We know also that g = 2.
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9.5. Some approximation schemes within the GW approzimation

Complete neglect of $% on the RHS of Eq. (178) amounts to one of the
possible approximations within the GWA scheme. In this way one recovers
the Fock exchange SE of the conventional Hartree-Fock method.

A more sophisticated approximation is the so-called COHSEX, COulomb
Hole with Screened EXchange (Hedin 1965). This is obtained through sup-

pression of the energy dependence of W (or W) in the expressions for Lgx
and Eop (see Egs. (178), (188) and (197)). By doing so, £x¢ transforms
into a form similar to 1% (see Bq. (179)), with v, however replaced by
ve + W(g = 0) = W(e = 0). In other words, in this scheme Lgx reduces
to the Fock-exchange SE in terms of the stafic screened Coulomb interac-
tion function. As for the “Coulomb-hole” part of the SE, as presented in
Eqgs. (188) and (198),%7 it can be easily shown that within this approximation
Ber(r,v;e) = (/2A)W(r,x';0) Y, fo(r)fr(r'). Making use of the com-
pleteness of the Lehmann aniplitudes (Eq. (15)), one arrives at

BOOHSEX (5, ¢') = ~ W (r, ' 0)p(r, ¥) + 5= W (r, £;0)8(r — ). (201)

The second term on the RHS of Eq. (201) has an interesting physical inter-
pretation (Hedin 1965). Consider two point charges held fixed at r and r'. If
there were no screening, then the potential energy of the point charge at r due
to that at v’ amounted to v.(r — r').%® Because of the polarisation effects, in
reality this energy amounts to W{r,r’;0). The difference between the two en-
ergies, i.e. W(r,r';0) (see Eq. (175)), is thus the induced potential energy. The
force F on the point charge at r associated with the latter potential energy is
equal to —VW(r,r’;0). By taking the limit v’ — r, one obtains the force F on
the point charge at r brougbt about by its own presence, through polarising its
surrounding; F := — limy_,, VW(r, r’;0). Because of the symmetry property
(see Eqgs. (175), (176) and (106)) W(r,v';e) = W(x',1;¢), for this self-induced
force F = —V{1W(r,r;0)} holds. Thus we observe that the contribution of
Yon to LW within the COHSEX approximation describes the self-induced
static force exerted on a point charge introduced into the system {compare the

97For € = ¢, the RHS of Eq. (188) involves Y, wyw!, /(—e,), which from Eq. (176) is seen

to be equal to %W{O). Alternatively, in Eq. (198) we have W(0) f :‘: de' [(2nile—e'—g5]) =

-é—ssgn(e: ~ €)W (0). Using [f(e — £5) ~ 2sgn(e ~£5)] = &, we again obtain 1W(0).
Note the €2 in the definition for v,.
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term enclosed by the curly braces in the expression for F with the second term
on the RHS of Eq. (201)).

Evaluation of the ¢’-integral along the imaginary energy axis on the RHS of
Eq. (198) is not, from the practical point of view, a difficult task: here one has
to do with a very smooth integrand which, moreover, decreases like ~' ¢/~3
for large values of l¢/|. Thus one might consider to retain the dependence

on & of W(¢'}) in the integral along the imaginary energy axis, but replace
W (e —¢,) in the expressions for Lgx (Eq. (188)) and Sy (Eq. (198)) by its
static counterpart; in doing so, the 8(¢ — £,) which pre-multiplies this W(0) in
Eq. (198) must be retained (see text immediately following Eq. (200) above).
This approximation which has been introduced by Toet (1987), is referred to
as the Static-Pole Approzimation (SPA). From the discussions in Subsec. 9.4
(in the paragraph following Eq. (200)), it is clear that knowledge of W (') for
g' within the interval [0, |y — €|] suffices to calculate the contribution due to
W(e — &,) to Z¢W (). From the fact that for small values of |¢'|, W(e') =
W(0) + o(1), it follows that for sufficiently small values of |u — €|, indeed
W (e —¢,) to a very good approximation can be replaced by W(0).

9.6. Large-|¢| behaviour of LEW (¢)

In Subsec. 8.3 we studied in some detail the large-|¢| behaviour of x(e), P(e)
and some related functions (operators). The explicit expression for LEW (¢)
as presented in Eq. (179) gives us the opportunity also to expose some of the
interesting features of X¢W (¢) for |¢| — oco. Here we consider three leading
asymptotic terms of ZGW (¢),

GW ove | Seor | Tooy
T () ~ BV + p t—= for |e] — o0, (202)

where £§% and £V are independent of £. Making use of Egs. (15), (194),
(195) and some simple algebra one obtains

56Y (. 1) = ;li-é(r — Wi, r), (203)

1

EEW (1, 1) = Gooy (1, t') — %{p(r, r') =8~ )We(r,r’).  (204)

Note that according to Eq. (31), —A{p(r,r') — é(r — ')} is equal to the zeroth

energy moment of A,(r,r';¢). From Eq. (203) we observe that £ is fully

determined by the zeroth energy moment of x"(¢) — see Eqs. (194) and (196).
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As is evident, £ is partly determined by Geo,. This, according to Eq. (35),

is in turn fully governed by n and p. The remaining contributions to Sfi’f
are due to p and Ws. The latter, according to Egs. (195), (197) and (183), is
determined by xoo, Which following Egs. (122) and (153) is, again, seen to be
fully controlled by n and p.

Iu view of the occurrence of G, in the asymptotic expansion of LZ¢W (¢)
for [e] = 00, it is interesting to consider Go,o0,. For this the following is easily
obtained

Y

2?‘23 V2 4+ u(r) + ve (r; [no)) + vb(r}} 3(r —r')

Gljooa(1; 1) = h{ [

+w(r,v') +vnp{r,r )} . (205)

where vy, and vny are, respectively, the local and non-local potentials that
we have assumed to be, in addition to the Hartree potential, incorporated
in the “non-interacting” Hamiltonian to which Gp corresponds. The density
ng in the argument of vy, denotes the density in the GS of ffg. We have
to point out that Gy, in Eq. (205) is distinct from that in Eq. (36) which
corresponds to the truly non-interacting system of electrons. Since the “non-
interacting” Hamiltonian Hy in the present case incorporates vy + vy +vNL,
the corresponding Dyson equation reads G = Gg + GpZ1G, with ¥ defined
in Eq. (98). Thus, according to the first equality in Eq. (43) we have Zj,40, =
R 2{~ G003 + Goos }- From Egs. (35), (205), (98) and (99) we therefore obtain
Eg;g’ = (Btye00 + A vy +vL +onL]) - A log = $Gve which is indeed the
leading-order term on the RHS of Eq. (202).

9.7. The DFT revisited: An explicitly non-local effective potential

Since the last term on the RHS of Eq. (35) is non-local, the Gp,00, corresponding
to the commonly-used KS Hamiltonian cannot possibly be exactly identical
t0 Goog, although in this case vy is exactly reproduced (see text following
Eq. (99)). However, within the framework the DFT which is designed to yield
the exact n(r) — thus assuming w(r,r’) = 0 —, the effective potential veg
in the KS equation (Eq. (135)) can take on different forms depending on how
the energy functional Fin} in Eq. (107) is decomposed. The multiplicative,
or, explicitly local form that this potential apparently has in Eq. (135) is a
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consequence of the following decomposition

Fn] = T,[n| + Enun] + Ezc[n], (206)

where
Tinli=2 [ ¢ 00— ewi) v v, o
Enln] := .;.. / BrdSr've(r — ' )n(r)n(r'); (208)

the orbitals {¢;(r)} in Eq. (207) are the eigenfunctions of the KS Hamilto-
nian in Eq. (135) above. Equation (206) defines E..[n| as the difference be-
tween F[n] and Ty[n] + Eg[n]. It follows that veg(r; [n]) := v(r) + §{ Ex[n} +
Ezc[n}}/én(r) = v(r) + vy (r; [n]) +vee(r; [n]) is explicitly local. If now, follow-
ing Kohn and Sham (1965), F'[n] is decomposed like

F[n] = Ts[n] + Eg[n] + Ez[n] + E.[n], (209)
with T,[n} and Ey([n] defined as in Eqgs. (207) and (208), respectively, and
E;[n] = %—1- /dgrdsr’vc(r ~ 1) po(r,r')po(r’,r), (210)
where (see Eq. (135))

po(r,r') =2 ZG(# — ) ()Y} ('), (211)

from the Euler-Lagrange equation for F,[n| the following KS (1965) equation
is obtained:

2me.

[—rﬂ V2 -+ o(r) + v (e n]) + ve(rs [nl)} vile)

“‘% f & r've(r ~ ') po(r, T )i(r') = eithi(x), (212)

which is “Hartree-Fock like”, rather than “Hartree like” (c.f Eq. (135)).
The correlation energy functional E;[n| is defined through Eq. (209) and its
corresponding potential

6 E.[n]
dn(r)

ve(r; [n]) = (213)
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is referred to at the “correlation potential”. Above we have denoted the single-
particle reduced density matrix corresponding to the KS equation (Eq. (212}),
i.e. the Dirac-Fock reduced density matrix, by po(r,r’), to indicate that this is
not identical to the exact one-particle density matrix, although po(r,r) = n{r),
the ezact GS electron density. The reason for this lies in the fact that in
arriving at Eq. (212), only variations in n(r) around the GS charge density
have been considered; for obtaining a KS equation (see Footnote 78) whose
eigenfunctions yield the exact p(r,r') through >, A ()97 (r'), it is necessary
that variations of p around the p corresponding to the GS are considered
(Gilbert 1975; see also Donnelly and Parr (1978) and Valone (1980)), in which
case the pertinent KS equation will aquire an explicitly non-local correlation
potential.®® Nevertheless, it is interesting to note that through choosing Ho to
coincide with the ezplicitly non-local KS Hamiltonian in Eq. (212), in addition
to preserving the important property no(r) = n(r), it is ensured that the
corresponding Gy, incorporates a non-local term involving v.. However,
there are two differences between this Go,o0, and Goo,: (i) the expression for
Go;00; invOlves v (r; [n}), which does not feature in the expression for G, ; (ii)
the one-particle reduced density matrix in Gy, i po(r,t’) whereas that in
Eq. (35) is p(r,r').

In view of the above considerations, it is instructive to consider the following
expression for the GS total energy due to Galitskii and Migdal (1958)100

* de
Eng = —~1 /dsr [im e giEn/P

vt e wh

2
X {[g - %Vz + v(r)] Glr,v';e) + /d3r"'w(r, )G, v, a)} ,
(214)

where we have suppressed the energy due to the inter-ionic (or background)
interaction; in addition, we have multiplied the RHS of this equation by 2 in

99That pg 2 p, is easiest shown by pointing out that unlike p, pg is idempotent:
fd3r”po(r, r)po(r”, ') = po(r,r’), whereas fd‘"’r"’p(r, rYp(r’, v’} < p(r,r'). See, e.g.,
the work by Dreizler and Gross (1990, p. 47). The non-idem-potency of p(r,r’) manifests
itself in the deviation of ); from either zero or unity. This implies that the density-functional
framework for constructing the exact p is an ensemble formalism, to be contrasted with a
pure-state formalism.

100For some technical details concerning application of this expression see the paper by
Farid, Godby and Needs (1991).
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order to account for the trace over the spin of the electrons. An aspect of sub-
stantial practical interest is that the total energy is determined by the zeroth-
and first-order e-moments of G(g). In the present work we have attempted to
expose the intimate connections that exist between the energy moments and
the large-|¢| behaviour of various correlation functions on the one hand, and the
relationship between these and the GS charge density and the single-particle
reduced density matrix on the other. Equation (214) provides yet another ev-
idence for this. Through making use of (below 7 | 0) — see Egs. (16), (17)
and (26) —

~1 /+w de e R G(r,v'; ) = —iG(rt,x't*) = —I-p(r r') (215)
oo Zﬂ'ﬁ, $ H ¥ 2 $ H

. ien/h N — f * i

-0

(216)
while employing both the exact and the approximate expression on the RHS
of Eq. (22), it can readily be verified that10!

Eno = f d*ru(r)n(r) + / drd’r’w(r,v')p(r, r')

2
+/d3r lim [2 n Vz} p(r,r')

v/ [ 4

+ —-}Yg\-{z:——l-—)- / Erd®r v (r - )g(r,r'), (217)

LNQM—I-)» /d3rd3r’vc(r— r')g(r,r')

1

~ f Brd®r've(r — P')n(r)n(r’) = Exln]. (218)
From the considerations in Subsec. 8.8 we know, that for systems without
off-diagonal long-range order (i.e., involving no superfluidity or superconduc-
tivity), for |[r — r’'|| = oo we have N(N — 1)g(r,r’') = n(r)n(r’), so that the

101pgr & similar expression see the books by March, Young and Sampanthar (1967, p. 10),
and Dreizler and Gross (1990, Appendix A).
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{Hartree) approximation in Eq. (218) is seen to correspond to neglect of the
short-range correlation effects.

Our above considerations demonstrate that calculation of Z¢% in terms of
Go and Wy (= WEPA[G k5] — see text following Eq. (183)) corresponding to
the KS “non-interacting” Hamiltonian, whose ground-state n(r) is identical to
that of the fully interacting system, incorporates such correlation effects that
are very specific to ZW[G), i.e. the Z¢W as evaluated in terms of the ezact
G and W.

9.8. Self-consistent calculations

Consider the following unconstrained self-consistent procedure for the calcula-
tion of G (or £): Start with a given “non-interacting” Hamiltonian Hy which
in addition to vy contains vy, + vyxg. Calculate ZCW[Gyl, i.e. Z¢W in terms
of the GF pertaining to Hy (see Subsecs. 7.6 and 9). Through solution of
the Dyson equation calculate Gg;-1), with G(iyqy = (I - GOE?W[GM])“IGQ,
where (see Subsec. 7.6) E?W [G{,’}} ;= DOW IG{,-}} —h Yo + vNL), with G{g}
the GF corresponding to the ith iteration, i = 0,1,..., M, (G = Go)-
Here M, is the number of iterations beyond which the changes in the ma-
trix elements of, say, Gy;; are negligible. In practice, it may happen that this
straightforward process of iteration does not converge (a known fact concern-
ing iterative solution of non-linear equations), in which case one has to employ
a more refined scheme. A strategy that is not sophisticated and in other con-
texts has proved to be useful (Kerker 1981, Dederichs and Zeller 1983 — for
completeness, see the paper by Ho, IThm and Joannopoulos {1982)), consists in
calculating G;y1y, for ¢ > 1, in terms of ZEW([(1 — a)G;_1} + aGyyy] with
o € (0,1] (for small values of i, a < 1) rather than ZfW[G;). We note
that for the linear combination (1 — a)Gyi-1y + aGy;y to be meaningful, it is
necessary that the values of p corresponding to Gy;_1} and Gy, are identified
before the two functions are linearly combined.

It should be evident that there is no a priori reason for considering the con-
verged G, as obtained according to the above strategy, in any sense superior to
the non-self-consistent G, i.e. G1}. The following two points should clarify this
statement. First, the non-linearity of the problem at hand implies existence of
a multiplicity of solutions for G, so that “the” self-consistent G may be entirely
different from that which one has set out to calculate (see Sec. 7). We have
to emphasise that even though there is no compelling argument in favour of
G (1), one may argue that if Gp has been a “good” zeroth-order approximation
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to G, the contribution of Z¢%W to G should amount to a “minor” correction,
in which case Gy,} appropriately takes this correction into account. Second,
disregarding the first point, in order to assess the accuracy, or even qualitative
correctness, of the self-consistent G, one needs to know the significance of those
contributions in (£ — A~ 'vg) that have been neglected in £6W: a G that is
self-consistent within an approximate framework, is not necessarily “closer” to
the exact GG than a non-self-consistent G.

From the above we conclude that for performing reliable self-consistent
calculations, one has to define some appropriate norm (which can be differ-
ent depending on the nature of the questions being addressed) which imposes
constraints on the self-consistent solution. These constraints can be either so-
called “equality constraints” or “inequality constraints”, or some combination
of both. To the former class of constraints belongs the requirement that the GS
charge densities corresponding to the non-interacting and interacting systems
he equal (sec Subsubsecs. 7.4.1 and 8.6.1), and to the latter that the GS total
energy of the self-consistent G be minimal (see Subsec. 9.7). We shall now
argue that a self-consistent calculation must involve at least one “inequality
constraint”, Obviously, since the functional form of Z¢% is fixed, it follows
that for satisfying the “equality constraints” it is necessary that Hp be ad-
justed, through variations in (v;, + vyr) — in this way Gy is varied and thus
also Z6W[Gy]. Therefore within an “equality-constraint” scheme one adjusts
the non-interacting Hamiltonian, with respect to which perturbation expan-
sion is carried out, until the required equality is satisfied (by, say, G;), where 1
may take on the value 1 if for whatever reason Gy} is preferred above G (ay,, 1)
Such constraint cannot in itself guarantee even the qualitative correctness of
the self-consistent solution. This follows from the obvious fact that the quan-
tities on both sides of an “equality constraint” are to be calculated in parallel,
so that at self-consistency one may be satisfying an incorrect equality. Thus
one comes to realise that the self-consistent G must, for instance, yield the
lowest GS total energy (in so far as possible within the GWA) for it to be at
least qualitatively correct.

In applying the above strategy for the self-consistent calculation of G, it
is important that the “equality constraints” are mutually compatible and that
they can indeed be enforced. Here the known theorems of the DFT can be
of substantial value. For instance, if for a given system one can assume that
its GS electronic distribution n(r) is non-interacting v-representable (see Foot-
note 7), one can immediately draw the significant conclusion that the mapping



Ground and Low-Lying Excited States of ... 227

between v (r) and n(r) is invertible (Hohenberg and Kohn 1964). This implies
that (i) it is possible to impose the “equality constraint” that the GS charge
density of the non-interacting system be identical to that of the interacting
system; (ii) that vy, is uniquely determined (up to a trivial additive constant).
We recall the very important role played by the GS charge density and the
reduced one-particle density matrix in determining the large-¢ behaviour of
various correlation functions as well as the values for the e-moment integrals
corresponding to the “imaginary” parts (i.e., the branch-cut discontinuities) of
these functions (see Subsecs. 4.6, 8.3, 8.8, 8.9, 9.3 and 9.6).

As for the compatibility of the constraints, the freedom in adjusting vy
suggests that in principle it should be possible that, for self-consistency
also some say, static two-point correlation function pertaining to the non-
interacting system be made to coincide with that of the interacting system.
However, since the local part of vnyr, has been absorbed in vp, this require-
ment may not be compatible with the one that is to be enforced by vy. We
point out that even the requirement that both ng(r) and po(r,r’) correspond-
ing to the non-interacting system be identical to those corresponding to the
interacting system cannot be met, despite the fact that n(r} = p(r,r). This
is due to the non-idempotency of p (see Footnote 99) that rules out the pos-
sibility of describing p in terms of a pure state; for imposing the condition
po = p, an ensemble formalism for the many-body perturbation theory must
be adopted. Nevertheless, one can attempt to find an optimal vy such that
the corresponding po resembles p as closely as possible (according to some
well-specified norm). This constitutes an “ineqnality constraint”.

It is interesting to note that since T¢W (¢), similar to the ezact (g), is
Hermitian at € = g (see Subsec. 6.4 and 9.4) — of course the g corresponding
to W js different from the exact u, corresponding to ¥ —, it is possible
to impose the “equality constraint” that at € = u, Z°W(e) and A~ '(vy +
vny,) be identical (see Eq. (98)). Such a constraint, provided accompanied by
an appropriate “inequality constraint”, should give rise to a non-interacting
Hamiltonian that at energies close to u describes the behaviour of the QPs
relatively accurately.

All self-consistent methods (such as those described above) are rendered
impracticable (except for relatively simple systems) by the fact that at vari-
ous stages of calculation, a number of integrations have to be carried out. If
these integrals are not evaluated with sufficient accuracy, it is most likely that
the consequent errors will eventually dominate the outcomes which have to be
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obtained over in principle many self-consistency cycles. The present author
(Farid 1997a, b} has proposed a way out of this problem and the computational
results indicate the proposed approach to be extremely reliable.

9.9. Some technical aspects

Here we briefly discuss a number of aspects that are of practical relevance.
Since most of the calculations in the past have concerned periodic crystals,
and it is natural that this will remain an active area of research in future, here
we shall focus on some aspects specific to evaluation of W for these systems
in three spatial dimensions (for notational conventions see Appendix A). We
explicitly consider LW as evaluated in terms of a Gy, i.e. ZCW|[Gy).

Let {R:|R;} denote an element of the space group of the Hamiltonian of
the system, both interacting and non-interacting. For a two-point function
F(r,r';e) pertaining to the system, which may be Z¢W(r,r';¢), G(r,r';¢),
x(r,r'; ), etc., we have

{Ri|R;}F(r,x;e) := F(Bir + i + R, Bir' + 7 + Rj;¢) = F(r,r';¢).
(219)

Here 3; stands for the peint-group operation associated with {R;|R;} and 7; for
the corresponding non-primitive translation vector (which may be vanishing);
R; denotes a primitive translation vector (Slater 1965, Cornwell 1984). It
can easily be shown that invariance of F(r,r’;¢) under {R;[R;} leads to the
following result

RSP ’ .
Fg,c/(Bik + K;;¢) = e'lPi (G-C }}”"‘Fg;i(c;+xi},;a;i{c+x,-}(k;5)s (220)

where 3; ! denotes the inverse of B; and K; stands for the RLV that guarantees
Bik + K, =: k{ to lie inside the 1BZ (we assume k € 1BZ — K is generally
vanishing except possibly for cases where k is on the boundary of the 1BZ).
This result is of practical interest, as through it Fg g/ (k|;€), for all ki’s that
are distinct from k, is obtained from an element of the set {Fg ¢'(k;€)} by
means of a mere phase-factor multiplication.

For our following discussions we take the expression for L¢W(¢) as pre-
sented in Eqs. (188) and (198). We have

ngg:{k, 5) = :ﬁ?:; Z Z ZK,K" (G# G’; ks k’;é‘), (221)
k'e1BZK K’
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where

Zx x (G, Gk, k'; £)
= de et (K)df g g (K) { O — ge(k — X' ))vee -k, 0/-x (K')
?

+{8(ps —~ ee(k — k') — 0(e — ee(k — k) |We-k o -k (k;e — ee(k — k')

+ioo dE’ %G“K;GI-KI (k’,g')
+[..,'w 2mt € —¢gl — Eg(k - kl) ? (222)
with
(0= L0 223
"C:G.G’( ) s m GG’ ( )

the (G, G')-matrix element of the Coulomb interaction function in the wave-
vector representation; {dz.(K)}k denotes the set of Fourier coefficients corre-
sponding to the periodic part of a Bloch-type eigenfunction of Hy, normalised
according to 3y dex(K)d, (K) = 1; £ denotes the band index and k € 1BZ.
The k-summation over the 1BZ is replace by a k-integration according to
>ke1Bz () = (©/12n]%) figz d%k(...), with Q the volume of the crystal.
When appropriate (see further on), this integration is subsequently replaced
by a finite summation. The most commonly-used summation method is one
based on the so-called special-points technique (Baldereschi 1973, Chadi and
Cohen 1973, Monkhorst and Pack 1976). For any lattice structure, the theory
underlying this technique prescribes a well-specified set of (finite) sampling
points within the 1BZ over which the integrand is to be averaged, with each
sampling being weighed by a well-specified symmetry-related weight factor.
There are a number of different procedures for generating these points, each
of which gives rise to different sets of “special points” and the associated sets
of weight factors. We shall not go into the details of these methods, however
there is one crucial aspect concerning “special points” to which we should like
draw attention:

All “special-points” methods deal with evaluation of integrals of the form
Suc1BZ @k B(k) =: Z, where B(k) is assumed to be periodic over the entire
reciprocal space, repeating the form it has over the 1BZ, and to have the
complete lattice point-group symmetry. A typical example for B(k) is the band
energy €¢(k). Consequently, B(k) can be expanded into a symmetrised discrete
Fourier series. The constant term in this series is the sought-after Z. The
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special-points sampling methods employ such sets of sampling points that up
to a certain order render the combined contribution of all harmonics of B(k)
vanishing. Since with a finite number of sampling points, it is not possible
to inactivate all harmonics of B(k), the sufficiency of a finite set of special
points in a particular application depends on the magnitudes of the spectral
coefficients in the mentioned symmetrised Fourier series that have not been ad-
dressed by the adopted set of “special points”. Now as for the crueial point to
which we have referred above, for certain functions, B(k), though smooth over
the 1BZ, the assumption of periodieity over the entire reciprocal space may
imply discontinuous bchaviour in their extended form, or in the derivatives of
this, at the zone boundaries. It follows that these functions possess large spec-
tral contents associated with high orders of their Fourier coefficients.!®? This
leads to slow convergence, with respect to the number of the samnpling points,
towards the exact Z. It is important to bear this point in mind, for sometimes
authors seek to justify their use of a special-points-sampling strategy through
arguments that merely show the “smoothness” of the involved integrands over
the 1BZ and not that of their periodic extensions. We should emphasise that
use of discrete sampling methods for cvaluation of the BZ integrals is not a
fundamental necessity, rather a practical one: many of the present-day cal-
culations concerning realistic models of solids would not be practicable if the
necessary BZ integrals had to be evaluated by means of such methods as the
linear or quadratic “tetrahedron” methods (Lehmann and Taut 1972, Rath
and Freeman 1975, Methfessel, Boon and Muller 1983,1987), which are based
upon subdivision of the 1BZ into small tetrahedra, inside each of which the
BZ-integral is evaluated analytically following a linear (Lehmann and Taut
1972, Rath and Freeman 1975) or qnadratic (Methfessel, Boon and Muller
1983,1987) expansion of some part (mostly the denominator) of the integrand.

The expression for £&'¢, (k; ) in Egs. (221) and (212) brings out a number
of points which are worth mentioning.

102Consider the function k2/2 over [—=%/ac, 7/ac), the 1BZ of a one-dimensional periodic
system. Although admittedly very “smooth” in the usual sense of the word, when periodi-
cally extended over the entire k-axis, k*/2 at k = £m/ac has a derivative discontinuity, in
magnitude equal to 2w /a.. The component with index m of the Fourier expansion of the
periodically-extended k?/2 for large m decreases like 1/m?, implying a very slow convergence
of the BZ integral of k%/2 according to a “special-points” technique (for a convergence of,
say, 1%, it is required that m ~ 10 — in three dimensions, this amounts to requiring ~ 103
sampling points over the 1BZ). In contrast, a Gaussian-quadrature method yields the exact
value for this BZ-integral upon the second sampling and beyond.
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First, as indicated above, the BZ-integration in Eq. (221) is most likely to
be evaluated by means of one or another type of averaging technique over a
discrete set of k’-points. In view of this, the following should be taken into
consideration:

(i) As is apparent from Eq. (223), the Coulomb interaction matrix element
vea,¢lk) is singular at k + G = 0 {for k in the interior of the 1BZ, this
equation is satisfied only when G = 0). Consequently, the integrand of the
k'-integration has to be regularised prior to applying any discrete summation
technique; the BZ-integral corresponding to the singular part (which in the
process of regularisation has been taken apart) has to be evaluated by means of
some appropriate method — for instance a sampling approach in the spherical
polar coordinate system, with the origin being centred at the singular point
of the integrand. In view of our above remarks concerning limitations of the
“special-points” method, it is advantageous for the convergence rate of the
BZ-integral in Eq. (221}, as function of the number of the “special points”,
that the “regularised” v, g(k) be free from discontinuities or sharp “edges”.

(ii) The screening potential W is short-ranged only in metallic systems (see
Footnote 48); for semiconducting or insulating systems, the screening is not
complete and therefore W, like v,, is singular (see however Subsubsec. 7.4.1
and Footnote 64). Moreover, the behaviour of W ¢ (k; €) close to its singu-
larity (i.e., for k = O — see further on, however) is in general anisotropic,
i.e. it depends on the direction of k along which k — 0, cubic crystals being
exceptional in this respect; see works by Falk (1960), Pick, Cohen and Martin
(1970}, Baldereschi and Tosatti (1978, 1979) and Baldereschi, Car and Tosatti
(1979). To analyse the behaviour of W g:(k;e), it is necessary to examine
that of the matrix elements of the polarisation operator P(e). With

Po ark;e) = Th{G,G;e) + I, (G,G';¢) - k
+k-IL(G,G’;¢) - k+ O(k|), (224)

for k close to 0, the following relations can be shown to hold
1{(0,0;¢) = 0; I1,{0,0;¢) = 0; (225)
(G, 0;¢) = 0; TI{0,G";¢)=0. (226)

That is, the “head” element of P(k; ¢} (i.e. that corresponding to G = G’ = 0)
and “wing” elements (i.e. those corresponding to either G = 0, G’ # 0 or
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G # 0, G’ = 0) are vanishing for k — 0, the former gquadratically and the
latter linearly in | k|l. 1n general, the tensor II, has a full Cartesian matrix
representation. For cubic crystals, however, it is, in this representation, a
multiple of the unit matrix. From these results, taking into account the sin-
gular behaviour of v.,q,q(k) for k + G — 0, and application of the Sherman-
Morrison-Woodbury formulae (Press, Teukolsky, Vettering and Flannery 1996,
pp- 65-70) for inversion of matrices by partitioning (Pick, Cohen and Martin
1970), one arrives at the conclusion that the “head” element of W(k;e) has
a 1/|/k||? type of singularity, the “wing” elements diverge like 1/| k||, and the
“body” elements are regular. Again, except for cubic crystals, the divergence
in the pertinent matrix elements of W(k;¢) is non-isotropic. We should em-
phasise that distinction has to be made between k — 0 and k = 0 (Baldereschi
and Tosatti 1978, 1979 — for some comments on this subject see the paper
by Farid, Heine, Engel and Robertson (1993), Sec. IV). In our case, the point
k = 0, in combination with either G = 0 or G’ = 0 (or both) has no signifi-
cance: the matrix elements Wg o(k = 0;€) and Wy g (k = 0;¢) are vanishing,
since an infinite periodic system cannot respond to a spatially constant per-
turbation without violating the charge conservation (see Footnote 80).19% For
some technical details see works by Gygi and Baldereschi (1986), von der Lin-
den and Horsch (1988, Appendix C to this work) and Hott (1991).

(iif) In metals, the function 8(p — ee(k — k') in Eq. (222) necessitates
accurate knowledge of the Fermi surface in the k’-space. It should be realised
that also W in Eq. (222) is dependent on the geometry of the Fermi surface
(see, e.g., Py in Subsec 8.5). Therefore, except for the simple metals, for
which one may anticipate nearly spherical Fermi surfaces, accurate evaluation
of 6% (¢) is computationally extremely demanding,

9.10. A survey of computational works within the GW
approzimation

Hedin (1965) has applied the GW A to calculate a variety of properties pertain-
ing to the uniform-electron system. In particular he has calculated a number of
parameters of the Landau Fermi-liquid theory. Rice (1965) at the same time as
Hedin, starting from an expression due to Hubbard (1958) for the correlation-
energy in terms of the SE operator, has calculated a number of Fermi-liquid

103 Recall that by charge neutrality, ve.g G (k) must be set equal to a constant (convention-
ally zero), when G =0 and k = 0.
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parameters. In his treatment, Rice has further considered some static local-
field function (accounting for the vertex correction) that is neglected within
the GW A. This static contribution is the Hubbard local-field function that we
have discussed in Subsubsec. 8.6.3 (see Footnote 79).

There have been subsequent applications of the GWA to the uniform-
electron system by a number of authors. In some of these, the vertex func-
tion has been approximately taken into account. Applications of the GWA to
uniform-electron system are by Hedin (1965) and Lundqvist {1967, 1968, 1969).
The latter author has calculated such functions as the momentum distribution
function and the spectral function. Lundqvist and Samathiyakanit (1969}, us-
ing the Galitskii-Migdal expression, have calculated the GS total energies at a
number of metallic densities. Petrillo and Sacchetti (1988) have studied some
consequences of the static local-field function on the results based on the GWA.
This has been also subject of studies by Mahan and Sernelius (1989) and Frota
and Mahan (1992). The last two works have been in part motivated by some
controversies that seem to exist concerning the experimental values for the QP
bandwidths in alkali metals in comparison with those calculated within the
framework of the GW A and within a framework in which the vertex function
has been taken into account (in an approximate way) only in the calculation
of the screened interaction function W and not in that of the SE operator. As
we observe from Fig. 12, within the standard GW A the vertex function I is
neglected both in the expression for the polarisation function (this amounts
to the RPA for this function — see Subsec. 8.4) and in that for the SE oper-
ator. The discussions in Subsec. 6.7 indicate that by a partial incorporation
of the vertex function in the polarisation function, and neglect of it in the SE
operator, the results may become less reliable as a consequence of disrupting
the balance between the errors that otherwise would cancel. The numerical
studies made so far on this issue (Mahan and Sernelius 1989, Frota and Mahan
1992) rely on very simple approximations for the local-field function G. For
instance, these are energy independent and, moreover, do not have the correct
behaviour at large values of k (see Subsubsec. 8.6.3).

The review article by Hedin and Lundquist (1969) gives an in-depth survey
of the theory underlying the GW formalism as well as of a variety of related
and relevant material. In particular, it contains some details concerning the
core-polarisation effects and ways of incorporating these in approaches that
primarily focus on the interaction amongst the valence (as opposed to the
core) electrons. To this date this article remains the major reference source on
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the subject. In the intervening time the following brief surveys on the GWA
have appeared: von Barth and Hedin (1974), Hybertsen and Louie (1987b),
Godby (1992), Mahan (1994), Hedin (1995), Louie (1996). In Chapter 7 of the
book by Inkson (1984), the method is described, and in Chapter 9 of the book
by Fulde (1995), the approach is presented and further some applications of it
to real solids are discussed.

Brinkman and Goodman (1966) in calculating the energy bands for sili-
con have applied the GWA, using the further approximation to which we in
Subsec. 9.5 have referred as the COHSEX (Hedin 1965). In addition, the au-
thors neglect the non-diagonal elements of the screened-interaction function
W. Thus Brinkman and Goodman conclude “The results are not an improve-
ment over the Slater approximation.” Kane (1971) in his work entitled “Need
for a Nonlocal Correlation Potential in Silicon” arrived at the conclusion that a
“local approximation to exchange and correlation is inadequate for silicon” and
that “screened Hartree—Fock exchange may provide the non-locality required
to overcome ... difficulties.” In a subsequent work, Kane (1972) applied the
GWA to Si, using the Penn (1962) model for the dielectric function in the
calculation of W. Subsequently, Inkson (1973) and Bennett and Inkson (1977,
1978), Inkson and Bennett (1978) and Sterne and Inkson (1984) have employed
LEW  using simplifying approximations in order to study effects of exchange
and correlation on the energy bands of semiconductors. Brener (1975) has
applied the COHSEX for calculating energy bands of diamond. Guinea and
Tejedor (1980) have calculated ©¢% for a model of a semiconductor, taking
into account the dynamic screened interaction function as determined accord-
ing to a plasmon-pole model.

Perhaps the first contribution that gave rise to the intensified activities that
have extended to this date, concerning application of the GWA to realistic
models of crystals, is due to Strinati, Mattausch and Hanke (1982). Works
by Wang and Pickett (1983) and Pickett and Wang (1984) based on the local
approximation for £¢% due to Sham and Kohn (1966) (see Subsec. 5.2) has
been important in bringing out a salient feature of the SE operator (“dynamical
correlation — explicit excitation-dependent correction™) that is relevant to a
correct description of the QP energy bands in solids. The mentioned activity
has gathered momentum ever since the work by Hybertsen and Louie (1985)
has appeared. The following, which most likely is an incomplete list, serves to
indicate the activities in this area over a period of more than ten years:
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Lannoo, Schliiter and Sham (1985) (quasi one-dimensional model semicon-
ductor); Hybertsen and Louie (1985) (QP energies in Si), (1986) (C, Si, Ge,
LiCl); Godby, Schliiter and Sham {1986, 1987, 1988) (QP energies of Si, GaAs,
AlAs); Gygi and Baldereschi (1986} (“COHSEX", Si); Northrup, Hybertsen
and Louie (1987) (QP energies in Na and L#), (1989) (Li, Na and Al); Hy-
bertsen and Louie (1987a) (surface states of As and Ge(111)); von der Linden
and Horsch (1988) (QP energies in Ge and a generalised plasmon-pole model);
Hybertsen and Louie (1988) (surface states; Ge(111) : As and Si(111) : As);
Farid, Daling, Lenstra and van Haeringen (1988); Surh, Northrup and Louie
(1988) (QP bandwidth of K); Gygi and Baldereschi (1989) (a simplified model
for XCW: results obtained for Si, Ge, GaAs and AlAs); Zhang, Hybertsen,
Coben, Louie and Tomének (1989} (ultrathin AaAs/AlAs(001) superlattices};
Zhang, Tomének, Cohen, Louie and Hybertsen (1989) (work on semicon-
ductors without inversion symmetry); Zhu, Zhang, Louie and Cohen (1989)
(work on relaxed GaAs(110) surface); Godby and Needs (1989) (pressure-
induced metal-insulator transition in S%); Saito, Zhang, Louie and Cohen
(1989) (small metal clusters, using a jellium-sphere background); Hamada,
Hwang and Freeman (1990) (S%, using “full-potential linearised augmented-
plane-wave, FLAPW, method”); Farid, Godby and Needs (1990) (work on the
ground-state total energy, Si); Engel, Farid, Nex and March (1991) (quasi one-
dimensional model semiconductor); Hott (1991) (C, Si, Ge, Ga, As and InP);
Chacham, and Louie (1991) (solid Hydrogen at Mbar pressures); Zhu and Louie
(1991) (QP band-structures of thirteen semiconductors and insulators: St,
LiCl, AlP, AlAs, AlSb, GaP, GaAs, GaSbh, InP, InAs, InSb, Al 5Gap.5As,
Ing 53Gap 47A8); Aryasetiawan (1992) (work on Ni); Shirley, Zhu and Louie
(1992) (effects of core polarisation on QP energies; Si, Ge, AlAs and GaAs);
Shirley and Louie (1993} (solid Cgg); Charlesworth, Godby and Needs (1993)
(band-gap narrowing at an Al/GaAs(110) interface); Rohlfing, Kriiger and
Pollmann (1993) (work on, amongst others, $iC); Farid {1994) (self-consistent
GWA); Palummo, Reining, Godby, Bertoni, and B6rnsen (1994} (electronic
structure of cubic GaN); Rubio and Cohen (1995) (work on GaAds;_, N, and
AlAsy_; N, ordered alloys); Engel, Kwon and Martin (1995) (comparison of
results based on the GWA and those by Monte-Carlo techniques in a two-
dimensional crystal); Backes, Bobbert and van Haeringen (1995) (plasmon
and QP band energies in 8 — §iC); Wenzien, Kackell, Bechstedt and Cap-
pellini (1995) (QP bands in SiC polytypes); Verdozzi, Godby and Holloway
(1995) (work on a Hubbard cluster); Rohlfing, Kriiger and Pollmann (1995a)
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(QP band-structure of CdS — prototype of a II — VI semiconductor; the GW
results turn out to be satisfactory only after including “the complete cationic
N shell in the pseudopotential”’); Rohlfing, Kriiger and Pollmann (1995b)
(QP band-structure of bulk Si and the Si(001) — (2 x 1) surface — mak-
ing use of a Gaussian-orbital basis set); Aryasetiawan and Gunnarsson {1995)
(work on NiO); Onida, Reining, Godby, Del Sole and Andreoni (1995) (Nay,
Sodium tetramer); Aryasetiawan and Karlsson (1996) (work on Gd and NiO);
Farid (1997a) (self-consistent GW A); Massidda, Continenza, Posternak, and
Baldereschi (1997) (work on NiO and CaCuOz).

A main conclusion that may be drawn from the above contributions is
that for obtaining reliable results for the QP energies, it is important that
both the energy dependence and the non-locality of %W (that for r # r/,
5GW(r,x';¢) # 0) be taken into account. Moreover, in solids it is essential
that the W employed in the evaluation of £GW takes account of the Umklapp
scattering events, also referred to as the “local-field” effect (Falk 1960, Adler
1962, Wiser 1963), a manifestation of the fact that in electron-electron scatter-
ing processes inside a periodic lattice, wave-vectors are conserved only up to a
RLV. It is due to recognition of these three issues to which the GWA owes its
present-day widespread applications.

9.11. Simplified schemes and suggestions

As the brief exposition in Subsec. 9.9 should have made evident, determina-
tion of the ground and excited-states properties of systems within the GWA is
relatively demanding, in terms of both the necessary computation times and
the required computing facilities. Hence, truly large-scale applications of the
GW A will become possible when %¢% can be cast into a simplified form that
preserves the physically essential aspects contained in LW, In this connec-
tion it is relevant to mention that in a number of cases, the SE corrections
(according to the GWA) to the LDA direct band-gaps over the entire BZs of
semiconductors and insulators have turned out to be nearly dispersion-less.
This observation has given rise to the notion of “scissors operator”. This has
been applied, for instance, to calculate the linear and second-harmonic optical
succeptibilities for the III — V semiconductors AlP, AlAs, GaP and GuaAs
from the LDA-based electronic-structure results {(Levine and Allan 1991a,b).
One of the first successful attempts in the direction of simplifying LW is due
to Gygi and Baldereschi (1989).
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Recently, Rojas, Godby and Needs (1995) have successfully employed a
strategy called “real-space-imaginary-time approach”, which, owing to the
multiplicative structure of the expressions for both LW and PRPA in the rt-
representation, with advantage makes use of the technique of multi-dimensional
fast-Fourier transform (i.e., FFT), thus reducing the number of required arith-
metic operations, and consequently computation time, by considerable amount.

Concerning the static dielectric matrix, from which W is determined (see
Eqs. (94) and (95)), a model due to Levine and Louie (1982) has proved (Hy-
bertsen and Louie 1988, Zhu and Louie 1991) to be very reliable. We recall
that for construction of W{e) within a plasmon-pole approximation in cases
where the external potential is local (i.e. w = 0), it is sufficient to know the
static dielectric matrix and the GS charge density (see Subsecs. 8.9 and 8.10).

In Subsecs. 8.9 and 8.10 we have discussed the so-called plasmon-pole model
for the description of the e-dependence of the density-density correlation func-
tion, and consequently of the dynamic screened interaction function W{e). In
fact, almost all of the contributions cited in Susbec. 9.10 make use of one or
another type of the plasmon-pole model. In the work by Engel, Farid, Nex
and March (1991}, all of these models have been brought under the unifying
scheme of the continued-fraction expansion for the branch-cut discontinuity
(i.e., the “imaginary” part) of the dynamic density-density correlation func-
tion (see Subsec. 8.9). In the theory of the continued-fraction expansion, mo-
ments (here energy moments) of the branch-cut discontinuities of functions
play a vital role. In Subsec. 9.3 we have presented explicit expressions for the
first two e-moments of LW (g) (= Z6"”(¢)) which can be used to construct
models for describing the e-dependence of % (¢).1% Such attempt has been
made with considerable success by Kajueter and Kotliar (1996) in calculat-
ing the spectral properties of some lattice models (the asymmetric Anderson

1041 should like to acknowledge and thank Dr G. E. Engel who around 1992 brought up
to me the idea of constructing such models for W (¢). No details were worked out at
this time, however. In the paper by Engel, Farid, Nex and March (1991}, it has been

shown that for all energy moments of £GWn (¢) up to order m (includi‘ng the zeroth-order
moment) to be correct, it is necessary that all energy moments of W ’(s) up to order m
(including the zeroth-order moment) be correct. Since the commonly-used plasmon-poie
models only reproduce the exact first energy moment (i.e. the f-sum rule) for the density-
density correlation function, in the work by Engel, et al. (1991) it has been conciuded that
therefore none of the energy moments of TEW#(g) calculated through use of these plasmon-
pole models is in principle correct.
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lattice model and the Hubbard model}. In our opinion, there stands nothing
in the way of applying this technique for evaluation of ZCW ().

9.12. General trends and vertexr corrections

A general conclusion from the works cited in Subsec. 9.10 is that the quasi-
particle spectra as obtained within the GW scheme are in good to excel-
lent agreement with experimental results. There have been a number of
attempts aimed at estimating the relative significance of the contributions of
the higher-order SE diagrams to the fundamental QP-gap energy in semicon-
ductors and insulators. These have pointed to the relative insignificance of
these contributions.

The earliest studies towards estimating the influence of the vertex function,
neglected within the GW A, are by Minnhagen (1974) and Bennett (1978). The
former deals with the uniform-electron system and the latter with nearly-free-
electron systems. Bennett concludes that in these systems, contribution of the
vertex function to the band gap should be small — approximately 65 meV
in a model system whose parameters correspond to silicon. More recently,
there have been several studies of the same kind, all qualitatively confirming
Bennett’s conclusion. Daling and van Haeringen (1989}, Daling, Unger, Fulde
and van Haeringen (1991), Bobbert and van Haeringen (1994) arrive at the
conclusion that the contribution of the only second-order skeleton SE diagram
(i.e. the first-order vertex correction, neglected within the GW A — Fig. 12(b))
to the direct band gap in Si is relatively small, estimated to be on the order of
3% of the experimental value.'®> Work by Del Sole, Reining and Godby (1994)
corroborate the latter conclusion.

In (Farid 1994,1% 1997a), the present author has shown that the conclusions
arrived at by the above authors are not conclusive. For details see (Farid
1997a). Here we only briefly mention that in these works, the exact GF not
being available, the authors should not have restricted their considerations to
the set of skeleton SE diagrams. Further, since in these works the correction
to the GW band gap of S7 has been derived through application of a first-
order PT — based on the one-particle orbitals of the “non-interacting” system

10510 the work by Daling, et al. (1991) the correction is found to be less than 0.1 eV and in
that by Bobbert and van Haeringen (1994) the best estimate amounts to 0.12 eV.

10677 his work is cited as Ref. 6 in de Groot, Bobbert and van Haeringen (1995). Incidentally,
de Groot et al. in their Table II have mistakenly attributed “0.04883" to the work by the
present author; the appropriate value is “0.06544”,
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—, the authors should have demonstrated that contribution of the GW self-
energy to the non-interacting orbitals were small. In fact the calculations
reported in (Farid 1994, 1997a) indicate that in general this cannot be the
case. In their work, using the same model as employed in (Farid 1994), de
Groot, Bobbert and van Haeringen (1995) conclude that vertex correction
should be important. We note in passing that due to the non-locality and
energy dependence of the SE operator in the QP equation (Eq. (58) above),
the plasmon-pole model employed by de Groot, Bobbert and van Haeringen
(1995) is not appropriate. Therefore it still remains an open question why
the GW A has been so remarkably successful in accurately reproducing the QP
band-gap energies of the thus-far studied semiconductors and insulators.

Finally, we mention that the spectral function (according to the notation
in the present work, 4,(¢) — see Egs. (30) and (67)) as evaluated within the
GW A, fails to reproduce the satellite structure observed in the photo-emission
spectra (see Hedin and Lundqvist 1969, Almbladh and Hedin 1983} of even
such simple metals as Na and Al (Aryasetiawan, Hedin and Karlsson 1996);
see also Aryasetiawan and Gunnarsson {1995), Aryasetiawan and Karlsson
(1996) and references herein. Since the satellite structure in the spectral func-
tion is of crucial influence on the energy moments of this function, analyses of
Subsecs. 9.3 and 9.6 demonstrate that unless the non-interacting Hamiltonian
in terms of which T¢W is evaluated, is capable of accurately reproducing such
quantities as the ezact GS electron density n(r) and the exact reduced single-
particle density matrix p(r,r’} [here we leave aside the fact that for interacting
systems, no Dirac-Fock pp can be equal to pl, it is not possible unequivocally
to establish the share of Z¢% in the mentioned shortcoming of the associated
spectral function. Our work (Farid 1994, 1997a) suggests, for instance, that a
Hy which produces accurate GS charge density, is likely to yield a Z¢W[Gy)
according to which the fundamental QP gap is farther from the experimental
value than that according to LW [Gks—rpal. In view of this and with refer-
ence to our discussions in Subsec. 9.8, we point out that it is most likely that for
different applications — if one is to employ the SE operator within the GWA
—, one needs to perform appropriately chosen types of self-consistent calcula-
tion, where the condition(s) to be met at self-consistency should be motivated
by the nature of the application that one has in mind. It appears that as far
as the energies of the low-lying single-particle excitations in semiconductors
and insulators are concerned, the Gy corresponding to the KS Hamiltonian
within the LDA of the DFT qualifies as an “appropriate” choice with which
to calculate ZCW [Gy).
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10. Summary and Concluding Remarks

In this work we have dealt with a number of basic elements from the the-
ory of interacting fermions (specifically electrons). We have explicitly con-
sidered the single-particle Green function G(g), the SE operator Z{e), the
density-density correlation function x(g), the polarisation function P(e) and
the pair-correlation function g (which by definition is independent of €). We
have analysed both some symmetry properties of these functions in the coor-
dinate representation and their general behaviour as functions of the energy
variable €. We have given particular attention to two limits of the energy,
those of small and large |¢|.

Since for € — 0 the density-density correlation function x(¢) coincides
with the functional derivative of the GS charge density n with respect to the
static external potential v, and since n is the basic quantity within the frame-
work of the GS density-functional theory (DFT), we have briefly outlined the
salient features of this theory. Of particular relevance to the present work is
that while the vertex function I'(1, 2; 3) pertaining to an inhomogeneous time-
independent system is a function of three independent spatial coordinates and
two independent energy (or time) variables, as far as the static x is concerned,
the infiuence of I is formally accounted for by an energy-independent function
of two independent spatial variables. This function, C(r,r’), is the first func-
tional derivative of the effective Kohn-Sham (KS) potential with respect to
the GS charge density (Subsubsec. 8.6.1). It must be emphasised that for such
a C to exist, it is necessary that the GS charge density of the system under
consideration is non-interacting v-representable (see Footnote 7).

That x(¢) in the static limit, corresponding to € = 0, is closely connected
with the ground-state DFT, should not be surprising. However, that this is
also the case for very large values of |¢| (Subsecs. 8.3, 8.4 and 8.5), if not
unexpected, is at least interesting. The same turns out to be the case for
other correlation functions that we have considered in this work. By explicit
calculation of the leading and next-to-leading asymptotic terms of these func-
tions for |¢| — oo, we have established that these terms correspond to the
GS properties that can in principle be addressed within the framework of
the Hohenberg-Kohn-Sham DFT. Since the one-particle reduced density
matrix p turns out to play a role in almost all asymptotic expressions that
we have dealt with in the present work (those corresponding to the large-|e]
limit), we have devoted some space to the discussion of two alternative KS (-
type) formalisms in which the one-particle reduced density matrix plays a role.
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Of these, one involves a Hartree—Fock-like, rather than the usual Hartree-like,
KS equation. We have inferred (by relying upon a theorem that asserts that
the exact p is not idempotent — see Footnote 99) that the Hartree-Fock-
like KS framework!®” cannot be appropriate for yielding both the correct GS
charge density and the exact one-particle reduced density matrix. However,
we have established that the non-local exchange terin that occurs in the KS
Hamiltonian of this framework, is of some significance with regard to the be-
haviour of X(¢) at large |¢| (Subsec. 9.7). We have pointed out that as far
as p is concerned, the appropriate density-functional framework is that first
proposed by Gilbert (1975) — the exact one-particle reduced density matrix p
within this framework is some ensemble average over the density matrices of
a “non-interacting” KS Hamiltonian (see Footnote 78). We have not further
discussed this framework in any detail. We can summarise our observations
by stating that there exists some strong duality between the behaviour of cor-
relation functions in the close vicinities of € = 0 and 1/e = 0. This duality
has far-reaching consequences, in particular for some fundamental aspects con-
cerning the many-body perturbation theory (PT). We have only very briefly
touched upon this subject in the present work.

Concerning the dynamic x, with reference to the time-dependent DFT
(Subsubsec. 8.6.2) we have pointed out that here, as in the static case, in prin-
ciple an e-dependent C operator can take account of the interaction effects
that have not been accounted for by the dynamic density-density correlation
function of a non-interacting KS system, xo(¢), described by a KS Hamilto-
nian. Owing to the fact that xo is a linear-response function, the Hamiltonian
to which xo(¢) corresponds is identical to the ground-state KS Hamiltonian.
However, C(r,r';€) cannot be defined for |e| > emin, with €npin some finite
(resonance) energy which is characteristic of the system under consideration.

Dynamic correlation functions pertaining to systems in the thermodynamic
limit are peculiar: prior to taking the thermodynamic limit, it is necessary
that the energy parameter ¢ in these functions be made complex valued, for
otherwise in evaluating the limit, one encounters divergent contributions corre-
sponding to £ being “pinched” by the adjacent poles located on the real axis.?%®

107 Originally proposed by Kohn and Sham (1965).

1080)f course, part of the problem can be resolved by defining integrals (derived from infinite
sums) to be principal-value integrals. This procedure fails however for gingularities that
coincide with the end points of the intervals of integration (as we have seen [Subsec. 2.4},
these “end points" in reality turn inte “branch points”). Further, the “imaginary” parts
of the functions in question are not accounted for when integrals are simply replaced by
principal-value integrals. See Footnote 70.
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Once the energy parameter is made complex-valued, i.e. € — 2 with Im(z) # 0,
the thermodynamic limit can be taken without any ill consequences. The pro-
cess is not reversible, in that by letting z — ¢, with Im(e) = 0, one will in
general not encounter poles on the real energy axis, but possibly branch points
and branch cuts (Subsecs. 2.2 and 2.4). In fact, through a process of analytic
continuation one can move from one half of the complex z-plane across the real
axis into another half, bypassing the branch-cut discontinuity. The function
that one thus obtains, provided the continuation has taken place through a
branch-cut region, is a different branch of the original, i.e. physical, function.
According to the terminology that we have adopted in this work, this new,
i.e. unphysical, branch is referred to as the function in question *on a non-
physical RS” (Subsec. 2.2). The many-valuedness of the correlation functions
with which we have dealt in the present work, has in the main its root in
the macroscopic nature of the systems under consideration.!®® Hence, we have
extensively discussed the analytic properties of a number of correlation func-
tions in the complex energy plane to which the physical correlation functions
correspond through the process of analytic continuation. For instance G(¢) is
the limit of the function é(z) corresponding to z = € & in, with n J 0, where
“+"” is taken when € > y and “—” when € < y; here y stands for the “chemical
potential” (see Subsec. 4.2). Without entering into details, we mention that an
infinitesimal, but nen-vanishing, n features in the formal theory of the many-
body PT (see Subsec. 7.4): here by defining H, = §o+exp(—?g|r|/ﬁ)(ﬁ~ﬁo),
the interaction in H, is adiabatically (corresponding to 7 | 0) switched on and
subsequently adiabatically switched off when 7 is varied from —oo toward +o0.
The vital role played here by 7 for the realisation of the processes of (adiabatic)
switching-on and switching-off of the interaction H — ﬁo, is equivalent with
that played by 5, with 9 | 0, in rendering such functions as G(e) := G(e % in),
€ 2 1, physically well-specified and meaningful.

The formal Lehmann and Lehmann-type representations for the dynamic
correlation functions make explicit the physical significance of the singular
points of these functions along the real energy axis. For example, the “poles” 119
of the single-particle GF are shown to correspond to the excitation energies
associated with the energies of the N + l-electron ground aud excited states

108 For open systems, correlation functions have branch cuts even for finite number of par-
ticles. This is due to the fact that Hamiltoniang of these systems in addition to a discrete
set of energy levels possess a continuous spectrum,

10y the thermodynamic limit the designation “pole” may not apply — see Subsecs. 2.4,
6.1 and 8.7.
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of the system with respect to the GS energy of the N-electron system; they
correspond to the “single-particle excitation” energies. However, upon taking
the limit # | 0 in G(e+in) pertaining to a system in the thermodynamic limit, it
becomes apparent that in general at no point along the real e-axis the function
is unbounded.!!! Thus, the equations from which the mentioned excitation
energies are to be obtained (the “quasi-particle equations”) in general do not
have solutions (Subsecs. 6.1 and 8.7). Possible solutions are to be sought on
a non-physical RS, requiring analytic continuation of the pertinent functions
(such as (z) and x(z)) across the branch cuts into the non-physical RSs.

The above inference has a number of consequences which we have discussed
in some detail in the main text. First, in the thermodynamic limit, excitations
in general do not correspond to one-particle stationary states of the many-
electron system. Second, a solution of the quasi-particle (QP) equation on
a non-physical RS corresponds to some superposition of a {(macroscopically-
) large number of stationary states of the interacting system. Such a one-
particle-like excitation, a QP, cannot in consequence stand in any one-to-one
correspondence with a single one-particle eigenstate of a non-interacting sys-
tem. The assumption with regard to a one-to-one correspondence between the
mentioned two states stands central in the phenomenological theory of Landau
for Fermi liquids (Sec. 1).

The phenomenological Landau Fermi-liquid theory finds its theoretical jus-
tification within the framework of the many-body PT. Further, the phenomeno-
logical parameters that feature in Landau’s theory can be determined in terms
of the correlation functious pertaining to the interacting system, such as the
single-particle GF. A characteristic feature of conventional Landau Fermi-
liquid systems is the quadratic decrease of the imaginary part of the corre-
sponding SE operators when the energy parameter ¢ approaches the Fermi
energy (a Luttinger's theorem — Subsec. 6.4 and 6.5).}'2 This implies that
QPs in Fermi-liquid systems become the more well-defined the closer their en-
ergies are to the Fermi energy. Thus, on the Fermi surface of such systems, the
QP excitations correspond to one-particle “stationary” states of the interacting
Hamiltonian.!?

111This of course depends on the dimension of the spatial space; here we are mainly con-
sidering three-dimensional systems.

12With some modifications to this quadratic behaviour, one still may speak about a Landax
Fermi liquid (Farid 1999a) — see Footnotes 47 and 52. We recall that a gapless effective
non-interacting system, corresponding to an energy-independent Hermitian SE operator, i
a Fermi liquid system — see Sec. 1.

113This is true in an asymptotic sense: as we have discussed in Subsec. 4.2, the singularity

of 5(&:; z) at z = up is not an isolated singularity, and thus not a pole.
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The mentioned behaviour of the SE operator in the close vicinity of the
Fermi surface has some far-reaching consequences. One is a finite amount of
discontinuity (less than unity) in the momentum distribution function at the
Fermi momentum. The relationship between the magnitude of this discontinu-
ity and the behaviour of X(¢) for € approaching the Fermi energy, is established
by a celebrated theorem due to Migdal, which we have discussed in some detail
in Subsec. 6.6. In doing so we have given particular attention to a number of
delicate issues.

The above-indicated characteristic property concerning the imaginary part
of the SE operator £(¢) pertaining to (conventional) Fermi-liquid systems has
been obtained within the framework of the many-body PT (Luttinger 1961,
Luttinger and Ward 1960; see also Hugenholtz 1957, and DuBois 1959b). The
behaviour of the SE operator for € close to the Fermi energy is of vital in-
fluence on the thermodynamic as well as quasi-static transport properties of
the corresponding systems at low temperatures. Therefore, a system whose
low-temperature thermodynamic and quasi-static transport properties differ
from those expected from the Landau Fermi liquids, must by implication cor-
respond to a SE operator whose behaviour in the close vicinity of the Fermi
energy is non-Fermi-liquid like. This deviation is often held as evidence for the
breakdown of the many-body PT for the systems concerned (Subsecs. 6.4 and
6.5).

We have critically analysed the work by Luttinger (1961) which establishes
Eq. (78). We have put forward a number of reasons to the effect that a non-
Fermi-liquid behaviour does not necessarily imply breakdown of the many-
body PT (Farid 1999a). The following is a summary of our analyses:

(i) All the diagrams treated by Luttinger involving polarisation insertions
are individually divergent for systems of particles interacting through the long-
range Coulomb interaction. For such systems, the diagrams must first be
partially summed and expressed in terms of the dynamic screened interaction
function. By doing so, the mathematical approach adopted by Luttinger can
no longer be effective, following the fact that for this an a prior: knowledge
concerning the energies of the neutral excitations of the interacting N-electron
system becomes indispensable. The difficulty in arriving at such a knowledge
stands on a par with that in arriving at the kuowledge with regard to the
single-particle excitation energies of the intcracting system that one has set
out to determine iu the first place.
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(ii) Luttinger’s generalisation of the results corresponding to skeleton SE
diagrams in terms of the non-interacting GF to those in terms of the interacting
GF, involves a tacit assumption. Neglecting for the time being the problem that
we have indicated under point (i}, the present point renders Luttinger’s final
result (presented in Eq. (78) of the present work) a mere self-consistent result:
this result does not rule out other possible solutions (i.e., non-Fermi-liquid-like
solutions) which by the mentioned tacit assumption are excluded.!!

By demonstrating that the SE operator i(k; z) has branch points at z = uy
{and z = py41) — see Subsec. 4.2 —, we have shown that Eq. (78) cannot
be the leading-order term for b3 (k; z) corresponding to a Taylor series ex-
pansion of L{k; z) around z = uy. Rather, the pertinent series for £(z) is a
divergent asymptotic series expansion (Subsec. 2.3). Often insufficient distine-
tion between what we have denoted by 4, unx and pn.q, with the property
pn < p < pngy (see Subsec. 4.2), gives rise to mathematical and conceptual
difficulties. Thus, whereas X.(2) is singular at both z = uy and z = py4y, it
%g regular at z = u. Further, the above-mentioned asymptotic expansion for
Y(z) at 2 = puy (or 2 = py4+1) is not a uniform one: it is different for two
different sectors of the z-plane. The non-uniformity of this expansion is re-
flected in the branch cuts of fﬁ{z} along the real s-axis which can be identified
as the Stokes lines of £(z) (Subsec. 2.3) corresponding to these non-uniform
asymptotic series.

We have enumerated a number of methods through which the single-particle
GF corresponding the interacting system can be determined. From amongst
these, we have given especial attention to the many-body PT. After a discussion
concerning the possible problems from which this approach can suffer, we have
indicated that provided the GS charge density of the system!!® be pure-state
non-interacting v-representable (see Footnote 7), the many-body perturbation

114We should like to point out that Luttinger {1960} in two places makes remarks that
are relevant to our discussions here. After Eq. {51) in {Luttinger 1960}, Luttinger remarks:
“We have not succeeded in finding the necessary and sufficient conditions on the interaction
between particles for which (51) [our Eq. (78)] is valid.” Following Eq. (69) in (Luttinger
1960) one further finds: “what we have shown ... is that if we assume the property (51)
we again obtain it, so that we have found a consistent solution.,” The “consistent solution”
here is distinct from what above we have referred to as “self-consistent result”. Incidentally,
the pre-factor “u2” in Eq. (60) of (Luttinger 1960) is a printing error; the correct pre-factor
is unity.

115Recall that in the present work we have restricted our considerations to systems whose
GSs are nondegenerate and spin-compensated (this includes systems of spin-less fermions
with non-degenerate GSs). It is for this reason that the GS charge density plays such a
prominent role in our present considerations.
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expansion in terms of the associated KS Hamiltonian is unconditionally valid
(Farid 1994, 1997a,b, 1999b). We have presented several indirect evidences in
support of this statement. With reference to some arguments and examples put
forward by Simon (1970}, we have made explicit that criticisms raised against
the many-body PT are often expressions of prevailing prejudices rather than
outcomes of well-founded reasonings.

Indirect evidence that the KS Hamiltonian indeed should play a crucial
role in the applications of the many-body PT, is abundant. Take for instance
the asymptotic behaviour of the correlation functions pertaining to inferacting
systems that we have dealt with in the present work: invariably in all of these,
for both € — 0 and 1/¢ — 0, the GS charge density makes an appearance. It
follows that, use of the “non-interacting” KS Hamiltonian in applications of
the many-body PT has the effect that, in the mentioned limits, it is as if the
many-body perturbation series were evaluated in terms of the ezact GF of the
interacting system. QOur analyses further establish that, the “non-interacting”
Hartree—Fock-like KS Hamiltonian (as distinct from the commonly-employed
Hartree-like one — Subsec. 9.7) may be a better choice in applications of the
many-body PT, as through it a certain contribution to the SE operator in the
large-|e| limit is more accurately reproduced. For two reasons, however, this
still falls short of being the absolute ideal choice (an “ideal” which of course
is not achievable, at least not within the framework of our present work),
namely (i) the single-particle reduced density matrix as determined within the
Hartree—Fock-like KS formalism is a Dirac-Fock density matrix and therefore
cannot be identical with that of the interacting system,; (ii) the Hartree—Fock-
like KS Hamiltonian involves a local correlation potential, 1.e. v., which does
not explicitly occur in the large-|¢| asymptotic series expansions of correlation
functions. We have to pointed out (Subsec. 9.7) that the appropriate theoreti-
cal formalism for determination of p pertaining interacting systems is the DFT
for non-local external potentials, first put forward by Gilbert (1975); see also
Donnelly and Parr (1978) and Valone (1980). However, a direct application
of this formalism within the many-body PT is hampered by the fact that p in
Gilbert’s approach corresponds to an ensemble of the many-body eigenstates
of a “non-interacting” KS Hamiltonian (see Footnote 78).

We have discussed in considerable detail an approximate form of the SE
operator ¥, namely the first-order term in the expansion of ¥ in terms of the
dynamic screened interaction function W. Since this SE operator involves one
single-particle Green function G and one W, it is usually referred to as the GW
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approximation (GWA) to %, Z6W. We have analysed various aspects of ¢V,
Through detailed examination of the behaviour of LW (¢) for large l¢|, we
have established the conditions under which a Z¢W[Gy] (i.e. ZW evaluated
in terms of a Gy — Subsecs. 7.6 and 9) can have an asymptotic behaviour
similar to £"[G]. From this, we have once more arrived at the conclusion
that in general use of the KS Hamiltonian, and thus of the corresponding Gy
and WRPA (see Subsec. 8.5), leads to the most favourable outcome.}!® We
have elaborated on a number of technical issues that are of relevance to the
evaluation of LW in practical applications. Further, we have discussed a
number of strategies concerning self-consistent evaluation of X6W. A brief
exposition of a number of research articles which in the main are concerned
with the application of the GW A to real materials, is presented in Subsec. 9.10.
Limitation of space has prevented us from discussing these works in any depth.
We have, however, presented a concise account of what may be considered
as “general trends” in the computed results, as well as some aspects that
experience has shown to be of utmost significance for rendering the GWA a
reliable scheme.

To summarise the entire work, we have considered a number of relatively
simple interdependent (dynamic) correlation functions, determination of each
of which necessitates that of the rest. Therefore, although limited in scope,
this work provides a reasonably detailed account of a number of elements of
the theory of many-particle systems that are basic to addressing problems in
which electron-electron interaction plays a role. We have examined a number
of properties of the mentioned correlation functions, and attempted explicitly
to expose some of the deep, and thus hidden, connections between some prop-
erties of the GS and those of the excited states. This has enabled us directly
to indicate the important role that the KS Hamiltonian (in its various forms
appropriate to specific problems) can play within the framework of the many-
body PT. Our incomplete knowledge with regard to the explicit dependence
of this Hamiltonian on the GS charge density (see Footnote 115) necessitates
determination of this Hamiltonian within a self-consistent scheme. Elsewhere
we have proposed and applied (Farid 1994, 1997a,b, 1999b) a self-consistent
scheme for the determination of this Hamiltonian. The numerical results ob-
tained within this scheme are extremely satisfying. The work that we have

1161t should be pointed out that Gxgs implicitly depends on v, and this dependence is
highly non-perturbative. A perturbation series in terms of Gx s is therefore not a power
series in the coupling constant of the electron-electron interaction.
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presented here further brings out the importance of analysing the asymptotic
behaviour of correlation functions in regions € — 0 and |e|] — co when explicit
calculations of these functions are being considered.

Appendix A: On the representation spaces and some conventions

Here we present the various representations that we encounter in this work.
We restrict ourselves to systems in the thermodynamic limit.

As a typical example of a correlation function, consider the single-particle
Green function G(r,x’;¢). This function is the coordinate representation of
the Green operator G{(¢). Thus G{r,r';¢) := (r|G(e)|r'), where |r) and ¢/} are
normalised eigenstates of the T operator; we have T|r} = r|r), with (r|t') =
§(r — r'). In the same spirit, G(k,k’; ¢) stands for (k|G(e}|k’), where |k) and
|k’} are normalised eigenstates of the one-particle wave-vector operator, ﬁlk} =
k|k), with (k|k') = b 1.}!” We have (r|k) = @7 1/2exp(ik - r). In a crystal,
where, e.g., G{r + R,r' + R;e) = G{r,r';¢), for any primitive translation
vector R of the underlying Bravais lattice, we have G(k,k’;e) = 0 unless
k — k' = K, with K some RLV associated with the mentioned lattice. We
therefore ignore all these symmetry-bound zero matrix elements and denote
the remaining matrix elements by Gg q(k;¢) which is the short for G(k +
G,k+G/';e). Here G and G’ are RLVs and k is restricted to lie inside the first
Brillouin zone (1BZ). For a given k € 1BZ, {|k+G)} satisfies the normalisation
condition, (k + Glk + G’} = dg,q’. In these systems, by choosing the one-
body functions (the “wavefunctions”) to be simultaneously basis functions of
the unitary irreducible representations of the underlying lattice translation
group of the Hamiltonian (Cornwell 1984, pp. 81-83), the index s attached to
such functions as 1,(r; z) can be replaced by the pair of indices (£,k), with
k € 1BZ, and ¢ a “band index”; Jg,k(r; z), a Bloch function, is then said
to transform according to the k irreducible representation of the underlying
lattice translation group. In the extended-zone representation, where k extends
over the whole reciprocal space, time-reversal symmetry implies that if s & k,
then 3 &+ —k. The association s < (¢,k), does not imply § « (£, -k},
however, following the fact that indices of the “bands” at different points inside

1171n the solid-state physics it is customary separately to consider the momentum vector p
and the corresponding wave-vector k = p/h. Note that, here we employ the “box” boundary
condition, so that the allowed wave vectors form a discrete set and whereby (27)%8(k ~
k')/Q & & s, where {2 denotes the macroscopic volume of the system (in works concerning
systems in d spatial dimensions, 3 in (27)3 changes into d).
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the 1BZ need not be related; s « (£, k) implies that there exists an £ such
that 3 © (¢, -k); when “bands” are not disrupted by gaps, it is possible,
by means of an analysis of the symmetries of the states at different k-points
(this is the so-called “compatibility analysis”), to assign indices to the bands
in such a way that s ¢ (¢,k) indeed implies 3 > (£, —k). Making use of
the representations ¥ x(r; z) exp(ik - 1)tk (r; z) and dox(r;z) = exp(ik -
r)vek(r; z), with 4z and vzx periodic functions of r, from Eqs. (58) and
(59), making use of i(r,r‘ ;z) = I(r',r; z) in Eq. (40), the result concerning
the Kramers degeneracy of states (Landau and Lifshitz 1977, pp. 223-226,
Callaway 1964, pp. 52-54; see Footnote 21), namely Eg,k(z) = Ep _x(z), can
be directly verified.

For systems with continuous translation symmetry,''® G(r,r';¢) is a func-
tion of ||r — r’||. Dependence on r — r’ implies that G(k,k’;¢) = 0 unless
k = k’. The dependence on the norm of r — r’ further implies that G(k, k; )
is a function of k := k||, with & € [0,00). For these reasons, for spatially
uniform systems we employ the notation G(k;¢).

Appendix B: Discontinuity in the Time Domain versus Asymptotic
Behaviour in the Energy Domain

In this Appendix we demonstrate some close connections between the be-
haviour of f(t) for |t| — 0 and that of its Fourier transform F{¢) for [e| — 0.
In view of our extensive analyses with regard to the large-|¢| behaviour of
various correlation functions, exposition of these connections should prove
interesting.

First we recall that 8(t) = ih [°_de/(2nh) exp(—ist/h)/(e + in), n 1 0.
Now consider F(¢} whose leading asymptotxc term for |e| — oo is of the form
a/e, with a independent of . By adding and subtracting a/(s + in) from F{(g),
making use of the above representation for #(¢) and the relation 1/(z + in) =
P(1/e) — imd(e), with P the Cauchy principal value, we obtain

°°d£

fit)=— sgn(t) + ’P/ {F(s) - »—-} exp(—iet/h). (B.1)

Since by definition e(F(g) —a/e) = o(1) when |e| — oo, say (F(g)—a/e) ~ b/e*
with « > 1 and b a constant with respect to ¢, it follows that the last term

118Because of the assumed non-degeneracy of the GS, this symmetry, which is that of the
many-body Hamiltonian, is also the symmetry of the GS.
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on the RHS of Eq. (B.1) is a continuous function of ¢. This is a consequence
of the fact that the principal-value integral of the term inside the curly braces
converges uniformly (Whittaker and Watson 1927, pp. 75 and 70, Titchmarsh
1939, p. 22) and that exp(—ict/h) is continuous everywhere (see Whittaker
and Watson 1927, p. 73); the principal-value sign implies that the infinitesimal
neighbourhood of € = 0 is not part of the integration region. Thus we cbserve
that the discontinuous part of f(t), i.e. the first term on the RHS of Eq. (B.1),
is entirely determined by the coefficient a of the (1/¢)-term in the asymptotic
expansion of F(e) for |[¢] — oo (the imaginary unit i reflects the fact that
asymptotically F'(g) behaves like an odd function of £). Along the same lines
we can prove the following general statements: Let F(¢) ~ a/e™ for |g| — o0,
with a a non-zero constant with respect to £ and n some positive integer. Then
(when n—2 > 0) 8"~2f(t)/0t"? is continuous at ¢t = 0 and (when n—1 > 0)
0"~ 1f(t)/0t™ ! has a finite discontinuity at ¢ = 0.
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LIST OF SOME SYMBOLS

= flz) = g(z), f and g are identical over the entire range of definition

1= f(z) := g(z), f is defined according to g, i.e. f(z) is by definition
equal to g{z)

= f(z) =: g(z), g is defined according to f

~ f(z) ~ g(z) for z — o (say, zo = o), f{x) is asymptotically
equivalent with g(x), i.e. f(x)/g{x) —» 1 when z — x;
~ flz) ~ g(z), for & — xo; similar to f(x) ~ g(x) ezcept that

f(z)/g(z) - C when z — zg, with C independent of

o f{x) o g{x), f is proportional to ¢ for all x

= f = g, f approaches g in the thermodynamic limit

~ f = g, f is approzimalely equal to g

— T — g, & approaches xy

o~ M ~m, M is on the order of m

d 174 0, n approaches 0 from above, i.e. 1 is positive infinitesimal

L= S; &> 8, statement S; implies statement S and vice versa

« a «» b, within a particular context b is to be identified with a

O A Landau’s symbol (E.G.H. Landau); f(z) = O(g(x)), there exists
a constant C such that |f(z)] < Clg(z)|

0 A Landau’s symbol (E.G.H. Landau); f(x) = o(g(z)) for  — x¢
implies f(z)/g{x) — 0 for x — zg

Il Cartesian norm; c.f. [|r] =: 7 = (2% + y* + 2%)!/?
Real-valued energy parameter
Complex-valued energy parameter; unless otherwise stated,
Im(z) # 0

g',e”  Real and imaginary parts of z, z = &' + ig”

f{z) Analytic continuation of f{£) into the physical Riemann sheet;

~ ¢.f. B(e) and T(z)

f{z) Analytic continuation of f(¢) or f(z) into a non-physical Riemann
sheet; c.f. £(z) and 2(2) _

F(z)  Unless otherwise stated, union of f{c), F(z) and all 1 (z)

O(2) 0'(2)=3{0(x) +0'(2)}; ef X (2)

o~
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0" (z)
I

la, b]
[a,b)
(a,b]
(a,b)

1BZ
BZ
DFT
DOS
EOM
GF
GS
GWA
KS
LDA
LHS
PT
QP
RHS
RLV
RPA
RS
SE

0"(2) := 5{0(z) - O'(2)}; e.f. X"()

Unit operator (in a space to be specified, explicitly or implicitly)
Closed interval between a and b; = € {a,b] implies a <z < b
Semi-closed interval between a and b; = € [a,b) impliesa <z < b
Semi-closed interval between a and b; z € (a,b] impliesa <z < b
Open interval between a and b; = € (a,b) impliesa <z < b

LIST OF ABBREVIATIONS AND ACRONYMS

The first Brillouin zone

Brillouin zone

Density-functional theory

Density of states

Equation of motion

Green function; if not explicitly specified, the single-particle GF
Ground state

GW approximation for the self-energy operator
Kohn-Sham

Local-density approximation

Left-hand side

Perturbation theory

Quasi particle

Right-hand side

Reciprocal lattice vector

Random-phase approximation

Riemann sheet

Self-energy
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