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In recent years there have been some rather successful applications of a new variational technique
for calculating the total energies of electronic systems. The new method is based on many-body
perturbation theory and uses the one-electron Green function as the basic “variable” rather than the
wave function of traditional variational calculations. It is the purpose of the present work to promote
the new methods within the realm of traditional theoretical chemistry by demonstrating their utility
for calculating the correlation energies of a number of atoms at a level corresponding to
second-order Mgller—Plesset perturbation theory. The generalization to any desired order of
perturbation theory is not hard to accomplish. 2004 American Institute of Physics.
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I. INTRODUCTION tioned, Hindgren and Almbladtonly included effects asso-
ciated with a linear but dynamic screening of the usual
The last several years have seen several attempts t0 Cgdyrtree—Fock (HF) exchange [known as the GW
culate the total energies of electronic systems from Va”aapproximatioﬁ (GWA)]. Their very accurate results are,
tional functionals constructed from many-body perturbationyherefore, somewhat surprising in view of the knowledge that
theory. Within these methods, the quantity which is varied issecond-order exchange effects give a substantial contribution
not the tradiFionaI wave func_tion but rather thg one-electrony the correlation energy also of the gas—especially at the
Green function and, sometimes, the dynamically screenegl,\er densities. The second important issue in connection
Coulomb interaction. The ideas behind these new teChniqu&gis, the new functionals is their variational quality. The sim-
were put forth in the 1960swhen field theory moved into ?est version of the functionals have only one independent
i

the area O,f many-electron phy5|c§. The or|g|nat0r§ of th ariable, the one-electron Green function, and they are sta-
methods did, however, not appreciate the computational aq-

vantages of the variational techniques and the latter remain L . .
. e latter solution is computationally very demanding to ob-
unused until some seven years ago. In 1996/97 our group , . _ . . : )
- ! in in a larger system and the whole idea behind the varia-
proposed and demonstrated the feasibility of an improved. . . .
: - . . . ional functionals is to evaluate them at an approximate and
version of these variational techniques particularly suited to

large molecules and solids. The essence of these “seco ¥ rhapstnfomrf\teractt;]ng (ir(te_en funct|o|n an_lqhsulll ot?tau_’l atr;]en—
generation” functionals consists in using the dynamicallyergy not far from the stationary vajue. The latter is then

screened interaction as an independent variable in addition ﬁssumed to be a very accurate total energy, which, as we just

the one-electron Green function. After all, in any more eX_mentioned, dePe”dS on the chosen Ieyel of perturbatic_)n
tended system the singularities associated with the infinitd€0Y- In atomic and molecular calculations, the approxi-
range of the Coulomb interaction has to be removed b}ma.te ngmnteractlng Grgen funcFlon 1S .convenlently _de—
proper screening—a necessity arising already in larger mopscribed in terms of a basis set, which, in view of.the station-
ecules. ary property, could be of a rather poor quality without

Shortly after, the new techniques were tested by some dfOmMPromising the results. _ _
us' in a calculation of the total energy of the interacting The very accurate correlation energies obtained from the

electron gas. From a very limited computational effort, theyn€W functionals applied to the homogeneous electron gas led
obtained correlation energies for this model system, whicHo a desire to test the functionals also in very inhomogeneous
were very close to those of very elaborate Monte Carlo simuSystems. Thus, we recerftif applied these techniques to a
lations. There are two major issues of concern in the conseries of atoms. To summarize our results, we found, not
struction of the functionals. One is the level of perturbationSurprisingly, that the inclusion of only first-order screened
theory on which they are based. This choice governs whicl§xchange GW) was inadequate in these systems with very
physical processes are allowed to influence the results and tecalized electrons. For that case, the calculated correlation
which order in perturbation theory the corresponding effectg€nergies were approximately halfway between the correct re-

are accounted for. In the calculation on the gas just mensults and the results of the random phase approximation

(RPA) which, in turn, are almost a factor 2 too large, at least
dpresent address: Theoretical Chemistry, Materials Science Center, Rijlj-Or the smaller atoms Ilk.e He and Be. In this context, .the
suniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Nether-t€rm RPA refers to the time-dependent Hartree approxima-

lands; Electronic mail: n.e.dahlen@chem.rug.nl tion in the same way as RPAE refers to a time-dependent

nary at the Green function which solves Dyson’s equation.
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Hartree—Fock(HF) calculation. The total energies are then desired order of perturbation theory, e.g., to fourth-order

obtained by integrating over the strength of the CoulombMgller—Plesset theory.

interaction. The inclusion also of second-order exchange ef- In Sec. Il we will present the basic formalism without

fects led to a marked improvement of the correlation energiving too many details. For a more comprehensive treat-

gies. Except for the lightest atoms, the accuracy of our calment we refer to our previous articles on this topté We

culated correlation energies were of the order of 10%. Wehen present our MP2-like correlation energies for a number

also found a somewhat larger sensitivity of the calculatedf atoms calculated from different approximate noninteract-

energies to the choice of approximate Green function used img Green functions. Finally, we will discuss our results and

their evaluation, i.e., in comparison to the case of the gas. how the variational techniques can be generalized to higher
Compared to the energies routinely obtained for thes@rder of perturbation theory. We will also discuss possible

systems from a variety of methods within theoretical chemways of improving the variational quality of the functionals

istry, our results were not that impressive. In the mentionedn order to further reduce the computational labor.

work we were, however, interested primarily in extended

systems, mainly solids, and in the energies associated with

the rearrangements of valence charge. Thus, our calculatiots BASIC THEORY

also for the atoms were carried out using the dynamically e pasic variable of the original variational functional

screened Coulomb interaction although we sometimes aRge (o | uttinger and WardLW) is the one-electron Green

proximated this quantity using a statically screened '”teracfunction, which from the basic equation of motion for the

tion. This also means that our accurate calculations wergg,q operators can be shown to obey Dyson's equation
carried out within the framework of the “second generation ’

functionals” using also the screened interaction as an inde- [l@—t=w=Vy+u]G=1+2G. (1)

pendent variable. In this perspective, we consider our previ- \while Green functions have been used extensively in
ously obtained results as very promising for quantities like gyantum chemistry;!* the formalism has, with some
e.g., the binding energies of molecules adsorbed on met xceptions? *° mainly been used to compute excitation en-
surfaces. We are already continuing along this road towardgies rather than total ground state energies, a fact which is
molecular binding energies but this is not the topic or thereflected in these authors’ choice of approximationsSto
purpose of the present article. It is well known that within The variational energy functionals, which is the topic of this
perturbation theory there are Iarge cancellations between t%per, have not been used before and we will therefore start
diagrams which can be considered as responsible for thgy presenting them briefly. The formulas presented here are
physical process of screening, and those which describe th@ainly meant as illustrations to the basic line of thought and
particle—hole interactions, i.e., the vertex diagrams. In amre not intended as exact derivations. Thus, in @&, all
extended system like the electron gas, the screening of thguantities are matrices with rows and columns labeled by
Coulomb interaction is by far the most dominant correlationspace and spin coordinates, they all depend on the imaginary
effect and must, in fact, be treated to infinite order in order tofrequencyi w as well as the temperatufe which eventually
yield reasonable resultsee the following The vertex ef-  will be allowed to go to zero. On the left-hand side, the
fects are not negligible but can be treated to low order—quantityt is the usual operator V2/2 for the kinetic energy,
provided very localized electrons are not involved in thew is the external potential which, for an atom or molecule, is
problem of interest. In systems with mainly localized elec-just the sum of the Coulomb potentials from the nuclei,
trons such as atoms and smaller molecules that one has Yq,(r)=f d®'n(r')v(r—r') is the Hartree-potential mean-
rely on the cancellations between screening and vertex efng the classical Coulomb potentigb (r)=1/] from the
fects to obtain good results. Thus, it becomes advantageousi-electron charge density(r) and, finally, u is the chemi-

to treat these major effects to the same order in perturbatiosal potential of the system which ensures that it has the cor-
theory. For the reasons discussed earlier, this principle wagct number of electrons as calculated from the Green func-
violated in our tests on atoms. In the present work we willtion G. On the right-hand side, the quanti/is known as
adhere to this principle in an attempt to introduce the concepthe irreducible self-energy of the system. From the rules of
of variational energy functionals into the realm of quantumthe Feynman diagramg, is a functional of the Green func-
chemistry. We will thus work to a particular order in the baretion G and the bare Coulomb interactiorto arbitrary orders
Coulomb interaction and actually not go beyond second orin perturbation theory.

der. Consequently, the physical content of the theory pre- In the present work we restrict ourselves to a discussion
sented here will be similar to that which in the quantumof the original LW energy functional mainly for two reasons:
chemistry literature is known as second-order Mgller—(1) this functional is defined in terms of the bare Coulomb
PlessetMP2) perturbation theor§.The difference is that our interaction as opposed to the screened interaction, a property
variational scheme is a perturbation expansion in terms ofonsistent with the treatment of physical effects to a particu-
the Coulomb interaction and the self-consistent Green fundar order in the bare interaction, an(®) in previous
tion, while the conventional MP2 scheme is based on armalculationd® we have found this functional to be relatively
expansion in terms of the Coulomb interaction and the HFstable with respect to the choice of Green function used for
Green function. The variational scheme allows us to obtairits evaluation. We should, however, mention already here
the second-order results at a smaller computational cost, ariblat there is nothing unique about this functional. It is rela-
the principles laid down here are readily extended to anyively easy to invent other functionals with different varia-
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approximations differs from those commonly used in quan-
tum chemistry wherg, is frequently obtained from response
functions®1%14 or diagrammatic expansions using a three-
particle propagato® As mentioned earlier, it appears that for
systems of very localized electrons it is necessary to treat
screening and vertex effects to the same order. The second-
order approximation is therefore more appropriate than the
GWAfor calculations on atoms.

Using the functionatb we here directly write down the

1
2
1
4 . . .
resulting LW functional},\,[ G], which reads
Qw[G]=P[G]-U,—~TH{GX[G]}
. —Trin{t+w+Vy+3[G]— pu—iw}, (4)

1 where the ternU,= %[ nV, is the classical part of the inter-
action energy. The quantity,y is actually the grand canoni-
cal potential which might appear as the use of excessive
force in an atom or a molecule with a fixed humber of par-
ticles at zero temperature. The full formalism of equilibrium

1 statistical many-body physics is, however, often much easier

- to handle and the formalism looks more appealing as com-

6 pared to, e.g., the zero-temperature technique. When the tem-
perature tends to zeré) becomes the ordinary total energy

FIG. 1. It is shown how th& functional is constructed by closing irreduc- except for an additive constant equal-tq:N whereN is the

ible self-energy diagrams with a Green function line and multiplying with an total number of electrons.

appropriate prefactor. All of the first- and second-order diagrams and one of We can rather easily see thigEqg. (4)] from the

the many third-order diagrams are shown. Hellman—Feynman theorem applied to a multiplicative fac-

tor A in front of the Coulomb interaction, v—\v. Let us
differentiated with respect tav. In each diagram making up

tional qualities and it would be an interesting topic for future P there is an explicit power-law dependence joplus an
research to find more optimal choices. We will return to thisMPlicit dependence through the Green funct@rbifferen-
point in the last section. tiating with respect to the explicit dependence removes the
The basic quantity of the LW functional is the functional 1/n factors in front of th_e_diagrams resulting in a sum equal
®[G] giving the self-energ® [G] from the relation to the full self-energy divided byX Thus,
5P dd 1
E:%_ 2) HZETI’[GEJ‘FTI’
The rule for obtaining this quantity was given in the Where we have also used E@). Now, differentiating also
original paper by LW and can be stated as follows. Take alfhe logarithm in Eq(4), we can use Dyson’s equati¢&g.
skeleton self-energy diagrards™ of a particular ordenin  (1)] to obtain
v, close each diagram with a Green functi@rand integrate
over all variablegwe will here designate the latter operation — aTr In{t+w+Vy+3[G]l—pu—io}
with the symbol Tr for trace in keeping with earlier woyks

dG
Ea , 5

Divide each thus obtained diagram by the factarghd sum d>  dVy
all contributions to infinite order. Formally, =Tr[ G wnt KH (6)
DIG,v]=D, ZiTr{GEf(“)[G,v]}. (3)  from this term. Finally we see that thederivative ofU, is
nk <N

just T{ndVL/dA]—Uy/N and, adding everything up, we

The construction is illustrated in Fig. 1 for the lowest orders OPtain
Examples ofb-derivable approximations include the Hartree d
(®=0) and the Hartree—Fock approximatipRig. 1(a)]. In

this paper we study the second-order approximation obtained
by including all first- and second-order diagrafrggs. la)—  where we have also used the fact that the Green function
(c)]. The GW approximation is also®-derivable and is ob- gives the electron density according ton(r)
tained from the sum of the diagram in Figaland all of the = [(dw/2m)e'“’S, . G(ro,ra’,iw). Now, the right-hand
ring diagrams[Figs. Xb) and 1d), etc] to infinite order. side of this equation is just the ground-state expectation
Note that in these diagrams, the Green function lines reprevalue of the interaction energy divided by i.e., the expec-
sent the self-consistent solution to the Dyson equation for thé&ation value of thex derivative of the Hamiltonian and, thus,
corresponding®. This procedure for obtaining self-energy the \ derivative of the ground-state energy according to the

Qw _ 1. GS1+ Su 7
N 2x 1 HX 0 (7)
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Hellman—Feynman theorem. Consequently, except for somef the Green functiorc before the evaluation is carried out.
\-independent constant to be determined whet®, ), is  This will destroy the nice variational property of the LW
the A-dependent total energy. Whenr=0, Q,,, from Eq. (4) expression.

reduces to

Qu(A=0)=—TrIn[t+w—u—iw]. g Il SECOND-ORDER THEORY

We here present total energies calculated using the LW-
functional (4), including the diagrams up to second order in
the ® functional. These are the diagraffes-0 in Fig. 1. The

This expression can, after some manipulations, be shtwn
be the total energy minugN of N noninteracting electrons
2” mow?gt.ln trtf f):;err;al pt(')ten?alt./. Th'ﬁ c;m)plettes Itlhe first-order ® diagram is just the exchange energy, and we
emonstration that the functional given by &¢) actually therefore writeb = ®, + d . to single out the correlation part
represents the total ground-state energy of the many-electrod} the & functional. Evaluating the functional at a set of

systletm. | ¢ difficult t h ational v of noninteracting Green functions gives an indication of the sta-
IS alS0 nat dificult to see ne variational property o bility of the LW functional, as well as suggesting the value of

the LW_funct|onaI. It we eyaluate the LW expression ?t SOMEhe " self-consistent second-order correlation energy. When
approximate Green function, we can study the resulting erroévaluating the logarithmic term in the LW functional, it is

in the energy. We must then, certainly, account for the fachecessary to take care of the terms that are static and will

that all of the quar_1t|t|e§ appearing in He) are functhnals cause the frequency integral to diverge. For this purpose, it is
of the Green function, like the self-ener8yor the densityn. . ) ~ .
convenient to define a new Green functi@naccording to

We obtain 3
50 G l=iw—t-w—Vy—3,[G]+u, (11)
oQw=Tr E5G_EéG_G§E_VH5G_[f+W whereV}; andX,[G] are the Hartree-potential and the ex-
change self-energyshown in Fig. 1a)]. Using G, the loga-
ith b itt
TVt - p-iw] 63 +0G] | (9 M canbewnten
—Trin{t+w+Vy+32[G]—u—iw}
Using the fact tha = §&/5G we can see thabQ,,=0 =—Trln{—é*1+2p[G]}, (12)
whenever

. whereZ., is defined as the dynamic part of the self-energy,
G=[iw—t—-w—Vy—3+u] % (100  X,=3-3,. When the LW functional is evaluated at a non-
interacting G, G represents the first iteration toward the

-€., wheneverG IS a solution to Dysons equation. Thus, Hartree—Fock Green function. Usir{g, the functional can
first-order errors in the Green function produce second-ordetge rewritten as

errors in the energy. While Green functions have earlier been
used in total-energy calculations for atoms and molecules, Quuw[G]=®,[G]+ P [GC]—Uq
the energies have been obtained from them through the use

~-1
of the Galitskii-Migdal formuld’ There are, however, many ~TH{GE[GL} ~Trin{ -G " +3,[G]}
other ways of calculating the total energy from a giv@én —P[Gl-Un—P.[C]-Tr(G=C)S [G
which could give different results unless tiiswas a self- Gl ~° oL ]~ i )2l G}
consistent solution of the Dyson equation fofbaderivable —TrIn{—Gfl}—Tr{GEp[G]
self-energy® In the mentioned earlier wor2°the Green -
function was not calculated self-consistently and the result- +In[1-GZ[G]]}, (13

ing energies therefore depended on the choice of referengghere we, in the last step, have also used the fact that
state. There is no such ambiguity in our variational approachg [ G]= iT[3,G]. When this expression is evaluated at a
and the energies should only depend on the choice of noninteracting Green function, the termTrin{—G 1} is

diagrams. . . .
. ust the sum over the occupied eigenvalues&fand an
At this stage, the whole procedure should be transparen dditional constant term—,uNp g

.GUidEd by physical intuition concerning which Processes are yypjje the LW functional is stationary when evaluated at

important for the system under_ study, one decides to mcludg self-consisten®, it is not obvious that it has a minimum at

a set oftrs;:glefton §elf-Tznergyotljlagrams. 'T_:;\)/m th.ese,vf)/ne COthis point. It is therefore interesting to see how the results
structs _unctlona according to the V Tecipe. VW€ I€~ jiffer when the functional is evaluated at various approxi-

mark that this process might lead to additional self-energ)fnate Green functions. As a particular example, we can con-

d!agrams according to EG). ShOl_Jld this be_ the case, these sider evaluating the functional at the Hartree—Fock Green
diagrams must, of course, be included in the total self- . . ~ -~
function Gye. In this caseG becomesG=G,g, and the
energy. Then all occurrences of the Green funci®rare . - R
. energy functional E=Q + uN) simplifies to
replaced by some approximate and easy-to-calculate Green

function—preferably a noninteracting one like a Hartree—  Ew[Guel=Eprt @[ Guel — TH{Gpe2 [ Guel +In(1
Fock or a density-functional Green function—and the LW Gy [Gue]) (14
expression is evaluated. We note that it is important not to, HeZpl Gl -

e.g., use Dyson’s equation to remove the self-energy in favorere, the ternk is the usual HF energy given by
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TABLE I. Correlation energies for some spherically symmetric atoms and|\/,. CONCLUSION

ions. The energies are in hartrees. The results of conventional MP2 calcula-

tions differ with less than a millihartree from the numbers in the column The purpose of the present work is to suggest an alter-
labeledE™Y [Gye] and are therefore not included. native way of calculating correlation energies in atoms and

smaller molecules. As an illustration, we have here chosen to

LW LW LW Cla ) Rk ) .

Ec” [Goeel Ec” [Guonl Ec” (Gl obtain correlation energies of atoms to second order in the
He -0.035 —0.034 —0.037 —0.042 bare Coulomb interaction. This level of accuracy is usually
Be*" —0.041 —0.040 —0.041 —0.044 referred to as MP2 theory in the quantum chemistry litera-
Be ~0.038 ~0.028 —0.074 —0.094 ture. In contrast to this theory, the scheme we propose in-
Ne -0.363 -0.348 —-0.378 -0.390 | infin ber of additional di
Mg?* 0.365 0361 0372 0.390 volves an infinite number of additiona ngnman diagrams
Mg —0.379 —0.373 ~0.410 —0.438 which are not intended to add to the physical quality of the
Ar —0.650 —-0.641 —0.685 -0.722 results but rather to render the theory variational, i.e., to

make it much less sensitive to the choice of basis set or to the
underlying zeroth order Hamiltonian. From the ideas pre-
sented here it is not difficult to invent a variety of variational
schemes of different quality with regard to accuracy and sta-
bility. In the present work we, however, limit ourselves to the
Epr=uN—Trin[ — G;2]— @[ Gye] — Uo. (15)  study of the variational functi_onal du.e to Luttinger and Ward
from 1960—and we take this functional to the MP2 level.
This does not mean that we will reproduce the “proper”
o ) ~ MP2 results of previous workers. Instead, the functional is
If the Iogar|thm|c term in Eq(14) can be neglected, then this designed to yield the total energy produced by the self-
expression reduces to evaluating the tedrg at the HF  qngistent Green function obtained from a Dyson equation in
Green function. This is equivalent to evaluating the secondynich the self-energy is calculated to second order in the
order Mgller—Plesset correlation enefgyThis connection  pare Coulomb interaction using that same Green function.
can be made only if the last term of E(L4) can be ne-  apnq it is understood that the total energy produced by a
glected, which is not true in general. For the atomic systemgariicular one-electron Green function is that which obtains
in our calculations, however, this term is quite small, usuallyfom applying the Galitskii—Migdal formula to it. Includ-
less than a millihartree. . . ing, as we do here, all skeleton self-energy diagrams of sec-
In Table I, we show the correlation energies calculatecyng order, it seems appropriate to label the resulting energy
from the LW functional for a few spherically symmetric at- e “self-consistent MP2” energy. This could be either above
oms. The functional was evaluated using HF and density peljow the “proper” MP2 energy obtained from straight-
functional Green functions, where the orbitals were eX-fonward perturbation theory starting from HF. Assuming for
panded in a set of Slater functiotisThe DFT Green func- 3 moment the good variational properties of the LW func-
tions were calculated using both the local density approxitional (small second functional derivative with respect to the
mation (LDA) and the exchange-only optimized effective Green functionG), we can obtain the self-consistent MP2
potential(OEP method?® We see that, with an exception for energy by evaluating the LW functional at the HF Green
Be, the energies are relatively insensitive to the choice ofynction. (Notice that the latter only differs from the self-
mputh. For all atoms, the lowest value is obtained when thecgnsistent Green function by terms of second order in the
functional is evaluated &b. The results foiGye are(@s  coulomb interaction and that thus the error we make in this
could be expectedquite close to results obtained from MP2 procedure is of fourth orderBut, as seen from Eq14), we
calculations, and also close to the exact correlation energiggen obtain an energy which is a negligible amo(ess than
obtained from configuration interaction calculations. If theq mhartreg above the traditional MP2 energy. This is actu-
LW functional has a minimum at the self-consist@&tthis ally a strong argument for expecting a very high quality of
indicates that the MP2 results are in fact close to the selfine Mp2 energies, much higher than one has any right to
consistent second-order correlation energies. ~ expect from a simple perturbation expansion. Self-consistent
Since our main interest was to study the LW functionalsta| energies tend to be very accurate although they might
and its relation to MP2 calculations, the stability of the func-eave out important physical effects. This is due to a cancel-
tional was tested by changing the one-particle Green funcytion of errors occurring because of the conserving proper-
tion, rather than varying the basis sets. The HF and DFfjes of self-consistent theories. The latter property implies
orbitals are expanded in the same basis set, and the Gregiyt many physically different ways of calculating the total
functions differ only in the one-particle Hamilto_nians they energy,(the GM formula, integration over the strength of the
are generated from. It would, however, be possible to studysoylomb interaction, integration with respect to the number
the variational properties of the LW functional also with re- 4¢ particles, etd. all produce the same total energy, leaving
spect to the size of the basis set. In this case, the abov%ry little room for errors.
mentioned manipulations involving are not valid, since the Although we have not yet been able to prove in a strict
definition of G in Eq. (11) assumes that it is expanded in an sense that the stationary point of the LW functional is actu-
infinite basis. When the input single-particle Green functionally a minimum, our present and previous experience sug-
is given in a limited basis set, it is no longer true tlat gests that it is. Should this conjecture be correct, our discus-
=G when the energy is evaluated @f,. sion above based on E{d4) suggests that the self-consistent

aTaken from Ref. 22.
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MP2 energies should be slightly below the traditional onegyive reasonable results for this famous case, and that, there-
but not by much. In fact, the difference should be of fourthfore, the LW functional would be both accurate and easy to
order in the Coulomb interaction. apply to calculations of the energy surfaces of molecules.

As mentioned earlier, our actual LW-MP2 energies dis-
played in Table | are some millihartrees above the traditiona}l\CKNOWLEDGMENTS
MP2 results. And due to the very small contribution of the
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