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Green’s function (GF; electron propagator) methods represent a very useful set of
tools for direct calculation of electron detachment (ionization potentials), electron
attachment (electron affinities), excitation energies, electron transition probabili-
ties, and other properties. The main idea of GF methods is that for description of
various properties of a many-body system, one does not need to describe all the
particles of the system but rather needs information about one or two particles
belonging to the system. The corresponding required quantities are the one- and
two-particle GFs. Within one- or two-particle GF methods, the energy difference
between an initial state and a state with one additional or one less electron is
calculated directly, thus eliminating errors due to inconsistent treatment of the
initial and final states. C© 2011 John Wiley & Sons, Ltd. WIREs Comput Mol Sci 2011 1 377–387 DOI:
10.1002/wcms.38

INTRODUCTION

T he overview describes the basics of different
Green’s function (GF) approaches at a qual-

itative level. These approaches include two ma-
jor types: the so-called quasiparticle (outer-valence
Green’s function, OVGF) approximation for both ab
initio and semiempirical methods, and nondiagonal
renormalized approaches (second- or third-order al-
gebraic diagrammatic construction, ADC) for ab ini-
tio methods. Illustrative examples are given for some
approaches.

Photoelectron (PE) spectroscopy is an extremely
useful tool for studying the electronic structure of
molecules. In order to interpret a PE spectrum, the-
oretical determination of the various ionization po-
tentials (IPs) is necessary. Such determination can be
obtained, e.g., using GF approach, which has been
shown to yield good results.1,2 The GF formalism
provides an alternative approach to the more com-
mon approaches, which are based on the wave func-
tion such as the equation-of-motion (EOM) and the
linear response coupled cluster (CC) theories. These
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wave function-based approaches can yield very ac-
curate results, depending on the level of truncation
in the CC expansion3; however, they are limited to
fairly small molecules due to their high computa-
tional costs. Initially, the GF formalism has been de-
veloped and applied for the description of many-body
systems in the context of quantum field theory.4,5

There are early attempts toward using GFs in quan-
tum chemistry.6,7 In general, the basic idea of GF
methods is that evaluation of the main characteristics
of a many-body system does not require the descrip-
tion of all the system’s particles but rather only infor-
mation about one or two typical particles from the
system. The corresponding theoretical quantities are
the one- and two-particle GFs, respectively. As far as
the electronic structure of molecules is concerned, the
one-particle GF contains information regarding both
the energies and the probabilities of an electron de-
tachment/attachment processes. The two-particle GF,
on the contrary, allows one to characterize excitation
processes where the overall number of electrons in
the system does not change. The conceptual advan-
tage of GF methods lies in the fact that the interest-
ing physical information is calculated directly without
the need for separate calculations for the ground and
ionic states. This, in turn, eliminates errors related to
inconsistent treatment of the initial and final states.

One of the most significant achievements in the
theoretical studies of PE spectra was the advent of
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OVGF method8 due to its computationally inexpen-
sive technique for computing vertical one-electron
ionization energies for outer-valence region. Another
important step in this field is Schirmer’s introduction
of the ADC scheme.9 The approach removes the lim-
itation of OVGF method to deal only with outer-
valence region and allows to consider many-body ef-
fects in a systematic and consistent manner. The orig-
inal ADC approach can be viewed as a reformulation
of the perturbative diagrammatic expansions for GFs
in terms of the Feynman–Goldstone diagrams.10 The
more recent work of Schirmer et al.11,12 has demon-
strated that ADC schemes can also be obtained within
a framework of the more general concept of interme-
diate state representation. This allows ADC to use
wave functions, which is the traditional language of
quantum chemistry.13,14

It has been shown that one-particle GF the-
ory provides a systematic framework that improves
the IPs and electron affinities (EAs) obtained within
Koopman’s theorem (KT) approximation, whereas
two-particle GF is successfully applied to calculations
of vertical excitation energies.

GREEN’S FUNCTIONS

The GF method is discussed in several general
textbooks.10,15,16 Furthermore, a detailed discussion
of the use of GF and other related methods in atomic
and molecular physics is discussed in several reviews
to which the reader is reffered.1,2,8,9,17 Here, we only
briefly present some of the main points of GF theory.

The GFs are defined as the N-electron ground-
state expectation value of a time-ordered product of
annihilation and creation operators. There is a hierar-
chy of the GFs determined by the number of consid-
ered particles. The most important ones for quantum
chemistry are the one- and two-particle GFs. The sim-
plest member of the hierarchy is the one-particle GF.
The matrix of one-particle GF G (electron propaga-
tor) is defined with respect to a suitably chosen basis
of one-particle states, which, in general, is a discrete
set of Hartree–Fock (HF) orbitals by

Gpq(t, t′) = −i
〈
�N

0

∣∣ �

Tcp(t)c†q(t′)
∣∣�N

0

〉
, (1)

where
∣∣�N

0

〉
is the exact (close shell) nondegenerate

ground state of the considered N-particle system, cq(t)
and c†q(t) denote creation and annihilation operators
for the one-particle state |q〉 in the Heisenberg rep-
resentation and T is Wick’s time-ordering operator.
The chemical properties contained in the GFs are most
clearly expressed in the spectral representation of the

GFs, which can be obtained from Eq. (1) by means
of Fourier transformation. For one-particle GF, the
Fourier transformation is expressed by

Gpq(ω) =
∑
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〉 〈
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, (2)

where EN±1
n and

∣∣�N±1
n

〉
denote the energies and states

of the (N ± 1)-particle systems, respectively, EN
0 is the

ground-state energy, and a positive infinitesimal η is
necessary to guarantee the convergence of the Fourier
transformation. The physical significance of the one-
particle GF derives from its relevance to the ionization
and electron attachment spectrum, which is evident
from Eq. (2). The first, G+(ω), and second, G−(ω),
parts of G(ω) describe the attachment of an electron
to the system and the elimination of an electron from
the system, respectively. The ionization energies, In =
EN−1

n − EN
0 , and EAs, An = EN

0 − EN+1
n , are derived

from the pole positions of G(ω). The pole strength

Pn = ∣∣xn
p

∣∣2
is called the relative intensity because it provides a
measure for the relative intensities of the states n,
which derive their intensity from the same orbital p.
The transition amplitude xn

p is defined as

xn
p =

{〈
�N

0

∣∣ cp
∣∣�N+1

n

〉
n ∈ { N + 1}〈

�N−1
n

∣∣ cp
∣∣�N

0

〉
n ∈ { N − 1}

(3)

The definition of GF operates only with accu-
rate values (the electronic states and their energies),
yet, for practical calculations, one has to introduce
approximate schemes. The usual approximation pro-
cedure to evaluate the GF is by using a perturba-
tion expansion. The poles of an unperturbed HF GF
G0(ω) are exactly the orbital energies, εn, as obtained
from the KT approximation.18 In application of KT
to close-shell system within the HF method, this the-
orem is commonly formulated in the particular form

In = −εn,

where In is Koopman’s approximation to the nth IP,
and εn is the respective eigenvalue of the HF equation

�

F |�n〉 = εn|�n〉.
Electron correlation and orbital relaxation are

responsible for the quantitative failures of predictions
based on KT for valence IPs. By introducing an effec-
tive energy-dependent one-particle potential �(ω), the
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one-particle GF G(ω) can be derived from the unper-
turbed free GF G0(ω) via the Dyson equation:19

G(ω) = G0(ω) + G0(ω)�(ω)G(ω) (4)

Here, the effective potential �(ω) (also called
self-energy) on the basis of HF spin orbitals includes
all relaxation and correlation corrections. The Dyson
Eq. (4) plays a central role in the GF theory and
the reader is thus referred to the discussion regard-
ing Dyson equation and self-energy in configuration
interaction representation, which is more familiar to
the chemists.20

OVGF METHOD

Often we are not interested in the full ionization spec-
trum, but only in the few IPs of outer-valence elec-
trons, which characterize the molecule and provide
direct information regarding their chemical bond-
ing. The IPs assignment of the outer-valence elec-
trons of a molecule is essential toward interpreting
its PE spectrum. The simplest GF approximation,
which takes into account only the outer-valence re-
gion is the OVGF method. This method was devel-
oped by Cederbaum and coworkers2,8 in the late 70s
as a rather computationally inexpensive technique for
computing vertical one-electron ionization energies.
The method employs a finite expansion for the self-
energy �(ω). It is based on the third-order expansion
of the self-energy and includes higher order contri-
butions by a normalization procedure. It has been
shown2 that in OVGF method, one may neglect off-
diagonal matrix elements of the self-energy operator
and use the G(ω) in its diagonal form Gpp(ω). This
leads to the diagonal or quasiparticle approximation.
Once the self-energy part has been calculated, the rel-
evant pole of the GF is determined as a root of the
Dyson equation. In OVGF method, the final equation
for the self-energy is expressed by

�(ω) ≈ �(2)(ω) + (1 + A)−1�(3)(ω), (5)

where A in Eq. (5) actually depends on ω, but in the
OVGF method where we are interested in energies ω

far away from the poles of the self-energy, we may
consider A to be a constant. Equation (5) involves
calculation of the second- [�(2)(ω)] and third-order
[�(3)(ω)] terms of the self-energy part, whereas A is
an approximation to fourth and higher orders. Cor-
relation corrections to εp are determined by iterating
the equation,

ω = εp + �pp(ω).

The explicit working equations for the second
and third orders as well as for the parameter A can
be found elsewhere.2,8 The OVGF method is a very
practical and easy to handle method but also has some
shortcomings. Interpretation of the ionization spectra
in the OVGF method is based on the quasiparticle
picture of ionization, which assumes a full correspon-
dence between the PE line and the one-hole ioniza-
tion state. However, it is well known2,21 that suffi-
ciently strong relaxation and correlation effects in the
cation yield an important dispersion of photoioniza-
tion intensity from main line to many satellites of low
intensity. This phenomenon is known as the break-
down of the orbital picture of ionization.21 It was
pointed out by Deleuze22 that OVGF pole strengths
smaller than ∼0.85 very systematically foretell such
breakdown. So far, the OVGF method, in general, is
restricted to pole strength values between 0.85 and
1.0, indicating that the description via KT is qual-
itatively valid. The OVGF scheme is only applica-
ble to ranges of electron binding energies where the
self-energy is a smooth function and can be prop-
erly described by a finite expansion supplemented by
a simple geometric approximation for the higher or-
der terms. This depiction breaks down when enter-
ing those energy regions where the self-energy has
poles related to electronically excited configurations
of the cations (shake-up bands).21 For large saturated
compounds, such as polycyclic aromatic hydrocar-
bons, the OVGF approach is most generally appli-
cable to deep inner-valence levels (up to ∼22 eV,23),
provided the computed OVGF pole strengths remain
larger than ∼0.85.24 On the contrary, both the outer-
valence σ - and π -bands of large conjugated molecules
are known to be subject to severe contaminations by
shake-up lines, which in this case can be found at
binding energies of ∼8 eV.22,24 Finally, it is also dif-
ficult to systematically improve the method by exten-
sion to the next orders.

In 1996, Ortiz25 developed an approximation
known as a partial third-order quasiparticle theory
(P3), which aimed at further simplifying the OVGF
method. In his approach, several terms of �(3)(ω) as
well as the A factor are omitted from the calculations.
The OVGF method requires ov4 scaling [where o and
v are the number of occupied and virtual molecu-
lar orbitals (MOs), respectively], whereas P3 calcula-
tions scale as o2v3. Normally, in an ab inito calcula-
tion, the number of virtual MOs is much larger than
that of occupied MOs, and therefore this reduction is
quite significant. Ionization energy determined in P3
method has an average error of 0.2 eV for the small
set of closed-shell molecules.25 The working equation
as well as the comparison of P3 method with other
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quasiparticle approximations can be found else-
where.25 In 2005, Ortiz reported26 a renormal-
ization extension of the P3 self-energy (P3+ ap-
proach), which was successfully applied to the cal-
culations of PE spectra of anions. Recently, Ortiz and
coworkers27 have suggested a new approach, which
combined second-order electron propagator approx-
imation with translation operator method. This new
transition operator second order electron propagator
(TOEP2) method scales only as ov2. The memory and
calculation advantages are procured at the price of
repeating TOEP2 calculations for each electron bind-
ing energy of interest. Because of its low scaling re-
quirements, TOEP2 method may be very useful for
the treatment of large biological systems. Although
TOEP2 is outperformed by the P3 and OVGF meth-
ods in many applications of large molecules, it may
be useful for assigning of the respective spectra. Both
OVGF and P3 methods are implemented in Gaus-
sian09 program package.28

ADC METHOD

Unfortunately, methods based on low-order, pertur-
bative corrections to diagonal elements of the self-
energy matrix should, in general, not be applied to
inner-valence ionization energies where higher excited
configurations play a role and the one-electron picture
collapses. In this case, one has to devise approxima-
tions that would be derived as infinite partial summa-
tion of the perturbation series. For this purpose, a set
of methods that permits nonperturbative coupling be-
tween hole (h), particle (p), 2h–p, and 2p–h operators
has emerged. One of the most practical and systematic
ways of constructing such type of approximations is
the method of the ADC introduced by Schirmer.9 The
ADC approach sets out from the following nondiag-
onal representation,

G−(ω) = f†(ω − K − C)−1f, (6)

where C is an effective interaction Hermitian matrix,
K is the diagonal matrix of zeroth-order ionization
energies, and f is the effective transition moment.
Equation (6) is obtained by inserting to the second
term of Eq. (2) a complete set of so-called interme-
diate states

∣∣�̃N−1
j

〉
. These intermediate states can be

constructed by a systematic procedure starting from
the electronic ground state

∣∣�N
0

〉
.11–14 We note with

this respect that this treatment is entirely analogous
for the both [G−(ω) and G+(ω)] terms. The ioniza-
tion energies 
n = En−E0 can be obtained from the
solution of the secular equation

(K + C)Y = Y�, Y†Y = 1,

where Y denotes the matrix of eigenvectors with the
following components

Yjn =
〈
�̃N−1

j

∣∣∣ �N−1
n

〉
.

This matrix relates to the transition amplitude
define in Eq. (3) by

x = Y†f.

In the ADC method, the approximate schemes
are constructed by expanding the matrices K, C, and f
into a perturbation series. This method opens a highly
systematic way for infinite partial summations for the
self-energy matrix complete through a finite (nth) or-
der of perturbation theory for formulation of approx-
imations to arbitrary GFs. A thorough calibration of
the accuracy of the most advanced ADC(3) method
with respect to full Configuration Interaction (CI) and
CC results for various small molecules is described by
Schirmer and coworkers.29 Only the low energy part
of the PE spectrum can be correctly described based
on the one-electron picture of ionization as obtained
in the simpler OVGF approach. Therefore, applying
of ADC(n) schemes in these cases is essential.

The equations for the ADC method are too com-
plicated to be presented in the overview and the reader
is referred to the original works of Schirmer et al.9,30

Explicit working equations of the ADC scheme for
closed-shell systems are available elsewhere.2,8,30

ADC(3) method is implemented in the code31 devel-
oped in Heidelberg University, which can be linked to
several quantum chemistry programs. It is available as
well in the code developed by Ortiz and coworkers,32

which can be linked to the Gaussian09 program.
Most of the methods in the formalism of elec-

tron propagators use the Dyson Eq. (4). One pecu-
liar and important feature of the Dyson equation is
the coupling between the (N − 1)-particle (ionization)
and (N + 1)-particle (electron affinity) configurations.
This coupling, in general, cannot be neglected, even
when one is interested solely in ionization spectrum.
As was shown by Deleuze et al.,33 an improper trun-
cation in the many-body expansion of self-energy part
�(∞) or the related one-particle GF G(ω) can yield
a slight violation of the exact number of particles
due to the coupling between the N + 1 and N − 1
states. This may result in a logarithmic divergence of
the �(∞) as the system size increases.33 This obser-
vation was one of the important motivations to for-
mulate the non-Dyson ADC approximation for elec-
tron propagator, which was developed by Schirmer
and coworkers.34,35 The approach successfully de-
vises a formalism in which the ionization and affinity
parts are analytically decoupled from the beginning,
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so that the affinity evaluation is skipped from the
ionization calculations. The main advantage of the
non-Dyson ADC(n) methods [nD-ADC(n)] is that this
scheme treats the electron ionization and attachment
separately from each other, thus considerably reduc-
ing the computational costs compared with the usual
Dyson-based ADC(n) methods. A comparison of the
non-Dyson and Dyson ADC(3) calculations with ex-
perimental data and full CI results for a set of small
molecules was presented in the work of Trofimov and
Schirmer.35 An efficient computer implementation of
this approach was reported recently.36

The next member of the hierarchy is the two-
particle GF (polarization propagator). The Fourier
transformation of the two-particle GF has the fol-
lowing spectral representation

�pq,rs(ω) =
∑
n�=0

〈�0|c†qcp|�n〉〈�n|c†r cs |�0〉
ω + EN

0 − EN
n + iη

+
∑
n�=0

〈�0|c†r cs |�n〉〈�n|c†qcp|�0〉
−ω + EN

0 − EN
n + iη

. (7)

According to Eq. (7), the vertical excitation en-
ergies �En = En−E0 are given by the poles of spec-
tral representation, �pq,rs(ω). Generally, the approx-
imation schemes described for one-particle GF may
also be applied to the polarization propagator. There-
fore, we will not discuss it here and the reader is
referred to the original articles.9,37 Recently, Dreuw
and coworkers38 have extended the ADC(2) scheme
for polarization propagator to an unrestricted for-
mulation, allowing calculation of excited states of
medium-sized radicals. The results obtained by ap-
plying this method to several radical cations as well
as comparison of the results to those obtained with
EOM–CCSD method can be found in the work of
Dreuw and coworkers.38

The essential numerical tasks associated with
the computation of the GF in the ADC(n) schemes
involve the evaluation of matrix elements and the di-
agonalization of matrices defined in the space of a
special class of ionic configuration. In realistic appli-
cations, the main problem is that one has to cope
with the size of the configurational space. Depend-
ing on the size of the molecule, the basis set, and the
approximation scheme used, the configuration space
can become extremely large preventing the use of this
method for large molecules. In 1998, Ortiz39 sug-
gested a simplified version of ADC(3) method. This
method presents a nondiagonal, renormalized exten-
sion of the P3 quasiparticle approximation.39 The
terms that are typically unimportant for ionization

energies of closed-shell molecules were discarded. The
new method is named the nondiagonal, renormalized,
second-order (NR2) theory. The ADC(3) method re-
quires o2v4 scaling, whereas NR2 calculations scale as
o2v3. The resulting smaller memory requirement fa-
cilitates NR2 calculations for systems where ADC(3)
method is still not feasible.

Semiempirical OVGF Method
In early 1990, we have developed semiempirical vari-
ant of the OVGF method.40–43 It was shown in a
series of papers40–45 that, in contrast to the ab ini-
tio OVGF method, wherein full perturbation correc-
tion (Eq. 5) for the self-energy part is required2,8 for
quantitatively reliable results, in case of semiempiri-
cal implementation of the OVGF method inclusion
of higher order terms (such as third-order trunca-
tion and renormalization factor A of the self-energy
part) in the OVGF treatment does not affect the com-
puted IPs. However, with the third order or full ex-
pansion of the self-energy part, the required Central
Processing Unit (CPU) time is greatly increased com-
pared with the second-order expansion. This feature
of the semiempirical OVGF approach allows its us-
age as a routine method for IPs calculations of very
large molecules. Semiempirical OVGF method is im-
plemented in MOPAC93 program.46

APPLICATIONS OF GF FORMALISM IN
OTHER FIELDS

To enhance the interdisciplinary scope of the
overview, various applications of GF formalism in
other fields of science are briefly discussed in this sec-
tion. The recent review of Dickhoff and Barbiery47

describes applications of self-consistent GF method
in nuclear physics. Results for both finite nuclei and
nuclear matter are discussed with particular empha-
sis on clarifying the role of short-range correlations in
determining various experimental quantities. Another
application of GF methods in the angle-resolved pho-
toemission studies in solids, in the high-temperature
superconductors, in particular, is discussed in the re-
view of Damascelli et al.48 The authors have shown
that in the discussion of photoemission on solids, the
most powerful and commonly used approach is based
on the GF formalism. Today, most characterization
tools as well as electro-optical devices are based on
our understanding of the interaction of photons and
electrons with matter. The review of Onida et al.49

discusses the two most widely used techniques for
describing electronic excitations in infinite systems,
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TABLE 1 Vertical Ionization Energies of Free-Base Porhyrin (eV) Calculated Using AM1 Hamiltonian
with KT and OVGF Approaches and KT, P3, and OVGF Methods with 6-311+G∗∗ Basis Set

AM11 6–311+G∗∗2

MO KT OVGF3 KT P34 OVGF4 Expt5

b3u 7.80 7.11 6.77 7.00 (0.85) 6.66 (0.87) 6.9
au 7.79 7.23 6.24 7.06 (0.85) 6.61 (0.87) 7.1-sh
b1g 9.71 8.78 9.21 8.32 (0.81) 8.37 (0.82) 8.2-sh
b3u 9.79 8.90 9.37 8.51 (0.82) 8.54 (0.83) 8.8-sh
b2g – – 10.12 9.16 (0.68) 9.08 (0.70) 9.1
�abs

6 0.77 0.26 0.74 0.12 0.24

1From Ref 66.
2From Ref 65.
3Active space is a window with 57 occupied and 53 virtual MOs.
4468 MOs were retained in the active space, 24 core occupied MOs were dropped. Associated pole strengths are presented in
parentheses.
5From Ref 67.
6Mean absolute deviation between the calculated and the experimental values.

namely the GF approach to many-body perturbation
theory calculations and the time-dependent density
functional theory. The authors describe different ap-
proximations of the two approaches as well as the
advantages and drawbacks of the methods.

Band structures are of fundamental interest to
the solid-state physics as they reveal important prop-
erties of crystals. The review of Buth et al.50 describes
a crystal orbital formulation of the ADC scheme,
which is termed as the crystal orbital ADC method
(CO-ADC). The authors also devised a configuration
selection procedure for CO-ADC approach, which
can equally well be used in conjunction with the cal-
culations of IPs and EAs of large molecules. Success-
ful adaptation of the one-particle GF schemes to the
band structure formalism of extended periodic sys-
tems, such as oligomers and clusters, was done in
the works of Deleuze et al.51,52 and Cederbaum and
coworkers .53 The issue of size and charge consistency
in the case of adapting ADC scheme to the formalism
of crystalline orbitals for extended periodic systems
is extensively discussed in the review54 to which the
interested reader is referred.

ILLUSTRATIVE APPLICATIONS OF GFs

In this section, we would like to present some illustra-
tive examples of applying GF technique for IPs calcu-
lations of molecular systems with chemical and bio-
logical interest. Many more examples may be found
in the works of Deleuze et al.55,56 and Ortiz and
coworkers57–59 for relatively big molecules, as well
as in the works of Trofimov and coworkers.60,61 for

small and medium-sized organic molecules. Recent
examples of using GF calculations of one-electron
and shake-up ionization energies as well as Dyson
orbital electron momentum distributions for inter-
pretation of the results of electron momentum spec-
troscopy may be found in the works of Deleuze and
coworkers.62–64 Examples of using semiempirical im-
plementation of GF can be found in the works of
Danovich et al.40–45

Large aromatic systems, such as porphyrins,
are of substantial interest due to their great im-
portance in a number of biochemical and chemical
processes. As the first example of the applicability
of the GF approach for calculating IPs of relatively
big molecules of biochemical interest, we present in
Table 1 results of IPs calculations of a free-base por-
phyrin (Figure 1, compound 1). The IPs were calcu-
lated by P3 and OVGF methods with 6–311+G∗∗ ba-
sis set using Gaussian0365 and OVGF approach with
AM1 semiempirical Hamiltonian using MOPAC93
programs.66

FIGURE 1 | Structures of porphyrin (1), adenine (2), 1,2,7,8
dibenzanthracene (3) molecules, and phenyl radical (4).
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TABLE 2 Vertical Ionization Energies of Adenine Molecule (eV) Calculated Using P3, OVGF, and
ADC(3) Methods with Different Basis Sets

OVGF1 P31 ADC(3)1

MO 6–31G 6–311G∗∗ 6–31G 6–311G∗∗ 6–31G Expt1

25a 7.87 8.13 8.12 8.38 7.93 8.47
24a 9.15 9.18 9.37 9.50 9.36 9.54
23a 8.85 9.22 8.92 9.35 9.30 9.45
22a 10.12 10.3 10.15 10.44 10.26 10.51
21a 9.93 10.3 9.96 10.39 10.23 10.45
20a 10.94 11.39 10.91 11.40 11.20 11.35
19a 12.05 12.08 12.06 12.16 12.09 12.09
18a 13.42 13.43 13.37 13.46 13.54 13.20
�abs

2 0.35 0.20 0.28 0.09 0.22

1From Ref 68.
2Mean absolute deviation between the calculated and the experimental values.

The KT produces very bad agreement with
the experimental PE spectrum. Both P3 and OVGF
methods considerably improve the KT results. P3 cal-
culations provide excellent agreement with experi-
mental data67 with a mean deviation of only 0.12
eV. High-pole strength values of ∼0.85 indicate the
qualitative validity of the Koopman’s description of
the first states of the porphyrin molecule (except for
the b2g state wherein the assumptions of both P3
and OVGF methods, especially regarding the diag-
onal self-energy approximation, may not be valid).
OVGF IP values deviate from the experimental data
more than those obtained with P3, especially for the
b3u and au states. The mean deviation of OVGF re-
sults is two times higher than for P3 results. It is noted
that OVGF approach improves considerably the re-
sults of semiempirical AM1 calculations based on KT.
The mean deviation for the first four IPs is only 0.26
eV at the OVGF level, which is around four times
better than AM1 KT-based calculations and is com-
parable with the results of OVGF calculations with
6–311+G∗∗ basis set.

Unfortunately, it is still too difficult to apply the
ADC(3) method with sufficient basis set to relatively
big molecules. Table 2 presents result of P3, OVGF,
and ADC(3) calculations for adenine molecule (Figure
1, compound 2) together with the experimental data
recently published by Trofimov et al.68

The complete PE spectrum (inner and outer va-
lence) of adenine molecule was investigated. Depend-
ing on the basis sets chosen, the mean deviation be-
tween OVGF and P3 ionization energies is 0.1–0.2
eV, with a maximum difference of 0.4–0.5 eV. The
P3 ionization energies agree better than the OVGF

results with the experimental values. In general, it is
possible to conclude that the OVGF and P3 results
are of similar quality. Except for the first two IPs, the
ADC(3) values obtained using the 6–31G basis set are
in even better agreement with experiment than both
OVGF and P3 results. The results in both OVGF and
P3 treatments improve in going from the 6–31G to
the 6–311G∗∗ basis set. A similar trend in the low-
est IPs has been observed by Deleuze et al.22,55,56 in
polycyclic aromatic hydrocarbons.

Polycyclic aromatic hydrocarbons are of funda-
mental importance in many research fields such as
astrophysics, spectroscopy, material, and life science.
As the third example, we present in Table 3 the re-
sults of the ADC(3) and OVGF calculations of 1,2,7,8
isomer of dibenzanthracene (Figure 1, compound 3),
recently published by Deleuze24 employing various
basis sets.

As ADC(3) calculations are computationally
prohibitive, only 6–31G basis set was employed for
1,2,7,8 dibenzanthracene. The first scope of these
types of calculations is to provide a qualitatively re-
liable description of the spreading of the ionization
intensity over shake-up bands and to correctly iden-
tify those levels for which the orbital picture of ion-
ization prevails. For more quantitative insights into
ionization energies, the OVGF calculations using 6–
31G, cc-pVDZ, and cc-pVTZ basis sets have been
performed.24 An examination of Table 3 demon-
strates that outermost one-electron ionization ener-
gies are extremely sensitive to the size of the em-
ployed basis set, which must be at least of triple ζ

quality at the OVGF level of theory.24 The results
presented in Table 3 also confirm the empirical rule
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TABLE 3 Vertical Ionization Energies of 1,2,7,8 Dibenzanthracene Molecule (in C2v Point Group
Symmetry) Calculated Using OVGF and ADC(3) Methods with Different Basis Sets

OVGF1

MO 6–31G cc-pVDZ cc-pVTZ ADC(3)/6–31G1 Expt2

6b1(π ) 6.69(0.885) 7.11(0.877) 7.29(0.873) 6.81(0.856) 7.40
5a2(π ) 7.00(0.886) 7.40(0.878) 7.58(0.874) 7.12(0.854) 7.79
4a2(π ) 8.06(0.882) 8.35(0.875) 8.45(0.872) 8.18(0.848) 8.63
5b1(π ) 8.09(0.878) 8.40(0.871) 8.50(0.868) 8.18(0.834) 8.632

4b1(π ) 9.16(0.867) 8.43(0.859) 9.53(0.855) 9.22(0.716) 9.53
9.41(0.110)

3a2(π ) 9.27(0.873) 9.53(0.865) 9.62(0.862) 9.36(0.806) 9.60
9.85(0.032)

3b1(π )3 10.22(0.856) 10.45(0.849) 10.55(0.843) 10.21(0.706) 10.34
10.57(0.044)
11.90(0.020)
12.08(0.030)

2a2(π )3 10.62(0.843) 10.89(0.831) 10.98(0.827) 10.62(0.599) ∼10.92

10.19(0.081)
10.80(0.040)
11.08(0.020)

33a1(σ ) 10.53(0.896) 10.82(0.886) 10.98(0.881) 10.77(0.890) ∼10.92

29b2(σ ) 10.71(0.895) 11.00(0.884) 11.15(0.880) 10.96(0.890) ∼10.92

28b2(σ ) 11.15(0.891) 11.42(0.880) 11.56(0.876) 11.40(0.882) ∼11.22

32a1(σ ) 11.45(0.892) 11.72(0.881) 11.86(0.876) 11.66(0.881) ∼11.62

2b1(π )3 11.49(0.810) 11.72(0.797) 11.81(0.790) 11.72(0.359) ∼11.62

11.11(0.100)

1From Ref 24. Associated pole strengths are presented in parentheses.
2Assignment according to Ref 24.
3Breakdown of the orbital picture of ionization [shake-up lines in ADC(3)/6–31G calculations].

that OVGF pole strengths smaller than ∼0.85 foretell
a breakdown of the orbital picture of ionization at
the ADC(3) level of theory.22,55,56

The last example presents vertical excitation en-
ergy of phenyl radical (Figure 1, compound 4) recently
reported by Dreuw and coworkers.38 Results at the
UADC(2)-x, the EOM–CCSD levels of theory and ex-
perimental data are summarized in Table 4.

In principle, the ADC(2) method is available in
strict ADC(2)-s and extended ADC(2)-x variants.69

In the latter case, doubly excited states are treated in
the first-order perturbation theory, which results in a
substantially better description of excited states with
large double-excited character. The neutral phenyl
radical exhibits C2v symmetry and its ground elec-
tronic state is 2A1. The description of the excited
states is very satisfying with the UADC(2)-x method
wherein the mean deviation of the calculated ex-
cited states from experimental data is only 0.26 eV
in contrast to 1.29 eV at the EOM–CCSD level.
As was pointed in the original work of Dreuw and
coworkers,38 the generally large difference between

TABLE 4 Comparison of the Computed Vertical Excitation Ener-
gies (eV) of the Phenyl Radical at UADC(2)-x and EOM–CCSD Levels
with Experimental Data1

Symmetry UADC(2)-x2 EOM—CCSD2 Expt2

12B2 2.89 3.74 2.34
1 2A2 3.07 4.24
2 2A1 3.74 5.37 3.13
3 2A1 4.08 4.49
1 2B1 4.11 5.25 4.20
2 2B1 4.31 5.67 4.32
2 2A2 4.70 5.65
2 2B2 4.96 5.82 4.75
4 2A1 5.45 7.87

1The symmetry of the electronic ground state is 2A1.
2From Ref 38 (6-31G∗ basis set was used).

the UADC(2)-x and EOM–CCSD values (amounting
to about 0.9–1.1 eV) is most likely due to signifi-
cant contribution of doubly excited configurations in
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the description of the excited state wave functions of
phenyl radical. As a result, EOM–CCSD in contrast
to ADC(2)-x tends to overestimate the excitation en-
ergies of such states.

CONCLUSION

In this overview, we have shown that the computa-
tional methods derived from the one- and two-particle
GF theory have been firmly established in the field

of quantum chemistry as standard tools for the cal-
culation of various important properties of molec-
ular systems with chemical and biological interest.
One-particle GF methods provide a very convenient
way for calculating ionization and electron attach-
ment spectra. Two-particle GF method implemented
in ADC approximations may be considered as an al-
ternative to coupled cluster methods for the calcu-
lation of excitation energies. We believe, therefore,
that these methods will become routine tools for the
chemical community.
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